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Abstract. Let F be a totally real field and K a finite abelian CM extension of F . Using

class field theory, we show that our previous result giving a strong form of the Brumer–Stark

conjecture implies the minus part of the equivariant Tamagawa number conjecture for the Tate

motive associated to K/F . We work integrally over Z, in particular the prime 2 is not inverted.

This note can be viewed as our perspective on the recent work of Bullach, Burns, Daoud, and

Seo. Following their philosophy, we show that the functorial properties (i.e. norm compatibilities)

connecting the strong Brumer–Stark conjecture for varying number fields actually implies the minus

part of the equivariant Tamagawa number conjecture.
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1 Introduction

Let F be a totally real field and K a finite abelian CM extension of F . Write

GK = Gal(K/F ).
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In a previous paper with Jiuya Wang [8], we proved refined versions of the Brumer–Stark

conjecture for K/F . In this note, we consider the minus part of the Equivariant Tamagawa

Number Conjecture for the Tate motive attached to K/F , and call this “the ETNC.” In a

recent preprint [3], Bullach, Burns, Daoud, and Seo develop the theory of scarcity of Euler

systems and as a consequence prove that our results on the strong Brumer–Stark conjecture

proved in [6] actually imply the ETNC over Z[1/2]. The purpose of this note is to give our

perspective on this implication yielding a concise proof of the ETNC. We work integrally over

Z rather than Z[1/2]. While we do not directly apply any results or arguments of [3], our

method is directly inspired by theirs—by passing to a suitable inverse limit, the discrepancy

between strong Brumer–Stark and the ETNC becomes a non-zerodivisor and hence can be

inverted.

We begin by stating the ETNC, following Kurihara’s formulation [12]. First we must set

some notation. Let c ∈ GK denote the unique complex conjugation and define

Z[GK ]− = Z[GK ]/(c+ 1).

For any GK-module M , we write

M− = M ⊗Z[GK ] Z[GK ]− = M/(c+ 1)M.

Let S∞ denote the set of infinite primes of F , and let Sram(K/F ) denote the set of finite

primes of F ramified in K. Let

S = S(K) = S∞ ∪ Sram(K/F ).

Let T denote a finite set of primes of F , disjoint from S(K), satisfying the usual condition

of Deligne–Ribet. Let ∇T
S (K) denote the Ritter–Weiss GK-module defined in [6, Appendix

A]. This is a transpose of the Selmer group denoted STK,S in [12] and SS,T (Gm/K) in [4].

The module ∇T
S (K) is the cokernel of a map

fTS (K) : V T
S′ (K) −→ BS′(K),

where S ′ is an auxiliary set of places containing S satisfying certain conditions, and V T
S′ (K)

and BS′(K) are free Z[GK ]-modules of rank (#S ′ − 1). All of these objects are defined in

§2.1. For any CM subfield E ⊂ K containing F , the GE-module V T
S′ (E) may be canonically

identified with the space of Gal(K/E) co-invariants of V T
S′ (K), and similarly for the modules

denoted B. Therefore, a choice of bases for the domain and codomain of fK = fTS (K)

naturally induces bases for the domain and codomain of fE = fTS(E)(E). Let fK,− denote the

map obtained from fK after projecting to the minus side (i.e. tensoring with Z[GK ]− over

Z[GK ]). The formulation of the minus part of the ETNC that we prove in this paper is the

following.
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Theorem 1. Fix bases for the domain and codomain of fK = fTS (K), thereby inducing bases

for the domain and codomain of fE = fTS(E)(E) for all CM fields E ⊂ K containing F . There

exists a unit yK ∈ (Z[GK ]−)∗ such that

det(fE,−) = redK/E(yK) ·ΘS(E),T (E/F ) in Z[GE]− (1)

for all E, where redK/E(yK) denotes the canonical reduction of yK in (Z[GE]−)∗.

Here ΘS(E),T (E/F ) is the usual Stickelberger element (see [8, §1]).

1.1 Consequences

Before sketching our proof of Theorem 1, we connect our formulation to others and describe

some important consequences.

• The statement of Theorem 1 is clearly equivalent to the projection to the minus side

of Kurihara’s conjecture given in [12, Conjecture 3.4].

• In [12, Proposition 3.5], Kurihara proves that the minus part of his statement is equiv-

alent to the minus part of the “Leading Term Conjecture” (LTC) stated in [4].

• Burns, Kurihara, and Sano prove that their LTC is equivalent to the original form of

the ETNC stated by Burns and Flach in [5].

Theorem 1 is known to imply the following:

• The Brumer–Stark conjecture and the higher rank Brumer–Stark conjecture due to

Rubin [16].

• The integral Gross-Stark conjecture stated by Gross as a refinement to his p-adic Stark

conjecture [11], and the higher rank version due to Popescu [15, Conjecture 5.3.3].

• The minus part of the “refined class number formula for Gm” due independently to

Mazur and Rubin [13] and Sano [18].

In fact, using the refined construction of Ritter-Weiss modules at p = 2 given in our

previous work [8], one obtains stronger versions of all of these results, where ΘS,T is replaced

by {
ΘS,T/2

n−2 if K/F is unramified at all finite places,

ΘS,T/2
n−1 if K/F is ramified at some finite place.

This is discussed in Appendix B.

Finally, while a proof of the implication does not seem to appear in the literature, the

ETNC should imply the Iwasawa Main Conjecture at p = 2 for totally real fields (see [1] for

the statement and discussion of the Main Conjecture at p = 2).
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1.2 Altering the smoothing and depletion sets

In the remainder of the introduction, we sketch the proof of Theorem 1. As is well-known,

one may prove the result prime by prime. In Appendix A we prove the following elementary

lemma.

Lemma 2. In order to prove Theorem 1, it suffices to prove the statement tensored with Zp

(Theorem 3 below) for every prime p.

Theorem 3. Let p be a prime. Fix notation as in Theorem 1. There exists a unit yK ∈
(Zp[GK ]−)∗ such that

det(fE,−) = redK/E(yK) ·ΘS(E),T (E/F ) in Zp[GE]−

for all E.

Note that we are working with all primes p, including p = 2. In order to apply the results

of [8], we must alter the smoothing and depletion sets to mirror the setting there. Define

Σ(K) = S∞ ∪ {v ∈ Sram(K/F ) : v | p}, Σ′(K) = T ∪ {v ∈ Sram(K/F ) : v - p}. (2)

Write Σ = Σ(K),Σ′ = Σ′(K). As above, there are Z[GK ]-modules V Σ′

S′ (K) and BS′(K) and

a canonical map

fΣ′

Σ (K) : V Σ′

S′ (K) −→ BS′(K).

