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Abstract
We calculate the constant terms of certain Hilbert modular Eisenstein series at all
cusps. Our formula relates these constant terms to special values of Hecke L-series. This
builds on previous work of Ozawa, in which a restricted class of Eisenstein series were
studied. Our results have direct arithmetic applications—in separate work we apply
these formulas to prove the Brumer—Stark conjecture away from p = 2 and to give an
exact analytic formula for Brumer—Stark units.
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1 Introduction

Let F' be a totally real field of degree d, and let M (n) denote the space of Hilbert modular
forms of level n C O and weight k over F. Let Ex(n) C My(n) denote the subspace of
Eisenstein series. In this paper we generalize results of [2, Section 2.1] and [8] to give the
constant terms of nearly all Eisenstein series F € FEy(n) at all cusps. The space Ej(n)
has a basis consisting of forms of the form Ej (7, 1)|n, where n and 1 are primitive ray class
characters (see §4)). Our formula in Theorem [4.7] gives the constant terms of these series at all
cusps when m is squarefree and coprime to the conductors of 7 and . In fact, Theorems [4.5
and [4.7] are more general than this; in particular we handle the case where 7 and ¢ are
not necessarily primitive characters. We work with all weights £ > 1. In [§], only primitive
characters are considered, the level raising operator |, is not applied, and the weight k taken
to be at least 2.

There are concrete arithmetic applications of our results. In [3], we prove the Brumer—
Stark conjecture away from p = 2 and in [4] we prove an exact p-adic formula for Brumer—
Stark units. Broadly speaking, both of these results apply Ribet’s method, whereby cusp
forms are constructed by taking linear combinations of products of Eisenstein series [9].
Central to the advance of [3] is the method by which this cusp form is constructed. For this, we
require knowledge of the constant terms at all cusps of level-raised Fisenstein series associated
to possibly imprimitive characters; we also need to include weight & = 1. Therefore the
calculations of [§] are not general enough for our application, which provides the motivation
for this paper.

In addition, we prove here some other results that may be of independent interest. Firstly,
we provide a complete enumeration of the cusps on the Hilbert modular variety. Also, we
prove that in weight £ > 1, the cuspidality of modular forms that are ordinary at a prime p
is regulated by the constant terms at cusps that are unramified at p. We provide two proofs
of this fact; one applies our results on Eisenstein series, and the other is a direct study of
the U, operator. While these two results are likely known to the experts, we have not found
a precise reference for them in the literature.

We now outline the paper and describe our results in greater detail. In §2| we recall
the definition of the space of Hilbert modular forms Mj(n) of weight k& and level n C Op,
following Shimura [11]. Associated to each X in the narrow class group C1*(F) is a congruence
subgroup 'y y(n) € GLj (F). The open Hilbert modular variety corresponding to our forms
has h* = # CI"(F) components:

Y = |_| Tya(n)\HY, ‘H = complex upper half plane.
AECIF (F)



The space of modular forms M(n) is endowed with an action of Hecke operators described
in §2.5| Among these operators are the diamond operators S(m), indexed by the classes
m € G, the narrow ray class group of F' attached to the modulus n. The diamond operators
play a central role in our applications [3], [4].

In §3] we study the set of cusps associated to Y

cusps(n) = |_| [a(m)\P'(F).
AECIT(F)

We provide an explicit enumeration of this set. For m | n, let Q. denote the quotient of
G x G

n/m
x € Op is congruent to 1 modulo n. The following result proved in is already implicit
in [12, Pp. 422-423).

by the subgroup generated by diagonally embedded principal ideals (), where

Theorem 1. There is a stratification cusps(n) = ||, Qua with #Quy = #Quu. Each Qu
is stable under the action of G via the diamond operators.

In §4| we study the Eisenstein series in My(n) and calculate their constant terms at all
cusps. This generalizes the results of [2, Proposition 2.1] and [8]. We work in a more general
setting in this paper by considering all cusps and allowing for Eisenstein series associated to
imprimitive characters. We normalize our constant terms (see below) so that they are
independent of choice of representatives (up to sign). Furthermore, with these normalizations
the constant terms exhibit nice integrality properties that will be studied in [5]. For an ideal
b | n, define

Coo(b,1) =] | Q- (1)

b|m

In Theorem [4.5 we prove the following.

Theorem 2. Let k > 1, and let x1 and x2 be narrow ray class characters of F' with associated
signs q1,qe € (Z/2Z)", respectively. Assume that xo is primitive of conductor b. Then the
constant term of Ex(x1, X2) vanishes at any cusp not lying in Cuo(b,n). Furthermore, if

AT \(n)\P'(F)

is represented by a/c € PY(F) and lies in C(b,n), the constant term of Ei(x1,x2) at A
normalized as in 15 given by

2%% (i_?) sgn(—c)sgn(a)®x1(c.a/b)x; "' (a.4)

x L(x 1= k) [J(1 = x(a)Ng ™).

(2)

Here x denotes the primitive character associated to x1x5 ", f = cond(x), and q runs through
all primes dividing n but not f. The integral ideals a4 and ¢4 associated to A are defined in
(19), and the condition A € Cw(b,n) implies that b | c4.
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In Theorem [4.5] we also consider the case k = 1. In Theorem L7 we build on the result
above and consider a more generalize case; we calculate the constant terms of all level-raised
Eisenstein series Ey(x1, X2)|m, Where x1 and x» are possibly imprimitive, under certain mild
conditions. These results are essential in our arithmetic applications [3] and [4]. In those
works, we construct cusp forms by taking the appropriate linear combinations of products
of Eisenstein series considered here with certain other auxiliary forms constructed in [5].

In §5| we conclude with the following result on the cuspidality of ordinary forms that is
applied in our arithmetic applications [3], [4]. Fix a prime p and let P = ged(p™, n) denote
the p-part of n. The set C (P, n) defined in may be viewed as the set of “p-unramified”
cusps.

Theorem 3. Let p be a prime. If f € My(n) is p-ordinary for each prime p C Op dividing
p, then f is cuspidal if and only if the constant term of f vanishes at each cusp in Cs (P, 0).

We thank Jesse Silliman for helpful conversations during the writing of this paper.

2 Notation on Hilbert Modular Forms

We refer the reader to |2, §2.1] for our precise definitions and notations, following Shimura
[11], concerning the space of classical Hilbert modular forms over the totally real field F'. We
recall certain aspects of this definition.

2.1 Hilbert Modular Forms

Let H denote the complex upper half plane endowed with the usual action of GL3 (R) via
linear fractional transformations, where GLJ denotes the group of matrices with positive
determinant. We fix an ordering of the n embeddings F' — R, which yields an embedding
of GLJ (F) — GLj (R)" and hence an action of GL3 (F) on H". Here GL; (F)) denotes the
group of matrices with totally positive determinant.

For each class A in the narrow class group C1*(F'), we choose a representative fractional
ideal t\. Let n C Op be an ideal, and assume that the representative ideals t, have been
chosen to be relatively prime to n. Define the groups

d
Fm(n):{(z Z) ETon:d=1 (modn)}.

