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Abstract

We calculate the constant terms of certain Hilbert modular Eisenstein series at all
cusps. Our formula relates these constant terms to special values of Hecke L-series. This
builds on previous work of Ozawa, in which a restricted class of Eisenstein series were
studied. Our results have direct arithmetic applications—in separate work we apply
these formulas to prove the Brumer–Stark conjecture away from p = 2 and to give an
exact analytic formula for Brumer–Stark units.
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5 Ordinary forms 24

1 Introduction

Let F be a totally real field of degree d, and let Mk(n) denote the space of Hilbert modular

forms of level n ⊂ OF and weight k over F . Let Ek(n) ⊂ Mk(n) denote the subspace of

Eisenstein series. In this paper we generalize results of [2, Section 2.1] and [8] to give the

constant terms of nearly all Eisenstein series E ∈ Ek(n) at all cusps. The space Ek(n)

has a basis consisting of forms of the form Ek(η, ψ)|m, where η and ψ are primitive ray class

characters (see §4). Our formula in Theorem 4.7 gives the constant terms of these series at all

cusps when m is squarefree and coprime to the conductors of η and ψ. In fact, Theorems 4.5

and 4.7 are more general than this; in particular we handle the case where η and ψ are

not necessarily primitive characters. We work with all weights k ≥ 1. In [8], only primitive

characters are considered, the level raising operator |m is not applied, and the weight k taken

to be at least 2.

There are concrete arithmetic applications of our results. In [3], we prove the Brumer–

Stark conjecture away from p = 2 and in [4] we prove an exact p-adic formula for Brumer–

Stark units. Broadly speaking, both of these results apply Ribet’s method, whereby cusp

forms are constructed by taking linear combinations of products of Eisenstein series [9].

Central to the advance of [3] is the method by which this cusp form is constructed. For this, we

require knowledge of the constant terms at all cusps of level-raised Eisenstein series associated

to possibly imprimitive characters; we also need to include weight k = 1. Therefore the

calculations of [8] are not general enough for our application, which provides the motivation

for this paper.

In addition, we prove here some other results that may be of independent interest. Firstly,

we provide a complete enumeration of the cusps on the Hilbert modular variety. Also, we

prove that in weight k > 1, the cuspidality of modular forms that are ordinary at a prime p

is regulated by the constant terms at cusps that are unramified at p. We provide two proofs

of this fact; one applies our results on Eisenstein series, and the other is a direct study of

the Up operator. While these two results are likely known to the experts, we have not found

a precise reference for them in the literature.

We now outline the paper and describe our results in greater detail. In §2 we recall

the definition of the space of Hilbert modular forms Mk(n) of weight k and level n ⊂ OF ,

following Shimura [11]. Associated to each λ in the narrow class group Cl+(F ) is a congruence

subgroup Γ1,λ(n) ⊂ GL+
2 (F ). The open Hilbert modular variety corresponding to our forms

has h+ = # Cl+(F ) components:

Y =
⊔

λ∈Cl+(F )

Γ1,λ(n)\Hd, H = complex upper half plane.
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The space of modular formsMk(n) is endowed with an action of Hecke operators described

in §2.5. Among these operators are the diamond operators S(m), indexed by the classes

m ∈ G+
n , the narrow ray class group of F attached to the modulus n. The diamond operators

play a central role in our applications [3], [4].

In §3, we study the set of cusps associated to Y :

cusps(n) =
⊔

λ∈Cl+(F )

Γ1,λ(n)\P1(F ).

We provide an explicit enumeration of this set. For m | n, let Qm,n denote the quotient of

G+
m × G+

n/m by the subgroup generated by diagonally embedded principal ideals (x), where

x ∈ OF is congruent to 1 modulo n. The following result proved in §3.3 is already implicit

in [12, Pp. 422-423].

Theorem 1. There is a stratification cusps(n) =
⊔

m|nQm,n with #Qm,n = #Qm,n. Each Qm,n

is stable under the action of G+
n via the diamond operators.

In §4 we study the Eisenstein series in Mk(n) and calculate their constant terms at all

cusps. This generalizes the results of [2, Proposition 2.1] and [8]. We work in a more general

setting in this paper by considering all cusps and allowing for Eisenstein series associated to

imprimitive characters. We normalize our constant terms (see (4) below) so that they are

independent of choice of representatives (up to sign). Furthermore, with these normalizations

the constant terms exhibit nice integrality properties that will be studied in [5]. For an ideal

b | n, define

C∞(b, n) =
⊔
b|m

Qm,n. (1)

In Theorem 4.5 we prove the following.

Theorem 2. Let k > 1, and let χ1 and χ2 be narrow ray class characters of F with associated

signs q1, q2 ∈ (Z/2Z)n, respectively. Assume that χ2 is primitive of conductor b. Then the

constant term of Ek(χ1, χ2) vanishes at any cusp not lying in C∞(b, n). Furthermore, if

A ∈ Γ1,λ(n)\P1(F )

is represented by a/c ∈ P1(F ) and lies in C∞(b, n), the constant term of Ek(χ1, χ2) at A
normalized as in (4) is given by

1

2n
τ(χ1χ

−1
2 )

τ(χ−1
2 )

(
Nb

Nf

)k
sgn(−c)q1sgn(a)q2χ1(cA/b)χ−1

2 (aA)

× L(χ−1, 1− k)
∏
q

(1− χ(q)Nq−k).
(2)

Here χ denotes the primitive character associated to χ1χ
−1
2 , f = cond(χ), and q runs through

all primes dividing n but not f. The integral ideals aA and cA associated to A are defined in

(13), and the condition A ∈ C∞(b, n) implies that b | cA.
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In Theorem 4.5 we also consider the case k = 1. In Theorem 4.7 we build on the result

above and consider a more generalize case; we calculate the constant terms of all level-raised

Eisenstein series Ek(χ1, χ2)|m, where χ1 and χ2 are possibly imprimitive, under certain mild

conditions. These results are essential in our arithmetic applications [3] and [4]. In those

works, we construct cusp forms by taking the appropriate linear combinations of products

of Eisenstein series considered here with certain other auxiliary forms constructed in [5].

In §5 we conclude with the following result on the cuspidality of ordinary forms that is

applied in our arithmetic applications [3], [4]. Fix a prime p and let P = gcd(p∞, n) denote

the p-part of n. The set C∞(P, n) defined in (1) may be viewed as the set of “p-unramified”

cusps.

Theorem 3. Let p be a prime. If f ∈ Mk(n) is p-ordinary for each prime p ⊂ OF dividing

p, then f is cuspidal if and only if the constant term of f vanishes at each cusp in C∞(P, n).

We thank Jesse Silliman for helpful conversations during the writing of this paper.

2 Notation on Hilbert Modular Forms

We refer the reader to [2, §2.1] for our precise definitions and notations, following Shimura

[11], concerning the space of classical Hilbert modular forms over the totally real field F . We

recall certain aspects of this definition.

2.1 Hilbert Modular Forms

Let H denote the complex upper half plane endowed with the usual action of GL+
2 (R) via

linear fractional transformations, where GL+
2 denotes the group of matrices with positive

determinant. We fix an ordering of the n embeddings F ↪→ R, which yields an embedding

of GL+
2 (F ) ↪→ GL+

2 (R)n and hence an action of GL+
2 (F ) on Hn. Here GL+

2 (F ) denotes the

group of matrices with totally positive determinant.

For each class λ in the narrow class group Cl+(F ), we choose a representative fractional

ideal tλ. Let n ⊂ OF be an ideal, and assume that the representative ideals tλ have been

chosen to be relatively prime to n. Define the groups

Γ0,λ(n) =

{(
a b
c d

)
∈ GL+

2 (F ) : a, d ∈ OF , c ∈ tλdn, b ∈ (tλd)−1, ad− bc ∈ O∗F
}
,

Γ1,λ(n) =

{(
a b
c d

)
∈ Γ0,λ : d ≡ 1 (mod n)

}
.

Here d denotes the different of F .

Let k be a positive integer. We denote by Mk(n) the space of Hilbert modular forms for F

of level n and weight k. Each element f ∈ Mk(n) is a tuple f = (fλ)λ∈Cl+(F ) of holomorphic
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functions fλ : Hn → C such that fλ|α,k = fλ for all λ ∈ Cl+(F ) and α ∈ Γ1,λ. Here the

weight k slash action is defined in the usual way:

fλ|α,k(z1, . . . , zn) = N(det(α))k/2
n∏
i=1

(cizi + di)
−k · fλ

(
a1z1 + b1

c1z1 + d1

, . . . ,
anzn + bn
cnzn + dn

)
,

where ai denotes the image of a under the ith real embedding of F and similarly for bi, ci, di.

