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Abstract. Arrow’s celebrated impossibility theorem states that a sufficiently diverse domain of
voter preference profiles cannot be mapped into social orders of the alternatives without violating
at least one of three appealing conditions. Following Fishburn and Kelly, we define a set of strict
preference profiles to be super Arrovian if Arrow’s impossibility theorem holds for this set and each
of its strict preference profile supersets. We write σ(m,n) for the size of the smallest super Arrovian
set for m alternatives and n voters. We show that σ(m, 2) = d 2m

m−2
e and σ(3, 3) = 19. We also show

that σ(m,n) is bounded by a constant for fixed n and bounded on both sides by a constant times
2n for fixed m. In particular, we find that limn→∞ σ(3, n)/2n = 3. Finally, we answer two questions
posed by Fishburn and Kelly on the structure of minimum and minimal super Arrovian sets.
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1. Introduction. Arrow’s impossibility theorem [1] states that a sufficiently
diverse domain of voter preference profiles cannot be mapped into social orders of the
alternatives without violating at least one of three appealing conditions. Fishburn and
Kelly [2] consider the smallest domains of profiles of strict rankings for voters that
induce an Arrovian dictator and have the property that every superset domain also
induces an Arrovian dictator. In this paper, we continue their analysis and answer
some of the questions left open in their work.

We consider a finite set X of m ≥ 3 alternatives and a set of n ≥ 2 voters, labeled
i = 1, . . . , n. Let R denote the set of all weak orders (transitive and complete binary
relations that need not be asymmetric—that is, ties are allowed) on X, and let S be
the set of all linear orders (strict rankings) on X. A profile of voter preferences is an
n-tuple of strict rankings d = (S1, . . . , Sn) ∈ Sn. Here the linear order Si represents
the preferences of voter i in the profile. A domain is a set of profiles: D ⊆ Sn. A
social choice rule on D is a mapping f : D → R that assigns a weak order %d on X
to every d ∈ D. For S ∈ S, the notation xSy means that x is preferred to y in S,
and S = x1x2 . . . xm means that xj is preferred to xk whenever j < k. The strict part
of a weak order % in R is denoted by �, that is, x � y if x % y and y 6% x. Given
a subset of the alternatives Y ⊆ X, any weak order % in R induces a weak order
% |Y on Y. Similarly, any S ∈ S induces a linear order S|Y on Y . Given a profile
d = (S1, . . . , Sn), we write d|Y = (S1|Y , . . . Sn|Y ) and say that d restricts to d|Y .

A domain D is called Arrovian if there is no social choice rule f satisfying the
following three conditions of Arrow [1], for all x, y ∈ X and d, e ∈ D:

(P) Pareto condition. If d = (S1, . . . , Sn) and xSiy for i = 1, . . . , n, then x �d y.
(IIA) Independence of irrelevant alternatives. For Y ⊆ X, if d|Y = e|Y then %d |Y

is equal to %e |Y .
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(ND) Nondictatorship. There is no i ∈ {1, . . . , n} such that �d equals Si for all
d = (S1, . . . , Sn) ∈ D.

If d = (S1, . . . , Sn) and the hypothesis of the Pareto condition xSiy for i = 1, . . . , n
holds, then we write x � y in d. We say that x and y are a Pareto pair and are
involved in a Pareto relationship. A mapping f that satisfies the first two conditions
is called a (P) + (IIA) function. If the function f is such that �d equals Si for each
d = (S1, . . . , Sn), then voter i is called a dictator for f. An Arrovian domain is one
for which every (P) + (IIA) function has a dictator. A domain D is called super
Arrovian if it is Arrovian and every superset domain D′ ⊃ D is also Arrovian. A
super Arrovian domain on m alternatives and n voters that has the smallest number
of profiles is called minimum, and this number of profiles is denoted σ(m,n). A super
Arrovian domain is called minimal if no proper subset is super Arrovian.

Fishburn and Kelly [2] proved that σ(3, 2) = 6 and showed σ(m,n) = o(4n)
for fixed m and σ(m,n) = o((logm)2+ε) for fixed n and ε > 0. They also proved
σ(m, 2) ≤ min{6 · 2m−3, (7 logm)2} and σ(m,n) > 2n − 2. In this paper, we find
improved lower and upper bounds and calculate the value of σ(m, 2) exactly.

Theorem 1. For m ≥ 3, we have

σ(m, 2) =

⌈
2m

m− 2

⌉
=


6 if m = 3,

4 if m = 4 or 5,

3 if m ≥ 6.

