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ABSTRACT

We prove that the p-adic L-series of the tensor square of a p-ordinary modular form
factors as the product of the symmetric square p-adic L-series of the form and a Kubota—
Leopoldt p-adic L-series. This establishes a generalization of a conjecture of Citro.
Greenberg’s exceptional zero conjecture for the adjoint follows as a corollary of our
theorem.

Our method of proof follows that of Gross, who proved a factorization result for
the Katz p-adic L-series associated to the restriction of a Dirichlet character. Whereas
Gross’s method is based on comparing circular units with elliptic units, our method
is based on comparing these same circular units with a new family of units (called
Beilinson-Flach units) that we construct. The Beilinson-Flach units are constructed
using Bloch’s intersection theory of higher Chow groups applied to products of modular
curves. We relate these units to special values of classical and p-adic L-functions using
work of Beilinson (as generalized by Lei-Loeffler—Zerbes) in the archimedean case and
Bertolini-Darmon—Rotger (as generalized by Kings—Loeffler—Zerbes) in the p-adic case.
Central to our method are two compatibility theorems regarding Bloch’s intersection
pairing and the classical and p-adic Beilinson regulators defined on higher Chow groups.
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FACTORIZATION OF p-ADIC RANKIN L-SERIES
1. Introduction

The main result of this paper is a factorization formula for the p-adic L-function associated to
the tensor square of a p-ordinary cuspidal eigenform. We introduce some notation to state our
result. Let

F=Y and" € SeTi(Np),xs)s 9= bad" € Se(T1(Ny), xg)

n=1 n=1
be two normalized cuspidal eigenforms of weights &£,/ > 2 and nebentype characters xyf, xg,
respectively. Let 1) be an auxiliary Dirichlet character of conductor Ny, and let N = N;yNyNy,.
The Rankin L-series of f and g twisted by 1 is defined by

Dn(f,9,%,8) = Ln(xsxg¥® 25 +2 =k — 0) Y anbutp(n)n ™",

n=1
where Ly denotes a Dirichlet L-function with the Euler factors at primes dividing N removed.
The Rankin series Dy(f,g,%,s) has an Euler product equal to that of the primitive L-series
L(f ® g ® 1, s) outside of primes dividing N; see §2.3.
Shimura proved that the values of Dy(f,g,1,s) normalized by the appropriate period are
algebraic when s is critical [Sh]. There exist critical values only when the weights of f and g are
unequal; if £ > £, then the critical s are those in the range ¢ < s < k — 1.

Let p > 5 be a prime number. Hida constructed a p-adic L-function interpolating the critical
values of Dy (f, g,v, s) when f and g are p-ordinary eigenforms. Let W = Homcont(Z;,, C;) denote
p-adic weight space, which contains Z via s — vs € W, where vs(z) = z°. After modifying Hida’s
function to preserve primitivity at the bad primes, one obtains a p-adic L-function L,(f®g®1, o)
for & € W interpolating the algebraic parts of the values L(f ® g ® 87}, s) for characters 3
of p-power conductor and integers s satisfying ¢ < s < k — 1. Hida extended his result in [Hi3]
by allowing f and g to vary in p-adic families. This allows for the definition of L,(f ® g ® ¥, 0)
when k = ¢, even though in this case the classical Rankin function L(f ® g ® ¢, s) has no critical

values.

The main theorem of this paper is a factorization of Hida’s p-adic Rankin L-series when
f = g. To motivate this result, we consider the setting for classical L-series. Let p; denote the
2-dimensional ¢-adic Galois representation attached to the form f, and let ¢ denote the f-adic

cyclotomic character. In view of the the decomposition

pr®@pr @Y (Sym? pr @¥) & (xipe ),

the Artin formalism yields an equality of primitive! L-series:

L(f® f®1,s) = L(Sym? f ® ¥, s)L(xth, s — k +1). (1)

! Primitive refers to L-series that are defined via the Artin formalism by Euler products given by the characteristic
polynomial of Frobenius on the inertia coinvariants of a representation; imprimitive L-series are defined explicitly
in terms of Fourier coefficients of modular forms. The two differ only by certain Euler factors at the bad primes.
Precise definitions are given in §2.2 and §2.3.
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Our main theorem is a p-adic analogue of this result. Suppose that p { Ny, (this is no restric-
tion as p-power conductor twists are incorporated into W). We denote by L,(Sym? ®, ) the
Schmidt-Hida p-adic L-function ([Sc]) interpolating the algebraic parts of the classical values
L(Sym? f @ 971, s) for p-power conductor characters 8 and integers s satisfying 1 < s < k — 1
and YA~ (—1) = (=1)** or k < s <2k — 2 and Y371 (—1) = (-1).

THEOREM 1. Let f € Sp(T'1(N),x) be a p-ordinary eigenform. Decompose x = x'x, into its
prime-to-p and p-power parts. Define k € W by k(z) = 2Fx,(2). If o(—1) = —1)(—1), we have

Ly(f @ f@,0) = Ly(Sym® f @ 1,0) Ly(X'¢, 2 - 0 /). (2)
If pt N, the same equation holds for o(—1) = (—1) as well.

Here L,(x'1, o) denotes a Kubota-Leopoldt p-adic L-function viewed as a function on weight
space via a convention described below. As noted above, the interest and difficulty in proving
Theorem 1 arises from the fact that L,(f® f®1, s) has no critical values, and hence the proof does
not simply arise by p-adically interpolating the classical formula (1). Instead, our factorization

formula is proven by generalizing the method of Gross in [Gro].

REMARK 1.1. In order to obtain an exact formula such as (2), one must be careful about nor-
malizations. Our conventions are described in Section 3. For now we stress one important point
already mentioned above: since Hida’s p-adic Rankin L-series interpolates imprimitive L-values,
certain Euler factors at primes dividing /N must be adjusted in defining L,(f ® f ® v, o) from
Hida’s function. As a general rule in this paper, imprimitive L-functions are noted with a comma
(e.g. L(Sym? f,4) or L(f, g,1)) whereas primitive L-functions are denoted with a tensor symbol
(e.g. L(Sym? f ®4) or L(f ®g®41)). This holds even for p-adic L-functions with the exception of
Euler factors at p, where certain factors must always be adjusted for the purpose of interpolation.

REMARK 1.2. The reason that we must impose the condition o(—1) = —¢(—1) when p | N is
that Hida only defined L]g(Sym2 f®41,0) on this half of weight space. Under this sign condition,
arithmetic weights v, s with 1 < s < k£ —1 are critical; under the reversed sign condition, weights
Va,s With k < s < 2k — 2 are critical. Schmidt had earlier defined L,(Sym? f ® v, o) for o(—1) =
1(—1) and showed that it satisfies a functional equation, but only under the assumption p { N.
It was suggested to us by D. Loeffler that one could define L,,(Sy]m2 f®,0) for o(—1) = (-1)
even when p | N by means of the functional equation, and then prove that it satisfies the desired

interpolation property using the classical functional equation; we do not explore this idea here.

We learned after the completion of this project that G. Rosso has generalized the Schmidt—
Hida construction and defined a 2-variable p-adic L-function L,(Sym? f ® v, ) for o(—1) =
1(—1), even over arbitrary totally real fields (see [Ros, Theorem A.3] and [Ros2, Theorems A.2
and B.1]). However, the interpolation formula for this function at forms f with level divisible by p
is not given explicitly in those articles. We leave open the problem of explicating the interpolation
formula in this case and combining it with the methods of this paper to prove equation (2) for
p| N and o(—1) = ¢(—1).
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REMARK 1.3. It is common to present p-adic L-functions as functions of a variable s € Z,.
Let us rephrase our main result in this language. For an equivalence class ¢ mod (p — 1), let
L][)i] (Sym? f ® v, s) denote the branch of Schmidt’s p-adic L-function interpolating the algebraic
parts of the classical values L(Sym? f,w* "), s) for 1 < s < k — 1 when ¢(—1) = (=1)"*! and
for k < s < 2k — 2 when ¢(—1) = (—1). (Here w is the Teichmiiller character.) In terms of our
function defined earlier on weight space, it is given by

LE(Sym® f @1, 5) = Ly(Sym® f @ ¢, (2)(2)"), (3)

where (z) := z/w(z). Similarly let
LE(f® f@,s) = Ly(f ® f ® ¥,w'(2)(2)").

Theorem 1 can then be written as follows:

Lil(f @ f@,s) = Ll (Sym® f @, 5)Lp(x 9wk — ) (4)
if (1) = (~1)"*, and
LY(f® f @1,s) = LY (Sym® f © ¢, ) Ly(xvw* ™" s =k + 1) (5)

if §(~1) = (~1).

Here L,(x,s) is the Kubota—Leopoldt p-adic L-function of the even character x in the
usual notation. In comparing (1) and (4), note that the classical values L(x,s — k + 1) and
L(x~'9~1 k — s) are related by the functional equation for Dirichlet L-series.

REMARK 1.4. In the case 1 = "' and i = k (mod p— 1), equation (5) was conjectured by Citro
[Ci] (see Section 1.3 below).

Before outlining the proof of Theorem 1, we recall how L,(f ® f ® 1) is defined and state

our application to Greenberg’s conjecture.