2.2 Constant terms and cusp forms

Suppose that A = (A, λ) is an ordered pair with

A =

(
a b
c d

)
∈ GL+(F )

and λ ∈ Cl+(F ). We define the fractional ideal

bA = aOF + c(tλd)−1.

Given f = (fλ) ∈Mk(n) and a pair A = (A, λ) as above, the function fλ|A,k has a Fourier

expansion

fλ|A,k(z) = aA(0) +
∑
b∈a
b�0

aA(b)eF (bz), (3)

where a is a lattice in F depending on A, and

eF (bz) := exp(2πi(b1z1 + · · ·+ bnzn)).

Definition 2.1. The normalized constant term of the form f at A is

cA(0, f) = aA(0) · (Ntλ)
−k/2(NbA)−k(detA)k/2. (4)

As we will see later, the constant terms with this normalization will exhibit nice invariance

properties as well as integrality properties. The space of cusp forms Sk(n) ⊂Mk(n) is defined

to be subspace of forms f such that cA(0, f) = 0 for all pairs A.

2.3 q-expansion

When A = 1 we drop the subscript A and write simply

cλ(0, f) = aλ(0)(Ntλ)
−k/2.

Furthermore when A = 1, the lattice a appearing in (3) is the ideal tλ. Any non-zero

integral ideal m may be written m = (b)t−1
λ with b ∈ tλ totally positive for a unique λ ∈

Cl+(F ). We define the normalized Fourier coefficients

c(m, f) = aλ(b)(Ntλ)
−k/2.

The collection of normalized Fourier coefficients {cλ(0, f), c(m, f)} is called the q-expansion

of f . Note that these normalized coefficients are denoted with a capital C in [11].
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2.4 Forms over a field K

Each tuple f ∈Mk(n) is determined by its q-expansion, which the collection of coefficients

cλ(0, f) ∈ C, λ ∈ Cl+(F ), c(m, f) ∈ C,m ⊂ OF ,m 6= 0

defined in §2.3. For any subfield K ⊂ C, define Mk(n, K) to be the K-vector subspace of

Mk(n) consisting of modular forms whose q-expansion coefficients all lie in K. A fundamental

result of Shimura [10, Theorem 7] states

Mk(n, K) = Mk(n,Q)⊗Q K. (5)

We define Mk(n, K) by (5) more generally if K is any field of characteristic 0. This generalizes

in the obvious way to define Sk(n, K).

2.5 Hecke operators

The space Mk(n) is endowed with the action of a Hecke algebra T̃ ⊂ End(Mk(n)) generated

over Z by the following operators:

• Tq for q - n.

• Uq for q | n.

• The “diamond operators” S(m) for each class m ∈ G+
n = narrow ray class group of F

of conductor n.

We refer to [11, §2] for the definition of these operators. We warn that in loc. cit. both

Tq and Uq are denoted by Tq.

Let us recall the definition of the diamond operators S(m). Let f = (fλ)λ∈Cl+(F ) ∈Mk(n)

and let m denote an ideal of OF that is relatively prime to n, and which hence represents a

class in G+
n . For each µ ∈ Cl+(F ), let λ ∈ Cl+(F ) denote the class of µm−2. Write tλt

−1
µ m2 =

(x) where x is a totally positive element of F ∗, uniquely determined up to multiplication by

a totally positive unit in O∗F . Let

αµ =

(
a b
c d

)
∈ GL+

2 (F ) (6)

be a matrix satisfying the following conditions:

a ∈ m, b ∈ t−1
µ d−1m, c ∈ tλdnm, d ∈ tλt

−1
µ m, det(αµ) = x, d ≡ x (mod tλt

−1
µ mn). (7)

Then

f |S(m) = (gµ)µ∈Cl+(F ) where gµ = fλ|αµ . (8)
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2.6 Raising the level

For a Hilbert modular form f ∈Mk(n) and an integral ideal q of F , there is a form

f |q ∈Mk(nq)

characterized by the fact that for nonzero integral ideals a we have

c(a, f |q) =

{
c(a/q, f) if q | a
0 if q - a

(9)

and

cλ(0, f |q) = cλq(0, f) (10)

for all λ ∈ Cl+(F ). We recall the definition of f |q. For every λ there is a µ ∈ Cl+(F ) and a

totally positive element aµ ∈ F such that

qtλ = (aµ)tµ.

Then

(f |q)λ := Nq−k/2fµ| aµ 0
0 1

. (11)

The fact that f |q lies in Mk(nq) and satisfies (9)–(10) is proven in [11, Prop 2.3].

3 Cusps

3.1 Admissibility

Recall the fractional ideal

bA = aOF + c(tλd)−1 (12)

defined in §2.2 associated to a pair A = (A, λ) with A ∈ GL+(F ) and λ ∈ Cl+(F ). We now

define the integral ideals

aA = ab−1
A , cA = c(tλdbA)−1. (13)

The ideals aA, cA are relatively prime. To explain the meaning of these invariants, consider

the case F = Q. If A represents the cusp a/c ∈ P1(Q) with a, c relatively prime integers,

then aA = (a) and cA = (c). Finally, we define

mA = gcd(cA, n). (14)

Given a form f ∈ Mk(n), it is clear that the normalized constant term cA(0, f) defined

in §2.2 depends only on A up to left multiplication by an element of Γ1,λ(n). Furthermore,

writing

B =

{(
a b
0 d

)
∈ GL+

2 (F )

}
,
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it is almost true that cA(0, f) depends on A up to right multiplication by an element of

B—there is a sign ambiguity

c(AA′,λ)(0, f) = sign(Nd)kc(A,λ)(0, f), A′ =

(
a b
0 d

)
∈ B. (15)

If k is odd, and the class of A in Γ1,λ(n)\GL+
2 (F ) is fixed under right multiplication by an

element A′ ∈ B with Nd < 0, then it follows from (15) that cA(0, f) = 0. Let us determine

the pairs A for which this is the case.

Definition 3.1. A pair (m, n) with m | n is called admissible if there does not exist a pair of

units ε1, ε2 ∈ O∗F such that ε1 ≡ 1 (mod m), ε2 ≡ 1 (mod n/m), with Nε1 = Nε2 = −1 and

ε1/ε2 totally positive.

Definition 3.2. With the level n fixed, a pair A = (A, λ) with A ∈ GL+
2 (F ) and λ ∈ Cl+(F )

is called admissible if (mA, n) is admissible.

Theorem 3.3. Given a pair A = (A, λ), the class of A in Γ1,λ(n)\GL+
2 (F ) is fixed by right

multiplication by an element A′ ∈ B with Nd < 0 if and only if A is not admissible.

Before proving the theorem, we introduce some notation and prove an important lemma.

Given a fractional ideal b and an integral ideal m, we denote by (b/bm)∗ the subset of elements

of b/bm that generate this quotient as an OF/m-module. This is a principal homogeneous

space for the group (OF/m)∗.

Definition 3.4. For a fractional ideal b and an integral ideal m, we define

Rb
m = (b/bm)∗/O∗F,+,

the quotient of the set (b/bm)∗ by the action of multiplication by the group of totally positive

units of F .

Definition 3.5. Let Pλ(n) be the set of tuples (b,m, a, c) where b is a fractional ideal of F ,

m is an integral ideal dividing n, a ∈ Rb
m, and c ∈ Rbdtλm

n/m .

The heart of Theorem 3.3 is the following lemma.

Lemma 3.6. Fix λ ∈ Cl+(F ). There is a canonical bijection

ϕ : Γ1,λ(n)\(F 2 \ (0, 0)) −→ Pλ(n)

given by (a, c) 7→ (b,m, a, c), where b = bA and m = mA are defined as in (12) and (14).
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Proof. The fact that the map ϕ is well-defined is elementary and left to the reader. Surjectiv-

ity is also not difficult. Given a fractional ideal b and an integral ideal m | n, choose c ∈ tλdb

such that gcd(cd−1t−1
λ , n) = m. Scaling c by an appropriate element of OF relatively prime

to n, we can ensure that c lands in any class in Rbdtλm
n/m without changing the gcd condition.

Next we choose any a ∈ OF such that

aOF + c(dtλ)
−1 = b. (16)

Scaling a by an appropriate element of OF relatively prime to c(dtλb)−1, we can ensure that

a lands in any class in Rb
m without affecting (16). This proves the desired surjectivity.