Theorem 2. For m,n ≥ 3, we have

m

m− 2
(2n − 2)< σ(m,n) ≤

⌈
2m

m− 2

⌉
(2n−1 − 1) +

⌈
2n − 2n− 2

bm/2c
⌉

+

⌈
n(n− 1)

2(m− 2)

⌉
+ 1.

For n ≥ 4, the upper bound can be decreased by 1.
In Section 2, we establish the lower bound for σ(m,n) given in Theorem 2. In

Section 3, we prove an upper bound for σ(m,n) in terms of σ(m, 2). In Section 4, we
find a general class of super Arrovian domains which yields a tighter upper bound
in the case m = 3. In Section 5 we evaluate σ(m, 2) explicitly, completing the proofs
of Theorems 1 and 2. In Section 6, we show that σ(3, 3) = 19 and answer two
questions posed in [2] by giving examples of minimal super Arrovian domains that
are not minimum, and by constructing distinct minimum super Arrovian domains for
the same m and n that are not related by a permutation of voters and alternatives.

2. Lower bounds on σ(m,n). A doubles profile is an n-tuple of linear orders
on a two element subset of X. Given a profile d ∈ Sn and a two-element subset of
the alternatives Y ⊂ X, the restriction d|Y is a doubles profile. This doubles profile
represents the preferences of the voters on the two alternatives of Y in the profile d.
A doubles profile is said to be nonunanimous if the n voters do not all agree on the
ordering of the two alternatives. Let P denote the set of all nonunanimous doubles
profiles. A domain D ⊆ Sn satisfies the near-free doubles condition if every nonunan-
imous doubles profile appears as the restriction of some profile d ∈ D. Fishburn and
Kelly found the following necessary and sufficient conditions for a domain to be super
Arrovian using the near-free doubles condition.

Theorem 3 ([2],Theorem 1). A domain D is super Arrovian if and only if it is
Arrovian and satisfies the near-free doubles condition.

We begin with a lemma generalizing the “only if” part of this result, motivated
by [2, Proof of Part 2 of Lemma 2]. If S ∈ S and xSy, then we say that x and y are
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nonadjacent if there is a w ∈ X such that xSw and wSy. Otherwise, x and y are said
to be adjacent.

Lemma 4. Given a super Arrovian domain D, a nonunanimous doubles profile
p, and a voter v, there is a profile d ∈ D restricting to p such that the two alternatives
of p are nonadjacent in d for voter v.

Proof. For concreteness, let v be voter 1, let p be a doubles profile on {x, y} ⊂ X,
and suppose that x is preferred to y in p for voter 1. Let C ⊂ D be the set of profiles
that restrict to p, and assume that each profile of C has x and y adjacent for voter
1. Then we can define a (P) + (IIA) function f : D → R by letting voter 1 be a
dictator on D−C and letting voter 1 be a dictator on C except for reversing the order
of x and y. In other words, f chooses the preferences of voter 1 on every doubles
profile other than p. Because D is super Arrovian, f must have a dictator. Since C
is nonempty by Theorem 3, voter 1 is not a dictator. Without loss of generality, let
voter 2 be a dictator. Then voters 1 and 2 agree on all elements of D − C, so that
no doubles profile of the form (yx, xy, . . . ) appears as the restriction of a profile in D.
This contradicts Theorem 3 and proves the lemma.

Corollary 5. For m ≥ 3 and n ≥ 2, we have σ(m,n) ≥ m
m−2 (2n − 2).

Proof. Let D be super Arrovian, and let H be the set of all ordered pairs (p, d) ∈
P ×D such that d restricts to p, and the two alternatives of p are nonadjacent in d
for voter 1. By the lemma, |H| ≥ |P | =

(
m
2

)
(2n − 2). Yet by counting the greatest

possible contribution of each d ∈ D, we see that |H| ≤ (m−1
2

)|D|. Combining these
inequalities gives the desired result.

Lemma 6. For m,n ≥ 3, we have σ(m,n) > m
m−2 (2n − 2).

Proof. We need only eliminate the possibility that equality holds in the corollary
above. Assume that there exists a super Arrovian domain D of this size. The proof
of the corollary implies that for any profile d ∈ D, the alternatives in every Pareto
relationship must be adjacent for every voter (otherwise, the contribution of d to |H|
is less than

(
m−1

2

)
). We claim that this restriction makes it possible to define a (P) +

(IIA) function f : D → S ⊂ R by choosing, for every profile, the reverse of voter 1’s
preferences on every pair of alternatives except those involved in a Pareto relationship.
That is, for d = (S1, . . . , Sn) we let f(d) be the linear order �d defined by

x �d y if (x� y in d) or (yS1x but not y � x in d).