Here 0 denotes the different of F.
Let k be a positive integer. We denote by My (n) the space of Hilbert modular forms for F’
of level n and weight k. Each element f € Mj(n) is a tuple f = (fx) eci+(r) of holomorphic

LCoa(n) = {( CCL b ) € GL](F):a,d € Op,c € tion,b € (t,0) ', ad — be € (9}},
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functions fy: H" — C such that fy|or = fr for all A € CI7(F) and a € I';,. Here the
weight k slash action is defined in the usual way:

- B + by anzp + b
N n:th k/2 2 dz k. a1z ~ Onon n
f)\| ,k(Zl, ) 2 ) ( € ((X)) H(CZ + ) f)\ 0121+d1’ ’ann"i_dn ’

=1

where a; denotes the image of a under the ¢th real embedding of F' and similarly for b;, ¢;, d;.

2.2 Constant terms and cusp forms

Suppose that A = (A, \) is an ordered pair with

A:(i 2>GGL+(F)

and A € CIT(F). We define the fractional ideal
bg=a0Fp + C(f,\a)_l.

Given f = (f\) € Mg(n) and a pair A = (A, \) as above, the function fy|4x has a Fourier
expansion

Flaw(z) = aa(0) + ) aad)er(b2), (3)

bea
>0

where a is a lattice in F' depending on A, and
er(bz) == exp(2mi(byz1 + -+ + bpzyn)).
Definition 2.1. The normalized constant term of the form f at A is
ca(0, f) = aa(0) - (Nt,)™*/2(Nby) " (det A)"2. (4)

As we will see later, the constant terms with this normalization will exhibit nice invariance
properties as well as integrality properties. The space of cusp forms Si(n) C My (n) is defined
to be subspace of forms f such that c4(0, f) = 0 for all pairs .A.

2.3 g¢-expansion
When A = 1 we drop the subscript A and write simply

C)\(O, f) = GJ)\(O) (Nb\)_k/z.

Furthermore when A = 1, the lattice a appearing in is the ideal t,. Any non-zero
integral ideal m may be written m = (b)t;' with b € t, totally positive for a unique A €
CI*(F). We define the normalized Fourier coefficients

c(m, f) = ax(b)(Nty) "2,

The collection of normalized Fourier coefficients {c,(0, f), c(m, f)} is called the g-expansion
of f. Note that these normalized coefficients are denoted with a capital C' in [11].
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2.4 Forms over a field K

Each tuple f € M(n) is determined by its g-expansion, which the collection of coefficients
cx(0, f) € C, A € CIT(F), c(m, f) e C,m C Op,m#0

defined in §2.3] For any subfield K C C, define My(n, K) to be the K-vector subspace of
M, (n) consisting of modular forms whose g-expansion coefficients all lie in K. A fundamental
result of Shimura 10, Theorem 7] states

My(n, K) = Mi(n, Q) ®q K. (5)

We define Mj.(n, K) by (5) more generally if K is any field of characteristic 0. This generalizes
in the obvious way to define Si(n, K).

2.5 Hecke operators

The space M, (n) is endowed with the action of a Hecke algebra T C End(M;(n)) generated
over Z by the following operators:

o T, for q{n.
o U, for q|n.

e The “diamond operators” S(m) for each class m € G/ = narrow ray class group of F
of conductor n.

We refer to [11], §2] for the definition of these operators. We warn that in loc. cit. both
T, and U, are denoted by Tj,.

Let us recall the definition of the diamond operators S(m). Let f = (fa)recr+(r) € Mi(n)
and let m denote an ideal of O that is relatively prime to n, and which hence represents a
class in G. For each p € CI7(F), let A € CI7(F) denote the class of pm~2. Write tt,'m? =
() where x is a totally positive element of F*, uniquely determined up to multiplication by
a totally positive unit in O7. Let

a b
o= (0 ) ecuim ©
be a matrix satisfying the following conditions:
aem, bet,'o7'm, cetonm, detit,'m, det(a,) ==z, d=z (mod tit,'mn). (7)

Then
f|S(m) - (g#>u€Cl+(F) where 9 = f>\|au- (8)



2.6 Raising the level

For a Hilbert modular form f € My(n) and an integral ideal q of F', there is a form

fla € My(nq)

characterized by the fact that for nonzero integral ideals a we have

c(a/q, f) ifqla

0 ifqta (9)

c(a, fla) = {

and
c>\(07 f|q) = CM(Ov f) (10)
for all A € C1"(F). We recall the definition of f|q. For every A there is a u € C1"(F) and a
totally positive element a, € F' such that
qtx = (a,)t,.

Then

(Flah = Na*2ful /gy (11)

[ V)

The fact that f|q lies in M (nq) and satisfies (9)—(10) is proven in [11, Prop 2.3].

3 Cusps

3.1 Admissibility

Recall the fractional ideal
ba=aOp + c(t,0)7! (12)

defined in associated to a pair A = (4, \) with A € GL(F) and A € CI*(F). We now
define the integral ideals
ay =aby', cq = c(tyoby) (13)

The ideals a4, ¢4 are relatively prime. To explain the meaning of these invariants, consider
the case F' = Q. If A represents the cusp a/c € P!(Q) with a, ¢ relatively prime integers,
then a4 = (a) and ¢4 = (c). Finally, we define

my = ged(c g, n). (14)

Given a form f € Mjy(n), it is clear that the normalized constant term c4(0, f) defined
in depends only on A up to left multiplication by an element of T’y ,(n). Furthermore,

writing
B=1(")caLi(r)
0 d 2 ’
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it is almost true that c4(0, f) depends on A up to right multiplication by an element of
B—there is a sign ambiguity

) p b
can (0, f) = mgn(Nd)kc(A,,\)(O,f), A = ( 8 J > € B. (15)

If k is odd, and the class of A in I'; ,(n)\GLj (F) is fixed under right multiplication by an
element A’ € B with Nd < 0, then it follows from that c4(0, f) = 0. Let us determine
the pairs A for which this is the case.

Definition 3.1. A pair (m,n) with m | nis called admissible if there does not exist a pair of
units €, €2 € O such that ¢ =1 (mod m),e; =1 (mod n/m), with Ne; = Ne; = —1 and
€1/€ totally positive.

Definition 3.2. With the level n fixed, a pair A = (A4, \) with A € GLJ (F) and A € CI*(F)
is called admissible if (m4,n) is admissible.

Theorem 3.3. Given a pair A= (A, )), the class of A in Ty ,(n)\GLj (F) is fized by right
multiplication by an element A" € B with Nd < 0 if and only if A is not admissible.

Before proving the theorem, we introduce some notation and prove an important lemma.
Given a fractional ideal b and an integral ideal m, we denote by (b/bm)* the subset of elements
of b/bm that generate this quotient as an Op/m-module. This is a principal homogeneous
space for the group (Op/m)*.

Definition 3.4. For a fractional ideal b and an integral ideal m, we define
Ry = (b/bm)"/OF .,

the quotient of the set (b/bm)* by the action of multiplication by the group of totally positive
units of F'.

Definition 3.5. Let Py(n) be the set of tuples (b, m, a,c) where b is a fractional ideal of F,
m is an integral ideal dividing n, a € RY, and ¢ € RZ™™.

m n/m

The heart of Theorem [3.3]is the following lemma.

Lemma 3.6. Fiz A\ € C1"(F). There is a canonical bijection
p: Tia(\(F?\ (0,0)) — Pa(n)

given by (a,c) — (b,m,a,c), where b = b4 and m = m4 are defined as in (19) and (1j).