For injectivity, suppose that

ϕ(a, c) = ϕ(a′, c′) = (b,m, a, c). (17)

Let A correspond to (a, c) and A′ to (a′, c′) as in the statement of the lemma. From the third

component of (17), there exists a totally positive unit ε ∈ O∗F,+ such that a′ ≡ εa mod bm.

Since cd−1t−1
λ + bn = bm, we can act by an element of the form

(
ε b
0 1

)
on (a, c) with

b ∈ (dtλ)
−1 to ensure that a ≡ a′ (mod bn).

Next let u ∈ O∗F,+ such that c′ ≡ uc (mod bdtλn). Such a u exists by the fourth component

of (17). Note that the pairs (a, c), (a′, c′) can be completed to matrices

M =

(
a b
c d

)
, det(M) = 1, M ′ =

(
a′ b′

c′ d′

)
, det(M ′) = u,

with b, b′ ∈ (dtλb)−1 and d, d′ ∈ b−1. We claim that d and d′ can be chosen to satisfy

d′ ≡ du (mod b−1n).

Granting the claim, it is straightforward to check that

M ′M−1

(
a

c

)
=

(
a′

c′

)
and M ′M−1 ∈ Γ1,λ(n)

as desired.

It remains prove the claim. Given any y ∈ b−1cA, we can write y = cx with x ∈ (dtλb
2)−1

and replace (b, d) by (b+ax, d+cx). Hence d can be replaced by any element in its equivalence

class in b−1/b−1cA. Since gcd(cA, n) = m, to prove the claim it therefore suffices to show that

d′ ≡ ud (mod b−1m). If a = 0, this is clear since m = 1. Otherwise, multiplication by a

induces an ismorphism b−1/b−1m→ aA/aAm, so we must show that ad′ ≡ adu (mod aAm).

Now m divides cA, which is coprime to aA, so by the Chinese Remainder Theorem it suffices

to separately show that ad′ ≡ adu (mod aA) and ad′ ≡ adu (mod m). The first of these is

trivial since ad′, adu ∈ aA. To prove ad′ ≡ adu (mod m) we note

ad′ − adu = b′c′ + (a− a′)d′ − bcu

with c = b′c′ ∈ cA′ ⊂ m, bcu ∈ cA ⊂ m, and (a− a′)d ∈ n ⊂ m. This concludes the proof.
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Proof of Theorem 3.3. Suppose that A = (A, λ) is not admissible with A =

(
a ∗
c ∗

)
, and

let m = mA. Let ε = ε1 ∈ O∗F in the definition of admissibility, so Nε = −1, ε ≡ 1 (mod m),

and ε ≡ ε1ε2 (mod n/m) with ε1ε2 ∈ O∗F a totally positive unit. Right multiplication by

M =

(
ε 0
0 ε−1

)
sends A to

(
aε ∗
cε ∗

)
. It is immediate from the definition that ϕ(a, c) =

ϕ(aε, cε), hence Lemma 3.6 implies that there exists γ ∈ Γ1,λ(n) such that γA and AM have

the same first column. Therefore there exists N =

(
1 ∗
0 ∗

)
∈ B such that γA = AMN . It

follows that the class of A in Γ1,λ(n)\GL+
2 (F ) is fixed by right multiplication by MN ∈ B,

and the lower right entry of MN has negative norm.

To prove the converse, suppose that A =

(
a b
c d

)
∈ GL+

2 (F ) and the class of A in

Γ1,λ(n)\GL+
2 (F ) is fixed by right multiplication by M =

(
x ∗
0 z

)
∈ B, where Nz < 0. By

Lemma 3.6, we have ϕ(a, c) = ϕ(ax, cx). From the first coordinate of this equation, we see

that x ∈ O∗F . From the third and fourth components we see that there exist totally positive

units u1, u2 ∈ O∗F,+ such that

x ≡ u1 (mod m) x ≡ u2 (mod n/m),

where m = mA. Note that Nx < 0 (and hence Nx = −1) since Nz < 0 and xz is totally

positive. Then letting ε1 = x/u1 and ε2 = x/u2 shows that (m, n) is not admissible.

Corollary 3.7. Let k be odd, and let f ∈ Mk(n). The constant term cA(0, f) vanishes if A
is not admissible.

Proof. By Theorem 3.3, ifA = (A, λ) is not admissible then the class of A in Γ1,λ(n)\GL+
2 (F )

is fixed by right multiplication by an element A′ ∈ B with Nd < 0. Then cA(0, f) =

c(AA′,λ)(0, f), but by (15) we also have cA(0, f) = −c(AA′,λ)(0, f). The result follows.

3.2 Definition of cusps

For Γ ⊂ Γ0,λ(n) any congruence subgroup, the associated set of cusps is by definition the

finite set

cusps(Γ) := Γ\GL+
2 (F )/

{(
a b
0 d

)
∈ GL+

2 (F )

}
↔ Γ\P1(F ). (18)

The bijection in (18) is

(
α β
γ δ

)
→ (α : γ). We define

cusps(n) =
⊔
λ

cusps(Γ1,λ(n)). (19)

An ordered pair A = (A, λ) with A ∈ GL+
2 (F ) and λ ∈ Cl+(F ) gives rise to an element of

cusps(n) by considering the image of A in cusps(Γ1,λ(n)) in the λ-component of the disjoint

union (19). The cusp represented by A will be denoted [A] ∈ cusps(n).
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Definition 3.8. For each m | n, we define Qm,n to be the set of cusps [A] ∈ cusps(n) such

that mA = m.

The set of admissible cusps is defined by

cusps∗(n) =
⊔
m|n

(m,n) admissible

Qm,n = {[A] : A is admissible}.

There is a canonical action of the diamond operators on cusps(n) that is compatible with

its action on modular forms. Given an integral ideal m coprime with n and a cusp A = (A, µ),

we define λ and αµ as in (7) and define

S(m)A = A′ = (A′, λ), where A′ = αµA.

Proposition 3.9. Each set Qm,n is invariant under the action of G+
n via the diamond oper-

ators.

Proof. With notation as above, one checks directly from the definitions that bA′ = bAm.

Furthermore one calculates that

mA′bA′ = gcd((cα + dγ)(dtλ)
−1, nbA′)

= gcd(dγ(dtλ)
−1, nbA′)

⊂ gcd(γ(dtµ)−1m, nbA′)

= gcd(cAbAm, nbA′)

= mAbA′ .

Therefore mA′ ⊂ mA. However, this is a group action; replacing m by an ideal whose image

in G+
n is inverse to m and switching the roles of A and A′, we find the reverse inclusion

mA ⊂ mA′ . Hence mA = mA′ , and the result follows.

3.3 Enumeration of cusps

We now enumerate cusps(n) and more specifically each subset Qm,n. Recall the set of 4-tuples

Pλ(n) defined in Definition 3.5. For each ideal m | n, let Pλ(m, n) ⊂ Pλ(n) denote the set of

tuples whose second coordinate is m. There is a natural action of F ∗ on Pλ(n) that preserves

each Pλ(m, n), given by

x · (b,m, a, c) = (b(x),m, ax, cx).

The following is an immediate corollary of Lemma 3.6.

Corollary 3.10. For each class λ ∈ G+
1 , there is a canonical bijection

Γ1,λ(n)\P1(F ) −→ Pλ(n)/F ∗.

11



There are canonical bijections

Qm,n −→
⊔

λ∈Cl+(F )

Pλ(m, n)/F ∗, (20)

cusps(n) −→
⊔

λ∈Cl+(F )

Pλ(n)/F ∗.

Definition 3.11. Let Qm,n denote the quotient of G+
m ×G+

n/m by the subgroup generated by

diagonally embedded principal ideals (x), where x ∈ OF is congruent to 1 modulo n.

Corollary 3.12. We have #Qm,n = #Qm,n, hence # cusps(n) =
∑

m|n #Qm,n.

Proof. From (20) we have #Qm,n = h+#(Pλ(m, n)/F ∗), where h+ = # Cl+(F ). There is a

surjective map

Pλ(m, n)/F ∗ −→ Cl(F ), (b, a, c) 7→ [b]. (21)

If U denotes the image of O∗F mapped diagonally to Rm ×Rn/m, then the fiber over a point

in (21) is a principal homogeneous space for (Rm ×Rn/m)/U . Therefore

#Qm,n = (h+h) ·#((Rm ×Rn/m)/U), (22)

where h = # Cl(F ). Meanwhile, there is an exact sequence

1→ (Rm ×Rn/m)/U → Qm,n → Cl+(F )× Cl(F )→ 1, (23)

where the second nontrivial arrow is ([a], [b]) 7→ ([a/b], [a]). From (23) we deduce that #Qm,n

also equals the right side of (22), completing the proof of the corollary.