Suppose that there is some profile d = (S1, . . . , Sn) ∈ D for which this definition
of f(d) results in a relation that is not transitive. Then there are three alternatives
x, y, z ∈ X such that the rule defining f yields x �d y �d z �d x. First suppose that
none of xy, yz, or zx is a Pareto pair. Then we must have yS1x, zS1y, and xS1z,
contradicting the transitivity of S1. Hence we may assume without loss of generality
that zx is a Pareto pair and that the others are not. But then we have zS1y and yS1x,
and the alternatives of the Pareto relationship are nonadjacent. Since this contradicts
the assumption about D, we conclude that f(d) is indeed transitive for each profile
d ∈ D.

The map f is clearly a (P) + (IIA) function, and voter 1 is not a dictator for
f . If there is some other dictator i, then we can choose any other voter j and note
that D does not contain any doubles profiles for which 1 and i agree but j differs.
This contradicts the near-free doubles condition for D and concludes the proof of the
lemma.

3. An upper bound on σ(m,n). We begin by generalizing some notation
used by Fishburn and Kelly [2]. Given a subset A of the set {1, . . . , n} of all voters
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and distinct x, y ∈ X, we write xyA for the doubles profile in which the preference
ranking of each voter in A is xy and the preference ranking for each voter not in A is
yx. Write A for {1, . . . , n}−A, and note that xyA = yxA. For a (P) + (IIA) function
f on a domain D, we write xAy if x �d y for each d ∈ D restricting to xyA. If xAy
for all ordered pairs of distinct alternatives x, y ∈ X, we write that A+ holds. For
example, the f constructed in the proof of Lemma 6 has A+ if and only if 1 6∈ A.
A domain D is super Arrovian if and only if the only (P) + (IIA) functions f on
any domain containing D are those defined by: “A+ holds whenever i ∈ A” for some
fixed i.

Lemma 7. For m ≥ 3 and n ≥ 4, we have

σ(m,n) ≤ σ(m, 2)(2n−1 − 1) + 2n +
n2 − 5n− 4

2
.

Proof. We shall construct a super Arrovian domain D of the required size.
Let {A,A} be a partition of {1, . . . , n}, where neither A nor A is empty. If

d′ = (S′1, S
′
2) is a profile on m alternatives and 2 voters, let g(d′) be the profile on m

alternatives and n voters (S1, . . . , Sn) where Si = S′1 if i ∈ A and Si = S′2 if i ∈ A.
Consider the σ(m, 2) profiles of the form g(d′) as d′ ranges through a minimum super
Arrovian domain on m alternatives and 2 voters. Any (P) + (IIA) function f on a
domain containing these profiles must have either A+ or A + . Let Z1 be the set of
all such profiles, for the 2n−1 − 1 possibilities for {A,A}. Note that Z1 satisfies the
near-free doubles condition.

Choose three distinct alternatives x, y, z ∈ X. For each pair i, j ∈ {1, . . . , n} with
i < j, consider any profile d in which voter i has preference ranking zxy, voter j has
preference ranking yzx, and all the other voters have preference ranking zyx. Let f be
a (P) + (IIA) function on a domain containing this profile. By the Pareto condition,
z �d x. Now {i}+ would imply x �d y, and {j}+ would imply y �d z. Since these
three orderings are incompatible, this profile shows that {i}+ and {j}+ cannot both
hold for f . Let Z2 be any domain containing such a profile d for every pair i, j. It is
clear that we can choose Z2 such that |Z2| ≤

(
n
2

)
.

Finally, for each subset A ⊂ {1, . . . , n} with 2 ≤ |A| ≤ n − 2, choose an element
i ∈ A, and write B = A− {i}. Consider any profile d in which voter i has preference
ranking xzy, the voters in B have preference ranking yxz, and all the other voters have
preference ranking zyx. If f is any (P) + (IIA) function on a domain containing this
profile, then {i}+, B+, and A+ cannot all hold for f , since otherwise y �d x, z �d y,
and x �d z. Let Z3 be any domain containing such a d for each set A. We can choose
Z3 so that |Z3| ≤ 2n − (2n+ 2).

Now let D = Z1∪Z2∪Z3. The domain D has the required number of profiles and
satisfies the near-free doubles condition; it remains to show that it is Arrovian. We
will refer to the profiles of each Zi as the “stage i profiles.” Let f be a (P) + (IIA)
function on D. By the stage one profiles, we have either {i}+ or {i}+ for each i. The
stage two profiles show that for no two distinct i and j can we have both {i}+ and
{j}+ .

