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Abstract

We prove the equality of three conjectural formulas for the Brumer—Stark units. The first
formula has essentially been proven, so the present paper also verifies the validity of the other
two formulas.
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1 Introduction

In this paper we prove the equality of three conjectural formulas for Brumer—Stark units made by
the first author in [5], [8], and [9] (the last two of these, in collaboration with Spiefs).

One significance of this result is that the first formula has essentially been proven in [6], so the
present paper also verifies the validity of the other two formulas. Additionally, the third formula,
made in [9], relates to a conjecture for the principal minors of the Gross—Regulator matrix. The
validation of the third formula here gives a proof of this conjecture for the diagonal entries. Our
work generalizes a partial result in this direction established in [12]. See [6] for a discussion of the
application of the these formulas toward explicit class field theory.

We now describe our results more precisely. Let F' denote a totally real field, and let H denote
a finite abelian extension of F'. Write G = Gal(H/F'). Let R denote the set of archimedean places
of F'. Let R be a finite set of places of F' containing R., and the places that are ramified in H. Fix
a prime ideal p ¢ R that splits completely in H and let S = Ru{p}. Finally, we consider an auxiliary
finite set T' of primes of F, disjoint from R U {p} and satisfying a standard minor condition (see
§2.2). The following conjecture was first stated by Tate and called the Brumer—Stark conjecture,
[16, Conjecture 5.4].

Conjecture 1.1. Let B be a prime in H above p. There exists an element
ur€Uy={ueH":|uly=1if v does not divide p}
such that ur =1 (mod T'), and for all o € G, we have ordy(uT) = (g (H/F,0,0).

Here v ranges over all finite and archimedean places of H; in particular, each complex conjugation
in H acts as an inversion on U,. The definition of the partial zeta function (g 7 (H/F,c,0) is recalled
in §2.2. The conjectural element ur € U, satisfying Conjecture 1.1 is called the Brumer-Stark
unit for the data (S,T, H,*B).

Conjecture 1.1 has been recently proved away from 2 in joint work of the first author and Kakde
[7]. It is convenient for us to package together up and its conjugates over F' into an element of
H* ® Z[G] that we call the Brumer—Stark element:

up= Y UG ® [c7']e H* © Z[G].
oeG

There have been three formulas conjectured for the image of the Brumer—Stark element u, in
Fy®Z[G]. In [5] the first author conjectured a p-adic analytic formula for uy, following the methods
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of Shintani and Cassou-Nogués. We denote this formula by u; and state it precisely in §3. The
other two formulas, which we denote us and ug, were defined in joint work of the first author with
Spieh in [8] and [9], respectively. Both of these formulas are cohomological in nature and are defined
using the Kisenstein cocycle. They are stated precisely in §5 and §6. The following combines the
conjectures of the first author (for ¢ = 1) and the first author with Speifs (for i = 2, 3).

Conjecture 1.2. Fori=1,2,3 we have u; = uy.
The main result of this paper is the following.

Theorem 1.3. The three conjectural formulas for the Brumer—Stark element u, are equal, i.e.
uy =ug = uz in by ® Z[G].

Recent work of the first author with Kakde has proved that u; = u, up to a root of unity under
some mild assumptions. Write p(F}") for the group of roots of unity in Fy'.

Theorem 1.4 (Theorem 1.6, [6]). Suppose that the rational prime p below p is odd and unramified
in F'. Suppose further that there exists q € S that is unramified in H whose associated Frobenius oq
is the complex conjugation in G. Then Conjecture 1.2 for uy holds up to multiplication by a root of
unity in Fy:

ur =y in (B [u(Ey)) © Z[G].

Remark 1.5. Theorem 1.3 implies that ug = ug = up in (F,'/u(Fy)) ® Z[G] under the assumptions
of Theorem 1.4.

In §7 we prove that us = ug via a direct calculation that was foretold in [9]. The proof that
u1 = ug, which takes up §8, is more interesting and involves a new idea not present in prior work in
this direction. It can be broken into two parts. Suppose that H/F a CM abelian extension H/F
of conductor § such that p splits completely in H. We note that if q | f then we must have q € R.
Denote by E,(f) c O the subgroup of totally positive units congruent to 1 modulo f. We then
prove by a direct calculation that

ui(0) =ug(o) (mod EL(f)), (1)

where u;(0) denotes the o component of u;. We remark here that showing the above equation first
requires the proof that us = us.

Next, Let f be an auxiliary ideal of O that is divisible only by primes dividing . Let H' > H H'
be another finite abelian CM extension of F' in which p splits completely, such that the conductor
of H'/F divides ff'. In particular, the extension H'/F is unramified outside R. For each o € G, we
then show the norm compatibility relation for i = 1,2,

ui(o,H) = H wi(r, H"). (2)
TeG’

Tlg=0
Applying (1) with H replaced by H' and combining with (2), we obtain

uy (o, H) =us(o, H) (mod E,(ff')). (3)



If R # R, then taking larger and larger conductors ff and passing to a limit, we obtain the desired
result
ui(o, H) =ug(o, H).

In the case R = Ro, we are required to do a little more work. The issue in this case is that ff' = 1
for all possible choices and thus working with bigger extensions does not yield more information.
In this case, by adding auxillary primes into R, we are able to show that there exists € € F, such
that for each o € G we have
ui(o, H) =eug(o, H).

We then extend the definitions for u; and ug to work with the trivial extension F/F. We note
that this was already done for ug in [8]. In fact, ug is defined for any finite abelian extension H/F.
Furthermore, |8, Proposition 6.3| it is proved that ue(H/F) = 1 if H has at least two real places.
In particular, us(F/F) = 1. We prove that also uy(F/F) = 1. By the norm compatibility property
satisfied by u; and us we have

1=uy(F) =[] ui(o, H) =l T ua(o, H) = 9.
oeG oeG

Thus € =1 and so uy = us.

Acknowledgements. The first author was supported by NSF grant DMS 1901939 for the
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for Mathematical Research and Imperial College London. We thank Mahesh Kakde and Michael
Spieft for helpful discussions.

2 Preliminaries for the multiplicative integral formula

2.1 Notation

Recall that we have let F' be a totally real field of degree n over Q with ring of integers 6 = Op.
Let Er = Oy, denote the group of global units. More generally, for a finite set S of nonarchimedean
places of F' we denote by Fg = Er g the group of S-units of F'. We define

S ={q:q|q where, for some te S, t|q}. (4)

We also let H/F be a totally complex extension containing a CM-subfield. Let f denote the conductor
of the extension H/F. We write E,(f) for the totally positive units of F' that are congruent to 1
(mod f). Write Gj for the narrow ray class group of conductor f. Let e be the order of p in G} and
suppose that p© = () with 7 =1 (mod f) and 7 totally positive. We write O = 6, - 70, c F}'.

Define A = Ap as the adele ring of F'. For a Q-vector space W fix the notation W5 =W ®z Z =
W ®g Ag. For an abelian group A and prime number L, we put 4y = A ®7 Q.

For a place v of F we put U, =R, ={x e R |2z >0} if v| o0 and U, = O} if v is finite. For a set
S of places of F' we let A¥ denote the adele ring away from S. We also define U° = [Tyes Uy, and
Us = [Tyes Uy. We shall also use the notation F*° = (A% x Ug) n F*.



Finally we note that if we have a function f: X - Z and X ¢ Y then we can extend f to a

function fi:Y — Z by defining
fly) ifyeX
= 5
fiy) {0 fyey X, ()

we call this the extension of f to Y by 0.

2.2 Partial zeta functions
For o0 € G = Gal(H/F'), we define the partial zeta function

(R(H/F,O',S) = Z Na™. (6)
(a,R)=1

Oa=0

Here the sum ranges over all integral ideals a c © that are relatively prime to the elements of R
and whose associated Frobenius element o4 € G is equal to o. The series (6) converges for Re(s) > 1
and has a meromorphic continuation to C, regular outside s = 1. When the field extension H/F is
clear from context, we drop it from the notation and simply write (g(o, s). Since p splits completely
in H, the zeta functions associated to the sets of primes R and S = Ru{p} are related by the formula

CS(Uv S) = (1 - Npis)CR(o'v 8)'
Recall that we have fixed an auxiliary finite set of primes of F', denoted T', that is disjoint from
S. The partial zeta function associated to the sets R and T is defined by the group ring equation

> Crr(o,9)o7 =TI~ [0;,"INg"*) 3" Cr(o.8)[07']. (7)

oeG neT oeG

We assume that the set T' contains at least two primes of different residue characteristic or
at least one prime n with absolute ramification degree at most ¢ — 2 where 7 lies above . With
this in place, the values (g7 (K/F,0,0) are rational integers for any finite abelian extension K /F'
unramified outside R and any o € Gal(K/F). This was shown by Deligne-Ribet [10] and Cassou-
Nogués [2].

Our assumption on 7" implies that there are no nontrivial roots of unity in H that are congruent
to 1 modulo T'. Thus the p-unit up in Conjecture 1.1, if it exists, is unique. Note also that our up
is actually the inverse of the u in [11, Conjecture 7.4]. Throughout this paper, for ease of notation,
we fix T'= {\} for an appropriate choice of A.

2.3 Shintani zeta functions

Shintani zeta functions are a crucial ingredient in each of the constructions we study. We establish
the necessary notation here, following Shintani [13].

For each v € Ro we write 0, : F - R and fix the order of these embeddings. We can then embed
F into R™ by © = (0y(x))yer.,- Note that F* acts on R™ with x € F* acting by multiplication by
o,(x) on the v-component of any vector in R™. For linearly independent vy, ...,v, € R, define the
simplicial cone

,
C(vi,...,0p) = {ZcivieRf:q >0}.

i=1



Definition 2.1. A Shintani cone is a simplicial cone C(v1,...,v,) generated by elements v; €
FnRY. A Shintani set is a subset of R} that can be written as a finite disjoint union of Shintani

cones.

We now recall the definition of Shintani zeta functions. Write f for the conductor of the
extension H/F. Let b be a fractional ideal of F' relatively prime to S and 7T, and let D be a
Shintani set. For each compact open U ¢ O, define, for Re(s) > 1,

Cr(b,D,U,s)=Nb™* 3 Na™®.
aceFnD,; acU
(a,R)=1, aeb™?
a=1 (mod §)

We define (r7(b, D, U, s) in analogy with (7) i.e., by the group ring equation
> Crr(6,D,U,5)[0" ] =T (1= [0, ' INn ") 3 Ca(b,D,U,5)[o "], (8)

oeG nel oeG

It follows from Shintani’s work in [13] that the function (g (b, D, U, s) has a meromorphic contin-
uation to C. We now want to define conditions on the set of primes 1" and the Shintani set D to
allow our Shintani zeta functions to be integral at 0.

Definition 2.2. A prime ideal n of F' is called good for a Shintani cone C if

e N7 is a rational prime ¢; and

e the cone C may be written C = C(v1,...,v,) with v; €0 and v; ¢ 1.

We also say that n is good for a Shintani set D if D can be written as a finite disjoint union of
Shintani cones for which n is good.

Definition 2.3. The set T is good for a Shintani set D if D can be written as a finite disjoint
unton of Shintant cones D =||C; so that for each cone Cj, there are at least two primes in T that
are good for C; (necessarily of different residue characteristic by our earlier assumption) or one
prime n € T that is good for C; such that Nn >n + 2.

Remark 2.4. Given any Shintani set D, it is possible to choose a set of primes T' such that T is
good for D. In fact, all but a finite number of prime ideals with prime norm are good for a given

Shintani set.

We can now note the required property to allow our Shintani zeta functions to be integral at
zero. The proposition below is proved in [5, p.15].

Proposition 2.5. If the set of primes T is good for a Shintani set D, then
Crr(b,D,U,0) € Z.
We define a Z-valued measure v(b, D) on O, by
v(b,D,U) =Crr(b,D,U,0), 9)

for U ¢ 6, compact open.
We are mostly interested in a particular type of Shintani set, one which is a fundamental domain
for the action of E,(f).



Definition 2.6. We call a Shintani set D o Shintani domain if D is a fundamental domain for
the action of E.(f) on RY}. That is,
RY = || eD (disjoint union).
e, ()

The existence of such domains follows the work of Shintani, in particular from [13, Proposition
4]. We note here some simple equalities that follow from the definitions. More details are given in
§3.3 of [5]. Recall we have written Gj for the narrow ray class group of conductor f. Let e be the
order of p in Gj, and write p¢ = (7) with 7 =1 (mod §) and 7 totally positive. We denote by Hj
the narrow ray class field of F' of conductor §. Let D be a Shintani domain and write @ = 6, — 76,
Then,

v(b,D,0) = (s (H/F,b,0)=0, and wv(b,D,0y)=Cr7r(H;/F,b,0).

We now give two technical definitions that are necessary in the definition of u;.

Definition 2.7. Let V c E.(f) be a finite index subgroup (which is necessarily free of rank n—1).
We call a Shintani set D a Colmez domain for V if D is a fundamental domain for the action of
V on R?. That is,

R} = | |eD (disjoint union).
eV

We note that in the definition of a Colmez domain we allow ourselves to work with V' = E(f),
thus the definition includes Shintani domains.

Proposition 2.8. Let V c E.(f) be a finite index subgroup. Let D and D’ be Colmez domains for

V. We may write D and D' as finite disjoint unions of the same number of simplicial cones
d d
D=\J¢C;, D' =\C], (10)
i=1 i=1

with C] = €;C; for some ¢;€ V,i=1,...,d.