3.4 Constant term map

If k is even we define

Ck =
⊕

cusps(n)

C.

Then (15) implies that we have a well-defined constant term map

conk : Mk(n) −→ Ck, f 7→ (cA(0, f))[A]. (24)

For k odd we must deal with the sign ambiguity in (15). For k an odd integer, let

C̃k =
⊕

λ∈Cl+(F )

⊕
A∈Γ1,λ(n)\GL+

2 (F )
A admissible

C.

Endow C̃k with a right action of the upper triangular Borel B by

[A] · A′ 7→ [AA′] sign(Nd).

12



We let

Ck = H0(B, C̃k) = C̃k/〈c · b− c : c ∈ C̃k, b ∈ B〉.

Of course, Theorem 3.3 implies that

Ck ∼=
⊕

cusps∗(n)

C.

However, fixing such an isomorphism requires making a non-canonical choice, which we would

like to avoid. For positive odd k we again have a canonical constant term map

conk : Mk(n) −→ Ck (25)

that sends a modular form f = (fλ) to the tuple of normalized constant terms cA(0, f). The

discussion above implies that this map is well-defined.

3.5 Cusps above ∞ and 0

We introduce the suggestive notation

C∞(n) = Qn,n = {[A] ∈ cusps(n) : n | cA}.

This is the smallest set of cusps containing the cusps∞ ∈ Γ1,λ(n)\P1(F ) for each λ ∈ Cl+(F )

that is stable under the action of the diamond operators S(m). It follows from Corollary 3.12

that #C∞(n) = h+hn, where hn = #Gn, the size of the wide ray class group of conductor n.

Similarly, let

C0(n) = Q1,n = {[A] ∈ cusps(n) : gcd(n, cA) = 1}.

This is the smallest G+
n -invariant set of cusps containing 0 ∈ Γ1,λ(n)\P1(F ) for each λ ∈

Cl+(F ).

If n = 1, then cusps(n) = C∞(n) = C0(n). If n is prime, then cusps(n) is a disjoint union

of C∞(n) and C0(n). In general there will be more cusps.

If b is a divisor of n, then for ∗ = 0,∞ we define C∗(b, n) to be all elements in cusps(n)

whose image under the canonical map cusps(n)→ cusps(b) lies in C∗(b), i.e.

C∞(b, n) =
⊔
b|m|n

Qm,n, C0(b, n) =
⊔
m|n

(b,m)=1

Qm,n.

3.6 Lemma on level raising and cusps

The following remark will be used in later computations.

Lemma 3.13. Let f ∈Mk(n) and let q - n be a prime ideal. Let A = (A, λ) represent a cusp

[A] ∈ C∞(qm, qn) for some m | n. There exists a pair A′ = (A′, µ) such that [A′] ∈ C∞(m, n)

and

cA(0, f |q) = cA′(0, f) (26)

13



Proof. Write A = (A, λ). By definition,

((f |q)λ)|A = Nq−k/2fµ|A′ , where A′ =

(
aµα aµβ
γ δ

)
and qtλ = (aµ)tµ. Let A′ = (A′, µ). Then [A′] ∈ C∞(m, n) and cA(0, f |q) = cA′(0, f) are

direct calculations using (11).

4 Eisenstein series

We recall the well-known Eisenstein series using [2, §2.2] and [1] as convenient references.

Let η, χ be narrow ray class characters of modulus a, b, respectively, such that ηχ has sign

(k, k, . . . , k). With the exception of the case F = Q, k = 2, η0 = χ0 = 1, when there are

convergence issues, there is an Eisenstein series Ek(η, χ) ∈ Mk(ab). Here η and χ are not

assumed to be primitive characters, and η0, χ0 denote the primitive characters associated to

η, χ. The Eisenstein series Ek(η, χ) has q-expansion coefficients given by

c(m, Ek(η, χ)) =
∑
r|m

η(m/r)χ(r)Nrk−1.

For k > 1, we have

cλ(0, Ek(η, χ)) =

{
2−nη−1(λ)L(χη−1, 1− k) if a = 1

0 if a 6= 1.

For k = 1, a = 1, and η = 1, we note that

cλ(0, E1(1, χ)) = 2−n ·
{

L(χ, 0) if b 6= 1
L(χ, 0) + χ−1(tλ)L(χ−1, 0) if b = 1

for all λ ∈ Cl+(F ).

Given a fixed level n, the Eisenstein subspace Ek(n) ⊂ Mk(n) is defined to be subspace

spanned by the Eisenstein series Ek(η, χ)|q where η, χ are primitive narrow ray class char-

acters of conductor a, b, respectively, such that ηχ has sign (k, k, . . . , k) and abq | n. An

elementary argument using Hecke operators shows that for k > 1, these Eisenstein series are

linearly independent (see [1, Prop. 3.8]). For k = 1, we have E1(η, χ)|q = E1(χ, η)|q, and

these equations generate the space of relations among the Eisenstein series.

The Eisenstein subspace is a complement to the space of cusp forms Sk(n), i.e. we have

Mk(n) = Ek(n)⊕ Sk(n). (27)

Furthermore, for k ≥ 2 (excluding the case F = Q, k = 2) the restriction of the map conk
defined in (24) and (25) to the subspace Ek(n) is an isomorphism:

conk,E : Ek(n)
∼−→ Ck. (28)
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The results (27) and (28) are proven in [12, Prop. 1.5] for weight k = 2, and we sketch now

a proof in the general case. Firstly, one can show that (excluding the case F = Q, k = 2)

that there is an equality of dimensions in (28):

dimCEk(n) =

{
# cusps(n) =

∑
m|n #Qm,n if k ≥ 2 is even,

# cusps∗(n) =
∑∗

m|n #Qm,n if k ≥ 3 is odd.
(29)

To see this for k even, note that #Qm,n is the number of pairs (χ1, χ2) where χ1, χ2 are ray

class characters of modulus m, n/m, respectively, such that χ1χ2 is totally even. To such a

pair we can associate the Eisenstein series Ek(χ
0
1, χ

0
2)|m/ cond(χ1). Here χ0

1 and χ0
2 denote the

primitive avatars of χ1 and χ2, respectively. These Eisenstein series form the defining basis

for Ek(n).

For k ≥ 3 odd, it is not hard to show that there exists a pair of characters χ1, χ2 of

modulus m, n/m, respectively, with χ1χ2 totally odd if and only if (m, n) is an admissible pair.

In this case, #Qm,n is equal to the size of the set of such pairs (χ1, χ2). The argument then

continues as in the case for k even, and we find that the dimension of Ek(n) is
∑∗

m|n #Qm,n.

With (29) in hand, both (27) and (28) for k ≥ 2 follow from the fact that

Ek(n) ∩ Sk(n) = {0},

which is usually proven using the Petersson inner product (see for instance [1, Prop. 3.9] or

[12, Page 423]).

4.1 Evaluation of constant terms of Eisenstein series

Let χ1 and χ2 be ray class characters of modulus a and b and signatures q1 and q2, respec-

tively. Put n = ab. Let k be a positive integer and assume q1 + q2 ≡ (k, . . . , k) (mod 2). In

this section we compute the constant terms of Eisenstein series Ek(χ1, χ2) at various cusps

A = (A, λ), where A = ( α ∗γ ∗ ) ∈ GL+
2 (F ).

We write a0 = cond(χ), b0 = cond(ψ) and let a1 = a/a0, b1 = b/b0. Without loss of

generality, we assume that gcd(a0, a1) = 1 and that a1 is square-free, since increasing the

modulus at a prime already dividing the conductor or increasing the power of a prime already

dividing the modulus does not affect the character or associated Eisenstein series. We make

the same assumptions about b1.

Definition 4.1. The Gauss sum associated to a primitive character χ of conductor b and

sign r ∈ (Z/2Z)n is given by

τ(χ) =
∑

x∈b−1d−1/d−1

sgn(x)rχ(xbd)eF (x).

For a general character χ we define τ(χ) = τ(χ0) where χ0 is the associated primitive

character.
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Recall the invariants aA, bA, cA defined in §3.1.