Suppose first that {i}+ holds for all i. We show by induction that A+ holds for
all A ⊂ {1, . . . , n} with 1 ≤ |A| ≤ n − 2. For any A with 2 ≤ |A| ≤ n − 2, choose
the i ∈ A and B ⊂ A from the third stage of the construction. Note that {i}+ and
B+ hold by induction, so that A+ is impossible by the stage three profiles. Then by
the stage one profiles, A+ must hold, completing the induction. However, this is a
contradiction for any |A| with n/2 ≤ |A| ≤ n−2 since A+ and A+ are not compatible.
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Hence we must have {i}+ for exactly one voter i. We must show that this voter
is a dictator, that is, A+ holds for all subsets A containing i. The assumption about
voter i implies that this is true for |A| = 1 or |A| = n − 1. The inductive argument
in the preceding paragraph shows that A+ holds for each subset A not containing i
with 2 ≤ |A| ≤ n− 2. This is the desired result.

Note that the proof of Lemma 7 above works for n = 3 except for the paragraph
that precludes the possibility that {i}+ holds for all i, since now n/2 > n−2. Here one
extra profile is needed, namely any profile restricting to (xzy, yxz, zyx), to complete
the argument. Henceforth, we will refer to this as a stage three profile in the case
n = 3. We obtain σ(m, 3) ≤ 3σ(m, 2) + 4, which is the result of [2, Lemma 7].

The profiles of stages two and three are wasteful in the sense that we only draw
information from three of the alternatives in each profile. For example, given a stage
two profile, we can choose some other pair i′, j′ and alternative w and alter the position
of w so that the profile restricts to zxw for voter i′, wzx for voter j′, and zwx for the
other voters. This saves one profile from Z2. Continuing in this way, we can choose Z2

such that |Z2| ≤ d
(
n
2

)
/(m − 2)e. Similarly, for any stage three profile, we can choose

two unused alternatives u and v, another triple i′, B′, A′, and alter the profile so that
it restricts to uzv for voter i′, vuz for the voters in B′, and zvu for the other voters.
Using up all the alternatives efficiently in this manner allows us to choose Z3 such
that |Z3| ≤ d(2n − 2n− 2)/bm/2ce. We have proven:

Corollary 8. For m,n ≥ 3,

σ(m,n) ≤ σ(m, 2)(2n−1 − 1) +

⌈
n(n− 1)

2(m− 2)

⌉
+

⌈
2n − 2n− 2

bm/2c
⌉

+ 1.

For n ≥ 4, the bound can be decreased by 1.

4. An improved bound for three alternatives. We now present a separate
but similar construction of super Arrovian domains which will allow us to find a
stronger upper bound in the case m = 3. A domain D is a said to be basic if any (P)
+ (IIA) function f on any domain containing D satisfies {i}+ or {i}+ for every i,
and such that {i}+ and {j}+ cannot both hold for distinct i and j.

A domain D is said to be recursive for a subset A ⊂ {1, . . . , n} with 1 ≤ |A| ≤ n−2
if for every ordered pair of alternatives x, z ∈ X, there exists an alternative y ∈ X
and a profile d ∈ D such that d restricts to xyz for the voters in A, yzx for some
non-empty proper subset of the other voters, and zxy for the rest. If D is recursive
for every A with 1 ≤ |A| ≤ n − 2, we say that D is recursive. A domain D which is
both basic and recursive is called inductive. Note that any inductive domain satisfies
the near-free doubles condition.

Lemma 9. Any inductive domain D is super Arrovian.

Proof. Let D be inductive. Since D is basic, any (P) + (IIA) function f on D
must have {i}+ or {i}+ for each i. Also, there can be no two distinct i and j such
that both {i}+ and {j}+ hold. First suppose that {i}+ holds for all i. We shall show
by induction on |A| that A+ holds for each A with 1 ≤ |A| ≤ n − 1. The base case,
when |A| = 1, follows from our assumption. For larger |A|, let x, z ∈ X; we need to
show that xAz holds. Consider the profile d ∈ D which restricts to xyz for the voters
in A, yzx for the voters in B, and zxy for the voters in C, where B ∪ C = A and B
and C are nonempty. By the induction, we have xBy and yCz, from which it follows
that x �d y �d z. Hence we conclude that xAz holds, and the induction is complete.
Now, the assertions A+ and A+ are contradictory for any A, so we must have {i}+
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for exactly one i. Repeating the induction above shows that A+ holds for each A not
containing i, so that i is a dictator. Hence D is super Arrovian.

Theorem 10. For n ≥ 2, we have σ(3, n) ≤ 3(2n − 2) + 6
(

n
b(n+1)/2c

)
+
(
n
2

)
.