1.1 Hida families
An integer k and p-power conductor Dirichlet character a give rise to an arithmetic point of
weight space W defined by vk (2) = a(z)zF. When a = 1 we simply write vg.

Let I be a Hida family? of p-adic cusp forms with tame level N and character x  of conductor
dividing N. Assume that the family F' is N-new. For simplicity in this introduction, we assume

that F'is parameterized by a connected component
Wie = {k €W :K(() = (™, ¢ € pp1 C Z3}, ko€ Z/(p—1)Z

of weight space.? The specialization F, = F}, o at an arithmetic point kK = vy, o € Wy, with k > 2
is a classical cuspidal p-ordinary eigenform form of weight k& and nebentype xra. (Note that xp

therefore has the same parity as kg.)

2Details about our definitions and conventions regarding Hida families will be given in §3.4. In particular, in this
paper a Hida family corresponds to an irreducible component of Hida’s Hecke algebra. This is the usual convention,
though for some authors a Hida family corresponds to a connected component of Hida’s Hecke algebra.

3In general, a Hida family is parameterized by a finite cover of such a connected component; see §3.4.
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Given another Hida family G and an auxiliary Dirichlet character ¢, Hida defined a 3-variable
p-adic L-function L,(F, G, ¢, K, A, o) for (k, A, 0) € Wy, X Wy, x W. At arithmetic points k = vy o,
XA =1y, and 0 = v, such that k—1 > s > £ > 2, the function L,(F, G) interpolates the critical
values of the classical Rankin L-series Dypr (Fko, Geg, 10771, s). Here p" is the lem of p and the
conductors of o and S.

Now, suppose we are given two p-ordinary cuspidal eigenforms f and g as in the beginning
of the introduction. We can find Hida families F' and G that interpolate the forms f and ¢
respectively, i.e. such that the specializations F}; and G at certain arithmetic weights x, A are
the ordinary p-stabilizations of f and g, respectively (of course, if p already divides the level of

f or g, then stabilization is not necessary). For ¢ € W, one then defines
Lp(f’ngao-) = Lp(F7 G,i/),l"i,)\,O'). (6)

Since k, ¢ > 2, the families F, G interpolating f, g are unique by results of Hida, and therefore
Ly(f,9,%,0) is well-defined.*

1.2 Two-variable factorization

Let Lp(Sym2 F, 1, k,0) denote Hida’s 2-variable p-adic L-series interpolating the algebraic parts
of the classical values L(Sym? F, ¥, s) in the range 1 < s < k — 1 when o = vsp and F; has

weight k. The actual formula we prove is the following.

THEOREM 2. Suppose that o(—1) = —(—1). We have

L,(F,F,¢,k,Kk,0) =E&(k,0) - Lp(Sym2 Fo,k,0)Ly(XFY, 2 0/K), (7)
where
E(r,0) =[] - xrero='(€)/0).
N
The Euler factor £(k, o) arises due to imprimitivity issues. The condition o(—1) = —¢(—1)

arises from the fact that Hida only defined the function L,(Sym? F, ), k, o) on this half of weight
space (in this case, the integers 1 < s < k — 1 are critical). With the proper generalization to
the other half, where the integers k < s < 2k — 2 are critical, (7) should continue to hold. These

two halves of weight space correspond to the dichotomy between (4) and (5).

Let f be a p-ordinary newform and suppose that « is an arithmetic weight with F, = f (or
the ordinary p-stabilization of f, if p does not divide the level of f). The functions in Theorem 1

are related to those in Theorem 2 by the formulae
Lp(Smef ®¢,O’) = (*)LP(Sym2 Fﬂﬁ,/ﬁU) (8)

and

Lp(f ® f & ¢70) = (*/)LP(Fv F71/]7 K’K70)7 (9)

41t is interesting to consider, however, the uniqueness of this construction if we allow weight k = 1, where the Hida
family F' is not necessarily unique.
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where (%) and (') are certain Euler factors at the bad primes. On the half of weight space
satisfying o(—1) = —(—1), Theorem 1 follows from Theorem 2, (8), (9), and careful bookkeeping
of Euler factors at the bad primes. Theorem 1 is then deduced for the other half of weight space
when p{ N by applying a functional equational for L,(f ® f ®1, o). This functional equation is
proven in Section 9 using [LLZ, Prop 5.4.4].

We next state an application of our main theorem.

1.3 Greenberg’s exceptional zero conjecture for the adjoint at s =0, 1

Let f € Sk(T'1(N), x) be a cuspidal newform of level N and weight k& > 2. Let p be a prime not
dividing N, and fix embeddings Q C C and Q C C,,. Suppose that f is ordinary at p.

As we now explain, for each ¢ mod (p — 1), there is a p-adic L-function Lz[,i] (ad f,s), s € Zp,

whose interpolation formula has the shape
Lg}(ad f,s) = (Euler Factor) - L4 (ad f @ w*™%, s) (10)
for2—k<s<0,ievenand 1 < s <k —1, i odd. Here Lalg(ad f,s) is the ratio between the
classical value L(ad f, s) and an appropriate period. In view of the relationship
ad f = Sym? f @ y et 7,
these functions can be defined in terms of the p-adic L-functions considered above by
Lil(ad f,s) = LI U(Sym? f @ x !, s + k- 1).

When ¢ = 0 or 1, the Euler factor in (10) vanishes at s = 4, and hence L][ﬂ(ad f,i) is said to
have a “trivial” or “exceptional” zero at this point. Greenberg has stated a general conjecture
concerning the values of derivatives of p-adic L-functions at exceptional zeroes. To state this
conjecture in the current setting, we define the analytic Z-invariant of ad f by
a7
Ly (ad £,i)

S(f) - L¥&(ad f,1)
where S(f) € Q is the nonzero part of the Euler factor in (10); see (35) below.

Zan(ad f4) = (=1)17°

€C,  i=0,1, (11)

Greenberg has defined an algebraic counterpart to the Z-invariant above. This is an in-
variant .Zg(ad f) arising from a certain cohomology class in H!(Gq,ad ps), where py is the
2-dimensional p-adic Galois representation attached to f by Deligne. We do not present the
precise definition, referring the reader instead to [Ha] or Greenberg’s original work [Gre].

GREENBERG’S CONJECTURE. For ¢ =0, 1, we have

gan(ad f7 Z) = galg(ad f) (12)

Let F' denote the Hida family whose weight k specialization is the ordinary p-stabilization of
f- Inspired by the work of Greenberg and Stevens on the Mazur—Tate—Teitelbaum conjecture,

one defines the Greenberg—Stevens .Z-invariant of ad f by

2a;,(k)
Hestd ) ==,

€C,,
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where a, denotes the analytic function on W, giving the U,-eigenvalue of F'.
THEOREM 3 (Hida [Hi4], Harron [Ha]). We have
Zag(ad f) = Zas(ad f).
The following is a corollary of Theorem 1.
THEOREM 4. For i = 0,1, we have
Zan(ad f,i) = ZLas(ad f),
and hence Greenberg’s Conjecture holds.

The fact that Theorem 4 follows from Theorem 1 was essentially proved by Citro [Ci], who
considered the case i = 1. We briefly recall Citro’s argument. Applying (4) with ¢ = x ™1, i = k,
and s replaced by s + k — 1, we obtain

LE(fefox ™ s+k—1) =Ll (adf,s5)¢(s).

Taking leading terms and evaluating at s = 1, the fact that the p-adic zeta function has a

pole at s = 1 with residue (1 — 1/p) yields

LH(Fofox k) = (1 - ;) LV (ad £.1). (13)

The evaluation of L,[)k]( f® f®x ' k) follows from earlier work of Hida [Hi3, Theorem 5.1d].
Suppose that F} is the ordinary p-stabilization of f. Hida showed that after removal of the Euler
factor (1 — a,(F,)/ap(f)) in the interpolation property for L,(F,F,x™ !, x,k, k), the resulting
function of x has a simple pole at k = v, with residue

(1=1/p)(x) - L*%(ad f,1),
where as usual (*) denotes a fudge factor arising from imprimitivity and from factors appearing
in the interpolation formula. Note that the removed Euler factor (1 — a,(F))/ap(f)) has a zero
at k = v and its derivative at vy, is %Lgs(ad f). Taking the limit as k — v and combining these
results, one finds that

LE(fe fex ' k) = Las(ad f) - S(f) (1 - ;) L¥(ad f,1), (14)

with S(f) as in (11) and (35). Equations (13) and (14) yield Theorem 4 for i = 1. The result
for i = 0 can be deduced from the case ¢ = 1 by means of the functional equations proven in §9.
Details of these arguments are provided in §10.

REMARK 1.5. Greenberg’s conjecture was proven for arbitrary symmetric powers of p-ordinary

CM forms f (when the corresponding L-functions have exceptional zeroes) by R. Harron in [Ha2].

REMARK 1.6. It is also possible for Lp(Sym2 f,s) to have a trivial zero at s = k when p divides
the level of f. Greenberg’s conjecture was proven in this case under certain hypotheses (even over
arbitrary totally real fields F') by G. Rosso [Ros2], generalizing unpublished work of Greenberg
and Tilouine.
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We conclude the introduction by outlining the proof of Theorem 1.