Definition 4.2. Assume that [A] ∈ C∞(b, n), i.e. that b | cA. Write b0 = cond(χ2). Let χ

denote the primitive character associated to χ1χ
−1
2 , and write f = cond(χ). Define

PA(χ1, χ2, k) =

1

2n
τ(χ1χ

−1
2 )

τ(χ−1
2 )

(
Nb0

Nf

)k
sgn(−γ)q1sgn(α)q2χ1(cA/b0)(χ0

2)−1(aA)L(χ−1, 1− k), (30)

where χ0
2 denotes the primitive avatar of χ2. Here and throughout this article, we adopt the

convention that χ1(m) = 0 if gcd(m, a) 6= 1, and similarly for any ray class character. We

also use the convention that if a = 0 and m is a fractional ideal, then

sgn(a)q1χ1(am) =

{
0 if a 6= 1,

χ1(m) if a = 1.

For example, when γ = 0 in (30) the expression sgn(−γ)q1χ1(cA/b) should be interpreted

as 0 if a 6= 1 and as χ−1
1 (tλdbAb) if a = 1. The analogous convention holds for the term

sgn(α)q2χ−1
2 (aA) = sgn(α)q2χ−1

2 (αb−1
A ).

For finite sets S and T of finite places of F , define

PA(χ1, χ2, k, S, T ) = PA(χ1, χ2, k)
∏
q∈S

(1− χ−1(q)Nqk−1)
∏
q∈T

(1− χ(q)Nq−k).

Further, for an ideal a | n we define

δ0,A(a) =

{
0 if [A] /∈ C0(a, n)
1 [A] ∈ C0(a, n)

and

δ∞,A(a) =

{
0 if [A] /∈ C∞(a, n)
1 [A] ∈ C∞(a, n).

Remark 4.3. Suppose that a0 = cond(χ1) and b0 = cond(χ2) are coprime. Then

τ(χ1χ
−1
2 ) = χ1(b0)χ−1

2 (a0)τ(χ1)τ(χ−1
2 )

and hence

PA(χ1, χ2, k) =
τ(χ1)

2n(Nak0)
sgn(−γ)q1sgn(α)q2χ1(cA)χ−1

2 (aA/a0)L(χ−1, 1− k). (31)

We require one more piece of notation.

Definition 4.4. Let m | n. We write Jm = Jm(A) for the set of prime divisors q | m such

that [A] ∈ C0(q, n) and J cm for the set of prime divisors q | m such that [A] ∈ C0(q, n).
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Theorem 4.5. (1) Let k > 1. Assume that χ2 is primitive of conductor b. The normalized

constant term of Ek(χ1, χ2) at A equals

δ∞,A(b)PA(χ1, χ2, k, ∅, Tn,f), (32)

where Tn,f is the set of primes dividing n but not f.

(2) Let k = 1. Assume that χ2 is primitive of conductor b. Suppose further that a and b

are coprime. The normalized constant term of E1(χ1, χ2) at a cusp A equals

δ0,A(a)δ∞,A(b)PA(χ1, χ2, 1, ∅, Tn,f)

+ δ∞,A(a0)δ0,A(b)PA(χ2, χ1, 1, J
c
a1
, ∅)

∏
q∈Ja1

(1− Nq−1), (33)

Remark 4.6. Note that E1(χ1, χ2) = E1(χ2, χ1). The theorem only assumes that χ2 is

primitive; if we assume also that χ1 is primitive, then in the setting of part (2) the sets Tn,f,

Ja1 and J ca1 are empty and (33) becomes symmetric with respect to χ1 and χ2.

Proof of Theorem 4.5. Recall the definition of the Eisenstein series Ek(χ1, χ2) given in [11,

Prop. 3.4] (see also [2, section 2.2]). Let

U = {u ∈ O∗F : Nuk = 1, u ≡ 1(mod n)}.

For k ≥ 1, we have Ek(χ1, χ2) = (fλ), where fλ(z) is defined via Hecke’s trick as follows. For

z ∈ H and s ∈ C with Re(2s+ k) > 2, define

fλ(z, s) = Cλτ(χ2)
∑

r∈Cl(F )

Nrkgλ(z, s) (34)

where

Cλ =

√
dFΓ(k)nN(tλ)

−k/2

[O∗F : U ]N(d)N(b)(−2πi)kn

and

gλ(z, s) =
∑
a,b

sgn(a)q1χ1(ar−1)sgn(−b)q2χ−1
2 (−bbdtλr−1)

(az + b)k|az + b|2s
(35)

=
∑

(a0,b0)

sgn(a0)q1χ1(a0r
−1)sgn(−b0)q2χ−1

2 (−b0bdtλr
−1) ×

∑
(a,b)≡(a0,b0)

1

(az + b)k|az + b|2s
.

(36)

The sum in (34) runs over representatives r for the wide class group Cl(F ). The sum in

(35) runs over representatives (a, b) for the nonzero elements of the product r× d−1b−1t−1
λ r

modulo the diagonal action of U . In equation (36) the sum (a0, b0) runs through (r/rab) ×
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(d−1b−1t−1
λ r/d−1t−1

λ ra), while (a, b) ranges over nonzero elements of r × d−1b−1t−1
λ r modulo

the diagonal action of U such that a ≡ a0 (mod rab) and b ≡ b0 (mod d−1t−1
λ ra).

Here we use

χ1(a) = sgn(a)q1 for a ≡ 1 (mod a), χ2(b) = sgn(b)q2 for b ≡ 1 (mod b).

We remark that in the definition (35) we already use that χ2 is primitive, applying [11,

equation (3.11)]). The function fλ(z, s) can be analytically continued in the variable s to the

entire complex plane, and we set fλ(z) = fλ(z, 0).

We choose representatives of the cusp [A] = [(A, λ)], with A =
(
α β
γ δ

)
, as follows. Let

g = gcd(b, cA). The cusp [A] only depends on (α, γ), so for convenience we are free to choose

β, δ such that

det(A) = 1, β ∈ (tλdbAg)−1, δ ∈ b(bAg)−1. (37)

Such β, δ exist by the definition of g. The map (a, b) 7→ (u, v) = (a, b)A induces a bijection

r× r(dtλb)−1 −→ rbAgb
−1 × r(dtλbAg)−1. (38)

This bijection restricts to a bijection

rab× r(dtλ)
−1a −→ rbAga× r(dtλbAg)−1n.

The function gλ(z, s)|A can be written

gλ(z, s)|A =
∑
u0,v0

sgn(u0δ − v0γ)q1χ1((u0δ − v0γ)r−1)sgn(u0β − v0α)q2χ−1
2 ((u0β − v0α)bdtλr

−1)

×
∑

(u,v)≡(u0,v0)

1

(uz + v)k|uz + v|2s
. (39)

Here u0 and v0 run through complete sets of representatives of

rbAgb
−1/rbAga and r(dtλbAg)−1/r(dtλbAg)−1n,

respectively, and the pair (u, v) runs through representatives for(
(rbAgb

−1 × r(dtλbAg)−1) \ {(0, 0)}
)
/U

such that (u, v) ≡ (u0, v0). We now recall notation from [11, §3]. Up to a constant factor the

sum ∑
(u,v)≡(u0,v0)

1

(uz + v)k|uz + v|2s

equals the series Ek,U(z, u0, v0, rbAga, r(dtλbAg)−1n) defined in [11, equation (3.1)], with r in

loc. cit. set to 0.
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We are now ready to prove (1), though we remark that much of what is said below also

applies to (2). We have k ≥ 2. By [11, equation (3.7)] the constant term of gλ(z, s)|A at s = 0

is the value at s = 0 of∑
u0,v0

sgn(u0δ − v0γ)q1χ1((u0δ − v0γ)r−1)sgn(u0β − v0α)q2χ−1
2 ((u0β − v0α)bdtλr

−1)

× (−1)knδ(u0, rbAga)
∑
v≡v0

sgn(Nv)k|Nv|−k−2s.

Here δ(u0, rbAga) = 0 if u0 /∈ rbAga and is 1 otherwise. Therefore the constant term of

gλ(z, s)|A at s = 0 is zero if u0 /∈ rbAga.

If u0 ∈ rbAga, then using the relation b0γ = u0 − a0α we deduce that b0γ ∈ rbA. On the

other hand b0γ ∈ rbAcAb
−1. Therefore

b0γ ∈ rbA ∩ rbAcAb
−1 = rbAcAg

−1.