Proof. |5, Proposition 3.15| proves this result when V' = E,(f). The proof of this proposition is
analogous. O

A decomposition as in (10) is called a simultaneous decomposition of the Colmez domains
(D,D").

Definition 2.9. Let (D,D’) be a pair of Colmez domains. A set T is good for the pair (D,D") if
there is a simultaneous decomposition as in (10) such that for each cone C;, there are at least two
primes in T that are good for C;, or there is one prime n € T that is good for C; such that Nn > n+2.

Definition 2.10. Let D be a Colmez domain. If B € F'* is totally positive, then T is $-good for D
if T is good for the pair (D,B71D).

Lemma 2.11 (Lemma 3.20, [5]). Let D be a Shintani set and U a compact open subset of Oy.
Let b be a fractional ideal of F, and let B € F* be totally positive so that 5 = 1 (mod f) and

ordy(B) > 0. Suppose that b and (B are relatively prime to R and that b is also relatively prime to
T. Let q=(B)p %), Then

CR,T(bq7D7 U,O) = CR,T(bvﬁD75U70)'

7



We end this section with a lemma of Colmez that allows us to give an explicit Colmez domain.
Let « be, up to a sign, one of the standard basis vectors of R™. Note that its ray (aR,) is preserved
by the action of R?. We define C,(v1,...,v,) to be the union of the cone C(vy,...,v,) with the
boundary cones that are brought into the interior of the cone by a small perturbation by «, i.e., the
set, whose characteristic function is given by

léa(vl,...,vr)(x) = }}Lr(l)l+ ILC(Ulww”Ur)(CE + hOé) (11)
We use the usual bar notation for homogeneous chains

[l’l | ]wn_l] = (1,:617561.%2,.. X1 ...xn_l).

Let x1,...,2y-1 € F. We define the sign map 6 : F" — {-1,0,1} by the rule

5(x1,...,oy) =sign(det(w(zy,...,x,))), (12)

where w(z1,...,x,) denotes the n x n matrix whose columns are the images of the z; in R". We
adopt the convention sign(0) = 0.

Lemma 2.12 (Lemma 2.2, [4]). Let « be, up to a sign, one of the standard basis vectors of R™.
Let e1,...,en-1 € EL(f) such that V = (e1,...,en-1) € E+(f) has finite index. Suppose that for all
T7€S5,-1 we have
6([er(y | - | 2runy]) = sign(r).
Then the Shintan: set
D= Cullerq)l---lerm-n]);

’TESnfl

is a Colmez domain for V.

The existence of Colmez domains follows from the work of Shintani in [13|. In Lemma 4.5 we
show the existence of units €1, ...,e,-1 € F,(f) that satisfy the conditions of Lemma 2.12.

3 The multiplicative integral formula (u,)

Definition 3.1. Let I be an abelian topological group that may be written as an inverse limit of
discrete groups

I= l(iLnIa.

Denote the group operation on I multiplicatively. For each i € I, denote by U; the open subset of
I consisting of the elements that map to i in I,. Suppose that G is a compact open subset of a
quotient of Ay, . Let f: G — I be a continuous map, and let v be a Z-valued measure on G. We
define the multiplicative integral, written with a cross through the integration sign, by

£ o= T .
i€ly

Let A be a prime of F' such that NA = ¢ for a prime number ¢ € Z and ¢ > n+ 2. We assume that
no primes in S have residue characteristic equal to £.



Definition 3.2. Let @ be a Shintani domain, and assume that A is w-good for D. Define the error
term

e(b,D,7) = [] (0, 20771D,0;) E.(§). (13)
ee 4 (f)

By |5, Lemma 3.14], only finitely many of the exponents in (13) are nonzero. |5, Proposition
3.12] and the assumption that A is m-good for @ implies that the exponents are integers. We recall
from (9) that the measure is defined as

v(b,eD N7 'D,6,) = Cpa(b,eD N7 'D,6,,0).

We are now ready to write down the conjectural formula from [5]. We note that for any Shintani
domain 9 we can always choose a prime A that is m-good for 9. In fact, all but a finite number of
primes will satisfy this property. Henceforth, we can assume that A satisfies the property written
above and is m-good for &. We now give the main definition of this section.

Definition 3.3. Let & be a Shintani domain, and assume that X is w-good for D. Define

up A (0,D) = e(b,%,w)WCR**(Hf/F’b’O)_{Dx dv(b,D,z) € .

As our notation suggests, we have the following proposition.

Proposition 3.4 (Proposition 3.19, [5]). The element uy x(b,D) does not depend on the choice of
generator ™ of p°.

The following is conjectured.

Conjecture 3.5 (Conjecture 3.21, [5]). Let e be the order of p in Gj, and suppose that p© = ()
with 7 totally positive and w =1 (mod f). Let D be a Shintani domain, and let A be w-good for .
Let b be a fractional ideal of F relatively prime to S and X\. We have the following.

1. The element uy (b, D) € FS depends only on the class of b € Gi/(p) and no other choices,
including the choice of D, and hence may be denoted uy \(0y), where oy € Gal(H/F).

2. The element up z(0p) lies in Uy, and uy x(0p) =1 (mod N).

3. Shimura reciprocity law: For any fractional ideal a of F prime to S and to X, we have
up A (0ap) = up A (00)7".

As we noted in the introduction, this conjecture has been proved up to a root of unity (Theorem
1.4).

We want to state the formula over Fyy ® Z[G] to match with the cohomological constructions.

Definition 3.6. We define

up= Yy upa(b,2)®[0;'] € Fy ® Z[G].
beGy/(p)



3.1 Transferring to a subgroup

In this section we recall the results [12], which allow us to transfer to a subgroup. Let V' be a finite
index subgroup of E,(f). Recall that 7 is totally positive, congruent to 1 modulo f and satisfies
(m) = p© where e is the order of p in Gj. Let 9{, be a Shintani set which is a fundamental domain
for the action of V' on R} and assume that A is m-good for @j,. As before, we shall refer to such
Shintani sets as Colmez domains. Let b be a fractional ideal of F relatively prime to S and \.

We define

ur(V,0p) = up A (b, Dy) = [ ] GC’“(b’e%”ﬂ%’GP’O)WCRv*(b’%'V’@P’O)]{]) x dv(b, Dy, ),
eV

and write u1 (V) = ¥pequ1(V,0) ® [071].

Proposition 3.7 (Proposition 6.11, [12]). Let X and X' be two Colmez domains for V. and X\ a
prime of F such that X is w-good for X and R'. If X is also good for (K, R'), then uy (b, H) =
Up7)\(b,3{,).

Let V c E.(f) be a finite index subgroup. The following proposition shows the relation between
ui (o) and up (V,0).

Proposition 3.8 (Proposition 6.12, [12|). Let @ be a Shintani domain for E.(f). Let V be a finite
index subgroup of E.(f). Write gi,...,gn-1 for a Z-basis of E+(f) such that gll)l, . ,gz’i’f is a Z-basis
for V. Define

Then, if by, ...,by—1 > M, where M = M (w,g1,...,gn-1) is some constant that depends on g1,...,
gn-1 and 7 (up to multiplication by an element of E,(f)), we have

up (0, Dy) = up A (b, D) E DV,

4 Preliminaries for the cohomological formulas

4.1 Continuous maps

For topological spaces X and Y let C'(X,Y) denote the set of continuous maps X - Y. If R is a
topological ring we let C.(X, R) denote the subset of C'(X, R) of continuous maps with compact
support. If we consider Y (resp. R) with the discrete topology then we shall also write C°(X,Y")
(resp. CY(X, R)) instead of C(X,Y) (resp. C.(X,Y)).

Assume now that X is a totally disconnected topological Hausdorff space and A a locally profinite
group. We define subgroups C°(X,A) c C(X,A) and CJ(X,A) c C.(X, A) by

C°(X,A)=C%X,A) + Y C(X,K),
K

CS(X’A) = CE(X’A) + ZCC(X’K)7
K

10



where the sums are taken over all compact open subgroups K of A. So C?(X, A) is the subgroup of
C.(X, A) generated by locally constant maps with compact support X — A and by continuous maps
with compact support X — K ¢ A for some compact open subgroup K ¢ A. Similarly C°(X, A)
is the subgroup of C'(X, A) generated by locally constant maps X — A and by continuous maps
X — K ¢ A for some compact open K.

The following notation is used in the formulation of us. Given two arbitary finite, disjoint sets
31, Yo of places of F' and a locally profinite group A we put

G (%1, A)2 = Cr((AF2)*JU 922 A).

where ? € {o,¢,0}. Here, for a set of places S, U denotes the subgroup of A% of ideles (z,), with
local components z, =1 if ve S, x, >0 if v | 0o and x, is a local unit if v ¢ S U Re.

We also introduce a generalisation of the above notation. For Sy,Ss disjoint sets of places of F
let

G(S51,82,4) = Co([T By x (AR /U, 4).
peS1

If S5 is an additional disjoint set of places we also define

62(S1, 52, A)% = Co([] By x (AQIV%8)* [US1952955 4),
peS1

4.2 Measures

We now wish to attach to a homomorphism p : C.(X,Z) - Z[G] an A ® Z[G]-valued measure
on X for any abelian group A and finite abelian group G. We write the group operation of A
multiplicatively. Firstly, by tensoring p with the identity we obtain a homomorphism

pa:Co(X,2)® (A Z[G]) 2 CYUX,A® Z[G]) - A®Z[G]. (14)
To write this map explicitly we first note that the isomorphism in (14) is given by

f®ar a-f, with inverse g — Z (a®ga),
acARZ[G]

where go(x) = 1 if g(z) = o and 0 otherwise. Here we have f € C.(X,Z), o € A® Z[G] and
geCY%X,A®Z[G]). Thus the homomorphism f4 is given by

u@= ¥ (3 T artear).
acARZ[G] \oeG TeG

Where o = Y cqaar ® 7, 11(9a) = Yoeq o (9a)[0] and g, is as defined before. If A is profinite we
can consider the homomorphism

jra = lim i < lim (X, A/K ® Z[G]) > lim A/K © Z[G] = A® Z[C]
K K K

where K ranges over the open subgroups of A. Since C.(X,A® Z[G]) ¢ lim C.(X,A/K ® Z[G]),
we see that 4 extends canonically to a homomorphism C.(X, A ® Z[G]) - A® Z[G] (which we

11



denote by p4 as well). For a general A (not necessarily profinite) we have seen that p induces a
homomorphism C.(X, K ® Z[G]) - K ® Z[G] for every compact open subgroup K c A. Combining
these maps we see that p induces a canonical homomorphism pg4 : CS(X, A® Z[G]) - AQ Z[G].
Define the set of A ® Z[G]-valued measures on X to be

Meas(X, A ® Z|G]) = Hom(C¢ (X, A® Z[G]), A® Z[G)).

The map p +— pa defines a homomorphism Hom(C.(X,Z[G]),Z) - Meas(X, A ® Z[G]).

In practice, we apply certain specialisations of the general construction above. In the defini-
tion of ug we construct p € Hom(C.(X,Z),Z) rather than in Hom(C.(X,Z),Z[G]). We include
Hom(C.(X,Z),Z) into Hom(C.(X,Z),Z[G]) by the map

by s Hom(CC(X’ Z)v Z) - HOII](CC(X, Z)v Z[G])v u (:u)(f) = :u(f)[id]v

for f e C.(X,Z).
In the definition of us we have a measure on A rather than on A ® Z[G]. We include C? (X, A)
into C2(X,A®Z[G]) via the map

2 CJ(X,A) » CO(X, AR Z[G]), w(f)(z)=f(z)®idg,
for r e X.

4.3 Eisenstein cocycles

We now define the Eisenstein cocycle. The cohomological constructions for ue and wus require
different variations.

Write S, for the primes of F' above p that split completely in H. Let Opg, denote the ring of
Sp-integers of F'. For any fractional ideal b c F' relatively prime to S, we let bs, = b®c, OF,s, denote
the O g,-module generated by b. Let

Uc FSp = H Fq
qeSp
be a compact open subset. Let D be a Shintani set. For s € C with Re(s) > 1, we define the Shintani
L-function

reesp((€) !

Sa(D,b,U,5) = (No)™ 3 Nes

feDmbgi}, geU
(&,R)=1
Here recy p denotes the Artin reciprocity map for the extension H/F. It follows from work of

C[a]. (15)

Shintani that the L-function in (15) has a meromorphic continuation to C. Furthermore, for D, b
and s fixed, the values £r(D,b,U,s) form a distribution on Fg, in the sense that for disjoint
compact open sets Uy, Uz c Fg,, we have

'QR(Dv b7 Ul U U27$) = 'SR(Dv b7 Ulas) + ER(Du b: U27 S)'

Let A be a prime of F' such that NA = £ for a prime number ¢ € Z and £ > n + 2. We assume that no
primes in .S have residue characteristic equal to £. We then define the smoothed Shintani L-function

LrA(D,b,U,s) = Lr(D,bA™", U, 5) —recy;p(N) €' °Lr(D, b, U, s).
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Proposition 4.1. Suppose A is good for the Shintani set D. Then for a compact open subset U c Fg,
QR’A(D, b, U, 0) € Z[G].
Proof. The result follows from [9, Page 7]. O]

Let F denote the group of totally positive elements of F. Let Eg, , denote the group of totally
positive units in Og, which we view as a subgroup of F. Let x1,...,2,-1 € F}. Recall the definition
of Ce,(21,...,2,) from (11) and the definition of §(x1, ..., x,) from (12). The following proposition
follows directly from [3, Theorem 1.6].