1.4 Outline of proof of Factorization Theorem

Let F' be a Hida family, with notation as in §1.1. Let us write y for xyr. Let @ and § denote
Dirichlet characters of p-power conductor such that 3 has the same parity as 1 and 1o o € W,
(so in particular o has the same parity as x). The set of points (k, o) of the form k = 15, and
o =118 or 0 = vy g form a dense subset of Wy, x W in the rigid topology, and hence it suffices to
prove equality (7) under these specializations. (Note that this remains true if we remove finitely
many « and (.) In this paper we consider o of the first form, o = vy g, which introduces the
condition o(—1) = —1(—1) noted above. The formula we would like to prove is then

Ly(F, Fop,v9,0,v2,0,v1,8) = E(k,0) Lp(Sym?® F, vg o, ¥, 11 8) Lp(x¥) ™', V1 ap-1)- (15)

The right side of (15) is easily computed. Let K be the real cyclotomic field cut out by the
even character 7 := y1aB~!. Leopoldt proved that the value of Lp((XQZ))_l,Vl’a/g—l), which in
the classical notation is L,(n~1,1), is equal (up to an explicit algebraic constant) to log,, (uy).
Here u,, is a circular unit

uy €Uy = (05 2 Q)" (16)
and log, denotes the p-adic logarithm extended by linearity to U,. In (16), the superscript

1

indicates that the element w, lies in the " -component for the action of Galois. The equivariant

form of Dirichlet’s unit theorem implies that U, is a vector space of dimension 1 over Q.

Meanwhile 0 = vy 5 is a critical value for L,(Sym? F, vy 4,1, 0). Hence the value of this
function is equal, up to various interpolation factors, to the algebraic part of the classical L-
value L(Sym? f, 71, 1), denoted

2 -1
Lalg(sme f /871 1) — L(Sym fvﬁ ) 1)
o period

Here f = Fy ,, a classical cusp form of weight 2 and character yo.

The difficulty in proving (15) is in evaluating the left side. In Section 7, we define an element
bsy.p € U, using intersection theory of algebraic cycles on the product of two modular curves.
Our construction is inspired by the work of Beilinson [Bei| and Flach [F1] but draws more directly
from recent work of Lei, Loeffler, and Zerbes [LLZ] (which in turn was inspired by the work of

Bertolini, Darmon, and Rotger [BDR1]); we call by, 3 a Beilinson-Flach unit.
We prove that

Lp(fv f7w?l/2,ﬁ) = logp(bf,¢,,3) (17)
by combining a formula for L,(f, f, v, v2,) proven in [KLZ] with a general compatibility result

relating the p-adic regulator, cycle class map, and intersection pairing. By the linearity of log,,

the proof of (15) is then reduced to proving that®

bry,s ~ LME(Sym? f,71,1) - u, (18)

50ur notation here suffers from the usual dilemma when tensoring a multiplicative group with an additive group as
in the definition of U,. Instead of writing bs,¢ = C - u,, a more enlightening notation would perhaps be by ¢ = uS.
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in the Q-vector space U,. Here ~ denotes equality up to multiplication by a specific nonzero
algebraic factor that we suppress here for simplicity.

Equation (18) is proved by evaluating the leading terms at s = 1 of the factorization of

classical L-series (2):

L'(f® feys™ 1) = L(Sym® f @ ¢v5~', 1)L (n,0). (19)

Dirichlet’s class number formula states that L'(n,0) = —% log, Uy, where log,, is the Q-linear

extension of the usual logarithm of the complex absolute value on O%;. Meanwhile, we prove that

L(fefeoys 1)
period

~ logy by (20)

by combining the Beilinson regulator formula of [LLZ] with a general compatibility result relating

the archimedean regulator, cycle class map, and intersection pairing.

Equations (19) and (20) imply that
log., bys ~ L*8(Sym? f @ 871, 1) - log., uy. (21)

Since Uy, is a 1-dimensional Q-vector space on which log is injective, equation (21) implies (18),

and completes the proof of Theorem 1.

REMARK 1.7. The debt this article owes to the work of Bertolini, Darmon, and Rotger (in
particular the articles [BDRI1] and [BDR2]) is clear. We refer the reader to [BCDDPR, §2.4],
where this article is placed in the larger context of the Bertolini-Darmon—Rotger program on

Euler systems.

2. Classical L-series
We recall various classical L-series that play a role in this paper.

2.1 Dirichlet L-series

Let x denote a primitive Dirichlet character. Its associated L-series

o0

L(x,;s)=> x(mn " =J[@=x@p )",  Re(s)>1,
n=1 P
can be analytically continued to the entire complex plane. The function L(y, s) is holomorphic
unless x = 1, in which case L(1,s) = ((s) has a simple pole at s = 1 with residue 1. We denote
by Ln(x,s) the L-series obtained from L(y, s) by excluding the Euler factors at primes dividing
N. (This should not cause confusion with the p-adic L-functions L, to appear later.)

The critical values of L(, s) are the integers s < 0 with x(—1) = (—1)**! and integers s > 0
with x(—1) = (—1)*. The values of L(x, s) for critical s < 0 are algebraic, and in fact live in the
field Q(x) generated by the values of the character x.

10
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2.2 Symmetric square L-series

Let f = 3°° a,e*™* € S(I'1(N), x) denote a normalized eigenform (so a; = 1, and f is an
eigenform for the operators Ty,¢t N and U, ¢ | N). For any prime £ { N, let ps, : Gq — Aut(V})
denote the 2-dimensional ¢-adic representation associated to f by Deligne. The symmetric square
Sym? p ¢ is a 3-dimensional representation of Gq. Let ¢ : Gq — QX be a primitive Dirichlet
character of conductor N,;. For any prime g # ¢, we let

Zy(Sym?® f ® 9, X) = det(1 — Froby X |((Sym® py.e) ® ¥)1,),

where I, C Gq is an inertia group at ¢. The polynomial Z,(X) has coefficients in Q(x) and is

independent of ¢ or the choice of I,. We define the primitive L-series

L(Sym?* f @1, 5) = [ [ Zq(Sym® f @ p,q7*) 7", (22)
q

If gt N, the Euler factor at ¢ in (22) is
[(1 = agv(g)a*)(L = xvp(a)g" ) (1 = Bre(a)a ™)),
where o, and S, are the roots of the Hecke polynomial 2% — a,z + x(q)g" ! of f at q.
We also consider the imprimitive L-series defined by

L(Sym® f,4b, ) := Lnn, (25 — 2k +2,X°¢%) > th(n)a,2n”.

n=1

If we extend the definition of (ay, 8;) by setting
(g, By) = (aq,0) when ¢ | N, (23)
then we have

L(Sym?® f,,5) = [ [I(1 = 2v(0)q™*)(1 — agBeb(q)d* ) (1 = BZp(q)g~*)] .

q

For primes ¢t N, the Euler factors of L(Sym? f,, s) and L(Sym? f ® ¢, s) agree. For q | N, the
Euler factors of L(Sym? f, 4, s) divide those of L(Sym? f ® 1, s). In other words, we may write
L(Sym2 f’ wa S) = L(Sym2 f @ ,Qb? S) ’ P(Sym2 fv wa S)a

where

P(Sym? f,4,5) = [ [ Pa(Sym® f,4,47°) (24)

qlN
and Pq(Sym2 f,1, ) is a polynomial of degree at most 3 in x. For details on the exact evaluation

of these polynomials, see [Sc|.

2.3 Rankin L-series

Now consider two normalized eigenforms:

F=) ™ € S(T1(Np),xp), 9= bae™™" € Su(T1(Ny), Xg)-

n=1 n=1

11
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Let 1 be a primitive Dirichlet character of conductor Ny,. Let £{ N :=lem(Nyf, Ny, Ny); for any
prime ¢ # £, put

Zy(f ® g@ 1, X) == det(1 — Froby X|(ps¢ @ pge @Y)1,)-

The polynomial Z,(f ® g ® ¢, X) is independent of ¢, and we define the primitive L-series
L(foged,s) = [[Z(fogov,q )"
q

Meanwhile, the (imprimitive) Rankin L-series of f and g twisted by 1 is defined by

DN(fvga ’(/}, 5) = LN(XfXg¢2a 2s + 2—k— 6) Z anbnw(n)n_sv

n=1
which under the convention (23) has the Euler product
[T = aq(Haglo)b(@)a*) (1 = aqg(£)By(9)¥ () )

q
(1= Bo(Feg(9)v(@)g ) (1 = Bo(f)Be(9)(@)a )] "
For g f NyNg, the Euler factors of L(f ® g ® 1, s) and Dn(f, 9,7, s) agree, and we may write

Dy(f,9:%,8) = L(f @ g®,8)P(f,g,%, )
where

P(f,9,0.5) = [ Palfr9:.07") (25)
q|NyNg
and Py(f,g,v, ) is a polynomial of degree at most 4 in x.