The Ritter–Weiss module ∇Σ′
Σ (K) is defined to be the cokernel of the map fΣ′

Σ (K).

If we note by a subscript p the tensor product with Zp, then we prove in [6] that the

Zp[GK ]-modules V Σ′

S′ (K)p and BS′(K)p are both free of rank (#S ′ − 1). Therefore ∇Σ′
Σ (K)p

is quadratically presented, and we proved (in [6] for p odd and in [8] for p = 2):

Theorem 4. We have

FittZp[GK ]−(∇Σ′

Σ (K)p,−) = (ΘΣ,Σ′(K/F )). (3)

The left side of (3) is by definition the image in Zp[GK ]− of the ideal generated by the

determinant of fΣ′
Σ (K)p with respect to any choice of bases for its domain and codomain.

As above, fixing such bases induces canonical bases for the domain and codomain of

f
Σ′(K)
Σ(E) (E)p : V

Σ′(K)
S′ (E)p −→ BS′(E)p

for any CM subfield E ⊂ K containing F . Note that we have altered the depletion set Σ,

but have intentionally left the smoothing set Σ′ and the auxiliary set S ′ the same to ensure

that the co-invariance property mentioned above holds. Our altered version of the p-part of

the ETNC is the following.
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Theorem 5. Fix bases for the domain and codomain of fK = fΣ′
Σ (K)p, thereby inducing

bases for the domain and codomain of fE = f
Σ′(K)
Σ(E) (E)p for all CM fields E ⊂ K containing

F . There exists a unit yK ∈ (Zp[GK ]−)∗ such that

det(fE,−) = redK/E(yK) ·ΘΣ(E),Σ′(K)(E/F ) in Zp[GE]− (4)

for all E.

In Appendix A, we show:

Lemma 6. Theorem 5 implies Theorem 3.

1.3 Euler Systems

In view of the discussion above, to prove Theorem 1 it suffices to prove that Theorem 4 implies

Theorem 5. Theorem 4 (or more precisely, an easily deduced corollary that replaces the

smoothing set Σ′(E) by Σ′(K)) implies that for each E ⊂ K we have a unit yE ∈ (Zp[GE]−)∗

such that

det(fE,−) = yE ·ΘΣ(E),Σ′(K)(E/F ). (5)

We need to show that the yE can be chosen to equal redK/E(yK). As we explain below,

functorial properties imply that the yE satisfy certain norm compatibilities, also known

as Euler system relations. To describe this, it is convenient to work for each E with the

quotient of Zp[GE]− on which ΘΣ(E),Σ′(K)(E/F ) is a non-zerodivisor. To this end, define

RE = eE · Zp[GE]−, where

eE =
∏

v∈Σ(E)

(1− NGE,v/#GE,v) (6)

is the idempotent corresponding to the factor on which ΘΣ(E),Σ′(K)(E/F ) is supported. Here

GE,v ⊂ GE denotes the decomposition group at v, and

NGE,v =
∑

σ∈GE,v

σ

is its norm. It suffices to prove (4) after projecting to RE, since it is easy to show that the

projection to (1− eE)Zp[GE]− of both sides of the equation vanish. In §3.1, we prove:

Proposition 7. The images of redK/E(yK) and yE in RE satisfy

(redK/E(yK)− yE)P (K/E) = 0 in RE, (7)

where

P (K/E) =
∏

v∈Σ(K)−Σ(E)

(1− σ−1
v ). (8)

5



The troublesome Euler factor P (K/E), which can be a zerodivisor, is all that prevents

one from immediately deducing the ETNC. This leads to the following definition.

Definition 8. Consider a set of elements (zE)E⊂K with zE ∈ RE, indexed by the CM fields

E ⊂ K containing F . We say this family is norm compatible if for every pair of CM fields

E ′, E such that F ⊂ E ⊂ E ′ ⊂ K, we have

(eE redE′/E(z̃E′)− zE)P (E ′/E) = 0 in RE.

Here z̃E′ denotes any lift of zE′ to Zp[GE′ ]−. While redE′/E(z̃E′) depends on the lift chosen

(even its image in RE depends on this choice), it is easy to check that eE redE′/E(z̃E′)P (E ′/E)

is independent of this choice, so the definition is well-formed.

With this definition, Proposition 7 states that (eEyE)E⊂K is a norm compatible family.

Definition 9. Suppose we are given a norm compatible set of elements (zE)E⊂K , with

zE ∈ RE. Let K ′/F be a CM abelian extension such that K ′ ⊃ K. We say that the

family (zE)E⊂K can be extended to K ′ if there exists a norm compatible family (z′E)E⊂K′

with z′E ∈ RE such that z′E = zE for E ⊂ K.

In the language of [3], the result below describes the “scarcity of Euler systems.”

Proposition 10. Suppose we are given a norm compatible set of elements (zE)E⊂K, with

zE ∈ RE. Suppose that for each CM abelian extension K ′/F such that

K ′ ⊃ K and Σ(K ′) = Σ(K),

the family (zE)E⊂K can be extended to a norm compatible family (z′E)E⊂K′ with z′E ∈ RE.

Then there exists a lift z̃K of zK to Zp[GK ]− such that

eE redK/E(z̃K) = zE in RE

for all E ⊂ K.

Proposition 10 is proven in §3.2. In Proposition 17 of §3.1, we will show that the norm

compatible family (eEyE)E⊂K can indeed be lifted to an arbitrary CM abelian extension

K ′/F containing K, and we also prove Proposition 7. These statements together yield the

desired result that Theorem 4 implies Theorem 5.

We are of course indebted to Dominik Bullach, David Burns, Alexandre Daoud, and

Soogil Seo for their paper [3] that inspired this one. We are also grateful to Masato Kurihara

for providing a careful reading of an earlier draft and making suggestions that greatly im-

proved the exposition (in particular, the correction of a subtle but important mistake). The

first named author is supported by a grant from the National Science Foundation (DMS-

2200787). The second named author is supported by DST-SERB grant SB/SJF/2020-21/11,

SERB MATRICS grant MTR/2020/000215 and SERB SUPRA grant SPR/2019/ 000422.
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2 Definitions and Functorial Properties

In this section we fix notation by recalling the definitions of the modules V Σ′

S′ , BS′ , and the

map fΣ′
Σ . We then establish some (well-known) elementary properties.