Proof. The fact that the map ¢ is well-defined is elementary and left to the reader. Surjectiv-
ity is also not difficult. Given a fractional ideal b and an integral ideal m | n, choose ¢ € ,0b
such that ged(cd~'t;',n) = m. Scaling ¢ by an appropriate element of Op relatively prime
to n, we can ensure that ¢ lands in any class in R:?tnim without changing the ged condition.
Next we choose any a € Op such that

aOp + c(dt)) ™' = b. (16)

Scaling a by an appropriate element of O relatively prime to c(9ty\b)™!, we can ensure that
a lands in any class in RE without affecting . This proves the desired surjectivity.
For injectivity, suppose that

o(a,c) =(d,d)=(b,m,a,c). (17)

Let A correspond to (a,c) and A’ to (a/, ') as in the statement of the lemma. From the third
component of , there exists a totally positive unit € € O, such that ¢’ = ea mod bm.
Since cd~'t;' + bn = bm, we can act by an element of the form ( 8 [i > on (a,c) with
b € (0ty)~! to ensure that a = @’ (mod bn).

Next let u € O, such that ¢ = uc (mod bdtyn). Such a u exists by the fourth component

of (L7)). Note that the pairs (a, ), (¢, ') can be completed to matrices
M= ( Z 2) det(M) =1, M = ( ‘é Z ) det(M') = u,
with b,0" € (0t\b)™! and d,d’ € b~'. We claim that d and d' can be chosen to satisfy
d =du (mod b~ 'n).
Granting the claim, it is straightforward to check that
MM (Z) - <Z/) and  M'M~'eT,\(n)

as desired.

It remains prove the claim. Given any y € b~ ¢4, we can write y = cx with z € (0t,b%)7!
and replace (b, d) by (b-+ax, d+cx). Hence d can be replaced by any element in its equivalence
class in b= /b7 c4. Since ged(c4,n) = m, to prove the claim it therefore suffices to show that
d = ud (mod b~'m). If @ = 0, this is clear since m = 1. Otherwise, multiplication by a
induces an ismorphism b~'/b~'m — a4/a,m, so we must show that ad’ = adu (mod aym).
Now m divides ¢4, which is coprime to a4, so by the Chinese Remainder Theorem it suffices
to separately show that ad’ = adu (mod a4) and ad’ = adu (mod m). The first of these is
trivial since ad’, adu € a4. To prove ad’ = adu (mod m) we note

ad — adu =b0'd + (a — a')d" — beu

with ¢ =b'd € cxy Cm, bcu € ¢4 C m, and (a — a')d € n C m. This concludes the proof. [
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Proof of Theorem[3.3 Suppose that A = (A, ) is not admissible with A = CCL * , and

*

let m = my. Let € = ¢g € OF in the definition of admissibility, so Ne = —1, e = 1 (mod m),

and € = €165 (mod n/m) with €165 € O} a totally positive unit. Right multiplication by

M = ( ¢ 91 ) sendsAto(ae

0 € ce

¢(ae, ce), hence Lemma [3.6]implies that there exists 7 € T'y y(n) such that yA and AM have

the same first column. Therefore there exists N = < (1) : ) € B such that yA = AMN. It

follows that the class of A in T'y \(n)\GL3 (F) is fixed by right multiplication by MN € B,
and the lower right entry of M N has negative norm.

b
To prove the converse, suppose that A = < ZL d

[, (n)\GL3 (F) is fixed by right multiplication by M = (

. It is immediate from the definition that ¢(a,c) =

) € GLJ (F) and the class of A in

g Z)EB,whereNz<O.By

Lemma [3.6] we have ¢(a,c) = p(az, czx). From the first coordinate of this equation, we see
that x € O}.. From the third and fourth components we see that there exist totally positive
units uy, ug € (’)}7  such that

r=wu; (modm) T =us (mod n/m),
where m = my. Note that Nz < 0 (and hence Nx = —1) since Nz < 0 and zz is totally
positive. Then letting ¢; = x/u; and €3 = x/uy shows that (m,n) is not admissible. O

Corollary 3.7. Let k be odd, and let f € Mg(n). The constant term c4(0, f) vanishes if A
is not admissible.

Proof. By Theorem[3.3] if A = (A, \) is not admissible then the class of 4 in I'y y(n)\GLJ (F)
is fixed by right multiplication by an element A’ € B with Nd < 0. Then c4(0, f) =
caar (0, f), but by we also have c4(0, f) = —c(aar,2)(0, f). The result follows. O

3.2 Definition of cusps

For I' C T'g\(n) any congruence subgroup, the associated set of cusps is by definition the
finite set

cusps(T) := D\GL (F)/ {( . ) € GL;<F)} & T\P!(F). (18)
The bijection in is ( 3 ? ) — (= 7y). We define
cusps(n) = |_|cusps(T17A(n)). (19)

An ordered pair A = (A, \) with A € GL; (F) and X € CI"(F) gives rise to an element of
cusps(n) by considering the image of A in cusps(I'y x(n)) in the A\-component of the disjoint
union (19). The cusp represented by A will be denoted [A] € cusps(n).
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Definition 3.8. For each m | n, we define Q,, to be the set of cusps [A] € cusps(n) such
that m4 = m.

The set of admissible cusps is defined by

cusps®(n) = I_I Qumn = {[A]: A is admissible}.

min
(m,n) admissible

There is a canonical action of the diamond operators on cusps(n) that is compatible with
its action on modular forms. Given an integral ideal m coprime with n and a cusp A = (A4, p),
we define A and o, as in and define

Sm)A=A" = (AN, where A’ =q,A.

Proposition 3.9. Fach set Qu, is invariant under the action of G via the diamond oper-
ators.

Proof. With notation as above, one checks directly from the definitions that by = bm.
Furthermore one calculates that

m b = ged((ca + dy)(0t) ", nba)
= ged(dy(oty) ! nb )
C ged(y(ot,) 'm,nby)
= ged(cqbam, nby)
=myby.
Therefore m 4 C my4. However, this is a group action; replacing m by an ideal whose image

in G} is inverse to m and switching the roles of A and A’, we find the reverse inclusion
my4 C my . Hence my = my/, and the result follows. O

3.3 Enumeration of cusps

We now enumerate cusps(n) and more specifically each subset Q, . Recall the set of 4-tuples
Px(n) defined in Definition For each ideal m | n, let Py(m,n) C Py(n) denote the set of
tuples whose second coordinate is m. There is a natural action of F* on P,(n) that preserves
each Py(m,n), given by

z-(b,m,a,c) = (b(z), m, azx,cx).

The following is an immediate corollary of Lemma [3.6]
Corollary 3.10. For each class A\ € G, there is a canonical bijection

LA(m)\PY(F) — Py(n)/F*.
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There are canonical bijections

Quw — || Pa(mn)/F, (20)
AECIT(F)

cusps(n) — |_| P\(n)/F™.
AECI (F)

Definition 3.11. Let Qy, denote the quotient of G} x G:/m by the subgroup generated by
diagonally embedded principal ideals (x), where x € O is congruent to 1 modulo n.