Proposition 4.2. Let z1,...,x, € Eg, ;. For a compact open subset U c Fg, let
o (T1y - 20)(U) = 0(21, o, 20) LR A(Cey (21, - - -, 7)), 6, U, 0).
Then ppx is an Eg, -invariant homogeneous (n — 1)-cocycle yielding a class
Ko = (o] € H' ' (Es, +, Hom(C.(Fs,, Z), Z[G])).

Remark 4.3. The function pp (21, ..,2,) is viewed as an element of Hom(C.(Fs,,Z),Z[G]) via
the following canonical integration pairing

(Fom) = [ F@du(t) = tim 5 (V)
Fr 1V|-0 vy
where the limit is over increasingly finer covers ¥ of the support of f by compact open subgroups
V € Fg, and ty € V is any element of V.

We define the Eisenstein cocycle associated to A by

h
K = z;recH/F(bi)*lmhi,A e H" '(Eg, +,Hom(C.(Fs,,Z), Z[G])).
i
Here {b1,...,b} is a set of integral ideals representing the narrow class group of Opg, (i.e., the
group of fractional ideals of O g, modulo the group of fractional principal ideals generated by totally
positive elements of F').

For more details on this construction, see §2 of [9]. Note that we use rec}}/ p rather then recy p
to make our formulation of uz consistent with uy, u1 and us. We expand further on this at the start
of §6.

We now give a variation on the Eisenstein cocycle. Let E,(f), denote the group of p-units of
that are congruent to 1 (mod f). The abelian group E.(f)y is free of rank n. For x1,..., 2z, € E,(f)y,
a fractional ideal b coprime to S and ¢, and compact open U c F},, we put

y’[f’)\(azl,...,:nn)(U) = 6(1‘1,...,mn)CR7,\(b,661(1:1,...,mn),U,O).

Here, the Shintani zeta function is defined in (8), ¢ is defined in (12) and C, (21, ..., ) is defined
n (11). Then ¢} , is a homogeneous (n—1) on E,(f), with values in the space of Z-distribution on
F,. This follows from [3, Theorem 2.6|]. We obtain a class

Wy = [Voa] € H'H(Ei(F)p, Hom(Co(Fy, Z),Z)).

"y

13



Here I/E’ ) is viewed as an element of Hom(C.(Fy,Z),7Z) via the integration pairing from Remark

4.3. We also define

W= 2 1”eCH/F([’)_1‘*’%0,11,,\ e H" (B, (f)p, Hom(C.(Fp, Z), Z[G])),
[b]eGs/(p)

where the sum ranges over a system of representatives of Gj/(p). This construction is adapted from
the construction of wE ) in §3.3 of [9].

We write W for F' considered as a Q-vector space, and Wo, = W ®g R. As before, let A be a
prime of F' such that NA = ¢ for a prime number £ € Z and £ > n + 2. We assume that no primes in
S have residue characteristic equal to £. Let W, =W ®g Q.

Define gb)\ € CC(WK,Z) by gb)\ = ]l®F®Z4 —f]l,\®ze, i.e.

1 if ve (Op ®7Z¢) — (A®Zy),
o) ={1-0 ifveraz, (16)
0 if veVy—(0Op ®Zy).

By fixing an ordering of the infinite places, v € Rs, we fix an identification Wy, = R™. Let
v € Ro be the infinite place corresponding to the standard basis element e; € R™.

We define F*¥ as in §2.1. If D is a Shintani set and ® € C.(W5,Z) then, following [8], we define
the Dirichlet series

L(D,®;s) = ‘;D@(U)N(v)_s. (17)

It is known to converge for Re(s) > 1 and extend to the whole complex plane except for possibly a
simple pole at s = 0. Moreover, if D and ® are as given in the following proposition then L(D, ®;s)
is holomorphic. We remark that the set S does not appear in the definition of this Dirichlet series.
In the following proposition we will decorate the L-function with A since the choice of ® incorporates
A into it.

For a subgroup H € F*¥ and an H-module M, define M(8) = M ® Z(5). Thus M(5) is the
group M with H-action given by z-m = §(x)xm for x € H and m € M.

Proposition 4.4. Let wy,...,wn € F“V. For a map ¢ € Ce(Won, Z), let
Eis%k(wl, o wn) (@) = 0w, wn) LA(Cey (w1, - . ., wp), @30),
where ® = ¢ @ ¢). Then EisOFA is an F“V-homogeneous (n — 1)-cocycle yielding a class
Eis},y € H" ' (F%, Hom(Ce(Wg, Z), Z)(9)).
Proof. This proposition follows the combination of [8, Definition 4.5] and [8, Lemma 5.1]. O

4.4 Colmez subgroups

In the definitions for the Eisenstein cocycle and its variants the sign map § appears. For the explicit
calculations we want to perform later it is convenient if we can work with a finite index subgroup
V ¢ E, such that V = (g1,...,gn-1) and that we are able to choose 7 such that, after writing g,, = 7,
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e for 7 €S, we have 6([g-(1) | --- | 9r(n-1)]) = sign(7).
We refer to such subgroups as Colmez subgroups. We define
Log:RY = R", (z1,...,2,) ~ (log(z1),...,log(xy)).

Let # c R™ be the hyperplane defined by Tr(z) = 0. Then, Log(FE,) is a lattice in #. If z =

(21,-..,2n) € RT? and Log(z) € R™ is not an element of #, then we define the projection
1

zge=(21...2n) " - 2.

We have Log(z%) € #. Note that z and zg lie on the same ray in R}?. For any M > 0 and
i=0,1,...,n—1, write [;(M) for the element of # which has value M in the (i + 1) place and
-M/(n-1) in the other places. We endow R™ with the sup-norm. We denote by B(z,r) the ball
centred at = of radius r.

The following lemma, which builds on [4, Lemma 2.1], allows us to find a collection of possible
subsets V' = (g1,...,9n-1) such that we get a nice sign property that allows us to more easily
explicitly calculate the Eisenstein cocycle.

Lemma 4.5. There exists Ry > 0 such that for all R > Ry, M > Ki(R) (where Ki(R) is some
constant we define that depends only on R) we have the following: Fori=1,...,n-1 let g; € E,
and gn = gr € T E+ such that Log(g;) € B(l;(M),R) and Log(g,) € B(lo(M),R). Then

e (g1,...,9n-1) € E+ is a finite index subgroup, and

e For 7 €S, we have 6([gr(1) |- | gr(n-1)]) = sign(7).

Proof. This proof largely follows the ideas of Colmez in his proof of [4, Lemma 2.1]. First, note
that both Log(E.) and Log(me E,) are lattices inside #. There exists a constant Ry = R(E,,7)
such that for all M >0 and any r > R(E,, ) there exist g1,...,gn-1 € Fy and g; € my F, such that
Log(gi) € B(li(M),r) fori=1,...,n -1 and Log(gr) € B(lop(M),r). The existence of R; follows
from Dirichlet’s Unit Theorem and, in particular, the non-vanishing of the regulator of a number
field. Since the [;(M) form a basis of #, the Log(g;) form a free family of finite index in Log(E. ),
if M is large enough relative to r, say M > k(r).
Now take M satisfying:

i) M>2(n-1)%r,
i) M > (n-1)2log(n!),
i) M > k(r).
For simplicity, let K1 (r) = max(2(n—1)*r, (n-1)%log(n!), k(r)) so that we only require M > K1(r).

Let A =det([g1]|.--]|gn-1]). Put E; = exp(M(1 - ;L;_Ql)) and F; = exp(—M(%)). Hence, the
matrix given by [g1 | ... | gn-1] is written
1 BioFy Pigks ... Pinky
L BopEa Pasks ... Ponkn
1 B3oF> f33Es ... PsnEn
1 BapFo PasFs ... [spEn|’
1 Bn,QFQ Bn,SFS o Bn,nEn
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where by 1),
-M M
e2(n-1)3 « /Bij < e2(n-1)3

Expand A and isolate the diagonal term; using the bounds we defined previously we obtain

nM = M M2 n
|A-e2 Hﬁm |< (n!-1)e2n-D%e (335
i=2
and so
nM =M _ (L_M
A > 67(62(71_1)2 — (n' — 1)6 2(n—1)2 n-1 ) > 0
according to ii). We then show the other required sign properties in the same way. 0

It is required in our later calculations to make the following sign calculation.

Lemma 4.6. Fori=1,...,n—-1 let g; € E, be chosen as in Lemma 4.5. Write S for the n xn
matriz with rows Log(g1), ..., Log(gn-1),v0 where vg = (1,...,1) e R™. Then, if M > 4(n!-1)R, we
have

sign(det(S)) = (-1)" L.

Proof. We have

M M M
b + Bl,l M + /3172 b + 61,3 cee o T + ﬁl,n
M
b + ﬁ2,1 b + /8272 M+ 6273 cee o TR + 62,11
M M
s=| “wrt B31 i + Bs2  —i + B33 oo T * B3.n ,
o . u : v : ‘. :
-1 + ﬁn—l,l T -1 + Bn—l,? -1 + ﬁn—l,?; coo M+ /Bn—l,n
1 1 1 1

where ~R < 3; ; < R. We now subtract the first column from each of the other columns and expand
the determinant along the bottom row. This gives, after letting B; ; = 5; ; — Bi.1,

nh+ Big MBI,S .. Bin
nM
devs= (- aer| P e B (19
Bn—1,2 Bn_l,z S Z—i\/‘{ + Bn—l,n

Write S’ for the matrix in (18) and note that -2R < B;; < 2R, for all 7,5 = 1,...,n—1. When
expanding the determinant of S’ and isolating the diagonal terms using the bounds from before, we

observe:
nM

n-1

n—2
+ Bz‘,i+1) |S (n' - 1)2R( n]\ll + ZR) .

n —

n-1
| det(S") - g(

Thus,

n-1 n-2
dets’z("Ml —2R) —(n!—1)21wz(”M1 +2R) .

n-—

Since we have assumed M > 4(n!-1)R we have

n-1 n-2
detS'>(nM M ) M(nM M )) ‘

- -— +
n-1 2(n!-1) 2 \n-1 2(n!'-1
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It thus remains to show that for n > 2 the following holds

n 1\ 1 on I
(n—l_Z(n!—l)) _i(n—1+2(n!_1)) > 0. (19)

Firstly, one can see by calculating that the inequality holds for n = 2. Remarking that as n increases

the difference between the two terms in brackets decreases, gives that the value of the left hand side
of (19) must increase with n. Thus (19) holds. O

We now let Ky(R) = max(K;(R),4(n!—1)R) so that both Lemma 4.5 and Lemma 4.6 hold if
M > Ko(R).

Corollary 4.7. Let r > 0 be an integer, D, an r x r diagonal matriz with positive entries, A €
M (R) and S as in Lemma 4.6. Then the block matriz

has determinant of sign (—=1)""1(=1)7 (=1

Proof. Write d1,...,d, € Ryg for the diagonal entries of D,. Using cofactor expansion with the last
r columns of B one can see that the determinant of B is equal to

det(S) [T di(=1)*7+G) = det(S) (~1)" ™D [] d.
i=1 1=1

Using Lemma 4.6 and the fact that the entries of D, are positive, the result follows. O
We recall the definition of k(r) from the proof of Lemma 4.5 and note the following lemma.

Lemma 4.8. We can choose k(r) = Kr where K is some constant that does not depend on r. Le.,
suppose v > Ry and M > Kr, if fori=1,...,n—-1, we have g; € E, with Log(g;) € B(r,l;(M)) then
the Log(g;) form a free family of finite index in Log(E.).

Proof. We claim that it is enough to take K = 2(n —1). For each ¢ = 1,...,n -1, let Log(g;) €
B(r,1;(M)). We then write
Log(g;) = (ai(1),...,a;(n)) e Z.

It is enough to show that the Log(g;) are linearly independent under the projection
©:H - R
(a1, ... apn) P~ (a1, Q1)
By the definition of I;(M) and our choice of r it is clear that
ai(j)>0if j=i+1 and «;(j) <0 otherwise.
We note that a,_1(j) <0 for all j. It follows immediately that the vectors

¢(Log(g1)), .-, p(Log(gn-1))

are linearly independent. Thus the Log(g;) for a free family of finite index in Log(E.).
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It follows from the above lemma that if M > Ky(R) then for any A > 0 we have that AM >
Ks(AR).

Lemma 4.9. There exists
1. Ry, Ry > Ry,
2. My > Ky(Ry) and
3. My > K>(Ry),

such that we have the following. Firstly, for i = 1,...,n—1 we can choose f;,g; € E. such that
Log(fi) € B(li(My),R) and Log(g;) € B(li(My), R). Furthermore, after writing

Vi={fi,--- fa1) and Vy=(g1,...,9n-1)
we have that [E, : V] is coprime to [E, : Vg].

Proof. We firstly choose the f; € E, via Lemma 4.5 and Lemma 4.6, and let Vi = (f1,..., fu-1). Le.,
we have Log(f;) € B(l;(My), Ry) for some Ry > Ry and My > Ko(Ry).

By writing the matrix representing the generators we have chosen for V; in an upper triangular
form, we can make the following choice of generators of E,. Let (d1,...,d,-1) = E, such that for

some T € .S,_1 we have, fori=1,...,n-1,
i1,
— 5% 2%
Friy = 6 T105™,
j=1

and [E: : V;] = TI' | a; |- By changing the sign if necessary we choose a; > 0. Furthermore,
we note that changing the values of the b;; in the choice of V; does not change the index of the
subgroup.