From this we obtain b0 ∈ r(tλdg)−1. Now consider the case that A does not represent a cusp

in C∞(b, n). This is equivalent to b - cA which in turn is equivalent to g 6= b. Hence b0bdtλr
−1

is an integral ideal not coprime to b. Therefore χ−1
2 (−b0bdtλr

−1) = 0 and hence the constant

term of gλ(z, s)|A at s = 0 is 0. Note that here we have used b0 = −u0β + v0α.

Next we turn to the case that A does represent a cusp in C∞(b, n), so g = b. As observed

above we are only interested in the term with u0 ∈ rbAga. We choose u0 = 0 to represent

the trivial coset in rbAgb
−1/rbAga. Therefore the constant term of gλ(z, s)|A at s = 0 is the

value at s = 0 of∑
v0

sgn(−v0)ksgn(γ)q1sgn(α)q2χ1(−v0γr
−1)χ−1

2 (−v0αbdtλr
−1)(−1)kn

∑
v≡v0

sgn(Nv)k

|Nv|k+2s

=
∑
v

sgn(γ)q1sgn(α)q2χ1(−vγr−1)χ−1
2 (−vαbdtλr−1)N(vOF )−k−2s.

Hence the constant term of fλ(z, s)|A at s = 0 is the value of the following sum at s = 0:

Cλτ(χ2)
∑

r∈Cl(F )

Nrk
∑
v

sgn(γ)q1sgn(α)q2χ1(−vγr−1)χ−1
2 (−vαbdtλr−1)N(vOF )−k−2s

= Cλτ(χ2)sgn(γ)q1sgn(α)q2χ1(γ(bdtλbA)−1)χ−1
2 (α(bA)−1)N(bdtλbA)k+2s

×
∑
r

∑
v

χ1(vbdtλbAr
−1)χ−1

2 (vbdtλbAr
−1)N(vbdtλbA)−k−2sN(r−1)−k.

The value of this at s = 0 is

Cλτ(χ2)sgn(γ)q1sgn(α)q2χ1(cA/b)χ−1
2 (aA)N(bdtλbA)k×

[O∗F : U ]L(χ, k)
∏

q∈Tn,f

(1− χ(q)Nq−k),
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where χ is the primitive character associated to χ1χ
−1
2 and q runs through the set Tn,f of all

primes dividing n but not f = cond(χ). Next we use the functional equation

L(χ, k) =
d(F )

1
2
−kN f1−k(2πi)kn

2nΓ(k)nτ(χ−1)
L(χ−1, 1− k)

together with the relations

τ(χ2)τ(χ−1
2 ) = sgn(−1)q2Nb,

τ(χ)τ(χ−1) = sgn(−1)q1+q2Nn.

We find that the unnormalized constant term aλ,A(0) of fλ(z, 0)|A is

τ(χ1χ
−1
2 )

τ(χ−1
2 )

(
NbbA

Nf

)k
Nt

k/2
λ sgn(−γ)q1sgn(α)q2χ1(cA/b)χ−1

2 (aA) ×

L(χ−1, 1− k)

2n

∏
q

(1− χ(q)Nq−k).

The normalized constant term is (NbA)−kNt
−k/2
λ multiplied by this, yielding statement (1)

of the theorem.

Everything up to this point also applies when k = 1. However, when k = 1, the formula

in [11, equation (3.7)] shows that there is an additional term which arises from the constant

term in the q-expansion of ∑
(u,v)≡(u0,v0)

1

(uz + v)|uz + v|2s

at s = 0; its value is the following sum at s = 0:

(−2πi)knN(b−1)

2n
√
d(F )

∑
u≡u0

sgnN(u)

|Nu|2s
.

Therefore the second term in the constant term of gλ(z, s)|A at s = 0 is the value of the

following at s = 0:∑
u0,v0

sgn(u0δ − v0γ)q1χ1((u0δ − v0γ)r−1)sgn(u0β − v0α)q2χ−1
2 ((u0β − v0α)bdtλr

−1)

× (−2πi)knN(b−1)

2n
√
d(F )

∑
u≡u0

sgnN(u)

|Nu|2s

=
(−2πi)knN(b−1)

2n
√
d(F )

∑
u

sgnNu

|Nu|2s

×
∑
v0

sgn(uδ − v0γ)q1χ1((uδ − v0γ)r−1)sgn(uβ − v0α)q2χ−1
2 ((uβ − v0α)bdtλr

−1).
(40)
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Here the second sum in (40) runs through all v0 in a set of representatives for

r(dtλbAg)−1/r(dtλbAg)−1ab.

By the definition of g, we have γ ∈ dtλbAg, and hence v0 ∈ r(dtλbAg)−1a ⇒ v0γ ∈ ra.

Therefore the last sum above (i.e. the expression appearing in (40) after the × symbol) can

be written as a double sum∑
v0∈r(dtλbAg)−1/r(dtλbAg)−1a

sgn(uδ − v0γ)q1χ1((uδ − v0γ)r−1) (41)

×

 ∑
v′0∈r(dtλbAg)−1/r(dtλbAg)−1ab

v′0≡v0 (mod r(dtλbAg)−1a)

sgn(uβ − v′0α)q2χ−1
2 ((uβ − v′0α)bdtλr

−1)

 . (42)

Recall that the “finite part” of the character χ2 is the character

χ2,f : (OF/b)∗ → C∗, χ2,f (α) = sgn(α)q2χ2((α)).

We extend χ2,f to a function of O/b by dictating χ2,f (α) = 0 if gcd(α, b) 6= 1. Up to

multiplication by a nonzero scalar, the expression (42) in large parenthesis is the sum of χ2,f

over a coset of the ideal in O/b generated by aAbg
−1. Since χ2 is primitive of conductor b,

it is elementary that such a sum vanishes unless aAbg
−1 is divisible by b, i.e. unless g = OF .

In other words, if [A] 6∈ C0(b, n) then the sum (42) is 0 and if [A] ∈ C0(b, n) then (42) equals

Nb · sgn(uβ)q2χ−1
2 (uβbdtλr

−1).

As we now show, a similar argument implies that the sum (40) is zero unless we also have

[A] ∈ C∞(a0, b). Since g = 1, the sum∑
v0

sgn(uδ − v0γ)q1χ1((uδ − v0γ)r−1). (43)

appearing in (41) is the sum of χ1,f over a coset of the ideal inO/a generated by γ(dtλbA)−1 =

cA. This vanishes unless a0 = cond(χ1) divides cA. Hence (43) vanishes unless a0 | cA, i.e.

unless [A] ∈ C∞(a0, b). Furthermore when [A] ∈ C∞(a0, b) the value of (43) can be easily

calculated directly. Let a2 =
∏

q∈Jca1
q and a3 = a1/a2 =

∏
q∈Ja1

q. Then the value of (43) is

Na3

∏
q|a3

(1− Nq−1)sgn(u0δ)
q1χ∗1(u0δr

−1),

where χ∗1 is the character χ1 with modulus a0a2.
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Combining these calculations, we find that for [A] ∈ C0(b, n)∩C∞(a0, n), the second part

of the constant term of fλ(z, s)|A at s = 0 is the value at s = 0 of the following:

Cλτ(χ2)
(−2πi)n

2nN(r(dtλbA)−1a3)
√
d(F )

· Na3

∏
q|a3

(1− Nq−1)

×
∑

r∈Cl(F )

Nr
∑
u0

sgn(u0δ)
q1sgn(u0β)q2χ∗1(u0δr

−1)χ−1
2 (u0βbdtλr

−1)
∑
u≡u0

sgnNu

|Nu|2s

= Cλτ(χ2)
(−2πi)n

2nN((dtλbA)−1)
√
d(F )

∏
q|a3

(1− Nq−1)sgn(δ)q1sgn(β)q2χ∗1(δb−1bA)χ−1
2 (βdtλbA)

×
∑
r

Nr
∑
u

χ∗1χ
−1
2 (ub(bA)−1r−1)

1

|Nu|2s
.

The value at s = 0 is

τ(χ2)Nt
1/2
λ NbA

2nNb
sgn(δ)q1sgn(β)q2χ∗1(δb−1bA)χ−1

2 (βdtλbA)L(χ, 0)
∏
q|a2

(1− χ(q))
∏
q|a3

(1− Nq−1).

(44)

Since a0a2 | cA, it follows that βγ ∈ a0a2 and hence αδ ≡ 1 (mod a0a2), whence

sgn(δ)q1χ∗1(δb−1bA) = sgn(α)q1(χ∗1)−1(aA/b) = sgn(α)q1χ−1
1 (aA/b),

where the last equality follows since gcd(aA, a2) = 1. Similarly αδ ∈ b⇒ −βγ ≡ 1 (mod b),

hence

sgn(β)q2χ−1
2 (βdtλbA) = sgn(−γ)q2χ2(cA).