When f = g, we have L(f ® g ® 1, s) = L(Sym? f ® ¢, s)L(xt, s — k + 1). Furthermore, the
Euler factors of the imprimitive L(Sym? f, 1, s) and Dn(f, f, %, s) agree for all ¢ | N. The error
terms defined in (24) and (25) are therefore related by

P(f, f,1,5) = P(Sym® f,2,5) [ [ (1 — x:(a)g" %),
aN
with the understanding that x(q) denotes the primitive character associated to x evaluated
at ¢ (hence we may have y1(g) # 0 even if x(q) =0 or ¥(q) = 0).

3. p-adic L-series

For clarity we present p-adic L-functions both as functions on weight space YW and more classically
as functions of a variable s € Z,,.

3.1 Kubota-Leopoldt p-adic L-series

Let p be a prime number, and fix once and for all embeddings Q < C and Q — C,. Suppose
that the Dirichlet character y is even. Kubota and Leopoldt proved the existence of a unique

p-adic meromorphic function

L,(x,9): Z, — Qp(x)

12
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such that

Ly(x,n) = Lxw" 1, n)E(xw" 1, n) for integer n < 0, (26)
where w : (Z/pZ)* — pp—1 is the Teichmuller character (or w : (Z/4Z)* — {£1} if p = 2),
and £(xw" !, n) =1 — xw" Y(p)p~" is the Euler factor at p of the given L-function. The p-adic

L-series L,(x,s) is analytic unless x = 1, in which case L,(1,s) = (p(s) has a simple pole at
s = 1 with residue (1 —p~!).

Let us now describe how the Kubotda—Leopoldt p-adic L-series may be viewed as a function on
weight space. We suppose that x has conductor prime to p. (This is no restriction, since the p-part
of the character may be absorbed into the weight.) We no longer insist that y is even and define
a, € {0,1} by (—1)® = x(—1). There is a unique meromorphic function L,(x,0): W — C,
such that for arithmetic weights o = v; o, we have

LP(X’ 0) = L(Xa_lv S)E(Xa_lv 5) (27)
if ya(—1) = (=1)**! and s < 0 and
8)1% (et _
Lp(x,0) = L(xa™ ', s) - 2(F2(7r2)5 g J)Vs( )€(x fa,1—s) (28)
if ya(—1) = (—1)® and s > 1. Here 7(«) is the Gauss sum
No
7(a) =Y a(n)exp(2min/N,). (29)
n=1

The function L, is analytic unless x = 1, in which case L,(1,0) = (p(o) has a simple poles
at 0(z) = z and o(z) = 1. Comparing (26) and (27), we see that for any p-power conductor
Dirichlet character o such that ya is odd, we have

Ly(x, a{z)®) = Ly(xa 'w, s), s € Z,. (30)

REMARK 3.1. For most of the paper, we will be concerned with the half of weight space on which
X(—1) = —o(—1), where the formulae (27) and (30) hold. As explained in the next section, the
constants in (28) have been chosen so that there is a functional equation relating L,(x, o) and
L,(x~ !, v1/0) mirroring the classical functional equation relating L(x, s) and L(x~!,1—s). Note
that our normalization differs slightly from that of Colmez in [Col]; the functional equation of

our Ly(x, o) involves the same epsilon factor as the classical L(x;, s).
3.2 Functional Equation
Recall the standard notation

Tr(s) =7 %2T(s/2),  Tc(s) = 2(2m)"°T(s).

Let x be a Dirichlet character of conductor N,. Let a, € {0,1} such that x(—1) = (—1)%.
Define

A(x,s) =Tr(s + ay)L(x, ).

The following functional equational is well-known.

13
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THEOREM 3.2. Let

1%

e(x,s) = T(X_I)N;.

We have
A(X? 1- 5) = €(X7 S)A(X_17 S)‘

Suppose that p { Ny. Denote by

g(X? U) =
the unique analytic function on W such that €(x, vs) = €(x, s) for s € Z.

THEOREM 3.3. We have

1

Lp(Xa Vl/a) = g(X> U)LP(X_ ,O‘).

Proof. To prove the result on the half of weight space such that o(—1) = —x(—1), it suffices to
consider the dense set of points of the form o = v; where y(—1) = (=1)**! and s < 0. By (27)
and (28) we see that the right hand side equals e(x, s)L(x ™!, s)E(x !, s) and the left hand side
equals L(x,1 — 8)&(x71,s) - 2(—s)!i% /(2mi)} 5. These are equal by Theorem 3.2 and standard
formulae for the Gamma function.

To deduce the result on the half of weight space such that o(—1) = —x(—1), one enacts the
change of variables o ~ 11 /0, noting that €(x,o)e(x !, v1/0) = 1. O

3.3 Schmidt’s p-adic Symmetric Square L-series

THEOREM 3.4 (Schmidt, [Sc], Theorem 5.5). Let f be a p-ordinary cuspidal newform with weight
k > 2, character x, and level Ny. Let v be a Dirichlet character of conductor Ny,. Suppose that
p{ NyNy. There exists a unique meromorphic function Lp(Sym2 f®v,0): W — C, such that
for all but finitely many characters 3 of conductor p", v > 0, we have

(=1 M1B(-1)I(s) T(8)  L(Sym®feyBls)

Lp(Sym2 f & d}a VB,S) = i9xv 2k (041:27/1_1 (p)ps_l)r (27Ti)s_k+1 mh=1 <fa f>

if1 <s<k—1and¢B(—1)=(-1)*, and

T(s — k4 1)T(s) o L(Sym® f @ 9571, 5)

Ly(Sym Fe.vs) = = () Y BN P
(32)
ifk <s<2k—2andyp(—1)=(-1)".
Proof. In the notation of [Sc, Theorem 5.5], our function L,(Sym? f ® ¢, o) is given by
Cp-1y-1 (J/l/k,l) - NE-L
I 2 _ ¥ x Px
p(Sym™f ® ¢, 0) ian%T(lﬂ_lX_l)U(—wa) (33)
if o(—=1) = —¢p(—1) and
Cyp1y-1(c/vp_q) - N2k1
Ly(Sym? f ©1,0) = —— 4 o) N (34)
T

(@ T2 (N ) (-1
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if o(—1) = ¥(—1). The interpolation properties (31) and (32) then follow directly from [Sc,
Theorem 5.5(ii)], keeping in mind the sign error in the definition of @, x for 1 < m < k—1 pointed
out in [Hi2, pg. 134] (and the corresponding correction that must be made for k < m < 2k — 1,
multiplying @, x by (—=1)™F for m in that range). O

As we discuss in §3.5, Schmidt’s result was generalized by Hida to allow f to vary in a
p-ordinary family. By specializing to general forms in the family, one obtains a definition of
L,(Sym? f ® ¢, 0) even in the case p | Ny. For most of the paper, where we work on the half
of weight space satisfying o(—1) = —¢)(—1), we use Hida’s more general construction. However
in Section 9 we will appeal to Schmidt’s functional equation for Lp(Sym2 f®,0) in order to
deduce our factorization theorem on the other half of weight space when p { Ny.

REMARK 3.5. The reason that we have scaled Schmidt’s p-adic L-function by the factors in (33)
and (34) is that our function is more closely aligned with the standard classical completed L-
function A(Sym? f®41, s). For example, the epsilon factor appearing in the functional equation of
our Lp(Sym2 f®1,0) is exactly the p-adic function that interpolates the classical epsilon factor
for integer s (see §9). Retaining this convention for all our p-adic L-functions is quite natural
and will simplify later proofs.

3.4 Hida Families

Let p > 5 be prime, and let N be a positive integer such that p { N. Let O denote the ring of
integers in a finite extension of Q,, and let

A = O[[(1 +pZ,)"]) = O[T]).

Let Specﬁ denote an irreducible component of Hida’s ordinary Hecke algebra of tame level N
defined over O, and let R denote the integral closure of R in its quotient field. Thus R is a finite
flat extension of A such that RN Qp =0.

The Hida family associated to R is the formal g-expansion F' = Y >° | anq" where a, € R is
the image in R of the Hecke operator T),; in particular a; = 1. There exists an even Dirichlet
character ¢ with modulus Np such that the Hida family F' satisfies the following interpolation
property. Let x € Homp_a1,(R, Cp,) be such that the restriction to group-like elements [z] € A
for x € (1 + pZ,)* has the form = — a(z)z®, where k > 2 is an integer and « has p-power
conductor and order p"~!. Then the values x(a,) lie in Q and

Fui= > wlan)g" € Cllq]

n=1
is the g-expansion of a p-ordinary eigenform in Sy(Np", ¥ raw™F).

Let 1p = xrw® denote the factorization of ¥p into characters of modulus N and p, where
ko is an integer determined modulo (p — 1). An O-algebra homomorphism « as above is called
an arithmetic point of R. The associated element v(k) = vy 4 k- € W is called the weight of
x and lies in the connected component Wy, C W containing the integer ky. More generally, any
x € Homp_a14(R, C,p) defines an element of Wy, , denoted v(k), via  + w* (z)k({z)) for x € Z;.
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In this way, Homp_,1s (R, Cp) defines (the set of Cp-points of) a rigid analytic space Wy that is
a finite cover of Wy, . In the introduction, we assumed that Wr = Wy, for simplicity.