2.1 Ritter–Weiss modules

In this section we let K/F denote an arbitrary Galois extension of number fields, with

G = Gal(K/F ). Let Σ and Σ′ denote finite disjoint sets of places of F . We impose the

condition that K contains no nontrivial roots of unity congruent to 1 modulo all the primes

above those in Σ′. We assume in this paper that Σ ⊃ S∞ and that Σ ∪ Σ′ ⊃ Sram(K/F ),

though there is a more general construction that holds in the absence of these conditions (see

[8]). We will recall the definition of the Ritter–Weiss module ∇Σ′
Σ (K), referring the reader

to [6, Appendix A] or of course the original paper of Ritter–Weiss [17] for details.

Let S ′ be a set of places of F satisfying the following properties:

• S ′ ⊃ Σ and S ′ ∩ Σ′ = ∅.

• ClΣ
′

S′ (K) = 1.

• ∪w∈S′KGw = G, where Gw ⊂ G is the decomposition group at w.

Here S ′K denotes the set of places of K above those in S ′.

For each place v of F , we fix a place w of K above v. Ritter and Weiss define a Z[Gw]-

module Vw sitting in an exact sequence:

0 K∗w Vw ∆Gw 0, (9)

where ∆Gw ⊂ Z[Gw] denotes the augmentation ideal (see [17] or [6, Equation (133)]). For

w finite, they define a Z[Gw]-module Ww sitting in an exact sequence (see [17, §3]):

0 O∗w Vw Ww 0. (10)

We have

Ww
∼= {(r, s) ∈ ∆Gw × Z[Gw/Iw] : r = (1− σ−1

w )s}, (11)

where σw ∈ Gw/Iw denotes an arithmetic Frobenius. Note that if w is unramified then

projection on to the second coordinate yields an isomorphism Ww
∼= Z[Gw].

Remark 11. Here and throughout this paper, we follow Kurihara’s conventions [12] using

the choice of 1− σ−1, rather than σ − 1 as in our previous paper [6], which followed Ritter–

Weiss [17]. These differ only by unit multiples, which had no effect in [6] because we were

working with ideals; here, we are proving exact equalities, and Kurihara’s conventions yield

cleaner formulas.
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We adopt the following notation of [10] and [6]: for a collection of Gw-modules Mw, we

define ∼∏
v

Mw :=
∏
v

IndGGw Mw.

Let U1
w ⊂ O∗w denote the group of 1-units. Define

Ṽ Σ′

S′ (K) =
∼∏

v 6∈S′∪Σ′

O∗w
∼∏

v∈S′
Vw

∼∏
v∈Σ′

U1
w.

Now, there is a canonical extension (see pg. 148 of [17])

0 CH = A∗H/H
∗ O ∆G 0 (12)

associated to the global fundamental class in H2(G,CH), and a canonical surjective map

θV : Ṽ Σ′

S′ (K) −→ O.

We define

V Σ′

S′ (K) = ker(θV ).

Next we let

B̃S′(K) =
∏
v∈S′

Z[GK ].

We define a map

θB : B̃S′(K) −→ Z[GK ]

componentwise as follows.

• If v ∈ Σ, the component of θB at v is the identity.

• If v ∈ S ′ \ Σ, the component of θB at v is multiplication by 1 − σ−1
v , where σv is the

arithmetic Frobenius (note that by our assumptions, v ∈ S ′ \ Σ implies that K/F is

unramified at v).

We then define

BS′(K) = ker(θB).

To proceed, we must choose a splitting of the map θB. We do this once and for all by picking

an infinite place ∞ of F , since the component of θB at ∞ is the identity. This yields an

isomorphism

BS′(K) ∼=
∏

v∈S′\{∞}

Z[GK ]. (13)

Next we define

f̃Σ′

Σ (K) : Ṽ Σ′

S′ (K) −→ B̃S′(K)

componentwise.
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• If v ∈ Σ, the component of f̃Σ′
Σ (K) at v is induced by the composition of the map

Vw → ∆Gw with the canonical injection ∆Gw ⊂ Z[Gw].

• If v ∈ S ′ \ Σ, component of f̃Σ′
Σ (K) at v is induced by the composition of Vw → Ww

with the isomorphism Ww
∼= Z[Gw] given by projection on to the second coordinate,

which as noted above is an isomorphism since v is unramified.

It can be shown that f̃Σ′
Σ (K) restricts to a map

fΣ′

Σ (K) : V Σ′

S′ (K) −→ BS′(K).

The module ∇Σ′
Σ (K) is defined to be the cokernel of fΣ′

Σ (K).

2.2 Functorial Properties

We now recall some properties of the map fΣ′
Σ described above. Let E/F denote any CM

extension contained in K. Fix a prime p. We prove in [6] that if the sets of primes Σ,Σ′

satisfy certain conditions, then the modules V Σ′

S′ (E)p and BΣ′

S′ (E)p are free Zp[GK ]-modules

of rank (#S ′−1). After choosing bases, it therefore makes sense to consider the determinant

of the map

fΣ′

Σ (E)p : V Σ′

S′ (E)p −→ BΣ′

S′ (E)p.

We now consider three specific cases, each of which satisfies the necessary conditions:

1. fΣ′
Σ (E)p, where Σ = Σ(K),Σ′ = Σ′(K) are defined in (2).

2. fΣ′

Σ−{v}(E)p, where v ∈ Σ is unramified in E/F .

3. f
Σ′∪{v}
Σ (E)p, where v /∈ S ′ ∪ Σ′.

We use the same auxiliary set S ′ in all three cases.

Using the isomorphism (13), it is clear that a choice of basis for BS′(K) induces a basis for

BS′(E) by taking Gal(K/E)-coinvariants; in fact the isomorphism yields a canonical basis.

Similarly, a choice of basis for each of V Σ′

S′ (K)p and V
Σ′∪{v}
S′ (K)p induces bases for V Σ′

S′ (E)p
and V

Σ′∪{v}
S′ (E)p by taking co-invariants. This follows from the following.

Lemma 12. The map fΣ′
Σ (E) equals the Gal(K/E) co-invariants of the map fΣ′

Σ (K).

Proof. See [6, Appendix B].