Proof. We construct an inductive domain D of the required size. We begin by
letting Y1 consist of the stage two profiles from the proof of Lemma 7 and the n·σ(3, 2)
stage one profiles corresponding to {A,A} = {{i}, {i}}, for i = 1, . . . , n. Y1 is basic,
with |Y1| = 6n+

(
n
2

)
.

For any subset B ⊂ {1, . . . , n} with 2 ≤ |B| ≤ n− 1 and any i ∈ B, consider the
6 profiles which have the following form, as a, b, and c range over the permutations of
the alternatives x, y, and z: the voters in B − {i} have preference ranking abc, voter
i has preference ranking bca, and the rest of the voters have preference ranking cab.
Any domain containing these profiles will be recursive for B − {i} and B. Hence if
there is a way to choose, for each subset B with 2 ≤ |B| ≤ bn+1

2 c, an element i ∈ B
such that the sets B−{i} range over all possible subsets of size between 1 and bn−1

2 c,
then we can create a recursive domain Y2 containing the corresponding

6

b(n+1)/2c∑
i=2

(
n

i

)
=

{
3(2n +

(
n
n/2

)− 2n− 2) if n is even

3(2n + 2
(

n
(n+1)/2

)− 2n− 2) if n is odd

profiles. Then D = Y1∪Y2 will be inductive of the required size. We now demonstrate
the existence of such a choice.

Let j < n/2. Consider the bipartite graph whose vertices consist of the subsets
of {1, . . . , n} of size j (partite class X) and j + 1 (partite class Y ), where A ∈ X
is connected to B ∈ Y if A ⊂ B. We want to show the existence of a matching of
X into Y , and we will do so using the Hall Matching Condition. Given any subset
of the first partite class Z ⊂ X, write N(Z) for the set of neighbors of vertices in
Z. We need to show that |N(Z)| ≥ |Z| for every Z ⊂ X. Note that each vertex in
Z is connected to n − j vertices of Y . This gives (n − j)|Z| edges between vertices
in Z and vertices in Y . Since each vertex in Y has degree exactly j + 1, we have
|N(Z)| ≥ (n − j)|Z|/(j + 1) ≥ |Z|. Hence the Hall Matching Condition is satisfied,
and a matching exists.

Corollary 11. We have limn→∞
σ(3,n)

2n = 3.

5. Two voters. In this section we show that the lower bound of Corollary 5 is
an equality for n = 2. Fishburn and Kelly [2, Lemma 2] do this for (m,n) = (3, 2).
For notational purposes, we will use X = {1, . . . ,m}, and we will label the two voters
I and J , with the preferences of voter I written first in each profile. We simply write
xIy for x{I}y. Also, xIY for Y ⊂ X means xIy for all y ∈ Y. Finally, as an abuse of
notation, we write xIX for xI(X − {x}). We begin by recalling the construction for
m = 3 in [2].

Lemma 12 ([2], Lemma 2). We have σ(3, 2) = 6.
Proof. Let D3 be composed of the six profiles in the table below.

Profile Pareto Conclusion
p1 (321, 213) 2� 1 3I1 or 2J3
p2 (231, 123) 2� 3 2I1 or 1J3
p3 (213, 132) 1� 3 2I3 or 1J2
p4 (123, 312) 1� 2 1I3 or 3J2
p5 (132, 321) 3� 2 1I2 or 3J1
p6 (312, 231) 3� 1 3I2 or 2J1
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Note that the near-free doubles condition is satisfied. Let f be a (P) + (IIA)
function on D3. The condition 2� 1 in the first profile implies 3I1 or 2J3. Suppose
that the first of these holds for f. The condition 2 � 3 in the second profile implies
that 2I1 or 1J3. But 3I1 contradicts 1J3, so 2I1 must hold for f. Continuing in this
way for each profile, we find that xIy for all distinct x, y ∈ X, so that voter I is
a dictator on f. Had we assumed that 2J3 held in the first profile, we would have
similarly found that voter J was a dictator. Hence D3 is super Arrovian.

Lemma 13. We have σ(4, 2) = σ(5, 2) = 4.
Proof. For m = 4, let D4 be the domain below.

Profile Pareto Conclusion
p1 (1234, 3412) 3� 4 1I4 or 3J1
p2 (2413, 1324) 2� 4 2I1 or 1J4
p3 (3142, 4231) 4� 2 1I2 or 4J1
p4 (4321, 2143) 4� 3 4I1 or 1J3

Note that the near-free doubles condition is satisfied.
Restricting to the three alternatives {1, 2, 3}, we obtain four of the six profiles of

the minimal super Arrovian domain D3 above. The only information used to show
that D3 is super Arrovian supplied by the two missing profiles is that if f is any (P) +
(IIA) function, then 2I1 or 1J3 holds and 1I2 or 3J1 holds for f . Yet we can conclude
this from our domain D4 using alternative 4. For example, the Pareto relationship
3 � 4 in p1 implies that 1I4 or 3J1 holds. Similarly, from the other profiles we can
conclude that 2I1 or 1J4 holds, that 1I2 or 4J1 holds, and that 4I1 or 1J3 holds.
These four conclusions combine to supply the “missing” information above. Hence we
can conclude that any (P) + (IIA) function f is dictatorial on the three alternatives
{1, 2, 3}.