3.5 Hida’s p-adic Symmetric Square L-series

Let F be a Hida family and ¢ an auxiliary Dirichlet character of conductor Ny (p 1 Ny). In
[Hi2], Hida defined a p-adic L-function Lp(Syrn2 F,¢,k,0) for k € Wr and o € W interpolating
the classical critical L-values L(Sym? Fia, 871, s) when v(k) = vgqa,0 = vsg such that 1 <
s < k — 1. These values are critical when o(—1) = —(—1).

In this paper, we scale Hida’s function in [Hi2| by

—tp(=1) Ny (W'(F,)N*/2)
4i%rv o (Ny)7 (1)

to align more closely with our normalization. Here W’( f) denotes the prime-to-p part of the root
number of f (see [Hi3, pp.38-39]); the function W’ (F, ) N*/2 extends to an analytic function on
We.

We state the precise interpolation formula when cond(8) = p" with w > 1. Let cond(a) = p".
Let £ =31 Let f = Fy. If f is a not a newform, we write f# for the associated newform (so
f is the ordinary p-stabilization of f#); if f is a newform, we write f# = f. Define S(f) = 1 if
a#1,8(f)=—1if a =1and f# = f (this can only happen if k = 2), and

S(f) = (1= xr()ap(£) 2" (1 = xrp)ap(f)~*p"?) (35)
if « =1 and f # f# . We then have:

THEOREM 3.6 (Hida, [Hi2|, Theorem 5.1d). There is a unique p-adic meromorphic function
Lp(Sym2 F,¢,k,0) on Wr x W such that for (k,0) satisfying the conditions above, we have:

—y(=1) T(s)pPCVay(f)Z20r(B)p(p)™  L(Sym?® f#,€,5)
Ly(Sym® F, 4,,0) = a2 () T @)S () @ (E, 7 €@
(36)

We will essentially define the p-adic L-function of f to be the specialization of Hida’s 2-
variable function at k, with two adjustments: (1) we would like to interpolate the primitive
values L(Sym? f), so an adjustment must be made at primes dividing Ny; (2) we scale the
function according to our prior conventions, so that in particular in the case where p { Ny, we

recover the function defined in Theorem 3.4.
To this end, we define the Euler factor
P(Sym® f,4,0) = [ Py(Sym® f,4,0()™")
alNy
with notation as in (24). For o € W such that o(—1) = —¢(—1), we define (for a newform f
such that F,, = f or F), = ordinary p-stabilization of f)
LP(Sym2 Fa ¢> R, U)
P(Sym® f,1,0)

Ly(Sym® f @4, 0) = S(f) - (37)
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It is a straightforward calculation to verify that this definition of Lp(Sym2 f®,0) agrees

with that of Schmidt from Theorem 3.4 when p { N (in which case we have in particular o = 1).

3.6 p-adic Rankin L-series

Let F' and G be Hida families of tame level Np, N¢g, respectively. Let N = lem(Np, N¢). Hida
has defined a 3-variable p-adic L-function L,(F,G,k, A, o) interpolating the algebraic parts of
the critical values Dy, (Fi, Gy, 0), for appropriately chosen r. Let F,; and G\ be specializations
at arithmetic points of weight k > ¢ > 2, respectively, such that F}; and GG have trivial character
at p. Then F, and G are the ordinary p-stabilizations of forms f and g of level Ng and Ng,
respectively (with the possible exception of g if £ = 2; we exclude this case in what follows).
Then for £ < s < k — 1, Hida’s function satisfies the following interpolation formula (see [KLZ,
Theorem 2.6.2]).

THEOREM 3.7 (Hida, [Hi3]). There exists a unique p-adic meromorphic function L,(F, G, k, \, V)
on Wr x Wg X W such that for (k, A\, vs) satisfying the conditions above, we have:

E(f. g, L(s)I'(s—¢+1
Ly(F, G, A vs) = (éf(?)S) | ﬂzs—fﬂ<(2>k(f€22s+k—f)<f, T

o =(-35) (- 52) (- 5) (-52)
Qfly O‘fﬁg ps s

Here oy = ap(F)) denotes the p-adic unit root of the Hecke polynomial of f at p, and

Dn(f,9,5) (38)

where

Br =X r(p)p" 1/ a ¢ denotes the other root; similarly for oy, 8,. Equation (38) specifies L, on a
dense collection of points in Wg X Wga x W.

Now let ¢ be an auxiliary Dirichlet character of conductor Ny, with p t Ny. f = F,; and
g = G be specializations of F,G at arithmetic points (not necessarily satisfying the condition
above of having trivial character at p). Denote by Gy the twist of the Hida family G by the
character 1. We define

Lp(F, Gw, K, )\,U)

Ly(f®@g®@1,0):=S(f)- P(f,g,%,0)

(39)

with

P(f,g.¢,0):= || Pulfr9,%,0(@)7 "),
q|NrNc
where P, is as in (25) and S(f) as in (35). Note that unlike the setting of the symmetric square,
in the case k < ¢ the function L,(f ® g ®1),0) is not characterized by any interpolation property
in the variable o, as there are no critical values; it may only be defined by specializing the
3-variable function L,(F,G). Note also the asymmetry between F' and G in the definition of
L,(F,G), implying that the functions L,(f ® g ® ¢) and L,(g ® f ® 1) may not be equal.
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4. Circular units

We recall special value formulae for classical and p-adic Dirichlet L-series in terms of circular

units.

4.1 Definition of circular units

Let x be a nontrivial primitive even Dirichlet character with conductor N. Let K = Q(uy), and
define

Uy :={z €05 2qQ:o(x)=x o) = for o € Gal(K/Q)}.

This is a Q-vector space of dimension 1.

Fix the primitive Nth root of unity ¢ € uy given by ¢ = e2™/N. (Recall that we have chosen

an embedding Q C C, so we may view ( as a well-defined element of K.) Define the circular unit

w= I (11__C;>®x(a)eUX.

1<a<N,(a,N)=1

4.2 Dirichlet’s formula

Consider the group homomorphism log. : O} — R obtained by composing the embedding
0% C C with the map x — log|z|, where |z| denotes the usual complex absolute value. The

map log,, can be extended by linearity to a Q-linear map
log,, : O ® Q — C.

The following is a special case of Dirichlet’s celebrated class number formula:

T(x7Y)

1 _
L/(X7O) =5 10%00(”)()7 L(X la 1) - - N

2
Here 7(x) is the Gauss sum defined in (29).

10g oo (t1y)- (40)

4.3 Leopoldt’s formula
Let O, C Qp denote the ring of p-adic integers, and let log,: O, — O, denote the p-adic
logarithm. The group homomorphism log, can be extended by linearity to a Q-linear map
log, : Ok ®Q — Qp.
Leopoldt proved the following p-adic analogue of Dirichlet’s class number formula:

T(x 1) (1 X'

LP(X7171) = - N p

) logp(ux). (41)
In particular, if the conductor N of x is divisible by p, we obtain

T(x ")

Lp(X_171) = - N

log,, (uy ). (42)
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5. Chow groups

The Beilinson—Flach units that we will construct in Section 7 and relate to classical and p-adic
Rankin L-series will be defined using Bloch’s intersection theory on higher Chow groups. In this
section we recall the basics of this theory that we will require, and prove compatibility results
relating an intersection pairing and regulator maps. Our discussion of Chow groups is by no
means complete, and we refer the reader to [Bll] and [Le] for more details.

5.1 Definition of Chow groups

Let S be a smooth projective variety of dimension d over a field K. We recall the definitions of
CH"(S) and CH"(S,1). Let 2"(S) denote the free abelian group on the set of irreducible varieties

7 C S of codimension 7. Let 2"

rat

to zero (i.e. for which there exists a subvariety Y C S and a rational function on Y whose divisor
is the given cycle). We have CH"(S) := 2"(S) /25, (S).

For a nonnegative integer r, let S” denote the set of points of S of codimension r. The higher

(S) C 2"(S) denote the subgroup of cycles rationally equivalent

Chow group CH"*1(S,1) is isomorphic to the cohomology of the Gersten complex

P Ka(kx) — P k) — P 2z (43)

zesSr—1 zes” zesr+l
(see e.g. [La, Theorem 2.5]).

Here the second map simply sends a rational function to its divisor. The first map sends a
symbol {f, g} € Ka(k(z)) associated to pair of functions f,g € k(x)* with z € S"~! to the tame
symbol
vz(9)

T({fvg}) = (UZ)ZGST, Uy = (_1)Vz(f)yz(g) fl/ 5
g Z

(44)

5.2 An intersection pairing

There is a natural pairing ( , ) : CH™"1(S,1) x CH4"(S) — K* defined by

(I(uz)z), [Y]) = [Juz(znY), (45)

where the representatives are chosen so that Y intersects each Z properly and avoids the zeros and
poles of the uyz. The fact that this pairing is well-defined is easily verified using Weil reciprocity.