Corollary 3.12. We have #Qmn = #Qmn, hence # cusps(n) = Zm‘n #HQun-
Proof. From (20)) we have #Qu, = hT#(Py\(m,n)/F*), where h™ = # CI7(F). There is a

surjective map

P\(m,n)/F* — CI(F), (b,a,c) — [b]. (21)

If U denotes the image of O3 mapped diagonally to Ry X Ru/m, then the fiber over a point
in is a principal homogeneous space for (Rm X Ru/m)/U. Therefore

#Qm,n = (h+h> ! #((Rm X Rn/m)/u)a (22>
where h = # CI(F'). Meanwhile, there is an exact sequence
1= (Ra X Rujm)/U = Quu — CI'(F) x CI(F) — 1, (23)

where the second nontrivial arrow is ([a], [b]) — ([a/b], [a]). From we deduce that #Qun
also equals the right side of , completing the proof of the corollary. O

3.4 Constant term map

If k£ is even we define

cusps(n)

Then implies that we have a well-defined constant term map
cony: My(n) — C, [ (cal0, f))ia- (24)

For k odd we must deal with the sign ambiguity in (15]). For £ an odd integer, let
- ® @ c
AECIF(F) A€l z(n)\GLJ (F)

A admissible

Endow Cj, with a right action of the upper triangular Borel B by
[A] - A" — [AA] sign(Nd).
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We let
Cy = HO(B,Ck) = Ck/<6-b—CI cE Ck,b € B>

Of course, Theorem [3.3] implies that
.= P c
cusps*(n)
However, fixing such an isomorphism requires making a non-canonical choice, which we would
like to avoid. For positive odd k£ we again have a canonical constant term map

cong : Mk(n) — Ok (25)

that sends a modular form f = (f)) to the tuple of normalized constant terms c4(0, f). The
discussion above implies that this map is well-defined.

3.5 Cusps above oo and 0

We introduce the suggestive notation
Coo(n) = Qun = {[A] € cusps(n): n | ca}.

This is the smallest set of cusps containing the cusps oo € I'y y(n)\P!(F) for each A € CI7(F)
that is stable under the action of the diamond operators S(m). It follows from Corollary
that #C..(n) = hth,, where h, = #G,, the size of the wide ray class group of conductor n.
Similarly, let
Co(n) = Q10 = {[A] € cusps(n): ged(n,cq) = 1}.

This is the smallest G -invariant set of cusps containing 0 € T’y ,(n)\P!(F) for each \ €
CI*(F).

If n =1, then cusps(n) = Cy(n) = Cy(n). If n is prime, then cusps(n) is a disjoint union
of Co(n) and Cy(n). In general there will be more cusps.

If b is a divisor of n, then for x = 0,00 we define C,(b,n) to be all elements in cusps(n)
whose image under the canonical map cusps(n) — cusps(b) lies in C.(b), i.e.

Coo(bn) = | | Quar Colbn) = | | Qua

bjm|n min
(b,m)=1

3.6 Lemma on level raising and cusps
The following remark will be used in later computations.

Lemma 3.13. Let f € My(n) and let q 1 n be a prime ideal. Let A = (A, \) represent a cusp
[A] € Coo(qm, qn) for some m | n. There exists a pair A" = (A, ) such that [A'] € Co(m,n)
and

ca(0, fla) = ca (0, ) (26)
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Proof. Write A = (A, \). By definition,

(e = N2, where 2= ()

0 4}
and qty = (a,)t,. Let A" = (A, ). Then [A'] € Coo(m,n) and c4(0, flg) = ca(0, f) are
direct calculations using . O]

4 Eisensteln series

We recall the well-known Eisenstein series using [2, §2.2] and [1] as convenient references.
Let n, x be narrow ray class characters of modulus a, b, respectively, such that ny has sign
(k,k,..., k). With the exception of the case F = Q,k = 2,17° = x° = 1, when there are
convergence issues, there is an Eisenstein series Ey(n, x) € My(ab). Here n and x are not
assumed to be primitive characters, and n°, x° denote the primitive characters associated to
n, X- The Eisenstein series E(n, x) has g-expansion coefficients given by

c(m, Ex(n,x)) = Y _ n(m/e)x(x)Ne* .

t|m

For k > 1, we have

27" YN L(xn ™, 1—k) ifa=1

ax(0, Ex(n, x)) = {O if a1

For k=1, a=1, and n = 1, we note that

. L(x,0) iftb#1
ax(0, Er(1,x)) =27" { L(x,0) + X}f(tA)L(Xfl,o) ifb=1

for all A € CI7(F).

Given a fixed level n, the Eisenstein subspace Ej(n) C My(n) is defined to be subspace
spanned by the Eisenstein series Ej(n, x)|q where n, x are primitive narrow ray class char-
acters of conductor a, b, respectively, such that ny has sign (k,k,..., k) and abq | n. An
elementary argument using Hecke operators shows that for k > 1, these Fisenstein series are
linearly independent (see |1, Prop. 3.8]). For k = 1, we have Ei(n,x)|q = E1(x,n)|q, and
these equations generate the space of relations among the Eisenstein series.

The Eisenstein subspace is a complement to the space of cusp forms Si(n), i.e. we have

Mg (n) = Eg(n) & Sk(n). (27)

Furthermore, for k& > 2 (excluding the case F' = Q, k = 2) the restriction of the map cony
defined in and to the subspace Eji(n) is an isomorphism:

CONg E - Ek(‘[l) l) Ck (28)
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The results and are proven in [12, Prop. 1.5] for weight k = 2, and we sketch now
a proof in the general case. Firstly, one can show that (excluding the case F' = Q,k = 2)
that there is an equality of dimensions in (28)):

# cusps(n) = Zm‘n #Qun if £ > 2 is even,

29
# cusps*(n) = Z:ﬂa #Qun if £ > 3 is odd. (29)

dimc Ek(‘[l) = {
To see this for k even, note that #Qu . is the number of pairs (x1, x2) where x1, x2 are ray
class characters of modulus m,n/m, respectively, such that yix» is totally even. To such a
pair we can associate the Eisenstein series Ej (XY, X3)|m/cond(x1)- Here x§ and x§ denote the
primitive avatars of x; and s, respectively. These Eisenstein series form the defining basis
for Ey(n).

For k£ > 3 odd, it is not hard to show that there exists a pair of characters xi, x2 of
modulus m, n/m, respectively, with x; 2 totally odd if and only if (m, n) is an admissible pair.
In this case, #Qmn is equal to the size of the set of such pairs (x1, x2). The argument then
continues as in the case for k even, and we find that the dimension of Ej(n) is - #Qumn.

With in hand, both and for k > 2 follow from the fact that

Ey(n) N Sk(n) = {0},

which is usually proven using the Petersson inner product (see for instance |1, Prop. 3.9] or

[12, Page 423]).

4.1 Evaluation of constant terms of Eisenstein series

Let x; and x» be ray class characters of modulus a and b and signatures ¢; and ¢, respec-
tively. Put n = ab. Let k& be a positive integer and assume ¢; + ¢ = (k, ..., k) (mod 2). In
this section we compute the constant terms of Eisenstein series Ejy(x1, x2) at various cusps
A= (AN), where A= (5%) € GLj (F).

We write ag = cond(x), by = cond(¢)) and let a; = a/ag, by = b/by. Without loss of
generality, we assume that ged(ag,a;) = 1 and that a; is square-free, since increasing the
modulus at a prime already dividing the conductor or increasing the power of a prime already
dividing the modulus does not affect the character or associated Eisenstein series. We make
the same assumptions about by.