Therefore, noting (31), after scaling by the normalization factor (NbA)−1Nt
−1/2
λ for constant

terms, the value in (44) is equal to

PA(χ2, χ1, 1)
∏
q|a2

(1− χ(q))
∏
q|a3

(1− Nq−1).

The first term calculated above (for k ≥ 1) is non-zero only when the cusp [A] belongs to

C∞(b, n)∩C0(a, n). The second term is non-zero only when [A] belongs to C0(b, n)∩C∞(a0, n).

This finishes the proof.

4.2 Constant terms for raised level and imprimitive characters

In our arithmetic application [3], we require the constant terms of the level-raised Eisenstein

series Ek(χ, ψ)|m for auxiliary squarefree ideals m, with χ and ψ possibly imprimitive. This

level raising is related to the T -smoothing operation of Deligne–Ribet [6].

The following notation will be in effect throughout this section. Let χ and ψ be characters

of modulus a and b and signatures q1 and q2, respectively. Let k be a positive integer such
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that q1 + q2 ≡ (k, . . . , k) (mod 2). We denote the conductors of χ and ψ by a0 and b0,

respectively and put a1 = a/a0 and b1 = b/b0. Assume gcd(b1, a) = 1. Let n = abl for a

square-free integral ideal l with gcd(ab, l) = 1. We assume that a1 is squarefree and coprime

to a0, and similarly for (b1, b0).

Let A = (A, λ) with

A =

(
α ∗
γ ∗

)
∈ GL+

2 (F ), λ ∈ Cl+(F ).

Theorem 4.7. Let m be a divisor of l. The normalized constant term of Ek(χ, ψ)|m at A is

given as follows:

• If k ≥ 2, then the normalized constant term of Ek(χ, ψ)|m at A is

δ∞,A(b0)PA(χ, ψ, k, J cb1 , Ja1)
∏
q∈Jb1

(1− Nq−1)
∏
q∈Jm

(ψ(q)Nqk)−1
∏
q∈Jcm

χ−1(q). (45)

• If k = 1, we further assume that gcd(a, b) = 1. Then the normalized constant term of

E1(χ, ψ)|m at A is

δ0,A(a)δ∞,A(b0)PA(χ, ψ, 1, J cb1 , Ja1)
∏
q∈Jb1

(1− Nq−1)
∏
q∈Jm

(ψ(q)Nq)−1
∏
q∈Jcm

χ−1(q)

+ δ∞,A(a0)δ0,A(b)PA(ψ, χ, 1, J ca1 , Jb1)
∏
q∈Ja1

(1− Nq−1)
∏
q∈Jm

(χ(q)Nq)−1
∏
q∈Jcm

ψ−1(q)

(46)

Remark 4.8. The term δ0,A(a) is unnecessary in (46) since PA(χ, ψ, 1) already vanishes if

[A] 6∈ C0(a, n). We include this factor simply as a reminder that this portion of the constant

term is supported on C0(a, n) ∩ C∞(b0, n).

Proof. We give the proof for k ≥ 2. The argument for k = 1 is identical and left to the

reader.

First we assume that b = b0, i.e. b1 = 1 and calculate the constant term of Ek(χ, ψ)|m.

Let m = q1 · · · qj and use induction on j. The base case j = 0 follows directly from (32). For

j > 0 we use the expression

Ek(χm, ψ) =
∑
t|m

µ(t)χ(t)Ek(χ, ψ)|t. (47)

Here χm denotes the character χ viewed with modulus am. If Jm = {q1, . . . , qj}, then

δ0,A(am) = δ0,A(a), so by (32) the normalized constant term of Ek(χm, ψ) at A is

δ0,A(a)δ∞,A(b0)PA(χ, ψ, k, ∅, Ja1)
∏
q|m

(1− χψ−1(qi)Nq−ki ). (48)
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The induction hypothesis gives the normalized constant term at A of each term on the

right side of (47) except for Ek(χ, ψ)|m. Therefore one can use (47) and (48) to solve for the

normalized constant term of Ek(χ, ψ)|m at A. One obtains

δ0,A(a)δ∞,A(b0)PA(χ, ψ, k, ∅, Ja1)
∏
q|m

(χψ−1(qi)Nqki )
−1

as desired. Now suppose Jm 6= {q1, . . . , qj}, which is equivalent to [A] /∈ C0(m, n). Then

δ0,A(am) = 0 so (32) implies that the constant term of Ek(χm, ψ) at A is 0. Without loss of

generality, assume that qj /∈ Jm. For every subset I ⊂ {q1, . . . , qj−1}, put qI =
∏

qi∈I qi. If

I 6= {q1, . . . , qj−1}, then we can apply the induction hypothesis to the forms Ek(χ, ψ)|t for

both t = qI and t = qIqj on the right side of (47) to see that the contributions made by

their constant terms at A cancel. It follows that the constant term of Ek(χ, ψ)|m at A equals

χ−1(qj) times that of Ek(χ, ψ)|m/qj , and we are done by the induction hypothesis.

Next we relax the condition that b1 = 1. We use the expression

Ek(χ, ψ)|m =
∑
t|b1

µ(t)ψ(t)(Nt)k−1Ek(χ, ψ
0)|tm, (49)

where ψ0 is the primitive character associated with ψ. The case already completed for ψ

primitive gives the constant terms of the forms on the right of (49). The result then follows

from the formula ∑
t|b1

µ(t)ψ(t)(Nt)k−1
∏
q∈Jt

(ψ(q)Nqk)−1
∏
q∈Jct

χ−1(q)

=
∏
q∈Jb1

(1− Nq−1)
∏
q∈Jcb1

(1− χ−1ψ(q)Nqk−1).

5 Ordinary forms

Let p be a prime ideal of OF dividing a prime number p. Following Hida, we define the

ordinary operator

eord
p = lim

n→∞
Un!
p .

Let P = gcd(p∞, n) be the p-part of n. We define

eord
P =

∏
p|P

ep.

Let E be a finite extension of Qp. The space of P-ordinary forms is defined by:

Mk(n, E)P- ord = eord
P Mk(n, E)

This is the largest subspace on which the operator Up acts invertibly for each p | P.
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Theorem 5.1. A form f ∈ Mk(n, E)P- ord is cuspidal if and only if its constant terms at

all cusps in C∞(P, n) are zero. If f ∈ Mk(n, E) has constant terms zero at all cusps in

C∞(P, n), then eord
P (f) is cuspidal.

We provide two proofs of Theorem 5.1. The first proof is longer, but its method could

have other applications, so we include full details. We begin with the following elementary

lemma from linear algebra.

Lemma 5.2. Let V be a finite dimensional vector space over a field and let B = {v1, . . . , vn}
be a basis. Let S be a possibly infinite set of commuting endomorphisms of V satisfying the

following properties:

• After re-ordering, the matrix for each T ∈ S with respect to the basis B is in Jordan

canonical form.

• Every Jordan block of size greater than 1 has associated eigenvalue 0.

Let B′ ⊂ B be the set of basis vectors that are actual (non-generalized) eigenvectors for every

T ∈ S. Suppose the elements of B′ are distinguished by their S-eigenvalues, i.e. for vi 6= vj
in B′, there exists T ∈ S such that the T -eigenvalues of vi and vj are distinct. Finally let

W ⊂ V be a subpace that is preserved by each T . Then W is nonzero if and only if it contains

some vi ∈ B′.

Proof. Suppose v =
∑
aivi ∈ W with the ai not all zero. We first show that we can find

another nonzero v′ ∈ W such that its expression as a linear combination of elements in B

only contains elements of B′. For this, suppose that vi ∈ B \ B′ occurs in v with a nonzero

coefficient ai. Let T ∈ S such that vi is not an eigenvector for T . Then there is a unique

n ≥ 1 such that T n(vi) ∈ B is an eigenvector for T . We replace v by T n(v). This is another

element of W ; its expression as a linear combination of the vi has at most as many elements of

B \B′ as did v. And the term aivi has been replaced by aiT
n(vi)—this uses the fact that the

T -eigenvalue of T n(vi) is 0. Note in particular that since T n(vi) ∈ B occurs with a nonzero

coefficient, T n(v) 6= 0. If T n(vi) ∈ B′, we have reduced the number of elements of B \ B′ in

our linear combination. If not, there is some other T ′ ∈ S that we can apply a certain number

of times, say m, to replace T n(vi) by its associated T ′-eigenvector. Continuing in this way,

we get a sequence of nonzero vectors v → T n(v) → (T ′)mT n(v) → · · · and a corresponding

sequence of terms occuring in the expression of these vectors in terms of B:

aivi → aiT
n(vi)→ ai(T

′)mT n(v)→ · · · .