We now give another description of this map that was first explained to us by G. Kings. It
is known that there is an isomorphism between Bloch’s higher Chow groups and the motivic

cohomology groups:

CHY(S,r) = H>3-7(S, d).

mot

Let w: S — Spec K be the structure map. Our pairing is the composition

HEAN S, r+ 1) UHZE?(S,d —r) — HXN(S,d+ 1) T HY (Spec K, 1) & K,

mot mot mot

where the first arrow is the cup product on motivic cohomology and the second arrow is the push

forward under 7.
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5.3 The Beilinson Regulator

Now let us specialize to K = C and d = dim S = 2. Beilinson defined a regulator map
rege: CH?(S,1) — HY(S,R)Y
by
1
regc ((u2)]) () = 3= 37 [ oguz-w. (46)

(Here and throughout, integration on complex manifolds is taken in the i-oriented sense for a
fixed choice of i = v/—1 € C, so that the right side of (46) becomes independent of this choice.)
It is an elementary and pleasant calculation using Stokes’ Theorem to verify that the definition

of reg depends only on the image of w in H%!(S,R) and that the regulator is well-defined on
CH?(S, 1) on the left (see [Le]).

5.4 The cycle class map and a compatibility result
Denote by
clc: CHY(S) — HM (S, R)
the complex de Rham cycle class map, which sends a cycle to the class of two-forms associated
by Poincaré duality. In other words, clc(Y) is specified by the property
5 [ do(v)=#(znY) (47)

for each [Z] € Ha(S,Z) represented by a cycle Z that intersects Y properly.

REMARK 5.1. It is known (see, for instance [Con]) that the period —1/27i must be included

when using i-oriented integration in the definition of the Poincaré pairing:

1
(w1, w2)dr,c = “omi w1 A w2
in order to be compatible with the algebraic Poincaré pairing defined on H le (X) by cup product
and the de Rham trace: trqr: Hiz(X) — C. Since we will use this algebraic manifestation of
the Poincaré pairing in §7 in conjunction with the present computaiton, it is essential to include

the factor —1/27i in (47) above.

The following theorem will allow us to reinterpret regulator formulae for Rankin L-series of

tensor squares in terms of logarithms of units.

THEOREM 5.2. The following diagram commutes.

CH2(S,1) x CH'(S) — L~ ¢

lclc —log]| |

CH2(S,1) x HY(S,R) — =% ~ R

Proof. It is possible to give a direct proof of this result using the explicit description of the

regulator map given above. For this, the key fact is that the pairing rege depends only on the
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class of the form w in H!. Therefore we can choose a form w representing the class clg(Y') for
which the desired formula becomes “obvious”; more precisely, we can choose for each ¢ > 0 a

representing class we such that the value of regc is easily seen to be within e of the desired one.

However, with a view towards generalizations and future applications, rather than explain
the details of this explicit argument we give here a more abstract proof suggested by the referee.
Our result expresses nothing but the compatibility of the Beiliinson regulator with cup product

and push-forward. Namely, for each d and r there is a regulator map
mot(S ’I“) — HD(S T)

where H%(S,r) denotes Deligne cohomology (see [Bl1] or [DS, §2]). For (d,r) = (3,2), there is a

canonical map
Hp(S,2) — H'(S,R) = HV'(S,R)",
where the last isomorphism is Poincaré duality, and the composition of this map with the regu-
lator rp is precisely the map we have denoted rege. For (d,r) = (2, 1), there is a canonical map
H2(S,1) — HY'(S,R), and the composition of this map with rp is the cycle class map (see [EV,
§7]). For (d,r) = (5,3), we have a canonical map H(S,3) — H?%(S,R), and the cup product
H3(S,2) x H3(S,1) — H2(S,3) is compatible with the usual cup product on differential forms.
Finally, we have H}(SpecC,1) = R, and the push-forward map H3(S,3) — R is integration
over S(C).
In other words, the commutativity of our diagram follows from that of:

T

mot(S 2) X Hr2not(S7 1) mot(specc 1) C

lm lm l lm=—10g| |

H3,(8,2) x H3(S,1) S H3,(S,3) H}(SpecC,1) = R (48)

o

HY(S,R) x HY(S,R) H?%(S,

.

The commutativity of the above diagram—i.e., the compatibility of the Beilinson regulator rp
with cup product and proper push-forward—is well-known; for instance, for the cup product see
[Nek].

O

5.5 The étale regulator

Let us retain the assumption that S is a smooth projective surface over a field K. We now

consider the setting where K is a finite extension of Q.

Recall that there is an étale cycle class map
clss: CH'(S) — HE (S, Qp(r)) — HE (S, Qy(r)) ¥

The étale regulator is defined in terms of Bloch’s generalization of the étale cycle class map to
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higher Chow groups (see [Bl1], [B12])
clgg : CH"(S,1) — HZ (S, Qp(r + 1)),
as follows. Let N'CH"(S,1) € CH"(S,1) denote the subspace of elements whose image under
the cycle class map clg lies in
Nngf_l(S, Qy(r)) == ker(Hgt’"_l(S, Qy(r)) — Hg{‘l(g, Q,(r)¢x).

For a smooth proper surface S over a p-adic field K we have H3 (S, Q,(2))“% = 0 and hence
N'CH?%(S,1) = CH?(S, 1) (see for instance the proof of [CTR, Theorem 6.1] or [SS, §3.1]).

Consider the Leray spectral sequence

Ey? = HP(K, H{ (S, Qp(r))) = HE (S, Qp(r)). (49)
From this spectral sequence, we extract a map
O NTHEH(S,Qp(r)) — B2 € By™ ™ = H' (K, HE (S, Qp(r)).
The étale regulator is defined by
regg, = 0y o clgy : N'CH'(S,1) — H'(K, HZ (S, Qp(r))).
The following is the analog of (48) in the étale context.

PROPOSITION 5.3. Let S be a smooth proper surface over a finite extension K/Q,. The following
diagram commutes:

T

CH?(S,1) x CHY(S) o CH3(S,1) CH'(Spec K,1) = K*

lregét iclét \Lregét lregét =0Kum

HY(K, H2(S, Qy(2))) x H2(S,Q,(1)6% —L= HY(K, HA(S, Q,(3)) "= [ (K, Q,(1)),
(50)

where
OKum : (liin K*/(K*)pn) ®Q— H'(K, Qy(1))
is the usual connecting homomorphism in Kummer Theory and (tre)« is the map induced by

the étale trace
treg : Hét(ga Qp(2)) — Qp.

Proof. The commutativity of the left square expresses the compatibility of the étale regulator
with cup product, which we now briefly explain.® If w € CH"(S,1) and z € CH™(S), then by
[GL, Proposition 4.7] we have

clgt(w U 2) = clge (w) U clge(2). (51)
Given elements a € N'HZ (S, Q,(r)) and b € HZ™(S, Q,p(m)) we have
§r(a) Ub = 6rpm(aUb), (52)

5This commutativity is well-known to the experts and appears in various forms in the literature (see for instance
[Hu, Corollary 2.3.4]), but we offer a short explanation here for the benefit of the reader.
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where b’ denotes the image of b in H2™ (S, Q,(m))“%. This follows from the fact that cup product
with b induces a morphism in the category of spectral sequences between the Leray spectral
sequences (49) for r and r + m (with a shift in degree of 2m), which on the E3 page is realized
by cup product with ¢’. The commutativity of the left square of (50) follows by combining (51)
and (52).

The commutativity of the right square of (50) expresses the compatibility of the étale regulator
with push-forward, which in this context is elementary. Elements of CH?(Sg, 1) are generated
by those of the form w U z where w € L* = CH'(Sp,1) and z € S(L) ¢ CH%*(Sy) for some
finite extension L/K. By functoriality with respect to field extension, it suffices to prove the
commutativity for such an element (with K replaced by L). It follows from the definitions that

regg, (w) = 01 (clat (w)) = Oxum(w) € H' (L, Qp(1)).
Hence by (51) and (52) we have
83 (clgg(w U 2)) = 81 (clgg(w)) U cl(2) = dxum(w) U cl(z)'.

By definition, trg(cl(z)) = 1 and hence trg; (d3(clge(w N 2))) = dkum(w) as desired. O

5.6 The syntomic regulator and a compatibility result

We now prove a p-adic analogue of Theorem 5.2 by connecting the above étale picture to p-
adic (or “syntomic”) regulators on our motivic cohomology groups. The theory of syntomic
regulators has a long history, including the works of Fontaine-Messing [FM], Niziol [N], Besser
[Bes|, Besser—Loeffler—Zerbes [BLZ], and Nekovar—Niziol [NN]. Rather than survey this deep and
important theory, however, we give an ad hoc definition of the p-adic regulator that suffices for

our applications.

Recall that Bloch and Kato [BK, Def. 3.10] have defined an “exponential” map
exp: Hip(S/K)/F? — H'(K, HE (S, Qp(2))). (53)

Let CH2(S, 1)g denote the subspace of classes Z € CH2(S, 1) such that regg, (Z) lies in the image
of the Bloch-Kato exponential. We define the p-adic regulator

reg,: CH?(S,1)ey — (F'HiR(S/K))"

as the composition of the étale regulator, the inverse of the Bloch-Kato exponential” and the

Poincaré duality isomorphism
Hig(S/K)/F? = (F'HiR(S/K))".
Next denote by
cl, : CHY(S) — F'H3R(S/K)
the de Rham cycle class map. The p-adic analog of Theorem 5.2 is the following.