Definition 4.1. The Gauss sum associated to a primitive character x of conductor b and
sign r € (Z/2Z)" is given by

()= Y sen(z) x(zbd)ep(x).

zeb—1o-1 /01

For a general character y we define 7(x) = 7(x°) where x° is the associated primitive
character.
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Recall the invariants a4, b4, ¢4 defined in

Definition 4.2. Assume that [A] € C(b,n), i.e. that b | 4. Write by = cond(y2). Let x
denote the primitive character associated to x1x5 ', and write f = cond(x). Define

Pa(x1, X2, k) =
zini)&?)) (1\11\%0) sgn(—7)"sen(@)®xa(ca/bo)(x2) () L(x ", 1= k), (30)

where yJ denotes the primitive avatar of x,. Here and throughout this article, we adopt the
convention that yi(m) = 0 if ged(m,a) # 1, and similarly for any ray class character. We
also use the convention that if a = 0 and m is a fractional ideal, then

0 it a # 1,
xi(m) ifa=1.

sgn(a)” x1(am) = {

For example, when v = 0 in the expression sgn(—7)? x1(c4/b) should be interpreted
as 0 if @ # 1 and as x; ' (£xdbab) if @ = 1. The analogous convention holds for the term

sgn(a)2x; (a4) = sgn(a)®x; (aby').
For finite sets S and T of finite places of F', define

Pa(x1, x2, k.5, T) = Pa(x1, x2, k) H(l — X" (q)Ng") H(1 — x(a)Ng™).

qes qeT

Further, for an ideal a | n we define

do.(a)

and
[0 if [.A] ¢ Coo( ) )
500,A(a) - { 1 [A] € Coo(aac:l)n

Remark 4.3. Suppose that ay = cond(x1) and by = cond(y2) are coprime. Then

T(xaxz ') = xa(bo)xa ' (a0)7(x1)7(xz ')

and hence

7(x1)

TN e ()" sen@) M (A aa/a) L L= k). (D)

PA(XI? X2, k) =

We require one more piece of notation.

Definition 4.4. Let m | n. We write J,, = Ju(A) for the set of prime divisors q | m such
that [A] € Cy(q,n) and J§ for the set of prime divisors g | m such that [A] € Cy(q,n).
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Theorem 4.5. (1) Let k > 1. Assume that xo is primitive of conductor b. The normalized
constant term of Ex(x1, x2) at A equals

5oo,A(b)PA(X17X27k7®>Tn7f)a (32)
where T, 5 is the set of primes dividing n but not f.

(2) Let k = 1. Assume that x2 is primitive of conductor b. Suppose further that a and b
are coprime. The normalized constant term of E1(x1,x2) at a cusp A equals

50,A(a)5oo,A(b)PA(le X2, 17 ®a Tn,f)
+ 00, 4(00)80,4(0) Palxz, x1, 1, 72, 0) T (1 — Ng™), (33)

q€Jay

Remark 4.6. Note that Ei(x1,x2) = Ei(x2,Xx1). The theorem only assumes that x, is
primitive; if we assume also that x; is primitive, then in the setting of part (2) the sets T,
Jo, and Jg| are empty and becomes symmetric with respect to x; and xs.

Proof of Theorem[{.5 Recall the definition of the Eisenstein series Ej(x1, x2) given in [11]
Prop. 3.4] (see also |2, section 2.2]). Let

U={uecO;:Nu=1u=1(mod n)}.

For k > 1, we have Ey(x1, x2) = (f»), where fy(z) is defined via Hecke’s trick as follows. For
z € H and s € C with Re(2s + k) > 2, define

fa(z,8) = Car(xa) > Nibga(z,s) (34)
teCl(F)
where
o VdpT (k)"N(ty)*/2
A [O5  UIN(©)N(b)(—2mi)kn
and
B sgn(a)®x(ar™)sgn(—b)%2x, t (—bbotyt™?)
9 (2:9) = ; (az + b)k|laz + b|?s (35)
— Z sgn(ag) ™ x1(agt " )sgn(—bg) 2 x5t (—bebdtyr ™) x
(a0,bo)
1 (36)

Z (az + b)*|laz + b|>s

(a,b)E(ao ,bo)

The sum in (34) runs over representatives t for the wide class group CI(F'). The sum in
(35) runs over representatives (a,b) for the nonzero elements of the product t x D’IB’lt)_\lt
modulo the diagonal action of U. In equation the sum (ag, by) runs through (t/rab) x
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(07161t "t /07t 'va), while (a,b) ranges over nonzero elements of t x 9161t 't modulo
the diagonal action of U such that a = ag (mod tab) and b = b, (mod 27!t 'ta).
Here we use

x1(a) =sgn(a)® fora=1 (mod a), x2(b) =sgn(b)® forb=1 (mod b).

We remark that in the definition we already use that ys is primitive, applying [11,
equation (3.11)]). The function fy(z, s) can be analytically continued in the variable s to the
entire complex plane, and we set fy(z) = fi(z,0).

We choose representatives of the cusp [A] = [(A,\)], with A = (i ?), as follows. Let

g = ged(b, c4). The cusp [A] only depends on («, ), so for convenience we are free to choose
(3,0 such that
det(A) =1, B € (tobyg)™!,  6€cbbug). (37)

Such 3, exist by the definition of g. The map (a,b) — (u,v) = (a,b)A induces a bijection
tx t(0tb) Tt — thagh™! x v(dtybag) Tt (38)
This bijection restricts to a bijection
tab x t(0ty) ta — th4ga x t(dt bag) 'n.
The function g,(z, s)|a can be written

(2 8)[a = Y sgn(uod — vo) xa((uod — vor)t ™" )sgn(uof — voe) x5 ((uoff — voar) by ™)

uo,v0

1
. Z (uz +v)k|luz + v|> (39)

(u,v)=(uo,v0)

Here ug and vy run through complete sets of representatives of
thagb ! /tbaga  and  t(dty\bag) ' /t(dtibag) 'n,
respectively, and the pair (u,v) runs through representatives for

((tbagb™" x t(dtrbag) )\ {(0,0)}) /U

such that (u,v) = (ug,v9). We now recall notation from [11, §3]. Up to a constant factor the
sum

1
Z (uz + v)k|luz + v|?

(u,v)=(uo,v0)

equals the series Ey i7(2, ug, vo, tbaga, t(0t\b4g) "'n) defined in [11}, equation (3.1)], with r in
loc. cit. set to 0.
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We are now ready to prove (1), though we remark that much of what is said below also
applies to (2). We have k > 2. By |11}, equation (3.7)] the constant term of g)(z,s)|4 at s =0
is the value at s = 0 of

> “sgn(ugd — voy)“ X1 ((uod — voy)e™")sgn(uoB — vocr) x5 ' ((uoff — vor) bt ™)

uo,v0

X (—1)"6(up, b aga) Y  sgn(Nv)¥[No| 72,

V=0

Here d(ug,tbaga) = 0 if ug ¢ tbaga and is 1 otherwise. Therefore the constant term of
ga(z,8)|a at s = 0 is zero if ug ¢ tb4ga.