For ease of notation, let a = [T%' | a; |. For i =2,...,n—1 there exists Ry; >0 and My; >0
such that for all M > M ;, there exists a € B, with Log(a) € B(l-;(M), Ry,;) and

i—1 i

_ S J

=0, H(;j )
J=1

with ¢; a nonzero integer with absolute value coprime to a. We note that this is only possible for
1 > 2 since we require the freedom of having at least one additional component we can vary.

We now consider i = 1. We have Log(f;(1)) = Log(d7") € B(l1(My), Ry). Therefore any ¢ > a;
we have Log(d{") € B(L-11(My), L-Ry).

Now let R; = max(Ri1,Ry2,...,Rgn-1) and Mé =max(Myo2,...,Mypn-1). We now find g1 > a1
which is coprime to a and such that %M £ > M, and %Rf > Ry,

We now fix Ry = %Rf and M, = Z—lle. Clearly R, > Ry and it follows from Lemma 4.8 that
My > K3(Ry). We then choose g-(1) = 6{', it is immediate that Log(g-(1)) € B(l1(My), Ry). For
i=2,...,n~1, we have shown that there exist g,(;) € £y with Log(g-¢;y) € B(l-(;)(My), Ry) and

=
r(iy = 07 1—115/7
]:

with ¢; a nonzero integer with absolute value coprime to a. Let V; = (g1,...,9n-1), the result
follows. 0
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4.5 1-cocycles attached to homomorphisms

Let g : Fy — A be a continuous homomorphism, where A is a locally profinite group. We want
to define a cohomology class ¢, € H 1(Fp*,C'c(Fp,A)) attached to g. We define an Fy-action on
C.(F?,7) by (zf)(y) = f(z71y). The following definition is due to Spief and first appears in [14,
Lemma 2.11]. This definition is crucial in making the constructions of the first author and Spief’s
cohomological formulas work and we also remark that the definition is unusual in that it appears as
though the cocycle z, should be a coboundary. However, it may not be a coboundary since g does
not necessarily extend to a continuous function on Fj.

Definition 4.10. Let g : FJ - A be a continuous homomorphism, where A is a locally profinite
group. Let f e C.(Fy,Z) such that f(0) =1. We define ¢4 to be the class of the cocycle

2pg Fy = Ce(Fy, A)
defined by zyq4(x) = “(L-2)(g- f)”, or more precisely

zp9(@)(y) = () () - 9(x) + ((f -2f) - 9)(y) (20)
forx e F7 and y € Fy,.

The second term in (20) is allowed to be evaluated at 0 € F}, since we can extend continuously
the function from F" to F} as

(f -2£)(0) = 0.

The class ¢y = [27,] € H'(F;,C.(Fp, A)) is independent of the choice of f € C.(Fp,Z) with f(0) =
1. In particular, we can consider the class c¢iq € H'(F, y,Ce(Fy, Fy)). For more details on this
construction, see [8, §3.2] and |9, §3.1].

4.6 Homology of a group of units

Recall that ), is the set of primes of F' above p that split completely in H. We label the elements
of Sy by p1,...,pr, i.e., we let r = #S,. Now let 0 <k <7 be an integer and write

Sk = {pla"'apk}‘

Here we have Sp = @. By Dirichlet’s unit theorem, the group of totally positive Si-units Eg, . is
free abelian of rank n + k — 1. Thus the homology group Hy+x-1(Es, +,Z) is free abelian of rank 1.
In the comological formulas uy and us we are required to choose a generator of the homology
group with the correct choice of sign. Let E, = (e1,...,en-1). Recall we have written Gj for the
narrow ray class group of conductor §. For ¢ = 1,...,r, let e; be the order of p; in Gj, and write
p;" = (m;) with m; =1 (mod f) and 7; totally positive.
For ease of notation, write m; = €,-11;. We then choose the following generator for the group
Hn+k—1(ESk,+7Z)a
ns, =k, sign(T)[eray |-l ergar-1)] ® 1. (21)

T€Sn k-1
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Here 1 = £1 and is equal to the sign of the determinant of a specific matrix. For k =0,...,r, let
Ly = Log x ordy, x---xordy,. Le., for x € Eg, . we define

Ly(z) = (log(o1(z)),...,log(on(z)),ordy, (x),...,ordy, (x)).

Then p is the sign of the determinant of the matrix with rows

Lk(Trl), e ,Lk(ﬁk),Lk(El), ce ,Lk(En_l),L(l).

Here L(1) € R"**~1 is the vector with 1 in the first n—1 components and 0 in the last  components.
This choice is as given in [15, Remark 2.1] in the case k = 0.
Let V c E, be a finite index subgroup. Let V = (e1,...,e,-1) and write

ng =Ve <7T1,.. .,7Tk;>.
Similarly to (21) we choose a generator

N8,V € Hpsk-1(EBv,, Z). (22)

5 Cohomological formula I (u2)

This section follows the construction given in [8, §3.1]. Throughout this section we use the notation
established in §4.1. Let 7, be the generator of H,(Ey +,Z) as defined in (21).

Let F be a fundamental domain for the action of F*/E, , on (A%)*/U?. Then lg is an element
of HY(Ey+,C(F,Z)) = (C(F,Z))"+. Taking the cap product gives 1g nny € Hy,(Ep s+, O(F,Z)).
We now define ¥ € H, (F*,6.(2,Z)") as the homology class corresponding to 1g nn, under the
isomorphism

Hy(Eyp,, C(F,Z)) 2 Ho(F*, Co((A})" /U, Z)) (23)

that is induced by C.((A%.)*/U?,Z) = Indg;C(?F,Z).

We now follow the construction of [8, §6]. Since the local norm residue symbol for H/F at p is
trivial we omit it from the reciprocity map, i.e. we consider the homomorphism

recl;-I/F : (A%)* -G Z[G]", z= (wv)vﬁp e H(w,H/F)U
VEP

Let R = R - Ro. We can view rec”

w/p 88 an element of HO(F*,8(R',Z[G])") and denote by

pr/r € Ho(F*,6(R', Z[G])")
its image under the map
HY(F*,6° (R, Z[G])") > Ha(F*, (R, Z[G])P), ¢~ 1ndP.
Here the cap product is induced by the map

€° (R, Z[G])" x 6:(2,2)" > 6. (R, Z[G])", (v,¢) > ¥ -9, (24)
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here 1 - ¢ denotes the function zUR'Y s ¢ (zU R P)p(2UP).
For a locally profinite abelian group A we have a canonical map

Ce(Fp, A) ® 6o(RZ[G]) > 6. (0, R, AR Z[G]), (f.9)~[f®y.
which induces a cap-product pairing
H'(F*,C2(Fy, A)) x Hy(F”*, (R, Z[G])") » Hoo1 (F*, 82 (p, R, A® Z[G])).
In particular we can consider
cid N puyr € Hoa (F7,62(p, R, Fy ® Z[G])).

Here c¢jq is as defined in Definition 4.10. Now choose v € R to be the infinite place corresponding to
the standard basis element e; € R™. Write R, = Roo —{v}. Recall that we write W for F' considered
as a Q-vector space. In [8, §5.3], the following map is defined.

Ayt Ho 1 (F*, 62 (0, R Fy @ Z[G])(6)) = Huoa(F5V,CS (W, Fy @ Z[G])(6)).

We postpone giving the definition of A, until the next section.
Now consider the canonical pairing, where we recall the definition of i fou from §4.2,

Hom(Ce(W7a, Z), Z) x CZ(Wan, Fy ® Z[G]) » F ® Z[G], (. f) = prs (f)- (25)
Noting that F“? is acting trivially on Fy ®Z[G] we see that (25) induces, via cap-product, a pairing
n: H" N (FY, Hom(Co(Wan, Z), Z)(6)) x Hu1 (F©Y,C5 (Won, By ® Z[G])(0)) » Fy ® Z[G]. (26)

Recall the Eisenstein cocycle, Eis%y)\, from Proposition 4.4. Applying (26) with the Eisenstein
cocycle Eish = Eison)\ and A, (cia N pg/p) we obtain an element ug = ug ) € Fy ® Z[G],

ug =ugx =y, uz(o) ® [071] = Eis% n A, (cg n PH/F)- (27)
oeG

The first author and Spief then conjecture that the element uy(o) is equal to the image of the
Gross-Stark unit in Fy under 0. We end this section by stating some known properties of this
construction.

Proposition 5.1 (Proposition 6.3, [8]).  a) For 0 € G we have ordy(u2(0)) = (rr(0,0).

b) Let L/F be an abelian extension with L 2 H and put g = Gal(L/F). Assume that L/F is
unramified outside S and that p splits completely in L. Then we have

us(o) = ] we(L/F,T).

TEY,T|g=0

¢) Let ¢ be a nonarchimedean place of F with v ¢ SUT where T is as defined in (4). Then we
have
uz (S U {t},0) = ug(S, 0)ua(S, 0. o) .
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d) Assume that H has a real archimedean place w + v. Then uy(c) =1 for all 0 € G.

e) Let L/F be a finite abelian extension of F containing H and unramified outside S. Then we
have

recy(uz(0)) = H 7-CS,T(L/F,T’I,O)‘

TeGal(L/F)

T|g=0"1

Remark 5.2. In the proposition above we correct a small typo in [8, Proposition 6.3, ¢)| by replacing
oy with o 1.
5.1 The map A,

We now define the map A,. For more information and the more general construction we refer to
8, §5.3].

Throughout this section we let A = FJ ® Z[G] to ease notation. For sets X, X5 and a map
P X1 x Xo > A, we write

Supp (X1, Xo,9) = {71 € X1 | Jz2 € X with (21, 22) € supp(¢)}.
Where supp(7)) is the support of .

Proposition 5.3. Let X1, Xy be totally disconnected topological Hausdorff spaces, with X1 discrete.
Let A be a locally profinite group. The map

Ce(X1,Z2) ®7 CZ (X2, A) » CZ (X1 x X2, A), (28)
fegr ((z1,22) » f(z1) - g(22))
18 an isomorphism.

Proof. We calculate the inverse map as follows. Let Y7 = Supp(X1, X2,v) € X;. Note that Y7 is
finite since v has compact support. Then

P Y 1y @z1(y,) € Co(X1,Z) 7 CF(Xa, A)
yeYi

provides an inverse to (28). O

Corollary 5.4. Let S1, S be finite disjoint sets of finite places and let S3 be a set of infinite places.
Then there exists an isomorphism

62 (S1, 52, A) - C(F§,|Usy, Z) ® 62 (S1, S2, A)5. (29)

Proof. Since we have

H Fp % (A?})*/U&USQ _ ( H Fp % (A?USg)*/U&HUSQUSg) X Fé«rg,/US3
peSy peSt

and F§3/ Us, is finite, we are able to apply Proposition 5.3.
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For every w € Ro, we write &, : Fy;, — {£1} for the sign map. We also put Fry, = [Tyery Fiw and
define
5Rgo F;%},’o - {il} by (xw)weRgo = H 5w(Iw)-

weRY,
Recall that for a subgroup H ¢ Fy,, and an H-module M, we write M (dgy ) = M ® Z(Jgy, ). Thus
M(6) equals M but with twisted H-action given by x-m = dgy (z)azm for x € H and m e M.
Tensoring the (Fj, -equivariant) homomorphism

C(Fry,/Ury,2) = Z(0ry,), [+~ Z; Ory, (2)f(2) (30)
xeF}’;go Ury,

with 1d<—60( (s}, R/, A)R% We obtain, via Corollary 5.4, an (AF) -equivariant map
B ({p}, R, A) > 6. ({p}, R, A) ™= (dpy). (31)
We now calculate this map explicitly.

Proposition 5.5. Let 1 € 6°({p}, R, A). The image of 1 under (31) is given by
> Ore (W)Y (Y, )

yeyr
Here y(y,-) € 67 ({p}, R, A)"*~.
Proof. The result follows from Corollary 5.4 and (30). O
Proposition 5.6. We have
Hooa (B, 62 ({0} B A) ™ (0ry,)) 2 Hoca (F0, 62 ({p) R AN (9)). (32)

Here § is as defined in (12). Furthermore, if we write

k
= Z[gi,l | s | gi,nfl] ® wl € HH*I(F*v%g({p}7R,7A)ROO (5Rgo))
i=1

then the image of U under the isomorphism in (32) is represented by
k
Yoo > felginle 1 gin-1] @0 (fo)vi(fyy,s)-
1=1 fEF*/FXUU

Here f5 , is the image of f in [1, 5., Fuw and ¥i(f5,,") € C6?({]3},R',A)X"X’(é).

Proof. 1t is easy to see that

€ ({p}, R, A" (5pe ) ~Ind§ e (o) B AV (6) 2 Tnd P G2 (o}, B, A)(5).

Aup, oo (AUU)\)
Thus, by weak approximation we have

B ({p}, R, A) e (3, ) = Ind "5 62 ({p}, R/, A)N(5).