Suppose that voter I is dictatorial on {1, 2, 3}. We can conclude from 4� 3 in p4

that 4I2 and 4I1 hold. Then in p2 we have 4 �p2
1 �p2

3 so that 4I3 holds. Similarly,
3 � 4 in p1 implies that 1I4 and 2I4 hold. Then from p3, we have 3I4. Therefore,
voter I is a dictator on all four alternatives. Now suppose that voter J is dictatorial
on {1, 2, 3}. We can conclude from 4 � 2 in p3 that 4J1 and 4J3 hold. Hence from
p1, we see 4J2 holds. Similarly, 2 � 4 in p2 implies that 1J4 and 3J4 hold. Then
from p4, we have 2J4. Therefore, voter J is a dictator on all four alternatives. Since
either voter I or J is a dictator and the near-free doubles condition is satisfied, D4 is
super Arrovian.

For m = 5, let D5 be the domain below.

q1 (15234, 35412)
q2 (24135, 51324)
q3 (53142, 42315)
q4 (43251, 21453)

Note that the restriction of D5 to {1, 2, 3, 4} is the super Arrovian domain D4

above. Hence there is a dictator on these four alternatives. Suppose that this dictator
is voter I. From 5� 2 in q1, we can conclude 5I3. Then from q3, we have 5I{1, 2, 4}.
Similarly, the condition 2 � 5 in q4 shows that 3I5, which implies that {1, 2, 4}I5
from q2. Hence voter I is dictatorial on all five alternatives. Now suppose that voter
J is dictatorial on {1, 2, 3, 4}. From 5 � 4 in q1, we can conclude 5J1. Then from
q2, we have 5J{2, 3, 4}. Similarly, the condition 4 � 5 in q4 shows that 1J5, which
implies that {2, 3, 4}J5 from q3. Hence voter J is dictatorial on all five alternatives.
Therefore, D5 is super Arrovian.
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Note that since σ(m,n) = m
m−2 (2n − 2) for (m,n) = (4, 2), the proof of Corol-

lary 5 uniquely determines the preferences of each voter, up to permutations of the
alternatives, in a minimal super Arrovian domain. The same is true for m = 6, and
one finds that the super Arrovian domains for m = 4 and m = 6 are unique up to
permutations of the alternatives.

Lemma 14. We have σ(6, 2) = σ(7, 2) = 3.
Proof. For m = 6, let D6 be the profile below.

p1 (123456, 563412) (id, τ)
p2 (536142, 426153) (π, πτ)
p3 (462513, 132546) (π2, π2τ)

If we define permutations π = (154)(236) and τ = (15)(26), then the profiles have
the form given in the table above, with π3 = τ2 = id . The permutation τ switches the
voters, and the permutation π rotates the profiles. This symmetry will be important
in proving that D6 is Arrovian.

Let f be a (P) + (IIA) map on D6. The profile p1 has the three Pareto pairs
1 � 2, 3 � 4 and 5 � 6. Hence, the first alternative in %p1

is 1, 3, or 5, or some
combination of these in a tie. Suppose that 3 is in the first position, with or without
a tie. Then 3I6 holds, implying that the order �p2 restricts to 5361 on those alterna-
tives. Hence 5I1 holds, so that the order �p3

restricts to 2513 on those alternatives.
Thus 2I3 holds, contradicting the fact that 3 appears first in %p1

.
Now suppose that 1 appears first in %p1

, possibly tied with 5. Then 1I4 holds.
By the symmetry of the profiles, 5 or 4 appears first in %p2

, but 4 cannot appear
first because we have 1I4. Hence 5 appears alone in first in %p2 , so we conclude that
5I{1, 2, 4, 6}. Then we have 5 �p3 1 �p3 3, so 5I3 as well, and hence 5IX.

In summary, by assuming that 1 appears first in %p1
, we are able to show that 5

appears alone in first in %p2
and that 5IX holds. Then by symmetry, we also have

that 4 appears alone in first in %p3
and that 4IX holds, and that 1 appears alone in

first in %p1
and that 1IX holds. Now 4I5 implies 3I{5, 6} from p1, so that 3IX holds

from p2. Similarly, we conclude that 2IX and 6IX hold, and voter I is a dictator
for f.