If ug € tb4ga, then using the relation byy = ug — apax we deduce that byy € tby4. On the
other hand byy € tb4c4b~!. Therefore

boy € thy Ntb e b™! = tbycag™

From this we obtain by € t(t,0g)~*. Now consider the case that A does not represent a cusp
in C,.(b,n). This is equivalent to b { ¢4 which in turn is equivalent to g # b. Hence bybdtyt™!
is an integral ideal not coprime to b. Therefore y; ' (—bybdtyt™!) = 0 and hence the constant
term of gx(z,s)|a at s = 0 is 0. Note that here we have used by = —uof + voa.

Next we turn to the case that A does represent a cusp in C (b, 1), so g = b. As observed
above we are only interested in the term with uy € tb4ga. We choose uy = 0 to represent
the trivial coset in th4gb~!/tbsga. Therefore the constant term of gy(z,s)|4 at s = 0 is the
value at s = 0 of

L " sgn (Nv)*
> sn(—uo)sgn(y)"sgn(0) ™ (e ) (Coabdte (1 Y S

EN

= > sen(y)"sgn(@)®xi(—oyr)x; (—vabdte T N(wOF) T,

Hence the constant term of fi(z,s)|4 at s =0 is the value of the following sum at s = 0:

Ch7(x2) Z NtkZsgn(’y)qlsgn(&)”xl(—vyt’l)xgl(—vabbt,\t’l)N(vOp)’k’QS
teCI(F) v

= Oh7(x2)sgn(y)"sgn (@) x1 (7(b0tb4) ™ )xa (@ (ba) TN (b0tb 1)
X Z Z X1 (vt bt ) x5 (0bdty bt )N (vbdtyb ) F TN () R

The value of this at s =0 is

Oy (x2)sen ()" sgn(a)2x1(ca/6) x5 (a)N(bdtyb4)F x
07 - UIL(x. k) [T (1= x(a)Nq™),

qETn,f
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where y is the primitive character associated to 1, ' and q runs through the set Tz of all
primes dividing n but not f = cond(x). Next we use the functional equation

d(F)2=F N =k (27 ) kn

H) = T e )

L(X_lv 1 - k)

together with the relations

sgn(—1)#*9%Nn,

\]
—
)
~—
\]
—
=
L
N—
I

We find that the unnormalized constant term ay 4(0) of fy(z,0)| is

. k
ng?)) (N;[;A> Nty %sgn(—7) " sgn(a)® 1 (c./b)x3 ' (a4) %

w l:[(l —x(q)Ng ).

The normalized constant term is (Nb A)"“Nt;k/ ? multiplied by this, yielding statement (1)
of the theorem.

Everything up to this point also applies when k£ = 1. However, when k = 1, the formula
in [11, equation (3.7)] shows that there is an additional term which arises from the constant
term in the g-expansion of

1
Z (uz +v)|uz + v|?

(u,v)=(uo,v0)

at s = 0; its value is the following sum at s = 0:

(—2mi)*N(b~1) sgnN(u)
9on d(F) Z ’Nu|2s :

U=UQ

Therefore the second term in the constant term of ¢\(z,s)[a at s = 0 is the value of the
following at s = 0:

> sen(ud — vy)™ x1((uod — voy)r ™ )sgn(ueB — vocr) x5 (13 — vocr) bty ™)

uo,v0
" (—2mi)k"N(b~1) Z sgnN(2u)
on d(F) = INuf*
(= 2m k”N Z sgnNu
o |Nu|2s

(40)
X ngn (ud — voy) ™ x1((ud — voy)r ™ )sgn(uf — voa )2 x5 *((uB — voa)botyr ™).

vo
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Here the second sum in (40]) runs through all vy in a set of representatives for

(00 49) ™! /t(dtrbag) " ab.

By the definition of g, we have 7 € dty\bg, and hence vy € t(dt\bag)'a = vyy € ta.
Therefore the last sum above (i.e. the expression appearing in (40) after the x symbol) can
be written as a double sum

Z segn(ud — voy) " x1((ud — voy)e ™) (41)

vo€r(dtrb.ag) 1 /t(dtrb.ag) " ta

X Z sen(ufB — vha)2xy H((uf — vja)botye ™) | . (42)

vhET(0tabag) 1 /r(0trbag) " Lab
vh=vo (mod t(dtrbag) " 1a)

Recall that the “finite part” of the character x» is the character

Xa.p: (Op/0)" = C* xap(a) = sgn(@)®x2((a)).

We extend x2 ¢ to a function of O/b by dictating xo (o) = 0 if ged(e,b) # 1. Up to
multiplication by a nonzero scalar, the expression in large parenthesis is the sum of x5 ¢
over a coset of the ideal in O/b generated by a,bg™'. Since y» is primitive of conductor b,
it is elementary that such a sum vanishes unless a4bg~! is divisible by b, i.e. unless g = Op.

In other words, if [A] € Cy(b,n) then the sum (42)) is 0 and if [A] € Cy(b,n) then (42)) equals
Nb - sgn(uf) 2y, (uBbdtyr™).

As we now show, a similar argument implies that the sum (40]) is zero unless we also have
[A] € Cx(ag, b). Since g = 1, the sum

Z sgn(ud — voy) " x1((ud — vey)r ™). (43)

vo

appearing in is the sum of y;  over a coset of the ideal in O/a generated by y(0t\b4) ™! =
¢4. This vanishes unless ag = cond(y;) divides ¢4. Hence vanishes unless ag | ¢4, i.e.
unless [A] € Cy(ag, b). Furthermore when [A] € C,(ag, b) the value of can be easily
calculated directly. Let ap =[], s, 4 and a3 = a;/az =[] . Lt Then the value of is

Nag H(l — Ng Hsgn(ugd)?x 7t (updr ™),

glas

where X7 is the character x; with modulus apas.
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Combining these calculations, we find that for [A] € Cy(b,n)NCy(ag, n), the second part
of the constant term of fy(z,s)|4 at s = 0 is the value at s = 0 of the following:

(—2mi)"

Ch\1 -Na 1—Ng*
g (XQ) Q"N(t(of,\bA)flﬂg) d(F) ’ ql;{( 9 )
) ) sgnNu
5 N R s i i o) 3
27i)"
= Ch7(x2) = H — Ng Y)sgn(0)?sgn(B)2x5(6b7b.4) x5 (Botab4)

Q"N Dt)\bA

q\ﬂs

xZNtZXlxg (ub(ba)” )\N B

The value at s =0 is

T(X2)Nf§/2NbA
2"Nb

sgn(6)sgn(B)2 X7 (56 b.a)xz (Botaba) L(x, 0) [T (1 — x(a)) [ [ (1 = Na ™).
qlaz alaz

(44)
Since apay | ¢4, it follows that 5y € agas and hence ad =1 (mod agay), whence

sgn () X7 (067 b4) = sgn(e)® (x7) " (aa/b) = sgn(e)®x; ' (a.4/b),

where the last equality follows since ged (a4, ag) = 1. Similarly ad € b = —fy =1 (mod b),
hence

sgn(B)2x; ' (Botaba) = sgn(—7)%x2(ca)-

Therefore, noting , after scaling by the normalization factor (Nb A)_th)_\l/ ? for constant
terms, the value in is equal to

Pa(x2, x1,1) H(1 —x(q)) H(1 —Ng™).

qlaz qlas

The first term calculated above (for £ > 1) is non-zero only when the cusp [A] belongs to
Cu(b,n)NCy(a,n). The second term is non-zero only when [A] belongs to Co(b, n)NCy (ag, n).
This finishes the proof. O

4.2 Constant terms for raised level and imprimitive characters

In our arithmetic application [3], we require the constant terms of the level-raised Eisenstein
series Ei(x,v)|m for auxiliary squarefree ideals m, with y and v possibly imprimitive. This
level raising is related to the T-smoothing operation of Deligne-Ribet [6].