FAuv

The result follows by Shapiro’s lemma. The explicit description of the map follows simply by tracing
through the definitions. O
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The last map we need to construct before giving the definition of A, is the (A)I}’OO)* -equivariant
map

AY 62 ({p}, B, AY® > C2(AN®, A) = C2 (Wi, A). (33)

Recall that we have written S’ = R'u {p} and A)}‘,’w = W5,. There exist canonical homomorphisms

Co(Fy x [] FfA) ®6.(2,2) N » 68 ({p}, R, AN, (34)
qeR’

C2 (T Fyp A) ® Co(AS®,Z) - C2 (AN, A). (35)
qeS’

By Proposition 5.3 the map (34) is an isomorphism. Let FS'UX denote the group of fractional
ideals of F' that are coprime to S’ U \. Since (Agux’m)*/US/UX"><> is isomorphic to .5V, the ring
6 (2, Z)Slux’j" can be identified with the group ring Z[JS/UX]. We define (33) as the tensor product
A% =i ® I°9 where i : C2(F, x Maer Fys A) = C2 (Igesr Fy, A) is the inclusion map induced by
extension by 0 and I : Z[JS'UX] - CC(Agux’W,Z) maps a fractional ideal a € .F5'9* to the
characteristic function of @A = a(I'LJ ¢5rux Op ), which we denote by char(a(T],.q/ 5 Op))-

For functions f : X1 - A and g : Xo — Z we define the function f ® ¢ : X1 x Xo - A by
(fog)(z1,72) = f(21)g(x2).

Proposition 5.7. If ¢ € 82 ({p}, R, AN then

AZ(9) = 3 ez hochar| [T an™EI( [T 6,) e Co(AR™,A),
zeZ w finite peSTUX

where the sum ranges over Z = Supp((Af;lux’m)*/US’UX“”,IﬂJ x [ger Fy ).

Proof. Let 1 € €2({p}, R’ ,A)X‘”, and define Z as above. Then the image of 1) under the inverse
map of the isomorphism (34) is

(U Z Y(2,-) ® 1.

zeZ

To calculate the effect of ISV, first note that the isomorphism 5% — (Af;U)"m)"/US'UX’“’ is
given by

where Sy, is the set of places that divide m and m(q) is the integer such that the fractional ideal
q’m(q)m is coprime to q and 7y is a uniformiser associated to the prime ideal q. We then view the

image as an element of (Agw"m)* JUS U, 00 by imposing that at the places away from Sy, the value
is 1. Thus when we identify 8%(2,Z)5" "} with Z[.95"Y*] we map

o Z o( H W?(q))m € Z[JS,UX].

megS'Ux  g€Sm
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Applying S'UX we have
> ([T mme ¥ oI 73 ) Laq, goson-
megS'Ux  g€Sm meFSUX  g€Sm

: N
Returning to ¢» we have under the map Ajg

(e Z w(z,')! ® Z ]12( H ﬂgl(q))lm(npés’ﬁ%)

2eZ me.gSUx 9€Sm
- Y u oy echar| [T a I [T o).
zeZ v finite péS’UN

Lastly, the image of the above under the map (35) is:

S oz yodar| [T a7 ] 6,)].
z€eZ v finite pES’UN

We are now able to define A, via the composition

* S / * (31)* * o / * v
A*:Hn—l(F 7C€c({p}7R 7Fp ®Z[G])) > Hn—l(F 7C6c({p}aR 7Fp ®Z[G])Rw(53&))
(32) AU o I o 2,00
= H, 1 (FM, 62 ({p}, R, Fy @ Z[G])™(9))

O Hoa (P2, C2 (W, Fy 9 ZIGT)(9)).

5.2 Transferring to a subgroup

Let V' be a finite index subgroup of E.. Let 7,1 be the generator of H, (V @ (7),Z) as defined in
(22). Let Fy be a fundamental domain for the action of F*/(V @ (r)) on (A%.)*/UP. Then 1g, is
an element of HO(V & (r), C(Fy,Z)) = (C(Fy,Z))V® ™) Taking the cap product then gives

ﬂgv NNy, v € Hn(V (&) <7T>,C(97v,Z)).

We now define 9}, € H,(F*,6.(2,Z)") as the homology class corresponding to 1g, N7,y under

the isomorphism
Hy(V & (1), C(Fy,Z)) = Hy(F*, Ce((A%)* /U, Z)) (36)

that is induced by C.((A%.)*/UP,Z) = Ind‘@;(W)C(EIV, Z). As before we view rec’;{/F as an element
of H'(F*,6(R’,Z[G])") and denote by

prry € Ho(F*,6(R, Z[G])")
its image under the map
HO(F*,%° (R, Z[G])") > Ha(F*, 62 (R, ZIG]P), > v,
Here the cap product is induced by the map (24). We then define

uz (V) = Eis% N A, (Cuniy N PH/FV)-
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Proposition 5.8. Let V' be a finite index subgroup of E.. Write
ug = Y u(o) ®c .
oeGG

Then

us(V) = a1 = Sy (o) BV @ o7
oeG

Note that, since F,f ® Z|G] only has an operation as a group, we have (Lyei o ® 0)" = Y peq ay ®0.

Proof. We mimic the proof of [3, Theorem 1.5]. For ease of notation we define
A=F ®Z[G] and Meas(Wy\,Z) = Hom(Ce(Wyy,Z),Z)(9).

General properties of group cohomology (see [1, pp. 112-114]) yield the following commutative
diagram.
H'(Ve(r),C(Fv,Z)) x Hy(Ve(r),Z)> H,(F* C(A%)* /U, Z))
resT J/cores J/id (37)
HOE,p CF,2))  x  Ha(EopsZ) — Ha(F*, C((A3)" U, 7))

The cap-products in the top and bottom rows above include applying the isomorphisms (23) and
(36), respectively. By Proposition 9.5 in [1, §3|, we have following identities,

cores(np,v) = [Evp: V],

res(lg) = 1g, .
Applying these identities with diagram (37) gives
O, = [Eyp: V]OP.

The proposition follows. O

5.3 Explicit expression for u,

Let V ¢ E, be a finite index subgroup such that if V' = (e1,...,¢,-1) the &; and 7 satisfy Lemma
4.5 and Lemma 4.6. For ease of notation we write €, = 7. In this section we calculate the value of
uz(V) = Eis% n A, (cig N pr/Fv) as an explicit multiplicative integral.
Following §4.6 and Corollary 4.7, we choose the following generator for H,(V & (7),Z),
M,V = (—1) Z sign(T)[sT(l) | e | 67_(”)] ® 1.

T€SH
We then calculate
O =1z, Ny = (=1) Y sign(r)[er)y - | er(n)] ® Lgy.
T€ESH

Thus,
PHIFV = rec’;I/F Ny = (1) Y sign(r)[erqy |- | ern)] ® (rech/F gy, ).

TESH
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Here rec”

HIF 1g, is as defined in (24). It then follows that ciq N py /Fv is equal to

canpppy = (1)"(=1) Y sign(n)[eray |- | ern-1)]®

T€SH

((57(1) - Er(n-1)) " Zid(Er(n)) @ (rech - ﬂ%)) - (38)

Note that we have the action (z-f)(y) = f(yx™!) for a continuous map f and unit z. We also recall
the definition of z;q = 21, ,id from §4.5. Then zjq(e,(n)) € Cg(Fp,Fp*). We now apply the map A,
to this quantity. In §4.2.1 A, is defined via the composition of three maps namely (31)., (32) and
(33)+. By Proposition 5.5 we have that the image of c¢iq N ppg/py under (31) is given by

(-)" Y sign(T)eray |-l erno1)]®

T€SH

((87'(1)"‘sT(n—l))'zid(ET(n))® ; 5R&(y)(reC§1/F(y,')'Il%(ya'))), (39)
V€Yo (n)

where
Yo (ny = Supp(Fpee [Uns,, By x (A% =) [USVR ).

Here, for ease of notation we have written

wT(n) = (57'(1) s 87'(71—1)) ’ Zid(g‘r(n)) ® (I'GC’;_I/F ) ]I?FV)‘

It is now convenient for us to make a choice for Fy. Let Gy denote the group of fractional ideals of
Oy modulo the group of fractional principal ideals generated by elements of V', where O, denotes
the ring of p integers of F. Let {by,...,b,} be a set of integral ideals prime to R’ U X representing
Gy . We may then choose

Fy = {bUP,... bU"}

where by,...,b € (A’})* are ideles whose associated fractional Opp-ideals are by ®q, Oy, ...,

by, ®6, Opp. For i =1,...,h we can choose the b; to be totally positive and prime to R’ U . This
description of Fy is similar to a construction given in [9, Page 14|. From this description of Fy we
have that Y.,y is trivial for all n. Thus (39) is equal to

n i Ry, 4 RY
(_1) + Z Slgn(T)[eT(l) | s | 6fr(n—l)] ® ((57(1) cee 6T(n—l)) ’ Zid(ar(n)) ® (rectj;/p ’ ]lg«‘v )) : (40)

TESH

We now apply (32). By Proposition 5.6 we have that the image of (40) under (32) is equal to

D"t sign(n) flery |-l ermen]®

T€SH fEF*/FXUU

((r1) - Ertnon) - 2 (Enny) ® Bulfo) (rechy 1= () - Ty (fe))) - (41)

By our choice of Fy we have that ]lg‘g/" (f5Lp>?) =0 unless f =1 (mod FXU”). Hence (41) is equal to

(D)™ Y sien(M)eray |-l eren] ® ((€T(1) e Er(no1))  Zid(Er(n)) ® (YGC’;}J/A}M S E ) (42)

T€SH

27



We can now finish calculating the effect of A, on ciq N pg/py by applying (33) to (42) and using
Proposition 5.7 to calculate that A, (ciq N ppyry) is equal to

(<113 sign(n)eray |- | ruone

T7€SH

((57(1) .. '57—(71—1)) . Zid(ET(n)) ® Z (rec';;/);oo(z ) IL)‘UOO(,Z7 )
zeZ

ochar[ ] q@d«Go)( TT 6,)|]. (43)
w finite p¢S’UX

Here

S'UN, 00 * "UX, 00 *
Z=Supp((AFU ) /USU)\ 7F}JX U%an¢7(n))
qeR’

Also, VYrny = (67(1) -+ - Er(n-1)) - Zid(Er(n)) ® (recﬁf;m Il’\u"") We now apply the measure Eis%

to Au(cia N ppyry). Recall that the measure is defined in (26). We write pp: for the measure
with values in F,’ ® Z[G] induced from the Eisenstein series Eis%. We now consider the function
(Er(1) -+ Er(n-1)) - #id(E7(n)). For ease of notation we define, for 7€ S, and 2 € Z,

¢T(n),z = (57(1) s 6‘r(n—l)) ’ zid(g‘r(n)) ® Z (rec’;;/)\;m('z? ) ’ ]l‘j"L‘J/oo(Zv ))
zeZ

ochar| [] qordw (o) ( IT ©)

w finite pESTUN

We are then able to calculate, recalling that ziq = 214, ,id;

lo-idps + Lro, -7 if 7(n) =n,

((erq1y - Er(n-1)) - #id(Er(n)) = { (44)

ﬂw@p “€7(n) if T(n) Fn.

To calculate the measure we first note that Fyy = (7) ® O and that O = limy;, 0o O/1+p™G6,. By (44)
we are able to calculate the value at m and O separately. Let m >0 and a € O/1 + p™0,. We write
Ua = a(1+p™0y). For o € G, we define the following maps

qﬁﬂ@‘fl :Wzy > Z, and d)Ua@U :Wan — Z,

by
- 1 if¢n,z(a:)=7r®a—1, o 1 if ppo(x) eUy®07t,
612 (x) = 0= () =
0 else, 0 else.

For 7 € S,, with 7(n) # n we also define

T(n)®o—7

B 1
n,z . W’Z\)\ -7

T(”) # 0 else.

T(’n)®0 (z) = {1 if ¢T(n),z(‘r) =&7(n) ® 0_17
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The construction of the measure given in §4.2 now allows us to calculate

Eis% N (A*(Cid ) :OH/F,V)) = (_1)n+1(_1)(n—1)(n—1)

2| X sign(r) lim ( > Eisﬂwz,z@“)(a@a-l)) +E) (0127 (o)

zeZ 0G| T€Sn aecQ/(1+p™O0yp)
7(n)=n
. . r(n ®o! _
+ Z mgn(T)ElSE(qZ)i(;l))’Z Y(Ermy® 0 1) . (45)
Sn
7'7(—761)#1
Here we have written Eis? = Eis%([eT(l) | |l er@m-1)])- Let

U, ®o~ -1 ermy®o !
¢€{¢nfz®g ) Z(,sz ; nq,—én) }

Then, by Proposition 4.4 we have that

Eish([er1) |-+ | ern-1y (@) = 6([er1y | - - | €rn-1y DI (Cer ([er ) | - -+ | Er(n-1y]), @3 0)

where ® = ¢ ® ¢, and ¢, is as defined in (16). Let

Cr=Ce,([Er) | -+ | Er(n-1)])-
Recall from (17) that for s € C with Re(s) > 1 we have

Ly(Cr ®;5)= > @(v)Nv ™.
veWnCr

Fori=1,...,n we define

Bi= U Ce([erqy |-l erm-n])- (46)

T€SH
7(n)=i

We also write 9B = 9B,,. Since we have chosen the ¢; as in Lemma 4.5 we have

sign(7)d([e-1) | -+ [ Ern-1)]) = 1. (47)

Applying (47) and the definition in (46) to (45) we have, after noting (-1)"+1(-1)(»=D(=1) = 1,

Eis) n (A (cia n PHIFV)) =

S ( lim ( » L,\(%,CI)%‘;@"_I;O)(a@)U_l))+LA(%,<I>Z§U_I;O)(W®U_1)

zeZaeG\"" % ac0/(1+p™Oy)
n-1 _
+ Z L)\(%Z‘, (I)Z'Z@U 1;0)(61‘ ® Ul)) . (48)
i=1

We now calculate each term in the above expression, beginning with the limit term. Fix m >0 and
oeG. Let a« e O/1+p™0,. We also let b be a fractional ideal of F', coprime to S U\, and such that
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op = 0. We need to find the elements z € Z such that qﬁn;@(’fl is not trivial. For this we require that
for some € [gens Fy

o l= (rec’;;//\;m(z, x)- IL;L\J/)‘UOC’(Z, x)).