Proposition 13. We have:

1. det(fΣ′
Σ (E)p) = redK/E(det(fΣ′

Σ (K)p))

2. det(fΣ′
Σ (E)p) = (1− σ−1

v ) det(fΣ′

Σ−{v}(E)p)
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3. Suppose v 6∈ S ′. Then

det(f
Σ′∪{v}
Σ (E)p) = redK/E(xK)(1− σ−1

v Nv) det(fΣ′

Σ (E)p)

for some xK ∈ Zp[GK ]∗ that does not depend on E.

Proof. (1) This follows immediately from Lemma 12.

(2) Consider the map of complexes:

V Σ′

S′ (E)p BS′(E)p

V Σ′

S′ (E)p BS′(E)p.

fΣ′
Σ (E)p

fΣ′
Σ−{v}(E)p

The first vertical arrow is an equality, while the second vertical arrow is equal to

(id, 1− σ−1
v ) : N ⊕ Zp[GE] −→ N ⊕ Zp[GE],

where N is a free Zp[GE]-module. This has determinant (1− σ−1
v ), and so we conclude that

det(fΣ′
Σ (E)p) = (1− σ−1

v ) det(fΣ′

Σ−{v}(E)p).

(3) Consider the map of complexes

V
Σ′∪{v}
S′ (E)p BS′(E)p

V Σ′

S′ (E)p BS′(E)p.

f
Σ′∪{v}
Σ (E)p

fΣ′
Σ (E)p

This map of complexes is injective, with cokernel

Ind
Z[GE ]
Z[GEw ](F

∗
w)p −→ 0,

where w is a place of E over v and Fw is its residue field. This uses the fact that the auxiliary

set S ′ used to define V Σ′

S′ (E) does not include v.

Since the domain and codomain of

hE : V
Σ′∪{v}
S′ (E)p −→ V Σ′

S′ (E)p

are projective, hE is a quadratic presentation of Ind
Z[GE ]
Z[GEw ](F

∗
w)⊗Zp[GE]. The Fitting ideal of

Ind
Z[GE ]
Z[GEw ](F

∗
w)⊗Zp[GE] as a Zp[GE]-module is (1−σ−1

v Nv). Hence, for any choice of basis for

the domain and codomain of hE, we have det(hE) = xE(1− σ−1
v Nv) for some xE ∈ Zp[GE]∗.
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Note that hE equals the Gal(K/E) co-invariants of the map hK . Thus if we use bases for

the domain and codomain of hE induced from a choice of bases for hK , then we may take

xE = redK/E(xK). We conclude that

det(f
Σ′∪{v}
Σ (E)p) = redK/E(xK)(1− σ−1

v Nv) det(fΣ′

Σ (E)).

Consider the maps fK = f
Σ′(K)
Σ(K) (K)p and fE = f

Σ′(K)
Σ(E) (E)p from the introduction. From

parts 1 and 2 of Proposition 13, we obtain:

Corollary 14.

det(fE) = P (K/E) redK/E(det(fK)). (14)

Consider a finite abelian CM extension K ′/F containing K such that Σ(K ′) = Σ(K),

with maps gE′ := f
Σ′(K′)
Σ(E′) (E ′) for any CM field E ′ ⊂ K ′ containing F . Define

Q(K ′/K) =
∏

v∈Σ′(K′)−Σ′(K)

(1− σ−1
v Nv). (15)

Note that the map gK′ may require a larger auxiliary set S ′ than fK did. To deal with

this, we use the following lemma:

Lemma 15. Let S ′1 ⊂ S ′2 be two auxiliary sets for (K,Σ,Σ′), with maps denoted fΣ′
Σ (K)1

and fΣ′
Σ (K)2. A choice of bases for the domain and codomain of fΣ′

Σ (K)1 naturally deter-

mines bases for the domain and codomain of fΣ′
Σ (K)2, and with these bases, det(fΣ′

Σ (K)1) =

det(fΣ′
Σ (K)2).

Proof. By induction, we add one prime at a time, and consider S ′1 = S ′, S ′2 = S ′ ∪ {v}. The

injective map of complexes

V Σ′

S′ (K)p BS′(K)p

V Σ′

S′∪{v}(K)p BS′∪{v}(K)p

fΣ′
Σ (K)1

fΣ′
Σ (K)2

has cokernel

Zp[GK ] Zp[GK ].
∼=

Given a basis of V Σ′

S′ (K)p and any choice of splitting of the surjection

V Σ′

S′∪{v}(K) −→ Zp[GK ],

we obtain a basis of V Σ′

S′∪{v}(K). The comparison of determinants is then clear.
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Corollary 16. There exists a unit xK ∈ Zp[GK ]∗ such that, for any CM field E ⊂ K

containing F ,

det(gE) = redK/E(xK)Q(K ′/K) det(fE).

Proof. Since gE = f
Σ′(K′)
Σ(E) (E) and fE = f

Σ′(K)
Σ(E) (E) with the same auxiliary set S ′ by Lemma

15, we apply Proposition 13 (3) to the primes v ∈ Σ′(K ′)− Σ′(K).

3 Norm compatible families

Recall that we have defined units yE ∈ (Zp[GE]−)∗ such that

det(fE,−) = yEΘΣ(E),Σ′(K)(E/F ).

In this section we first prove Proposition 7, which states that the units (eEyE)E⊂K are a

norm compatible family. Next we prove that this norm compatible family extends over CM

abelian extensions K ′/F containing K. Finally, we prove Proposition 10 on the scarcity of

norm compatible families that enjoy this extension property.

3.1 Construction and extension of a norm compatible family

Proof of Proposition 7. From the definitions of the Stickelberger elements, we have

redE′/E(ΘΣ(E′),Σ′(K)(E
′/F )) = ΘΣ(E),Σ′(K)(E/F )P (E ′/E) (16)

in Zp[GE]−. Combining (5), (14) and (16), we find

(redE′/E(yE′)− yE)ΘΣ(E),Σ′(K)(E/F )P (E ′/E) = 0. (17)

We project to the quotient RE of Zp[GE]−, on which ΘΣ(K),Σ′(E)(E/F ) is a non-zerodivisor

and can be canceled. This yields

(eE redE′/E(yE′)− eEyE)P (E ′/E) = 0

in RE as desired.

Proposition 17. Let K ′/F be a finite abelian CM extension such that

K ′ ⊃ K and Σ(K ′) = Σ(K).

The norm compatible family (eEyE)E⊂K extends to a norm compatible family (eEyE)E⊂K′.