The following notation will be in effect throughout this section. Let y and v be characters
of modulus a and b and signatures ¢; and ¢o, respectively. Let k be a positive integer such
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that ¢1 + g2 = (k,..., k) (mod 2). We denote the conductors of x and ¢ by ay and by,
respectively and put a; = a/ag and b; = b/bg. Assume ged(by,a) = 1. Let n = abl for a
square-free integral ideal [ with ged(ab, [) = 1. We assume that a; is squarefree and coprime
to ag, and similarly for (by, by).

Let A= (A, \) with

A= ( : : ) € GLI(F), XeCI'(F).

Theorem 4.7. Let m be a divisor of I. The normalized constant term of Ex(x,®¥)|m at A is
gien as follows:

o [fk > 2, then the normalized constant term of Ex(x,V)|m at A is

5OO,A(b0>P.A(X7 Q:Dv k: ngv Ja1) H (1 - Nq_l) H (¢(Q)qu)_l H X_l(q)' (45)

qejbl q€JSm qeJh

o [fk =1, we further assume that gcd(a, b) = 1. Then the normalized constant term of
El(Xv w)lm at -’4 18

80.4(0)000.4(00) Pa(x, ¥, 1, Ty Jay) [T (1= Na™) ] (w(@)Na)™ T x ()

q€Je, 4€Jm LS
+ 000,4(0)80,4(0) Pa(r, X, 1, I o) [T (1 =Na ™) ] (x(@Na) ™ [ 7
quul qum qe‘]l%

(46)

Remark 4.8. The term 0y _4(a) is unnecessary in (46]) since P4(x,, 1) already vanishes if
[A] & Cy(a,n). We include this factor simply as a reminder that this portion of the constant
term is supported on Cy(a,n) N Cy(bg, n).

Proof. We give the proof for £ > 2. The argument for £ = 1 is identical and left to the
reader.

First we assume that b = by, i.e. by = 1 and calculate the constant term of Ej(x,%)|m.
Let m = q; - - - q; and use induction on j. The base case j = 0 follows directly from . For
7 > 0 we use the expression

& (Xms ¥ Zu (OB (x, )l (47)

Here xn denotes the character y viewed with modulus am. If J, = {qi1,...,q;}, then
do.a(am) = 6 4(a), so by the normalized constant term of Ey(xm,?) at A is

507,4(0)5007,4(60)]3,4()(, % k‘, Q)v ‘]01) H(l - Xw_l(ql>qu_k) (48)

qlm
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The induction hypothesis gives the normalized constant term at A of each term on the
right side of except for Fi(x,%)|m. Therefore one can use and to solve for the
normalized constant term of Ex(x, )| at A. One obtains

00.4(0)8s0,4(60) Pa(x, 0, K, 0, Joy) T [ (x ™ (:)Naf) ™!

qlm

as desired. Now suppose Jo # {q1,...,q;}, which is equivalent to [A] ¢ Cy(m,n). Then
do.4(am) = 0 so implies that the constant term of Ej(xm, ) at A is 0. Without loss of
generality, assume that q; ¢ Ju. For every subset I C {qu,...,q;-1}, put q; = [[ ;9 If
I # {q1,...,95-1}, then we can apply the induction hypothesis to the forms Ej(x, )| for
both t = q; and t = q;q; on the right side of to see that the contributions made by
their constant terms at A cancel. It follows that the constant term of Ex(x,%)|m at A equals
X' (q;) times that of Eg(X,?)|m/q,, and we are done by the induction hypothesis.
Next we relax the condition that b; = 1. We use the expression

= 5 HOE O (N By, ) i, (49)

/by

where 9" is the primitive character associated with 1. The case already completed for 1
primitive gives the constant terms of the forms on the right of (49). The result then follows

> u@®eOMNO T @@NG) ™ T x ()

from the formula

/b1 qeJt qeJ¢
= [J@-Ng™) J] @ = x""¢(a)Ng").
q€Jp, qEJ[fl

5 Ordinary forms

Let p be a prime ideal of Op dividing a prime number p. Following Hida, we define the

ordinary operator

grd lim U n
n—oo

Let B = ged(p™, n) be the p-part of n. We define

Let E be a finite extension of Q,. The space of P-ordinary forms is defined by:
Mk(n, E)‘B—ord = efﬁde(n, E)

This is the largest subspace on which the operator U, acts invertibly for each p | %B.
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Theorem 5.1. A form f € M(n, E)¥°¢ is cuspidal if and only if its constant terms at
all cusps in Coo(P,n) are zero. If f € My(n, E) has constant terms zero at all cusps in

Coo (B, 1), then eg?(f) is cuspidal.

We provide two proofs of Theorem [5.1} The first proof is longer, but its method could
have other applications, so we include full details. We begin with the following elementary
lemma from linear algebra.

Lemma 5.2. Let V' be a finite dimensional vector space over a field and let B = {vy,...,v,}
be a basis. Let S be a possibly infinite set of commuting endomorphisms of V' satisfying the
following properties:

o After re-ordering, the matriz for each T € S with respect to the basis B is in Jordan
canonical form.

e Fvery Jordan block of size greater than 1 has associated eigenvalue 0.

Let B" C B be the set of basis vectors that are actual (non-generalized) eigenvectors for every
T € S. Suppose the elements of B are distinguished by their S-eigenvalues, i.e. for v; # v;
in B', there exists T € S such that the T-eigenvalues of v; and v; are distinct. Finally let
W C V be a subpace that is preserved by eachI". Then W is nonzero if and only if it contains
some v; € B’.

Proof. Suppose v = > a;v; € W with the a; not all zero. We first show that we can find
another nonzero v’ € W such that its expression as a linear combination of elements in B
only contains elements of B’. For this, suppose that v; € B\ B’ occurs in v with a nonzero
coefficient a;. Let T' € S such that v; is not an eigenvector for 7. Then there is a unique
n > 1 such that T"(v;) € B is an eigenvector for T'. We replace v by 7" (v). This is another
element of W its expression as a linear combination of the v; has at most as many elements of
B\ B’ as did v. And the term a;v; has been replaced by a;T"(v;)—this uses the fact that the
T-eigenvalue of T"(v;) is 0. Note in particular that since 7"(v;) € B occurs with a nonzero
coefficient, T"(v) # 0. If T™(v;) € B, we have reduced the number of elements of B\ B in
our linear combination. If not, there is some other 7" € S that we can apply a certain number
of times, say m, to replace T"(v;) by its associated T’-eigenvector. Continuing in this way,
we get a sequence of nonzero vectors v — T"(v) — (T")™T"(v) — - -+ and a corresponding
sequence of terms occuring in the expression of these vectors in terms of B:

a;v; — a;T"(v;) — a;(T)™T™(v) — - - -

Since this latter sequence clearly cannot a cycle, and B is finite, it must terminate. This
occurs when the corresponding element of B actually lies in B’. We have therefore created a
new nonzero element of W whose expression in the basis B contains fewer elements of B\ B’.
Continuing this procedure yields a nonzero element of W that is in the span of B’.
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Now let v = > a;v; € W with v; € B’ be such an element. If more than one v; occurs
in this linear combination with nonzero coefficient, say v; and v;, then by assumption we
can find 7" € S such that the associated eigenvalues \;(7") and A;(T") are distinct. We can
replace v by T'(v) — Ay (T")v. This annihilates the v; term, but is nonzero because it does not
annihilate the vy term. Furthermore it has fewer nonzero coefficients than v. Continuing in
this way, we can repeatedly decrease the number of terms in the expression of v until we find
that there is some v; € B'NW. O