It follows by symmetry that if we had assumed that 5 appeared first in p1, then
we would have found that voter J was a dictator. Hence D is Arrovian, and since it
satisfies the near-free doubles condition, it is super Arrovian.

This domain can be extended to a super Arrovian domain D7 for m = 7 by
inserting alternative 7 as the middle preference of each voter in all three profiles (e.g.
between the 3 and 4 for both voters in p1). The domain D7 is clearly Arrovian since
there is a dictator on {1, . . . , 6} and the place of alternative 7 is uniquely determined
by the Pareto relationships with the alternatives directly before and after it. Since
the near-free doubles condition is satisfied, D7 is super Arrovian.

This method of inserting alternatives into super Arrovian domains is the funda-
mental technique used in showing σ(m, 2) = 3 for m ≥ 8. We state without proof a few
more base cases whose verifications are nearly identical to the “insertion” arguments
used already.

Lemma 15. The domain D below, and its restrictions to {1, . . . , 7} ∪ K for
K ⊆ {8, 9, α, β, δ, γ}, are all super Arrovian:

D = {(β1δ2387α45γ69, 95α63γ7δ4182β),

(α5936δ7γ14β28, 84γ26β7915δ3α),

(γ486297β51α3δ, δ1β32α785496γ)}.
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A super Arrovian domain D of size 3 for n = 2 is called extremely expandable if
an alternative can be inserted to yield a super Arrovian domain such that for some
profile, the new alternative is in first place for voter I and in last place for voter J . Let
T be the set of m for which there exists an extremely expandable D for m alternatives.
The lemma above implies that {7, 8, 9, 10, 11, 12} ⊆ T. If U = {m : σ(m, 2) = 3}, then
T ∪ (T + 1) ⊆ U.

Lemma 16. If m ∈ T , then {m+ 8,m+ 9,m+ 10} ⊂ T.
Proof. Let D = {(l1, l2), (l3, l4), (l5, l6)} be super Arrovian for m alternatives,

where an alternative A can be inserted to yield the super Arrovian domain D′ =
{(n1, n2), (n3, n4), (n5, n6)} with n5 = Al5 and n6 = l6A. Then consider the domain
with m+ 8 alternatives:

D′′ = {(1n1237456, 5637n2412),

(536n37142, 426715n43),

(462751A3l5, l61A327546)}.

We first show that D′′ is Arrovian. Let f be a (P) + (IIA) function on D′′, and let B
be any alternative of D. The previous lemma shows that there is a dictator for f on
{1, . . . , 7, B}, say voter I. Restricting to the alternatives of D′, there is also a dictator
since D′ is super Arrovian. But in the third profile, A � 3 and 3 � B, so A � B,
and this second dictator must also be voter I. Also, the conditions 1� A� 3 in the
third profile uniquely determine the position of A for this profile. Since this argument
holds for every B, we see that voter I is in fact a dictator on all the alternatives.
Similarly, if we had assumed that voter J was a dictator on {1, . . . , 7, B}, then we
would have found that voter J was a dictator on all the alternatives.

Except for possibly the doubles (3A,A3) and (1A,A1), the near-free doubles
condition holds for D′′ because it holds on D′ and the restriction of D′′ to {1, . . . , 7, B}
for every B. Since these two doubles do appear in the second profile, D′′ is super-
Arrovian. D′′ is extremely expandable because an alternative can be inserted in
the position of γ in the previous lemma to yield a super Arrovian domain. Hence
m+ 8 ∈ T. To show that m+ 9,m+ 10 ∈ T , one inserts alternatives 8 and 9 into D′′

as indicated by the previous lemma.
Corollary 17. For m ≥ 8, we have σ(m, 2) = 3.
Proof. The previous lemma and the base cases {7, . . . , 12} ⊂ T imply that {m ≥

7 : m 6= 13, 14} ⊆ T. Hence {m ≥ 6 : m 6= 14} ⊆ U. For m = 14, the standard
insertion argument shows that

D = {(βω1δ2387α45γ69, 95α63γ7δ418ω2β),

(α5936δ7ωγ14β28, 84δ26β791ω5δ3α),

(γ486297β51α3δω, ωδ1β32α785496γ)}

is super Arrovian, so U = {m ≥ 6}.
Corollary 8, Lemmas 6, 12, 13, and 14, and Corollary 17 combine to prove Theo-

rems 1 and 2.