Proof. Using Theorem 4 we define units wE′ ∈ (Zp[GE′ ]−)∗ such that

det(gE′) = wE′ΘΣ(E′),Σ′(K′)(E
′/F ). (18)

12



Applying Proposition 7 to K ′/F , we have the norm compatibility

eE(redE′/E(wE′)− wE)P (E ′/E) = 0 in RE

for any F ⊂ E ⊂ E ′ ⊂ K ′. Now we have

det(gE) = wEΘΣ(E),Σ′(K′)(E/F ) = wEΘΣ(E),Σ′(K)(E/F )Q(K ′/K), (19)

while Corollary 16 implies that

det(gE) = redK/E(xK)(det fE)Q(K ′/K)

= redK/E(xK)yEΘΣ(E),Σ′(K)(E/F )Q(K ′/K). (20)

Comparing (19) and (20) and canceling the expression ΘΣ(E),Σ′(K)(E/F )Q(K ′/K), which

is a non-zerodivisor on RE, we obtain

eEyE redK/E(xK) = eEwE in RE

for each E ⊂ K.

We may therefore choose an arbitrary element xK′ ∈ Zp[GK′ ]− lifting xK , and we obtain

that (eE′wE′ redK′/E′(xK′)
−1)E′⊂K′ is a norm compatible family that is equal to (eEyE) for

E ⊂ K.

3.2 Scarcity of Norm Compatible Familes

In this section, we prove Proposition 10.

Lemma 18. Let E/F be a finite abelian CM extension, let v | p with v 6∈ Σ(E), and let m

be a positive integer. There exists a CM abelian extension E ′/F containing E such that:

• Σ(E ′) = Σ(E),

• #GE,w = #GE′,w for all w ∈ Σ(E),

• the Frobenius σv in GE′ has order divisible by pm.

Proof. We use [14, Theorem 9.2.7] to construct an extension F ′ of F with prescribed decom-

position of primes above p. Using the notation in loc. cit. we take S to be the set of all

finite places of F , the set T0 to be the set of primes in F above p and T to be the empty set.

Then by [14, Theorem 9.2.7] the canonical homomorphism

H1(F,Z/prZ) −→ ⊕p|pH
1(Fp,Z/p

rZ)

has cokernel of order 1 or 2 (the latter can occur only if p = 2). Therefore there exists a

totally real cyclic extension F ′ of F such that

13



(i) each prime v′ ∈ Σ(E) has trivial decomposition subgroup.

(ii) all primes above p not in Σ(E) are unramified in F ′.

(iii) The decomposition subgroup of v in Gal(F ′/F ) has order at least pr−1.

Taking r = m+ 1 and E ′ = EF ′ gives the required extension.

The proof of Proposition 10 will proceed by induction. We are given a norm compatible

set of elements (zE)E⊂K , with zE ∈ RE. Write

Σ(K) = {v1, v2, . . . , vm}. (21)

For i = 0, . . . ,m, define

Pi(E
′/E) =

∏
j>i

vj∈Σ(E′)−Σ(E)

(1− σ−1
vj

) ∈ Zp[GE]−.

So in particular P0(E ′/E) = P (E ′/E) as defined earlier, and Pm(E ′/E) = 1. We will prove

the following statement by induction on i:

There exists z̃K ∈ Zp[GK ]− lifting zK ∈ RK such that

(eE redK/E(z̃K)− zE)Pi(K/E) = 0 (22)

in RE for all E ⊂ K.

Note that we will induct on this statement for all fields K ′ ⊃ F satisfying (21) with

associated norm compatible system (zE)E⊂K′ , not just the K that we start with. The base

case i = 0 is automatic, as it is the definition of norm compatible system; any lift z̃K will

do. So let i ≥ 1 and suppose the statement holds for i− 1; we want to prove it for i.

Lemma 19. In order to deduce (22), it suffices to prove that for each positive integer k,

there exists z̃K,k ∈ Zp[GK ]− lifting zK ∈ RK such that

(eE redK/E(z̃K,k)− zE)Pi(K/E) ≡ 0 in RE/p
k (23)

for all E ⊂ K.

Proof. Let J denote the intersection of the kernels of the compositions

Zp[GK ]− −→ Zp[GE]− −→ RE

for all E, and for each positive integer k let Jk ⊃ J denote the intersections of the kernels of

the compositions

Zp[GK ]− −→ Zp[GE]− −→ RE −→ RE/p
k.

14



The defining equation (23) of the z̃K,k specifies its value uniquely modulo Jk. We therefore

have z̃K,k+1 ≡ z̃K,k (mod Jk). Hence the {z̃K,k} specify a unique element of

lim←−
k

Zp[GK ]−/Jk = Zp[GK ]−/
∞⋂
k=1

Jk = Zp[GK ]−/J.

Letting z̃K be any lift of this element to Zp[GK ]− gives the desired result.

Fix a positive integer k. Let E be a CM field with F ⊂ E ⊂ K such that vi is unramified

in E (i.e. vi 6∈ Σ(E)). Let pr denote the power of p dividing
∏

v∈Σ(E) #GE,v, and let ps be

the power of p dividing the order of σv in GE. Let k′ = k+ r+ s. Let E ′ be as in Lemma 18

for m = k′.

Let K ′ be the compositum of K with all fields E ′ defined in this way (there is one such

E ′ for each CM subfield E ⊂ K containing F , so K ′/F is a finite abelian CM extension). We

consider a norm compatible family (zL)L⊂K′ extending the given family. Using the induction

hypothesis, we find a lift z̃K′ ∈ Zp[GK′ ]− such that

(eL redK′/L(z̃K′)− zL)Pi−1(K ′/L) = 0 (24)

for all L ⊂ K ′.

We define

z̃K = redK′/K(z̃K′) ∈ Zp[GK ]−.

This is a lift of zK ∈ RK by the norm compatibility relation since Σ(K ′) = Σ(K).

If L ⊂ K is a CM field containing F such that vi ∈ Σ(L), then Pi(K/L) = Pi−1(K/L),

and the statement (24) can be written

(eL redK/L(z̃K)− zL)Pi(K/L) = 0.

This is exactly the statement (22) that we are trying to prove for the field L. It remains to

consider the more salient case of the fields E such that vi 6∈ Σ(E) which were used in the

construction of K ′. For L = E ′ with E ′ as above, (24) reads

(eE′ redK′/E′(z̃K′)− zE′)Pi(K ′/E ′)(1− σ−1
vi

) = 0. (25)

By the definition of eE′ given in (6), and the second property of the extension E ′ given in

Lemma 18, we see that preE′ ∈ Zp[GE′ ]. Hence, prz ∈ Zp[GE′ ]− for any z ∈ RE′ ⊂ Qp[GE′ ]−.