Proof 1 of Theorem[5.1. The second statement of the theorem follows from the first since
eqd(f) preserves the space E[Co (P, n)]. To prove the first statement, let f € My (n, E)¥P
be a form whose constant terms at all cusps in C(*F3,n) are zero. Then f is a sum of a
cusp form and a linear combination of Eisenstein series. The cusp form does not affect any
constant terms; we can therefore assume that f is a linear combination of Eisenstein series,
and we must show that f = 0. The Eisenstein subspace has the following convenient basis,
for which each of the Hecke operators is in Jordan canonical form:

B = {Ey(n,¥s)c}, where (50)

7 and 1 are primitive characters of conductor a, b respectively.

t,s are each squarefree products of primes such that ged(a,v) = ged(b,s) = 1.

abrs is divisible by all primes dividing n.

¢ is only divisible by primes dividing ged(ar, bs).
e abrsc divides n.

Since this is a lot of notation, it is behooves us to demonstrate this with an example. Suppose
that 7 and ¢ are primitive of conductor a,b with associated Eisenstein series Fy(n,1)) €
M. (ab). Let p be a prime not dividing ab. For n > 1, the generalized eigenspace of M (abp™)
corresponding to Ej(n,¢)—i.e. the subspace on which all the Hecke operators away from p
act via the eigenvalues of Ej(n,1)—has 2 or 3 Jordan blocks for the action of U,: (1) the form
Ex(ny, ¥) with Up-eigenvalue ¥(p)Np*~1, (2) the form Ej(n, 1) with U,-eigenvalue n(p), and
(3) if n > 2, a Jordan block with U,-eigenvalue 0 and basis Ej (1, )|y as ¢ =0,...,n — 2.
Here U, (Ex(np, Vp)lpi) = Er(ny, ¥p)|pi-2 for @ > 1, and U, (Ex(1p, 1)) = 0. The basis is
the generalization of this case to the general setting.

Now, the space Ej(n, E)¥ ° is the subspace of Ej(n, E) generated by the subset By C B
consisting of the Ej (1., 1s)|. such that at is coprime to 3. We apply Lemma where the
set of endomorphisms S is the set of Hecke operators indexed by the primes not dividing
B: the T, for g n and Uy for q | n/P. The subspace W C Ex(n, E)¥* 4 is taken to be the
subspace of elements whose constant terms at all cusps in C, (3, n) vanish. This subspace is
fixed by the Hecke operators away from . We need to prove that W = {0}, and the lemma
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implies that is suffices to show that no eigenvector in By lies in W. The subset By C By
of eigenvectors is the set of Ex(n.,1s)|. such that at is coprime to B and ¢ = 1. It remains
to prove that for such a form FEj(n., 1)), there exists a cusp [A] € Co (P, n) such that the
constant term at A is nonzero.

For this, we first note that it suffices to show this at the minimal level at which Ej (., 1)
appears, namely n’ = abts. Indeed, if we let B’ be the p-part of n’, then the canonical map
Coo (P, n) = Coo (P, 1) is surjective. Therefore we assume that n = abrs.

Write s = 5162, where s; = ged(s, ar). Note that B | bsy. Let A be a cusp in C(bs, n) C
Cs (B, n) such that c4/bs; is coprime with ar. We use the expression

nf7¢5 Z,u Nmk 1Ek(/’7t7¢52)’

m|51

to show that the constant term of Ej(7.,1s) at A is nonzero. By Lemma , the constant
term of Ey(n,¥s,)|m at A equals the constant term of Fy(n,,¢s,) at some other A’ where
[A] € Cy(bs/m,n/m). If m # s;, then by definition bs/m is not coprime to ar. Then
Pa(n,1, k) = 0 because of the n(c4) factor, and hence by Theorem [4.7| the constant term is
0. On the other hand if m = s; then Theorem shows that this constant term is nonzero
as long as ¢4 /b is coprime with at. This holds because ¢ 4/bs; is coprime with ar. The result
follows.

[

Proof 2 of Theorem[5.1. Our second proof of the first statement is a direct computation
using the action of the Hecke operator U, for each p | B. First we note that since we are on
the ordinary subspace, each U, acts semisimply (see |7, pg. 382]). Furthermore the operator
U, preserves C (B, n). Therefore it suffices to consider the case where f is a U,-eigenvector
for each p | B.

Let us recall the explicit definition of the operator U,. For each p € CI*(F), let A €
CI*(F) denote the class of up~". Write ty\t;'p = () where z is a totally positive element of

F*. Given f € F define mg = ( (1) i ) - Then fly, = (9u) uecr () Where

g =Np* 22N () |y (51)

Bet; o1/t o 1p

Let A = (A, ) represent a cusp. If p” | ¢4 with r > 0, then one readily checks that
p" | car, where A’ = (mgA, ) is an associated cusp appearing in (51). Therefore since f
is a U,-eigenform with nonzero eigenvalue for each p | B, and its constant terms vanish on
Cw(B,n), then by applying U, repeatedly we see that the constant terms of f vanish on
Cso(Po, n), where Py is the product of the distinct primes dividing .

Next, to show that f has vanishing constant terms at all cusps in cusps(n) = C(1,n), we
show that we can remove the primes in 8y one-by-one. Therefore, let B | By, and let p | Pj.
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We will show that the cuspidality of f on C, (1, n) implies its cuspidality on Co.(B1/p, n).
Sequentially removing all the primes p | By in this fashion will then give the desired result.

For this, we use the expression once again. We also introduce the notation f(.A)
to denote the normalized constant term of f at the cusp A. If A € C(P1/p,n) but
A ¢ C(B1,n), then one can check directly from the definitions that there is a unique
B e t;'071/t; 07 p such that the associated cusp A" = (mgA, ) also does not lie in
Coo(PB1,n); for all the other 3, the associated cusp does lie in Coo(P1,n). The cuspidality of
f on Coo(P1,n) therefore implies that

apf(A) = flu,(A) = Np*'f(A),

where a, denotes the U,-eigenvalue of f. Note that the constant Np#~*

through our normalization factors on constant terms. Now, the set Co(P1/p,n) \ Coo (P, n)

arises from tracing

is finite, so continually repeating this process, the sequence
A=A — - (52)
must eventually arive at a repetition. At this point we obtain an equation of the form
a (A”) = Ny F A7)

for some positive integer r and some cusp A”. As the Hecke eigenvalue a, is a p-adic unit
and k > 1, we have ay # Np®*=Dr for any positive integer r. We obtain f(A”) = 0, and hence
the same is true for every other cusp appearing in the sequence ; in particular f(A) =0
as desired. O
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