By the definition of %y and the reciprocity map, the above equation is non-trivial only if z € Fy,
and [T, fnite quord”(z“) = b1 (a)p° (@) for some («) € PP, Recall that f is the conductor of H/F
and we have written P"' = {(a) | a € F*, a =1 (mod f)}. By the description of %, we note that
for each o € G there is a unique z € Z that satisfies the above equation. Since

H qzrdu(zv) _ b—l(a)pfordp(a)

v finite

for (a) € PH! we have that (a)p~°"%(®) must be coprime to puURU X since z and b~" are. Thus, for
all 7 € (a)p~%(®) we have r~! € [T.¢5r,5 Oc. We therefore have

Frb ™ (a)p @ T 6,)=b""
t¢S'UN

We now define, for a Shintani set A, U ¢ F}, compact open, fractional ideal b and s € C with
Re(s) > 1

Lpa(b,A,Us)= > oa(z)N(2)™".
zeWnA, zeU,
zeb~!, (x,R)=1

ot .
a0/ (11pm6y) e/ (1+pm0y)

- (]{)x dL (b, %,1;0)) ® 07 .

Here the multiplicative integral is as in Definition 3.1. We can apply similar calculations for the
other terms in (48) and thus deduce following the explicit expression for Eis%n (A, (ciq N py JEV)):

Eis} 0 (Ac(cia N pajpy)) =

n—1 .
Z ((H 5fR’)‘(b’%i’7r®p’O) )WLR,A(b,%,WGp;O)'f(;x dLR7)\(b,%,I';O)) ® O_El) ) (49)
opeG i=1

6 Cohomological formula IT (uj3)

In [9] the first author and Spief give two equivalent constructions for their formula. Since we require
each of them in the later sections we give both here. We denote them by ug and uj. In this work
we adopt slightly different conventions from [9], namely we have us = u3(DS)*. Here # denotes
the involution on Z[G] given by g + g~! for g € G and u3(DS) is the construction in [9]. This is
done by adjusting the definitions of k) and wE)\ in §4.3. The key adjustment we have is to apply
recy/p((n)) ! rather than recyp((n)) in (15).
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We begin with us. Recall that in §4.5 and §4.3 we have defined the following objects:
cg€ H'(Fy,Ce(Fy, Fy)) and k) e H ' (Eg, ., Hom(Cc(Fs,,Z), F, ® Z[G])).

Let r = #S, and 15, € Hyyr-1(Es,,+,7Z) be as defined in (21). Label the elements of S, by p,p2 ..., pr.
We now define a class
Cid,p € Hr(nga CC(FSI,’F;))

by
Cid,p = Cid Y COp2 Uy---u Cop,. +

Here the cup product is induced by the canonical map
Ce(Fp, Fy) ® - ® Ce(Fy, Fy) = Ce(Fs,, Fy)
defined by

X farm ((xq)qesp = H fq(ﬂﬁq))-

qeSp qeSp
Definition 6.1. We define
uz = ciap N (kA N1s,) € Fy ® Z[G].

Adapted from [9, Conjecture 3.1] we have the following conjecture.
Conjecture 6.2. We have u3 = uy.
We now give the definition for uf. Recall that in §4.3 we have defined
W\ € H'N(E, (), Hom(Co( Fy, ), ZIG])).
Definition 6.3. Let n, g, (1) € Hn(E+(f)p, Z) be the generator defined in (22). Then, we define
Ué =Cig N (w;’)\ n 77P7E+(f)). (50)
The following Proposition follows from [9, Proposition 3.6].

Proposition 6.4. We have u3 = uj.

6.1 Transferring to a subgroup

Let V' be a finite index subgroup of E.(f). Let n,v € Hy(V @ (7),Z) be the generator defined in
(22). For x1,...,2, € V @& () and compact open U c F}, we put

Vg/\,v(xh s axn)(U) = (5(-%'17 s 7$TL)CR,/\(57681 (xly s 7xn)7 U7O)

As before, it follows from [3, Theorem 2.6] that v} , |, is a homogeneous (n - 1)-cocycle on V & ()
with values in the space of Z-distribution on F,. Hence we obtain a class

W§b7,\,v = [Vg)\,v] cH" (Ve (m), Hom(Cc(Fy, Z), Z)).

We then define
ué(V) =Cig N (WE[,,A?V n np,V)-

The next proposition shows the relation between uj and u4(V).

31



Proposition 6.5 (Proposition 6.12, [12]). Let V be a finite index subgroup of E.(f). Then we have
uy(V) = (ug) OV, (51)

Let V' ¢ E, be a finite index subgroup. We write V' here to differentiate between V' ¢ E, and
V ¢ E.(f). We now define u3(V") similarly and note its relation to u5(V'). Write

Vép :V’GB(Wl,...,’/TT).

Let ng, v € Hn+r—1(vslp; Z) be the generator defined in (22). For z1,...,x, € Vép and compact open
U c F, we put

Lo r v (@15, 20)(U) = 0(xq,. .. ,xn)S}R,A(éel(ml, .y y), 6,U,0).

As before, it follows from [3, Theorem 2.6| that j, v is a homogeneous (n - 1)-cocycle on VS'p
with values in the space of Z-distribution on Fg,. Hence, we obtain a class

h
koA =y rec(b) ey ] € H' (VS Hom(Ce(Fs,, Z), Z[G])).
i
We then define
uz(V') = ciap 0 (Ko v N 15, v7).

Proposition 6.6. Let V be a finite index subgroup of E,(f). Let V' be any finite index subgroup
of Ey such that V c V' and [E; : V'] = [E.(f): V]. Then

uz(V') = uz(V).
Proof. This proposition follows from the proof of [9, Proposition 3.6]. O

Following from this proposition we have a simple corollary which gives the result of Proposition
6.5, but for uj.

Corollary 6.7. Let V' be a finite index subgroup of E,. Then,
uz(V') = “:[aE+:V’]-

Proof. We calculate
ug(V') = ufy (V') = (u) P+ OVI = o [V

Here the first and last equality follow from Proposition 6.6 and the middle equality follows from
Proposition 6.5. 0
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6.2 Explicit expression for u;

Let V = (e1,...,en-1) € E} where £1,...,6,-1 and 7 = &, are chosen to satisfy Lemma 4.5 and
Lemma 4.6. Write &, = m. As before we have the notation Vg, = (e1,...,e,-1,71,..., 7). Here we
have m = 7. Asin (46), for i = 1,...,n we define
Bi= U Collery | eruon)).
T€SK
7(n)=t

As before, we write B = B,,. We now calculate uz. We begin by calculating the value of ¢igp N
(kp,x,v Ny ). For ease of notation, for i =1,...,7, we let €,4-1 = m;. Following §4.6 and Corollary
4.7, we choose the following generator for Hyr—1(Vs,,Z),

NSy, V = (_1)n—1(_1)7"(n+7"—1) Z Sign(T) [57'(1) | s | 67'(n+7‘—1):| ®l

T€Sn+r-1

We can now calculate, after noting that (=1)"1(=1)7(m+=1(=1)(m+r=D(n=1) — (_1)r
Ko\ v N1S, v = (=1)" Z SigH(T)Hb,A,V([ET(n | €T(nf1)]) ® [5T(n) |- €T(n+7“71)]'
TESn-H'—l

Recall from §4.5 that we can choose as a representative of ¢;q the inhomogeneous 1-cocycle
Zid = Zlge,,id) i.e., we take f = e, in Definition 4.10. One can easily compute, as is done in the
proof of |9, Proposition 4.6], that fori=1,...,n+r-1,i#n

&; za(ei) = Lo, - €, (52)
and
T 24(m) = 1g - idps + Lo, . (53)
Returning to our main calculation, we have

s 7'2
Ciap 0 (Fory 1s,0) = (1 (D7 ¥ [ aap((erin |- eruer D (@)

T€Sn+r-1 p

d(Sign(T)([gT(n) | s | €T(n+r71)])"€b,)\,V([ET(1) | s | €T(TL*1)]))($)'

Now we note that for i = 2,...,r we have that c,, (¢;) = 0 unless i = j. Hence, we only get non-zero
terms when 7(k) =k for k=n+1,...,n+r—1. Therefore, since (—1)7“(—1)”2 =1, we have
Cidp N (Ko v N NS, V) = Y, f Cidp([er(n) | Ens1 |-+ | Ensr-1])(2)
T€SH Fs,

d(sign(T)([er(n) | Ens1 |-+ | Ensr—1DRonv([Erqy | -+ [ Ern-1y D)) (2)-

Then, since for i = 2,...,7 and 7 € S, we can calculate (&;(,)€n+1 - i Ensiol) - copi(ei) = 1¢, , we
1
have

iap " (kory 015,0) = 3 [ callenst |- e D (@)

T€SH »

d(sign()er(my ko v ([Er(ry |- [ er -y D) (@ x [T6p)-
=2
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We recall the definition of xjp » 1y from §6.1. Using that we have chosen V' and 7 through Lemma
4.5 we note that for 7 € S, and a compact open U ¢ Op, we have by definition:

sign(T)re v (e |-+ [ €r(n-1)]) = LrA(Cey ([er1) | - - [ €r(n-1)]), b, U, 0).

Here £ is as defined in (15). Thus,
Cidp N (Ko v NNs,v) = TGZS: /Fp E;(ln)zid(ﬁr(n))(fﬁ)
CENCA(EROY R ERAN IS § CHO)
Applying (52) and (53), and piecing together the appropriate Shintani sets we further deduce
Ciap N (Koav N15, 1) :ng d(Lrr(B, b,z x gcsm,O))]gp 7 d(ERA(%B,b, 7 x g(@m,o))
ﬁ][ s d(Lra(SBi b,z x []6p.0)). (54)
i=1770p i=2
Considering the first two terms on the right hand side of (54) it is clear that
ng‘ d(Sp(B, b, x l@@pi,o))ﬁp 7 d(SpA(B, b,z x g%,o))
- 7T£R,>\(9?>,b,®sp,0)]{®$ d(LrA(B, b, 2 x i@@pi,o)),

where Og, = [1j.;Op, ¢ Fs,. We now consider the sum on the right hand side of (54). It is
straightforward to see that

n—-1 r n—-1
L2 (Bi,b,76, T}y Op. 10
H][ €1 d(SpA(Bi, b,z x [0y, 0)) = [ e Po0m0r Tz 000,
=17 70p i=2 i=1
Hence
Cidp N (Ko v N NS, V)
n-1 r
LR, (Bi,b,mOp <17, Op, 0 6,0,
_ (qu rA( T0Op x 29 ))ﬂ_ﬁR,)\(%b@Sp O)ng d(£R7A(%,b,$X1_£@pi,0)).
1= 1=

Thus we have

h n-1 ) r .
us(V) = Y. vecyp(bi) ™ (<H ey (b 0TI 0 07 1 (0105, 0
k=1 i=1

ng d(Lr (B, by, x x H®Pi70))) .
=2
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6.3 Explicit expression for u}

For later calculations we also require an explicit expression for uj. Let V' be a finite index subgroup
of E,(f) such that V' =(ey,...,e,-1) where €1,...,6,-1 and 7 = &, are chosen to satisfy Lemma 4.5
and Lemma 4.6. For i =1,...,n write

B = U 661([57(1) | e | 6‘r(nfl)])-

Let B = B,,. Recall we write V, = V @ (7). Following §4.6 and Corollary 4.7, we choose the following
generator for H,(V;,Z),

mp,v = (-1) Z sign(T)[aT(l) |...] ET(n)] ® 1.

TE€SH

We can now calculate

oy Ny = (D"ODED Y N sign(m)ly () |- [ ermen]) @ (&)

i=1 T€S,
T(n)=i

p

We recall the definition of Wi b AV from §4.3. For 7 € S, and a compact open U < 6,, we have

Sign(T)wpb A V([ET(I) | s | ET(n—l)]) = CR,)\([]7651([€T(1) | s | ET(TL—I)])? U7O) (55)
f’ b b

Returning to our main calculation, using (55) we have

cia N (W] v NTp,v) = Z; ZS: [p zae) (@) d(eiCrp(0,Ce, ([ery | -+ | Er(n-1)]), 7, 0)).
i=1 TeS,
T(n)=t

We note that taking the cap product gives another factor of (-1) which cancels the factor from
before. Applying (52) and (53) and piecing together the appropriate Shintani sets we further deduce

a0 @ sy V) = o dCra(0,3,2,0)f 7 d(Cra(6,5,2,0))
P
n-1
H][ i d(CrA(b,%B;,7,0)). (56)
i=1 7T®p
It is clear that we can then write

, 9 T CrA(6,B,m05.0) _(p 5 (6.5.65.0)
U3(Va o) =cig N (Wf7b7)\,v mnp,V) = H g AT ]{)x d((R)\(b,Q?),x,O))(x).
i=1

7 Equality of uy and ug
In this section we prove the following theorem.

Theorem 7.1. We have ug = us.