From (25) we therefore have

(preE′ redK′/E′(z̃K′)− przE′)Pi(K ′/E ′)(1− σ−1
vi

) = 0 in Zp[GE′ ]−.

The kernel of multiplication by (1− σ−1
vi

) in Zp[GE′ ]− is the ideal generated by

1 + σvi + · · ·+ σn
′−1

vi
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where n′ is the order of σvi in GE′ . We can therefore write

(preE′ redK′/E′(z̃K′)− przE′)Pi(K ′/E ′) ∈ (1 + σv + · · ·+ σn
′−1

v ) in Zp[GE′ ]−.

Reducing to Zp[GE]−, we find[
preE redK′/E(z̃K′)− redE′/E(przE′)

]
Pi(K/E) (26)

∈ (n′/n)(1 + σvi + · · ·+ σn−1
vi

) ⊂ (pk
′−s) in Zp[GE]−,

where n is the order of σv in GE. Note that redE′/E(przE′) = przE by the norm compatibility

relation, since Σ(E ′) = Σ(E). Therefore, projecting (26) to RE and canceling pr we obtain

(eE redK′/E(z̃K′)− zE)Pi(K/E) ∈ (pk
′−s−r) = (pk) in RE. (27)

From (27) we obtain

(eE redK/E(z̃K)− zE)Pi(K/E) ≡ 0 in RE/p
k.

This is (23), so by Lemma 19 we obtain the desired inductive statement (22). The result for

i = m is exactly the statement of Proposition 10, since Pm(K/E) = 1. This concludes the

proof of Proposition 10.

A Reductions

In this appendix we prove Lemmas 2 and 6, which together show that Theorem 5 implies

Theorem 1. The proof of Lemma 6 has the same flavor as the computations of §2.2, but is

significantly more complicated because of the changing set S ′.

Lemma 2 is standard.

Proof of Lemma 2. Theorem 3 for all primes p yields an element yK ∈ (Ẑ[GK ]−)∗ such that

(1) holds. We need to show that yK ∈ (Z[GK ]−)∗. Let χ be an odd character of G and let

E ⊂ K denote the fixed field of the kernel of χ. Applying χ to (1), we obtain

χ(det(fTS(E))) = χ(yK)LS(E),T (χ−1, 0).

Since χ(v) 6= 1 for v ∈ S(E), it follows that χ(det(fTS(E))) and LS(E),T (χ−1, 0) are non-zero

algebraic numbers, and therefore the same is true for χ(yK). Therefore yK ∈ Q[GK ]−. The

desired result follows since

Q[GK ]− ∩ (Ẑ[GK ]−)∗ = (Z[GK ]−)∗.
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The proof of Lemma 6 is more subtle. We should mention that such an “independence

of (S, T ) sets” result was proved by Atsuta and Kataoka in [2, Proposition 3.1(iii)].

We begin with an important purely local computation regarding local Ritter–Weiss mod-

ules. Let L/K be an abelian extension of `-adic local fields (i.e. finite extensions of Q`).

Write G = Gal(L/K). Let V denote the local Ritter–Weiss G-module associated to L as in

(9). Let U ⊂ O∗L denote the subgroup of 1-units. We then obtain a short exact sequence

1 −→ L∗/U −→ V/U −→ ∆G −→ 1. (28)

We will work over Zp where p 6= ` is another prime. For any G-module M , we write Mp

for the Zp[G]-module M ⊗Z Zp. Let I ⊂ G be the inertia group. Let e = #I be the size of

I, write NI =
∑

g∈I g, and let σ ∈ G be a representative of the Frobenius coset in G/I.

Lemma 20. With notation as above, there exist an element x̃ ∈ V that maps to

x = e− σ−1NI ∈ ∆G

under (28) and satisfies the following. If M = V/(U, x̃), then

FittZp[G](Mp) = (y), y = e− σ−1NI · q, (29)

where q is the size of the residue field of K.

Remark 21. It can be shown that if x̃ ∈ V is any element mapping to x in ∆G, then

FittZp[G](Mp) = (y) for some y ≡ e− σ−1NI · q (mod NG). (30)

This does not affect the proof of Lemma 6 that follows, since ΘS,T (K/F ) · NGv = 0 for any

v ∈ S. The statement (30) requires a little extra computation and is not necessary for our

proof of Lemma 6.

Proof. We begin with a reduction that will greatly simplify the notation. Namely, we show

that it suffices to prove the result in the case that the inertia group I is pro-p (hence tame,

hence cyclic). We can uniquely decompose G = Gp ×G′ where Gp is the p-Sylow subgroup

of G and G′ is the subgroup of prime-to-p order elements. We have a corresponding decom-

position I = Ip × I ′. The group ring Zp[G] decomposes as a product

Zp[G] =
∏
(χ)

Rχ, Rχ = e(χ)Zp[G],

as (χ) ranges over the Gal(Qp/Qp)-conjugacy classes of characters of G′. Here

e(χ) =
∑
χ∈(χ)

eχ
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is the usual idempotent. It suffices to prove the result on each component Rχ.

If χ(I ′) 6= 1, the result is easy to see from (28). Indeed, in this case we have

(L∗/U)(χ) := (L∗/U)p ⊗Zp[G] Rχ = 0.

This follows from the short exact sequence

1 −→ k∗L −→ L∗/U −→ Z −→ 1.

Since I ′ acts trivially on k∗L and Z, the assumption χ(I ′) 6= 1 implies that e(χ) annihilates

these modules, whence it annihilates L∗/U . Therefore

(V/U)(χ)
∼= (∆G)(χ)

∼= Rχ,

hence

FittRχ(V/(U, x̃))(χ) = FittRχ(Rχ/x) = (x)

for any x̃ ∈ V mapping to x ∈ ∆G. The desired result then follows since e(χ)x = e(χ)y, as

NI = NIp · NI ′, and e(χ)NI
′ = 0 because χ(I ′) 6= 1.

It therefore remains to consider the components Rχ such that χ(I ′) = 1. Let L′ = LI
′

be

the subfield fixed by I ′. It is elementary to check that

(V/U)(χ)
∼= (V (L′)/U(L′))(χ),

for example, by connecting the (χ)-components of the sequences (28) for L and L′ and using

the five lemma. Therefore, on these components we can replace L by L′, which satisfies the

property that the inertia subgroup of Gal(L′/K) is a p-group.