"Strictly speaking, reg, as defined here is only well-defined up to the kernel of exp. However, in view of (55),
classes in the kernel of exp do not contribute to our pairing and can be safely ignored in our applications.
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THEOREM 5.4. The pairing (, ) restricted to CH?(S,1)s x CH'(S) takes values in 0%, and we

have a commutative diagram

2(8, )¢ x CH'(S) — )~ 0x

iclp llogp (54)
CH2(S, 1)e x FUH2,(S/K) ——2 ~ K,

where log,,: O} — K denotes the p-adic logarithm.

Proof. We can connect the bottom row of (50) to de Rham cohomology groups via the following

commutative diagram:

e =(trey) «
_

H' (K, Hg (S, Qp(2))) x HE (S, Qp(1))%x HY(K, Hg (S, Qp(3))) HY(K, Qp(1))

expT |- expT eXpT

HgR(S/K)/F2 x FngR(S/K) = HQLR(S/K) Han K.
(55)

The map « is the composition of the inclusion

HE (S, Qp(1)% C Dar(HE(S, Qp(1))) = (HE(S, Qp(1)) ©q, Bar)®

given by x — x ® 1 with the étale-to-de Rham comparison isomorphism

Dar(HZ (S, Qp(1))) —= Hip(S/K)(1),

where the twist on the right represents a shift in the filtration. The image of « clearly lands
in F'H3;(S/K). The commutativity of the square on the left in (55) follows directly from the
definition of exp, granting the compatibility of the comparison isomorphism with cup product
(which is proven in [Ts, Theorem Al]). The commutativity of the right square expresses the

compatibility of trace maps on top degree de Rham and étale cohomology, proven in loc. cit.

Diagrams (50) and (55) together show that the pairing (, ) restricted to CH?(S, 1) x CH*(S)
takes values in K* N dy. (exp(K)), which by [BK, Page 359] is equal to O%.

The commutativity of (54) also follows from (50) and (55). On CH! (), the p-adic cycle class
map cly, is given by the composition of the étale cycle class map and the map « (see [Fa, Theorem
8.1] or [Ts, Theorem A1]). Furthermore, Poincaré duality is given by cup product and the trace
map on top degree cohomology (on both the étale and de Rham side). The theorem then follows
from the fact that for Q,(1), the Bloch-Kato exponential is an inverse to the p-adic logarithm,
i.e. the composition

lo ex:
O3 —2 > K —2 - HY(K,Q,(1))

is equal to dgum. This last fact is proven in [BK, Page 358]. O

Theorem 5.4 is the key technical result that will allow us to relate the special values of p-adic

Rankin L-series to the p-adic logarithms of units.
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6. Regulator Formulae for Rankin L-series

6.1 Beilinson—Flach elements, after Lei—Loeffler—Zerbes

Let m and M be positive integers and let X = X;(M). In our applications, m will be a power
of p and M will have the form Np". In [LLZ], Lei, Loeffler, and Zerbes define an element

Emar1 € CHY(X? ® Q(ptm), 1)

related to Rankin L-series of weight 2 modular forms. Let 8 be a primitive Dirichlet character
with conductor m. Define
g = Y. 0alEmu)®Ba) € CHA(X? @ Qum) 1) ® Q,
a€(Z/mZ)*

where o, € Gal(Q(um)/Q) denotes the automorphism ¢, — (f,. The class Zg s is called the
Beilinson—Flach element associated to 8 and M.

Let f,g € S2(I'1(M)) such that f and g are eigenforms for the Hecke operators away from
M. Let f* = f(—%) denote the modular form in S2(I';(M)) whose Fourier coefficients are the
complex conjugates of those of f. Define wy, n?h € H&R(X) by

o on _ [H(2)dz _ f(=Z)dz
=R =

and similarly for g. Here we are employing the usual identification X (C) = I'y(M)\(HUP(Q)).

Via the Kunneth decomposition, we can consider Hlg (X)®? C H2;(X?). The following is The-

orem 4.3.7 of [LLZ], which generalizes a formula of Beilinson in the case § = 1 and is based on

Proposition 4.1 of [BDR1].

THEOREM 6.1 (Lei, Loeffler, Zerbes). We have

L/ —1
regc(Eaan) i @) =~ LD A7 571, 0), (50
where
Alf0.67L8) =D ] ! (57)
S T B T 0aDadg)
Um

Now let 9 be an auxiliary Dirichlet character with conductor relatively prime to m, and
suppose that M is large enough so that fy, g, € So(I'1(M)). Since (f, f)m = (fy, fu) M, the right
side of (56) is equal for the pairs (fy,g) and (f, gy). Now, the involution on X7(M)? given by
switching factors acts on Zg as by B(—1). On the other hand, the induced action of this involution
on HIz(X)®? C H3z(X?) is given by z ® y — —y ® @ because of the anti-commutativity of the
cup product in degree 1. This implies that

regc(Ep,m) (17" © wy) = —B(—1) regc(Ep,m) (wg  11").

Combining these observations, we obtain from Theorem 6.1:
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COROLLARY 6.2. With notation as above, we have:

_L;nM(fmgawﬁ_la 1)A

-1
27TZ<f*;f*>M (fibgaﬂ >1>'

rege(Zp.0) (03 @ wy — B(—1)wg, @ ") =

6.2 The classes ny' and w,

Before stating the p-adic analogues of Theorem 6.1 and Corollary 6.2, we must introduce some
notation. Continuing with the notation of the previous section, we assume that the prime p
divides M (the level of the weight 2 newforms f and g) and m (the modulus of the character (3).
Over any field K containing Q(uas), we have the short exact sequence

0 — HY(Xg, Q%) — HIR(Xkx) — HY(Xg,Ox) — 0. (58)

The image of the class n?h € Hlz(Xc) in HY(X¢, Ox) is actually defined over the number field
K generated over Q(uar) by the Fourier coefficients of f, in the sense that it arises from an
element ny € H'(Xg,, Ox) by base extension ([DR, Corollary 2.13]). If K is a finite extension
of Q, containing Ky, we can then view 7; as an element of HY(Xf,Ox). Now, for such a K,
the space H éR(X k) is endowed with an action of Frobenius. On the 2-dimensional f-isotypic
subspace of HéR(X k) (i.e. the subspace on which the Hecke operators away from p act via
the eigenvalues of f), there is a canonicial 1-dimensional subspace on which Frobenius acts by
multiplication by a¢ = a,(f) = the Up-eigenvalue of f. This subspace maps isomorphically via
(58) to HY(Xk,Ox)/. The lift of ny € H' (X, Ox)’ via this isomorphism is denoted

ny e His (Xk).

Meanwhile, the differential w, € H(Xc, ) is well-known to represent a class Hl(Xc)
defined over the number field K,, and may therefore be viewed as an element of Hs(Xg) for

any p-adic field K containing K.

6.3 p-adic Rankin L-series
In this section, we state p-adic analogues of Theorem 6.1 and Corollary 6.2.

Let F and G be Hida families. Let kK € Wpg,k' € Wg be arithmetic weights such that
v(K) = Vaq,V(K') = g for some Dirichlet characters a, o/ of p-power conductor. Note that «
has the same parity as yr and o' has the same parity as . The specializations f := F}, and
g := G, are p-ordinary forms of weight 2 and characters ypa, xgo/, respectively. Let M be the
lem of the levels of f and g. Let 8 be a Dirichlet character of conductor p¥,w > 0. Let the
conductors of a and 81/ be p", p", respectively, and assume that r, 7’ > 0. Define

2i - a(—1)7(a)7(B7 )

ap(f) "2 ay(g) " xF () XG (P) T

In [KLZ, Theorem 10.2.2], the following p-adic analogue of Theorem 6.1 is proven.

Ap(f7ga ﬁ) = LQD(Fv Gv R, K‘l7 1/1,6) X (59)

THEOREM 6.3 (Kings, Loeffler, Zerbes. Let M = NyNyN2, and let S = X1(M) x X1(M). We

have

reg, (Ep.0) (N} ® wg) = Ap(f, 9, 5)-
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Theorem 6.3 can be deduced by specializing Theorem 10.2.2 of [KLZ] to our setting. The spe-
cialization of the class .BFF8 at the point (k, k', 11 8) is equal to the étale regulator of the projec-
tion of the class we have denoted =g js onto the (f, g)-isotypic component of CH?(S, 1), up to the
factor depending on ¢ on the right side of [KLZ, Theorem 10.2.2], and a factor (a,(f)a,(g))™".
The function denoted L is a logarithm, i.e. in our context an inverse to the Bloch—Kato expo-
nential, and hence the pairing indicated is exactly our p-adic regulator reg,. The specialization
of 77a @ wg at our point is 7" ® wy up to a factor of ap(f)™", where u is the power of p dividing
Ny. Comparing the normalizations for the p-adic L-functions in [KLZ] and in this paper explains
the constants in (59).

REMARK 6.4. Theorem 6.3 is a generalization of Theorems 4.2 and Corollary 4.2 of [BDRI1],
which give the version of this result in the case a = o/ = 8 = 1, and Theorem 3.9 of [BDR2],
which handles the case when f is fixed but g moves in a p-adic Hida family G.