35



Proof. Let V be finite index subgroup of E, which satisfies Lemma 4.5. We will show
ug (V') = ug(V).
Then by Proposition 5.8 and Proposition 6.5 we have that
uz (V) = U£E+:V] and wug(V) = ugE+:V].

We note that since F}, ®Z[G] only has an operation as a group we have (E,eq o ® 0)" = ¥pe a4 ®0.
It then follows that us(o)F+V] = uz(0)[P+V]. Considering Lemma 4.9, one can make two choices
for V' in Lemma 4.5 and Lemma 4.6, say V;, V5 such that [E, : V1] is coprime to [E, : Vo]. This
then gives the result of the theorem.

We now recall the explicit calculations for us (V') and ug (V') as given in §5.3 and §6.2 respectively.

up(V) = Eisy 0 (Au(cia N paypy)) =

n—1 B )
Z ((H 5iLR,A(b,93“ ®p70))ﬂLR’A(b’%7ﬁ©p70%x dLRV,\(b,g?),SU;O)) ®O'[:1),
opeG i=1

and

h n-1 ”
Ug(V) —_ Z reCH/F(bk)_l ((H efR,A(%z,bkm@pXHi:z ©"i’0))ﬂ-£R,>\(%:bk7©SPuo)
k=1 ]

=1
f(;).%’ d(’gR,)\(%v bk,.’L‘ X HGPNO))) .
=2

Note that for U €Oy, i=1,...,n, k=1,...,h and s € C, Re(s) > 1 that

: ) recin((£))™
Lr(Bi, by, U x [ Op, 5) = (Nby) 2 H/lflT
i=2 SEQBiﬁ(bk)g;v §eUXIT;_5 Op;

(&,R)=1
. recg (€))7
= (Nby) 2. /N—
fEFﬁ%i7 EEU 5

geb;! (€,R)=1

We write

LrA(Bi, by, U x [[64,,0) = Y Lra(0, B, bg, U,0) @0
=2 oeG

where £ \(0, Bi, bg, U,0) € Z. Recall that in §4.2 we defined for L = ¥, a,®0 € Z[G] and a € F},

al = Z a% ®o.
oeG

It then follows from the definitions of £  and Lg ) that for a € F',

h
Z Z =R (06,%4,05,U,0) ®U[:ilg[:1 = Z aLrA(0,%:,U50) ®J[:1.
k=1 O'[,EG UhEG

This completes the proof that ua(V') = ug(V). O
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8 Equality of u; and u»

In this section we prove the following theorem.
Theorem 8.1. We have ui = us.

We prove the theorem by showing that for each o € G we have uj(0) = u2(o). This is done
by using a strong enough compatibility property which forces the formulas to be equal. A special
argument will be required in the case that R contains no finite places, i.e., R = Roo.

We are given a CM abelian extension H/F of conductor f such that p splits completely in H.
Let f' be an auxiliary ideal of O that is divisible only by primes dividing f. Let H' be another finite
abelian CM extension of F' in which p splits completely, such that the conductor of H'/F divides
ff'. In particular, the extension H'/F is unramified outside R.

Let 0 € G. Write uj (o, H) and us(o, H) for 0 components of the formulas u; and ug, for the
extension H/F and Galois group element . We show that, for i =1,2,

ui(o,H) = I—c[;r wi(r, H"). (57)
T7|-§I=O'

We refer to (57) as norm compatibility.

Proposition 8.2. We have
ui(o,H) =ug(o, H) (mod EL(f))

Proof. Let V be a finite index subgroup of E.(f) of rank n -1 satisfying the conditions given in the
statement of Proposition 3.8. Furthermore, we choose V' such that if V' = (e1,...,,-1) then the ¢;
along with 7 satisfy Lemma 4.5. Let V' be a finite index subgroup of E, of rank n — 1, containing
V, such that [E, : V'] = [E.(f): V].

By Theorem 7.1 and Proposition 6.6 we have

ug(V' o) =us(V',0) =u3(V,0).

We recall from §6.3 the explicit description of u§(V, o),

/ p nd CrRA(0,B:,m0p,0) _¢p \(6,%,6p,0)
ug(V,a):cidn(wf’b’%‘/nnnv): Hsi : SR LD D ]gx d(Cra(b,98,2,0))(x).
i=1

We have defined

u(V, %, 0) = H GCR,A(b,G%ﬁfl%v@p70)WCR,A(57%=®p,0)]{) z dv(b,%, ),
eV

where

B = U 661([87—(1) ‘ ‘ E‘r(nfl)])'
TESn_l

Thus, u1(V,%B,0) = u4(V,0) (mod E,(f)) and hence

u1(V,B,0) =us(V',0) (mod E,(f)). (58)
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It follows from (58), Proposition 3.8 and Proposition 5.8 that there exists « € F; such that
aui(o,H) =us(o, H) and o1 eE,(f). (59)

Note that here we are also using Proposition 3.7. By Lemma 4.9, we can choose W to be a finite
index subgroup of E.(f) satisfying the same conditions as V' but with [E,(f) : W] coprime to
[E.(f) : V]. Thus we also have aZ+*DW]l ¢ B (), which combines with (59) to yield v € E, (f) as
desired. O

Assuming that (57) holds we can prove the following.
Proposition 8.3. Suppose that (57) holds and that R #+ Res. Then,
uy = ug.
Proof. From Proposition 8.2 we have that for each 7€ G’,
ur(r ') = us(r, ') (mod B4 ().
Our assumption that (57) holds then gives that for each o € G,
u1(o, H) = us(o, H) (mod E,(ff)).
Since R # Ry, we have

Q&(ff') ={1}.

Here the intersection is taken over all possible ideals ' divisible only by primes dividing f. Thus we
have
ul(av H) = u2(U7H)‘

O

Remark 8.4. If R = R, then § = {f =1 for all possible extensions. Hence, the proof of Proposi-
tion 8.3 does not apply.

To handle the case R = Ro we extend the definition of u; to work with the trivial extension.
For a Shintani set 9% and compact open U ¢ 6, we define

l/(%, U) = CR,T(GFag%a U,O).

It is clear that

v(D,U)= Y v(b,D,U). (60)
opeG

We then define, for a Shintani domain 9,
ui(F') = ( I e”(&m”l%’@")) ﬁ”(%’®p)_7([0)1: dv(D,z). (61)
ek,

By (60) and since § = 1 we have

ul(F) = H ul(O',H).

oeG
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Lemma 8.5. We have
ul(F) =1.

Proof. Since & is a Shintani domain we have
v(D,0p) = (g (F/F,0r,0) =0.

Therefore the m-power term in (61) vanishes. Next, we write

)%p x dv(D,x)
]([O):L‘ dv(D,z) = f—ﬂ@p (@)

By Lemma 2.11 we calculate
][ x dv(D,x) = 77”(”93’”(5'“)][ z dv(n D, ) :][ z dv(n 1P, x)
70 Op Op

since (7D, w0,) = 0 as in (62). Since D is a Shintani domain we can write

D= J (Dn7'D).
ecFy

We then have

]é zdv(n”'D,z) = ] T dl/(ﬁgbﬁﬂ'_lg),l'))

P ey P
_ H Eu(e%mﬂ’l%,(")v) ][ 7 dV(E’Z),:L‘).
ceBy Op

Combining (63), (64), and (65) yields

-1
]gx du(@b,x) _ ( H 61/(6923077_1923,(5,,))

ecFEy

Applying the definition of uy(F") yields the desired result.
Proposition 8.6. Suppose that (57) holds and that R = Res. Then,
Uy = Us.
Proof. Let o € G. By Proposition 8.2 there exists €(o) € E, such that
ui (o) =e(o)uz(o).
Let v be a prime of F. From the equation
Cruqey(6,D2,U,s5) = Cr(b,2,U, s) - Nt~ 5Cr(br™, D, U, 5),

it follows that
ur(Su{t}, o) =ui(S,0)u (S, 0. o)L
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Proposition 5.1 ¢) gives the same result for us. We then have:

u2(Sv U)uQ(Sv 0;10)_1 = UZ(S U {t}70)
=ui(Su{r},0) (66)
= 'LL1(S, U)u1(57 0—;10)71
= 8(0)5(00;1)_1u2(57 O')UQ(S, 0—;10—)_1'
Here, (66) is given by Proposition 8.3, which can be applied since we have added t to the set R. It

follows that (o) = e(0o;!). Repeating this for all such v we see that (o) is independent of o € G.
Write € = (o). Then

1=uy(F) =[] wi(o, H) = ' T ua(o, H) = !9,
oeGG oeG

The last equality follows since [],cqu2(o, H) =1 by 5.1 b),d). Since ¢ € E,, it follows that e = 1.
This gives the desired result. O

Theorem 8.1, under the assumption that (57) holds, then follows from the combination of Propo-
sition 8.3 and Proposition 8.6. In the next section we prove the norm compatibility property, (57),
for u; and wus.

9 Norm compatibility relations

In this appendix we prove norm compatibility properties for u; and ug. These results appear in |5
and [8] without proof.

9.1 Norm compatibility for u;

The reciprocity map identifies Gal(H'/H) with

{BeOr/if)"[8=1 (modf)}/E.(f)y. (67)
We let @; be a Shintani domain for £, (f) and define
Dy = U YDy,

veE+(§)/ E+ (')

where the union is over a set of representatives {7} for F.(ff') in E.(f). Let ¢’ be the order of p
in Gy, and suppose that p¢ = (7') with 7’ totally positive and 7’ =1 (mod ff'). We can choose 7’
such that 7' = 7* for some a > 1. We then define Q' = 6, — 7’0,

Let B denote a set of totally positive elements of O which are relatively prime to S and A and
whose images in (Op/ff')* are a set of distinct representatives for (67).

The following theorem is stated without proof by the first author in [5, Theorem 7.1]. For
completeness we include a proof of this result here.

Theorem 9.1 (Theorem 7.1, [5]). We have

UT(b79bf) = H UT(b(/B)J/Bilgbff')'

BeB
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The key to the proof of Theorem 9.1 is to use translation properties of Shintani sets. For a subset
A of equivalence classes of (67), let v4(b,D,U) = Cﬁ/\(b,%, U,0), where Cﬁ is the zeta function

¢A(6,2,U,s) =Nb™* > Na.
acb™1nD, el
acA, (a,R)=1

This definition extends to Cﬁ y as in (7). Throughout this section we will use the following simple
equality:
Vir-13(0,D,U) = v(1y(b, 7D, 7U).

This follows from Lemma 2.11. Recall the following definition. For g € B,
ur(b(8), 57 Byy) = (6(8), 87 By, ) ()R I PODOL a0 (6(8), 57 By ).

It is clear from the definition of B that Theorem 9.1 follows from the following proposition.

Proposition 9.2. Let € B. We have

ur(b(B), 87 Dyyr)

=( [1 GVB(bw)’€5lgbfmr1[31%"’@"))%”3([’(6)’%’@”)]{):6 dvp(b(8), 57 Dy, z).
eeEy (f)

The proof of Theorem 9.2 is largely an exercise in explicit calculation. We begin by considering
the multiplicative integral in uz(b(83), B’lgfbﬁr).

Lemma 9.3. We have
£ dve(®).6"y.2)
a-1 ) a-1 .
_ (H ﬂ,ilj(b(ﬁ),%ﬁ/,ﬂ'l@)) (H H 6V{W_i}(b(ﬂ),eﬂ1923ffrﬁ7r2,8192§ff/,@))

=1 =0 ecEL (ff')
( IT v”A“ww-l%@)) f v dv(6(8), 57 9, 0).
eEL (/B (1) o
Proof. Since 7' = 7® and Q' = 6, — 7'6, we have O’ = U2 7'O. Then
1 o 1
Jg,x dv(b(8), 8" @ff’ax) = H][@x dv(b(B), 8 Dyyr, ).
=0/

By changing variable and then factoring out 7* we have

a-1 i a-1 ~ ;
1(8) = (H ) By ‘”) [T = dv(e(8), 579y, ')
i=1 i=0

a-1 ; a-1 —ip—
= (H 2 (O(8) Dy @)) H]{)x dv -y (6(8), 7" B Dy, 7).
i1 1=0
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We now note that we can write, fori=1,...,a -1,

W_igﬁl = U (fg)ff’ n W_i%ﬁ/).
e, (§f')

Then,
a-1 .
H}{)x dvi-iy (0(B8), 7" 8™ Dy, )
1=0

a-1 A
=I1 II ]gm du{ri}(b(ﬁ),eﬁ‘lgﬁ, N W_zﬁ_lgff’w)

i=0 cc B (jf')

a-1 _ —i n—
:(H I inmiy (0(B),eB7 By 8 lgz’ff”@))]{)x dVA(b(ﬁ)aﬁ_lgﬁﬁ’aiU)-

i=0 cc B (jf')

Here A= {1,771 ..., 71}, Then since Diy = Uner, (1)/E. 7y VD5 We can write

Fyr dva(o(8),57' 9y, ) - ( ’VVA(h(BMﬂl%@))ng dv(a, ;) (b(8), 87Dy, 2)

veEL (F)/E+ (ff')
where E = E,(f)/E.(ff'). Thus we have, noting that B = AE = {ae|a€ A,e € E},

a-1 ) a-1 _ —i o
I(B) _ (H Wiu(b(,@),@?)ffr,ﬂz(l))) (H H 61/{#,2'}(6(5),6,3 192>ffmﬂ' B8 1§Z>ff/,@))

i=1 i=0 ce B2 (jf')

( L a((8)5719,.0) )J{)x dvp(b(B), B Dy, ).
veE+(f)/E+(§f")

O

We now consider the powers of 7 given in the definition of uzr(b(83), ﬁ_l%ffr) and arising in the
statement of Lemma 9.3. Recall that n’ = 7.