We therefore start the proof afresh with the assumption that I is cyclic of order prime

to `. Let τ be a generator of I. We define Zp[G]-module generators of (V/U)p using the

definition of V given in [6, Equation (133)]. Let σ̃, τ̃ ∈W(Lab/K) be lifts of σ, τ , respectively.

Specifically, we let τ̃ be a lift to the tame inertia subgroup of W(Lab/K), and let σ be a

representative of the Frobenius coset. Let gσ̃, gτ̃ ∈ V/U be the images of 1− σ̃−1 and τ̃ − 1

respectively. We claim that these elements are generators of (V/U)p, and that there is a

single relation between them.

To prove this, we employ the short exact sequence

1 −→ k∗L −→ V/U −→ W −→ 1 (31)

obtained from (10). The elements gσ̃, gτ̃ map to

gσ = (1− σ−1, 1) and gτ = (τ − 1, 0) in W,

respectively, using the model of W given in (11). The relations among gσ, gτ in W are

generated by

(τ − 1)gσ − (1− σ−1)gτ = 0, (32)

NI · gτ = 0. (33)
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The element NI ·gτ̃ = τ̃ e−1 maps to NI ·gτ = 0 in W , and hence under the exact sequence

(31) corresponds to an element of k∗L. We claim that this element is a multiplicative generator

of the cyclic group k∗L. To see this note that we can consider a finite Galois extension L̃/K

containing L whose inertia Ĩ is tame and sits in a short exact sequence

1 −→ k∗L −→ Ĩ −→ I −→ 1.

For example, the abelian extension of L corresponding to L̂∗/(U, πK) under class field theory,

where πK is a uniformizer of K, is such an extension. But Ĩ is the tame inertia of a finite

Galois extension of K and hence cyclic. Therefore, any lift τ̃ of the generator τ of I is a

generator of Ĩ. This implies that τ̃ e is a generator of k∗L.

These considerations imply our claim that gσ̃ and gτ̃ generate (V/U)p as a Zp[G]-module.

To compute the relations among these generators, we lift the relations (32) and (33). For

(33), we have already observed that NI · gτ̃ is a generator of k∗L. The annihilator of k∗L is

generated by 1−σ−1q and τ−1. Now τ−1 annihilates NI, so this leads to the trivial relation.

We therefore obtain only one relation in (V/U)p from the relation (33) in W , namely

(1− σ−1q)NI · gτ̃ = 0. (34)

For (32) we note that

(τ − 1)gσ̃ − (σ − 1)gτ̃ = τσ−1(σ̃τ̃−1σ̃−1τ̃ − 1)

= τσ−1(τ̃ 1−q − 1)

= σ−1

(
1− q
e

)
NI · gτ̃ .

We therefore obtain the relation

(τ − 1)gσ̃ −
(

1− σ−1 + σ−1

(
1− q
e

)
NI

)
gτ̃ = 0. (35)

Now, it is easy to see that (34) can be obtained from (35) by multiplying by NI. We have

therefore proven our claim that (V/U)p has a presentation with two generators gσ̃, gτ̃ , and

the one relation (35).

To conclude the proof, we note that the element

x̃ = −e · gσ̃ − z · gτ̃ , (36)

where

z = σ−1((e− 1) + (e− 2)τ + (e− 3)τ 2 + · · ·+ τ e−2)

(with the understanding z = 0 if e = 1) maps to

e(1− σ−1)− z · (τ − 1) = x
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in ∆G. We have that FittZp[G]((V/(U, x̃))p) is generated by

det

(
τ − 1 σ−1 − 1− σ−1

(
1−q
e

)
NI

−e −z

)
= e− σ−1q · NI.

This equality is a direct calculation, and completes the proof.

We can now prove Lemma 6, which states that the (Σ,Σ′) version of the ETNC over Zp

implies the (S, T ) version over Zp.

Proof. The main difficulty in relating the (Σ,Σ′) and (S, T ) versions of the ETNC is the fact

that different sets S ′ must be taken by the assumptions on this set. Write

J = S \ Σ = Σ′ \ T = {v ∈ Sram(H/F ) : v - p}.

When working with (Σ,Σ′), we start with a set S ′ that is necessarily disjoint from J . Let us

fix this choice of S ′. When we work with (S, T ), the set that plays the role of S ′ must contain

J , so we use S ′ ∪ J . From the definitions1 one finds that there is a short exact sequence

0 V Σ′

S′ (K) V T
S′∪J(K)

∼∏
v∈J

Vw/U
1
w 0.ι

Here w denotes the place of K above the place v of F used in the definition of the V modules.

Meanwhile, the isomorphism (13) yields

BS′∪J(K)p ∼=
∏

v∈S′∪J\∞

Zp[GK ] ∼= BS′(K)p ⊕
∏
v∈J

Zp[GK ].

This identification yields natural bases for BS′(K) and BS′∪J(K). For each v ∈ J , let

(xv, x̃v) be the pair (x, x̃) for the local extension Kw/Fv given in Lemma 20. We consider

the following commutative diagram of free Zp[GK ]-modules of rank #(S ′ ∪ J)− 1:

V Σ′

S′ (K)p ⊕
∏

v∈J Zp[GK ] BS′(K)p ⊕
∏

v∈J Zp[GK ]

V T
S′∪J(K)p BS′∪J(K)p.

(fΣ′
Σ (K)p,1)

(ι,x̃v) (1,xv)

fTS (K)p

(37)

By Theorem 5, we can choose a basis of V Σ′

S′ (K)p such that the top arrow of (37) has

determinant ΘΣ,Σ′(K/F ). The cokernel of the left arrow of (37) is

∼∏
v∈J

(Vw/(U
1
w, x̃v))p,

1The snake lemma must also be used, since the module V T
S′ is the kernel of θV .
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which by Lemma 20 has Fitting ideal generated by
∏

v∈J yv, where yv is the element (29).

We can therefore choose a basis for V T
S′∪J(K)p such that the determinant of the left arrow of

(37) is exactly
∏

v∈J yv. The commutative diagram (37) therefore yields

det(fTS (K)p)
∏
v∈J

yv = ΘΣ,Σ′(K/F )
∏
v∈J

xv.