Since this latter sequence clearly cannot a cycle, and B is finite, it must terminate. This

occurs when the corresponding element of B actually lies in B′. We have therefore created a

new nonzero element of W whose expression in the basis B contains fewer elements of B \B′.
Continuing this procedure yields a nonzero element of W that is in the span of B′.
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Now let v =
∑
aivi ∈ W with vi ∈ B′ be such an element. If more than one vi occurs

in this linear combination with nonzero coefficient, say vi and vj, then by assumption we

can find T ∈ S such that the associated eigenvalues λi(T ) and λj(T ) are distinct. We can

replace v by T (v)− λ1(T )v. This annihilates the vi term, but is nonzero because it does not

annihilate the v2 term. Furthermore it has fewer nonzero coefficients than v. Continuing in

this way, we can repeatedly decrease the number of terms in the expression of v until we find

that there is some vi ∈ B′ ∩W .

Proof 1 of Theorem 5.1. The second statement of the theorem follows from the first since

eord
P (f) preserves the space E[C∞(P, n)]. To prove the first statement, let f ∈Mk(n, E)P- ord

be a form whose constant terms at all cusps in C∞(P, n) are zero. Then f is a sum of a

cusp form and a linear combination of Eisenstein series. The cusp form does not affect any

constant terms; we can therefore assume that f is a linear combination of Eisenstein series,

and we must show that f = 0. The Eisenstein subspace has the following convenient basis,

for which each of the Hecke operators is in Jordan canonical form:

B = {Ek(ηr, ψs)|c}, where (50)

• η and ψ are primitive characters of conductor a, b respectively.

• r, s are each squarefree products of primes such that gcd(a, r) = gcd(b, s) = 1.

• abrs is divisible by all primes dividing n.

• c is only divisible by primes dividing gcd(ar, bs).

• abrsc divides n.

Since this is a lot of notation, it is behooves us to demonstrate this with an example. Suppose

that η and ψ are primitive of conductor a, b with associated Eisenstein series Ek(η, ψ) ∈
Mk(ab). Let p be a prime not dividing ab. For n ≥ 1, the generalized eigenspace of Mk(abp

n)

corresponding to Ek(η, ψ)—i.e. the subspace on which all the Hecke operators away from p

act via the eigenvalues of Ek(η, ψ)—has 2 or 3 Jordan blocks for the action of Up: (1) the form

Ek(ηp, ψ) with Up-eigenvalue ψ(p)Npk−1, (2) the form Ek(η, ψp) with Up-eigenvalue η(p), and

(3) if n ≥ 2, a Jordan block with Up-eigenvalue 0 and basis Ek(ηp, ψp)|pi as i = 0, . . . , n− 2.

Here Up(Ek(ηp, ψp)|pi) = Ek(ηp, ψp)|pi−1 for i ≥ 1, and Up(Ek(ηp, ψp)) = 0. The basis (50) is

the generalization of this case to the general setting.

Now, the space Ek(n, E)P- ord is the subspace of Ek(n, E) generated by the subset BP ⊂ B

consisting of the Ek(ηr, ψs)|c such that ar is coprime to P. We apply Lemma 5.2 where the

set of endomorphisms S is the set of Hecke operators indexed by the primes not dividing

P: the Tq for q - n and Uq for q | n/P. The subspace W ⊂ Ek(n, E)P- ord is taken to be the

subspace of elements whose constant terms at all cusps in C∞(P, n) vanish. This subspace is

fixed by the Hecke operators away from P. We need to prove that W = {0}, and the lemma
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implies that is suffices to show that no eigenvector in BP lies in W . The subset B′P ⊂ BP

of eigenvectors is the set of Ek(ηr, ψs)|c such that ar is coprime to P and c = 1. It remains

to prove that for such a form Ek(ηr, ψs), there exists a cusp [A] ∈ C∞(P, n) such that the

constant term at A is nonzero.

For this, we first note that it suffices to show this at the minimal level at which Ek(ηr, ψs)

appears, namely n′ = abrs. Indeed, if we let P′ be the p-part of n′, then the canonical map

C∞(P, n)→ C∞(P′, n′) is surjective. Therefore we assume that n = abrs.

Write s = s1s2, where s1 = gcd(s, ar). Note that P | bs2. Let A be a cusp in C∞(bs, n) ⊂
C∞(P, n) such that cA/bs1 is coprime with ar. We use the expression

Ek(ηr, ψs) =
∑
m|s1

µ(m)ψ(m)Nmk−1Ek(ηr, ψs2)|m.

to show that the constant term of Ek(ηr, ψs) at A is nonzero. By Lemma 3.13, the constant

term of Ek(ηr, ψs2)|m at A equals the constant term of Ek(ηr, ψs2) at some other A′, where

[A′] ∈ C∞(bs/m, n/m). If m 6= s1, then by definition bs/m is not coprime to ar. Then

PA′(η, ψ, k) = 0 because of the η(cA′) factor, and hence by Theorem 4.7 the constant term is

0. On the other hand if m = s1 then Theorem 4.7 shows that this constant term is nonzero

as long as cA′/b is coprime with ar. This holds because cA/bs1 is coprime with ar. The result

follows.

Proof 2 of Theorem 5.1. Our second proof of the first statement is a direct computation

using the action of the Hecke operator Up for each p | P. First we note that since we are on

the ordinary subspace, each Up acts semisimply (see [7, pg. 382]). Furthermore the operator

Up preserves C∞(P, n). Therefore it suffices to consider the case where f is a Up-eigenvector

for each p | P.

Let us recall the explicit definition of the operator Up. For each µ ∈ Cl+(F ), let λ ∈
Cl+(F ) denote the class of µp−1. Write tλt

−1
µ p = (x) where x is a totally positive element of

F ∗. Given β ∈ F define mβ =

(
1 β
0 x

)
. Then f |Up = (gµ)µ∈Cl+(F ) where

gµ = Np(k−2)/2
∑

β∈t−1
µ d−1/t−1

µ d−1p

(fλ)|mβ . (51)

Let A = (A, µ) represent a cusp. If pr | cA with r > 0, then one readily checks that

pr+1 | cA′ , where A′ = (mβA, λ) is an associated cusp appearing in (51). Therefore since f

is a Up-eigenform with nonzero eigenvalue for each p | P, and its constant terms vanish on

C∞(P, n), then by applying Up repeatedly we see that the constant terms of f vanish on

C∞(P0, n), where P0 is the product of the distinct primes dividing P.

Next, to show that f has vanishing constant terms at all cusps in cusps(n) = C∞(1, n), we

show that we can remove the primes in P0 one-by-one. Therefore, let P1 | P0, and let p | P1.
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We will show that the cuspidality of f on C∞(P1, n) implies its cuspidality on C∞(P1/p, n).

Sequentially removing all the primes p | P0 in this fashion will then give the desired result.

For this, we use the expression (51) once again. We also introduce the notation f(A)

to denote the normalized constant term of f at the cusp A. If A ∈ C∞(P1/p, n) but

A 6∈ C∞(P1, n), then one can check directly from the definitions that there is a unique

β ∈ t−1
µ d−1/t−1

µ d−1p such that the associated cusp A′ = (mβA, λ) also does not lie in

C∞(P1, n); for all the other β, the associated cusp does lie in C∞(P1, n). The cuspidality of

f on C∞(P1, n) therefore implies that

apf(A) = f |Up(A) = Npk−1f(A′),

where ap denotes the Up-eigenvalue of f . Note that the constant Npk−1 arises from tracing

through our normalization factors on constant terms. Now, the set C∞(P1/p, n) \C∞(P1, n)

is finite, so continually repeating this process, the sequence

A → A′ → · · · (52)

must eventually arive at a repetition. At this point we obtain an equation of the form

arpf(A′′) = Np(k−1)rf(A′′)

for some positive integer r and some cusp A′′. As the Hecke eigenvalue ap is a p-adic unit

and k > 1, we have arp 6= Np(k−1)r for any positive integer r. We obtain f(A′′) = 0, and hence

the same is true for every other cusp appearing in the sequence (52); in particular f(A) = 0

as desired.
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