Lemma 9.4.

a-1 )
(H Wiu(b(m,@ff/,nz@)) alrr (Hyp[FB(B).0) _ —vi(6(8)21.05)
i=1

Proof. Since ©'Q = 7ri®p - 7r“1@p we have by a telescope argument

a-1 . a-1 .
Z iy(b(/BL%ff'aﬂ-z@) = _(a - 1)1/([)(/8)7%&'77{-&@]3) + Z V(b(ﬁ)’%ff’)ﬂ-l(gp)'
i=1 i=1

Recalling the definition of @ we also note that for i =0,...,a -1 we have

V(b(ﬁ)vgﬁ’aﬂ%p) = VE(b(ﬁ)a@f,WZ@p)-
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Thus we can calculate, using the fact that (g r(Hsy /[F,b(3),0) = v(b(8), Dy, Oy),

-1 .

ﬁwiu(b(ﬁ),%ffuﬂ'l@) ~0Crr(Hyy [F0(5).0)

=1
-1 .

— Olé—IWV(b(B)vg’bff/:WZ@p) F’(afl)y(b(ﬂ)’@ff’77"a®}1)7-‘-a1’(b(/3)7925ff"©p)

i1

a-1 )
_ H WVE(b(B)7%f17rZ®P) W—(a—l)l/E(b(ﬂ),%f,ﬂ'a@p)WQVE(b(B),E’Df,®p)‘
i=1

By Lemma 2.11 we have for i =1,...,q,

VE(b(/B)u %fa 7I-z‘(ﬁlf‘) = VE,{W’i}(b(ﬁ)7 ﬂ-_i%f) ®P)
We can then write Wigbf = User, () 095 N 77‘”‘95;. Then

Ve, -1y (b, 77Dy, 6p) = 5 Ez(f) vp (n-11 (0,625 N 7Dy, 6p)

= > g iy (b, D50 Dy, 6p)
deEL(F)

= VE’{W—i}(b,%f,®p).
Remarking that {7~} = {1}, we deduce that
a-1 ) a-1
( B Wiu(b(ﬁ)@ﬁ/,nlm) RO i S0 T p.0e51 OO P00 _ ey (6 56),
=1 i=0
Noting that B = AE completes the proof. O
We now consider the error term in the definition of ur(6(8),3 ') and the products of
if

elements of F, () that arise in Lemma 9.3. Considering Lemma 9.3 and Lemma 9.4 we can see that
to prove Proposition 9.2 it is enough to prove the following.

Proposition 9.5. Let

a-1 — —3 n—
Err(f8) = e(6(8), 57 Dyy, ) (H [T et n®®eb R 195ff’v@))

1=0 ecE. (ff')
« ( ,YVA(b(ﬂ)"‘/Blc-%fv@)) )
YeEL(F)/E+ ()

Then
Err(8) = H GVB(b(ﬁ),eﬂflgfmw*ﬁ*l%f@p).

ee B, (f)

For clarity, we shall perform the calculations required for this proposition in a few lemmas.

Lemma 9.6. We have

a-1 )
Err(ﬁ):( I1 eVE“'(ﬂ%Eﬁ1%“””‘51%@”)(11 I1 e'«mm<b<ﬁ>veﬁ*wﬂﬁ*%fv@>).

ecEL (f) 1=1 eeE,(f)
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Proof. Considering the definition of Py we calculate

E(b(ﬁ)aﬁ_lgﬁ'vﬂ-,) (68)
_ H 61/(b(ﬁ),eﬂ_lgﬁmﬂ_aﬁ_l@ﬁr,®p) (69)
e (ff')
_ H H eu(b(ﬁ),ev[)”l@fﬁﬂ""‘ﬁ’l%ffu@p) (70)

<B4 (i) ve B+ (1) / B+ (1)

,y—l’(b(ﬁ)ﬁﬁl%h@p)) ( H
eeEL (f)

( e”(b(ﬁ)veﬂlgfﬁﬂaﬁlgff’pp)) : (71)
veEL (f)/E+ (')

Similarly we have

1—[ 61/([1(,8),EB_l%fnﬂ’_aﬁ_l%ff/,@p)

ecE.L ()
- ( H ,},V(b(ﬁ)y’yﬂaﬂlgﬁf@p)) ( H EVE(b(ﬁ)ﬁBlgfﬂﬂaﬁl%v@p)) . (72)
veE+(/E+ (') B (f)
We also calculate for t=1,...,a-1
61/{7\__1'}(b(ﬁ),6,371%”/(171'77;671925”/,@)
e, (§f')

= ( H ,}/—V{w—i}(h(ﬁ)ﬁﬁ1%f,©)+y{ﬂ_i}(b(/3)7,yﬂ.i/31%%@))
VB (7)/ B+ (5f)
o) OO B 519,0) 1
<EL (f)

We now note the following equalities, both of which hold via telescoping sum arguments.

1.

=

o—

( H ,Y_V{W—i}(b(ﬁ)v'ﬂ_}l%f:@)) ( H VVA(b(ﬁ),’}/B_IE’Z)f,@))

i=1 \veE, (f)/E+ (') veEL (F)/E+(ff")
_ I AV (0(8) 787 2;.0)

VeE+(1)/E+ (1)

a-1

g (’YEE+(f)/E+(ff/)

- H fYV([’(ﬁ)Nﬁ_lng@n)—V{n—a}(b(ﬁ)ﬂﬂ_aﬁ_lgﬁﬁ@p)
YeE+ (F)/ B+ (')

- H ,yl’(b(ﬁ)ﬂ/ﬁ*l@bfﬂr(@p)—V(b(ﬁ)ﬁﬂfaﬂflgbf,@p).
YeE+ (1) /B4 (ff')

,YV{,fz‘ } (6(8),ym~ "B~ 25,0) )

Combining these two equalites with the calculations in (71), (72) and (73) gives the result. O
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If & =1 then Lemma 9.6 is equivalent to Proposition 9.5 and thus we are finished in the case
« = 1. From this point on we assume that o > 1.

Lemma 9.7. If a > 1 then

Err(53)
_ ( I EuB(b(ﬁ),eﬁ-lgfnw-lﬁ-l%@p)) ( I 5uE(b(ﬁ),aﬁ-lw-l\ézfmw-aﬁ-l%,@p))
66E+(f) 66E+(f)
o (i (B(B) BT By 51y, 76,)
=1 ecE4(j)
-1 .
°i—[ [ 8" ®@ s o 5719.0),
i=2 5eEL ()
Proof. For i =2,...,a we have

Wi%f = U W_l(sg%fﬂﬂ'_i%f.
deBL(f)

Thus, applying this to the result of Lemma 9.6, we have

Err(5)

:( H GVE(b(IB),Eﬁ_l%fnﬂ_lﬂ_lg)f7®p))( H 6Z/E([J(5),5B‘1W—1%fﬁﬂ'_aﬂ—1§bf,®p))
ee B, () 5eE4 (f)

=

o—

( H 6V(E7{7r—i})(b(ﬂ)veﬂilgfmﬂﬁlﬂilgf:@)

i=1 \eeE. ()

I1 6”<E,{w2‘})("(ﬁ)fﬁ'l”'19>fﬂ7f'i5‘192>f,@)).
5eE.(7)

Remarking that H66E+(f) 51/(&{”-1})(b(5)76,3—171-—1923fﬂ7r—15—192),«,@) = 1, since 65—17.[.—1(;%]c A ﬂ_lﬁ_l(;%f = @,
gives the result. O

If a =2 it is straightforward to see that Lemma 9.7 is equivalent to Proposition 9.5 and thus we
are also finished in the case o = 2. From this point on we assume that « > 2. From Lemma 9.7 one
can see that to prove Proposition 9.5 it is enough for us to show

1= H 5VE(b(ﬁ)»65717r7195f07r7a/37192)f»®p)
seb (F)

a-1
H H G—V(Ey{ﬂ_ih(b(,@),eﬁ’l%fﬁﬂ’l,@’l%fﬂr@p)

=1 eeE, (F)
-1 .
Oi—I H 51/<E,{7T7i})(b(ﬁ),Gﬁ_lﬂ_lgfﬂﬂ_lﬂ_lgﬁ@). (74)
i=2 6¢E, (f)

To do this we first show the following lemma.
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Lemma 9.8. We have that for j=1,...,a—1 the right hand side of (74) is equal to

() ( I 5VE<b<ﬁ>«ww@maﬁwp))
seb (F)
-1 , ,
Ki—I 1—[ 6—1/<Ey{ﬂ_i})(b(ﬁ),eﬂ’lw’(r”%fﬁwﬂﬁ’lg’bfﬂr@p)
=] eeE,(f)
-1 . .
T 4B gnminy (0(B) 0B~ 7T Dy 571 %5,0)
i=j+1 5eFy ()
Note that for j = a—1 the last product is empty. We also remark that it is implicit in the statement
of this lemma that e(1) =---=e(a-1).
Proof. We prove this by induction. The case j =1 holds trivially. We now assume it holds for j and

prove the result for j + 1, i.e., we show e(j) = e(j +1). To do this we note that for i =j+2,...,a,

we have
Wﬁi%f = U 7T7(j+1)/£95f N Fﬁi@f.
KeEL(f)

Thus, e(j) is equal to the product of the following elements:

( H 51/15(b(ﬁ),55_17r_j925fﬂ7f_(j+1)5_1923&@;@))( H /{VE(b(ﬂ),Vvﬁ_lﬂ_(j“)@fﬂﬂ_aﬁ_l@)f@p)) (75)

oebL(f) weEy(f)
Oll:[l H €_V(E7{,n.—7;})(b(B),eﬁ_lﬂ'_(j_l)%fnﬂ_‘jﬁ_l%f’ﬂ'@p) (76)
i=j eeEy ()
o 51/(&{”_1-})(b(ﬁ),55*1Tr*fgbfnw*j*l)ﬁ*lgbf,@) (77)
i=j+1 8¢, (f)

-1 ) )
T [1 e @@ws i hanisia,0) (78)

i=j+2 ke B (f)

We remark that the first bracketed term in (75), and (78) are already products in e(j+1). We now
consider (77) and calculate that it is equal to

((ﬁ I 5V<E,{ﬁ—(i—1)})(b(ﬁ),56‘1ﬂ"(j_l)%f”“_jﬁ_lgfvmp))

i=j+1 6, (f)

-1 . .
( Oi—[ I1 6‘”<E,{«i})(”(5)755_1“_]@ff"f—(””ﬁ_l@bb”@p)) . (79)
i1 8¢ ()

We now consider the way the terms in (79) interact with (76). Multiplying (79) by (76) gives

a-1 . .
[T II ¢V iy (0(B),eB7 I Dy D Gy, 76, )
=41 eeBL ()

( I1 e”<E,{ﬂ-<a_1>}>(b(m,eﬁ-lw-<ﬂ'-1>9>f“’f’j5_l%’w©p))- (80)
ecE, (f)
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The first term in (80) is the term we were missing from e(j +1). Thus it only remains to show that
the second bracketed term in (75) multiplied by the second bracketed term in (80) is equal to 1.
This is shown by the following calculation,

5VE(5(5),557%7]9@”7(].“)571%&@1:)
5€E4 ()
- H 5V(E,{7r})(b(ﬁ)766_177_(j_1)92)fm7r_jﬁ_1%f’7"613)
8eEL (F)
= [T ety OO a5 Dm0y
5B ()

We therefore deduce that
e(j)=e(j+1)

as claimed. This completes the proof of the lemma. O
We are now ready to prove Proposition 9.5.

Proof of Proposition 9.5. We consider e(a—1). From Lemma 9.8, we have that e(a—1) is equal to
the right hand side of (74). Then

e(a-1) = ( [1 5”E(b(5)’55lw(al)%fﬂﬂaﬁlgﬁf@p))
6eE4(f)

I U, (1)) (), ("D By (4D g7y 70 )

ceE4 (f)
Since {m} = {n~(®"D} it is clear that
e(a-1)=1.
This completes the proof of Proposition 9.5 and thus proves Theorem 9.1. O

9.2 Norm compatibility for wu,

We recall the definition

uz = Y up(o) ® [07']=Eis% n A, (cq N PH/F)-
oeG

Theorem 9.9. We have for any o € G,

uz(o, H) = H uz (T, H,)
TG’
T|g=0
Remark 9.10. This theorem has been stated without proof by the first author with Spief in
Proposition 5.1. We include the proof for completeness. We note also that the proof of the norm
compatibility for us is much simpler than that for ;. This is a result of the additional structure
we have due to the cohomological nature of the construction.
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Proof of Theorem 9.9. We consider the natural map

Vi FF @ Z[G] > F} ® Z[G]
Ynser]- Y (] nr)®[o]

TG’ ceG TG’

T|g=0

Then, on the one hand,

Y(up(H')) = 3, ( [ wa(r,H')) ®[0].
oeG T7‘—2G:’a

On the other hand

W(uz(H")) = (Bisgy 0 Ay (cia 0 pgyr))
= Bish 0 ¢ Ac(cia N ppryr)
= EIS(I);' n A*(Cid n T/J*PH’/F)

The only equality of note here is the final one. This follows since we can commute ¥, with A,,
which follows from the calculations of §5.1 and §5.3. Then since Y«py//r = pr/F, the desired result
follows. s
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