Since the elements yv are non-zerodivisors, we may divide, and we obtain

det(fTS (K)p) = ΘΣ,Σ′(K/F )
∏
v∈J

(xv/yv) = ΘS,T (K/F )

as desired. The same analysis holds for any CM subfield E ⊂ K containing F . Take

Gal(K/E)-coinvariants of each term in (37). Replace the horizontal arrows by (fΣ′

Σ(E)(E)p,1)

and fTS(E)(E)p. Leave the left vertical arrow the same, but to maintain commutativity of

the diagram, replace xv by ev = #Iv on the right at the places v ∈ J such that v 6∈ S(E).

The explanation for this is the definition of the local component Vw −→ Z[Gw] when w is

unramified given in §2.1. This map sends the element x̃v defined in (36) to ev.

Now, the elements xv and yv forK have images in Zp[GE] equal to the analogous constants

for E/F scaled by the ramification index at v of K/E. These extra scaling factors cancel,

and we obtain

det(fTS(E)(E)) = ΘΣ(E),Σ′(K/F )
∏

v∈S(E)−Σ(E)

(xv/yv)
∏

v∈J, v 6∈S(E)

(ev/yv)

= ΘS(E),T (E/F ).

This completes the proof.

B Consequences

The fact that the ETNC in its various formulations implies the consequences stated in §1.1 is

well-known. In this appendix we indicate how Theorem 1 combined with the refinements of

[8] at the prime p = 2 can be used to prove these consequences with an improved power of 2.

Here we adapt the beautiful argument of Burns, Kurihara, and Sano, who proved that their

LTC implies all of these results [4] (without the improved power of 2). Since our argument

is essentially identical to theirs, we provide a sketch and discuss only the Brumer–Stark

conjecture, focusing on the issues related to projecting to the minus side and the improved

power of 2.

We consider our setup as above, with a CM abelian extension K of a totally real field

F . We let S = S∞ ∪ Sram(K/F ). Let p 6∈ S denote a prime of F that splits completely in

K, and suppose that the auxiliary set S ′ contains p. Let us fix one element v0 ∈ S ⊂ S ′ as
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follows. If K/F is ramified at some finite place, we let v0 be such a place; otherwise, we let

v0 be a real place of F . Then as in (13) we have

BS′(K)− ∼=
∏

v∈S′\{v0}

Z[GK ]−, (38)

and we fix the basis of BS′(K)− associated to this isomorphism.

Theorem 1 implies that we may choose a basis for V T
S′ (K)− such that if A is the matrix

for fTS (K)− with respect to these bases, then

det(A) = ΘS,T (K/F ) in Z[GK ]−.

Note that A is a square matrix of dimension #S ′−1 and coefficients in Z[GK ]−. As indicated

in (38), the columns of A are indexed by the elements v ∈ S ′ \ {v0}.
Now let AV be the matrix A modified so that in the column indexed by p, the element

in each row is replaced by the basis vector in V T
S′ (K)− indexing that row. So the matrix AV

has all its coefficients in Z[GK ]− except one column, which has coefficients in V T
S′ (K)−. It

makes sense to consider det(AV ) ∈ V T
S′ (K)− using the Leibniz rule.

Write n = [F : Q] and let

t =

{
n if Sram(K/F ) is nonempty,

n− 1 if Sram(K/F ) is empty.

Then S ′ \ {v0} contains t real places. The trick observed in [8] is that all the columns of A

indexed by these real places are divisible by 2 (they are divisible by 1− c since this element

generates the ideal ∆Gw, and 1 − c = 2 in Z[GK ]−). Hence we can divide each of these

columns by 2 and obtain det(AV )/2t ∈ V T
S′ (K)−. We then define

u = (1− c) det(AV )/2t ∈ V T
S′ (K),

which is a well-defined element of V T
S′ (K). This is the key point at which we have lifted from

Z[GK ]− to Z[GK ].

Lemma 22. Let Sp = S ∪ p. The element u lies in the kernel of fTSp
: V T

S′ (K) −→ BT
S′(K).

Proof. For any place v ∈ S ′ \ {v0}, the component of fTSp
(u) at v is (1 − c)/2t times the

determinant of the matrix Av obtained from AV by replacing the column at p with its image

under the component of fTSp
at v. If v 6= p, this is precisely the column of AV at v. Hence

the matrix Av has two identical columns, namely the columns indexed by p and v. It follows

that det(Av) = 0. If v = p, the component of fTSp
(u) at p lies in ∆Gp, which vanishes since

p splits completely in K. Therefore Ap has a column of 0’s and hence det(Ap) = 0. This

proves the lemma.

Now we can view u as an element of O∗K,Sp,T
, since this is the kernel of fTSp

(see [6, Eqn.

(146)]).
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Lemma 23. We have |u|w = 1 for all places w - p, finite or infinite.

Proof. For w ∈ SK finite, this is the argument of [7, Lemma 4.8], which we briefly sketch.

Let v ∈ S denote the place of F below w. In view of the exact sequence (10), we need to

show that the image of u in IndGGw Ww(Kw) vanishes. This image is evaluated by taking

(1 − c)/2t times the determinant of the matrix AW,v obtained from AV by replacing the

column indexed by p by its image in IndGGw Ww(Kw). But using the definition of Ww(Kw),

one can show that the 2 × 2 minors arising from the columns of AW,v indexed by p and v

vanish. It follows that det(AW,v) = 0.

For w complex, the result is immediate; by definition, u satisfies c(u) = u−1.

Recall that defining V T
S′ (K) involved choosing a place of K above each place of F . Let

P denote the place above p chosen in this definition. Define

ordG : K∗ −→ Z[GK ], x 7→
∑
σ∈G

ordP(σ(x))σ−1.

The following is the Brumer–Stark conjecture, with the usual appearance of ΘS,T improved

to ΘS,T/2
t−1.

Theorem 24. We have

ordG(u) =
ΘS,T (K/F )

2t−1
.

Proof. The proof of [7, Lemma 4.9] applies essentially without change. We recall the argu-

ment. Consider the map

fp : IndGGP
VP(KP) −→ Z[GK ]

induced by

VP(KP) −→ WP(KP) ∼= Z[GP] = Z.

Note that if we start with AV and replace the column indexed by p with its image under fp,

then we obtain precisely the matrix A, since the component of fTS at p is by definition fp.

Now, the composition of fp with

K∗ −→ IndGGP
VP(KP)

is precisely the map ordG. It follows that

ordG(u) =
(1− c)

2t
det(A) =

ΘS,T (K/F )

2t−1
.

The other consequences of Theorem 1 stated in §1.1, with ΘS,T improved to ΘS,T/2
t−1,

follow similarly by mildly adapting the arguments of [4].
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