6. Miscellaneous results and conclusion. In this section we answer some
questions asked by Fishburn and Kelly [2].

Proposition 18. σ(3, 3) = 19.
Proof. Theorem 2 shows that σ(3, 3) ≥ 19. We create a super Arrovian set of size

19 by starting with the construction of Corollary 8 and eliminating three unnecessary
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stage one profiles. Let

D = {(zyx, yxz, yxz), (yxz, zyx, yxz), (yxz, yxz, zyx), (yzx, zyx, zxy),
(yzx, xyz, xyz), (xzy, yxz, xzy), (xyz, xyz, yzx), (yxz, yzx, xyz),
(yxz, xzy, xzy), (zxy, xzy, zyx), (xzy, xzy, yxz), (xyz, zxy, xzy),
(xzy, zyx, zyx), (zyx, xzy, zyx), (zxy, zxy, xyz), (xyz, yzx, zxy),
(zxy, yzx, yzx), (yzx, zxy, yzx), (zyx, zyx, xzy)}.

The first three columns are stage one profiles for the three partitions {{1}, {2, 3}},
{{2}, {1, 3}}, and {{3}, {1, 2}}, respectively. There are three stage one profiles miss-
ing from D: (xyz, zxy, zxy), (xyz, yzx, xyz) and (zyx, zyx, xzy). The fourth column
contains the profiles from stages two and three, with some permutation of the alter-
natives applied for each profile. Note that permuting the alternatives in the profiles
for stages two and three does not affect the proof of Corollary 8.

The information provided by (xyz, zxy, zxy) is that any (P)+(IIA) function on
a domain containing this profile has x1z or z{2, 3}y. However, we can conclude this
directly from the profiles in D. Suppose that z{2, 3}y does not hold. Then in the
first profile of the fourth column, we have y % z � x, so that y{1, 2}x holds. Hence
x3y does not hold, and using the argument of Lemma 12 on the profiles in the third
column, we find y{1, 2}z. Similarly, the third profile of the fourth column and the
profiles of the second column show x{1, 3}y. Then in the last profile of the fourth
column, we have x � y � z, so that x1z holds. Therefore, the information provided by
(xyz, zxy, zxy) is already provided by the profiles in D, and this profile is unnecessary.
A similar argument works for the other two missing profiles. Since the near-free
doubles condition is satisfied, D is super Arrovian.

Proposition 19. There exists an infinite family of minimal super Arrovian
domains that are not minimum.

Proof. Fix n = 2, and let m ≥ 4. Let x and y be the greatest even and odd
integers less than or equal to m, respectively. Define E to be the string of alternatives
567 · · ·m, let F = 68 · · ·x, and let G = 579 · · · y. For L = E,F, or G, we let L be the
string of alternatives of L in reverse order. Finally, define

D = {(E1234, 3412E),

(3142E,E4231),

(2F41G3, 1G32F3),

(4G32F1, 2F14G3)}.
For m = 4, we have D = D4 from Lemma 13, so D is super Arrovian. The standard
insertion argument shows that D is super Arrovian for larger m as well.

For m ≥ 6, removing the first profile causes D not to be super Arrovian because
Lemma 4 is not satisfied with p = (m(m − 2), (m − 2)m) on either voter. Similarly,
removing the second profile violates Lemma 4 with p = ((m − 2)m,m(m − 2)). Re-
moving the third profile violates the lemma with p = (m(m − 1), (m − 1)m) for m
even and with p = ((m − 1)m,m(m − 1)) for m odd. The same is true with the
cases reversed for the fourth profile. Hence D is minimal. By Theorem 1, D is not
minimum for m ≥ 6, and the proof is complete.

Proposition 20. Minimum super Arrovian domains need not be unique up to
permutations of the voters and alternatives.

Proof. Let D′ be the restriction of the domain D in Lemma 15 to the alternatives
{1, . . . , 9}, and let D′′ be the restriction of D to the alternatives {1, . . . , 8, α}. No
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matter which permutation of alternatives or voters is applied to D′, no profile will
have the first choice of each voter in the last place for the other voter. Since D′′ does
contain such a profile, the two minimum super Arrovian domains are not related by
permutations.

Theorems 1 and 2 along with these propositions essentially answer all of the
open questions posed in [2]. The exact value of σ(m, 2) is calculated for all m, as
well as bounds which show that σ(m,n) is Θ(1) for fixed n and Θ(2n) for fixed m.
Open questions suggested by Theorem 1 are whether σ(m,n) is always decreasing in
m for fixed n and whether σ(m,n) always reaches 2n−1 for m large enough. Another
topic for further study is the behavior of σ(m,n)/2n for fixed m as n grows large. We
have also left open the question of precisely which pairs (m,n) have the property that
there is a unique minimum super Arrovian set on m alternatives and n voters, up to
permutations of the alternatives and voters.
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