Now let 1) be a Dirichlet character with p { Ny. It is easy to see from the interpolation property
that L,(Fy,G) = Ly(F,Gy). Arguing as before with the signs of the “swapping” involution on
X1(M)?, we obtain:

COROLLARY 6.5. Let M = NyN,N2, and let S = X;(M) x X;(M). There is a functional
%, € FYH3:(S/K))Y such that exp,(pd(-%,)) = regs (Ep,.1) and

gp(n}l; @ wg — ﬁ(_l)wgw ® 77}“) = 2Ap(f¢7975)-

7. Beilinson—Flach units

In this section, we prove that the regulators appearing in Corollaries 6.2 and 6.5 can be interpreted
as the logarithms (archimedian and p-adic) of an algebraic unit in a cyclotomic field. As a first
step, we show that the de Rham cohomology classes appearing in these regulators have a common
algebraic source, namely a certain element of CH'(X?). This element will be constructed out of

Hecke operators.

7.1 Algebraic cycles attached to f

Let X = X5(M),J = Ji(M) = Jac(X) and S = X1 (M) x X;(M). As in [DRS, pg. 19, eq. (65)],
we can view the graph of an element 7' € End(J) as an element gr(T) € CH!(S), well defined up
to vertical and horizontal components (i.e. up to an element of (71)* CH'(X) + (m)* CH}(X),
where m; : X x X — X are the projection maps). For example, a Hecke operator Ty can be
described as a correspondence associated to a pair of morphisms fi, fo : X1(M{) — X1(M).
These induce a morphism f; x fo : X1(M/{) — S, and gr(Ty) € CH(S) is the class of the image
of f1 x fa.

We now describe the various homomorphisms that we need:

— Let f € So(I'1(Ny), xs) be a newform of level Ny. Let T C End(J1(Ny)) denote the Hecke
algebra of Ji(Ny) generated by operators Ty for ¢ t Ny, Uy for £ | N¢, and the diamond
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operators (d) for d € (Z/N;Z)*. Let K denote a field containing Ky. Let Ty € T ® K

denote the idempotent defining projection onto the f*-isotypic component of T.

— Let Wy, € End(J1(Ny)) denote the Atkin-Lehner involution. The root number of f is the
algebraic number of complex absolute value one satisfying f \WNf = W(f)f*. We suppose
that W (f) € K and we define Wy, := W(f) - Wy, € End(J;(Ny)) ® K.

— Let ¢ denote a Dirichlet character and let M = N fNj. Suppose that the field K contains
the values of the character ¢ and the Nyth roots of unity. There is a twisting map

twy, € Hom(J1 (M), J1(Ny)) @ K

described analytically as follows. For z € T'y1(M)\H = Y;1(M)(C), let

Ny
tw([2]) = Wf) S 4 (@)]z + a/Ny] € (Div Y1 (N})(C)) © K

as a map on divisors.

— Let tr: Ji(Ny) = Ji(M) be the trace map induced [z] — > . 1, [z] where 7 is the usual
projection X1(M) — Xi(N¢). The map tr is the standard Albanese morphism attached to
the map 7. We let tr := deg(m) ! tr.

Let € = ¢(—1) = %1. Define the endomorphism T}, € End(J) ® K as the composition

€twy WNf Ty« tr
J1(M) —= Ji(Ny) J1(Ny) —— Ji(Ny) —= J1(M)

As mentioned above, gr(T},;) € CH'(S)® K is well-defined only up to vertical and horizontal
components. In order to handle this ambiguity, we choose a rational base point co € X (Q)—for
example, we may take the usual point corresponding to the cusp co—and, following [DDLR,
§2.3], define a projector €5, on CHY(X x X) as follows:

€c(Z) = Z = (i1)«(m1) Z — (i2)(7m2): 2.

Here 41,42 : X — X x X are the inclusions of vertical and horizontal components over the base
point co. We define

1
Zty = greso(@n(Tyy)) € CHI(X x X) @ K. (60)
This element still has an ambiguity in its vertical and horizontal components (due to the original
ambiguity of T, and the choice of base point co0), but any ambiguity in these components is

now algebraically equivalent to zero. Let CH'(S)gy denote the quotient of CH'(X x X) by the

subroup of horizontal and vertical classes algebraically equivalent to zero; the image of Z;, in
CH'(S)av ® K is well-defined.

PROPOSITION 7.1. Classes in CH'(S) represented by vertical or horizontal components alge-
braically equivalent to zero lie in the kernel of the intersection pairing ( , ) defined in Section 5.2.
Therefore the intersection pairing descends to a pairing on CH(S)pv.
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Proof. We must show that for fixed A € CH(S), the function (A, 7§ B) is constant for B € X.
Yet this map defines a morphism X — Gy, /k; since X is a smooth projective curve, such a

morphism must be constant. O

The following proposition shows that the cycle Z;, is a common algebraic source of the

differentials appearing the regulator formulae of Corollaries 6.2 and 6.5.

PROPOSITION 7.2. Let f,1, and K be as in the beginning of this section. Let 1)y € HéR(Xl(N)K)f
be any lift of the class ny € H(X1(N)y, Ox) defined in Section 6.3. Let € = ¢)(—1) and define
Ny, = € twy,ny. We have

CldR(Zfﬂ/,) Zﬁfw@)w}v—ﬁ-wjvw@ﬁf. (61)
In particular over C we have
cle(Zy,y) :n?i®wf—e~wf¢®n?h (62)

and over any finite extension of Q,, containing K; we have

Clp(Zf,d,) :77}1; ®wf—6'wfw ®7]}lr. (63)
REMARK 7.3. Note that wy, = twy, wy and that, as the notation suggests, nf, is a lift of the class
nf, € HY(X1(N)g,Ox) defined in Section 6.3. Note that 7j; is well-defined up to the addition

of a multiple C'- wy, and such an addition changes 7y, by Ce - wy,. Therefore, the right side of
(61) is well-defined.

Proof. The effect of e is to project onto the Kunneth (1, 1)-component of Hiz (X x Xi). The
class clar(Zfy) € Hig(Xk)®? is equal to the image of the endomorphism of H}y(Xf) induced
by T, under the identifications

Endg (Hig(Xk)) = Hig(Xk) @k Hig(Xk)" = Hig(Xk) @k Hig(Xk).

Here the last isomorphism is induced by the Poincaré duality pairing: Hlip (Xk) =& Hip (Xk)Y
via w = (W, —)pd-

Let us now compute the endomorphism of Hj, (Xx) induced by pulling back T%,. The map
tr projects onto the subspace of forms arising from H&R(Xl(Nf)K). The map T}“* then projects
onto the f*-isotypic component of H (}R(X 1(Ny) k), which is spanned by wy« and 7y+. The map
W]f,f maps wy= to wy and 7= to 1y. Finally, € - twy, maps wy — €-wy, and ny = 1y, Our
composition therefore sends wy« — € wy, and g+ = 7y,

Under our normalization for Poincaré duality we have (ws,7f+)pa = 2i, as can be calculated
from the complex realization (see Remark 5.1):

—% wa A 17?? = 21,
with the factor of 2i coming from dz A dz = (2i)dz A dy. This explains the factor of 2i in (60),

and we obtain

CldR(Zf) = ﬁfw Quf—€-wf, @ Ny
as desired. ]
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7.2 Definition of Beilinson—Flach units

Let f € Sa(I'1(Ny¢), x¢) be a newform. Let 1 and /8 be Dirichlet characters with the same parity
and coprime conductors Ny, Ng. Let M = N fNi. We define the Beilinson—Flach unit by g via
the intersection pairing (45):

brass = (Zp Zpy) €Q @ Q. (64)

This intersection is taking place on the surface S = X1(M) x X1(M). The following proposition

explains why the element by, g is called a unit.

PROPOSITION 7.4. Let K = Q(Cn,N,N;)- Let n = (xf¢) 1B and assume that n # 1. We have
brups € (O ® Q)"

Proof. We view points on Y = Y;(M) in the usual way as parameterizing pairs = (E, P) where
FE is an elliptic curve and P € E is a point of exact order M. We first show that for every point
(r1,22) € Y? appearing in the intersection of Z 14 and the cycles occuring in the definition of
=3,M, the corresponding elliptic curves £y and Eo have complex multiplication.

Since f is new, multiplicity one implies that f is distinguished in So(T'1(M)) by its Hecke
eigenvalues at primes not dividing any fixed integer A. Therefore, if we complete f; = f to a
basis {fi,..., fr} of eigenforms in Sy(I';(M)) and we choose for each i > 2 a prime ¢; { A such
that ay, (fi) # ag, (f), we can write

| To —ae(fi)
= ae,(f) = ae (i)
Choosing A = NyNgNy, we see that Ty can be written as a linear combination of operators
T, with ged(n, NyNgNy) = 1. By definition, for any point (z1,z2) € gr(T},), the elliptic curves E;
and Fs are related by a cyclic n-isogeny. Now the remaining maps occuring in the homomorphism
Z . also send elliptic curves to isogenous elliptic curves; furthermore, the primes occuring the
in the degrees of these isogenies all divide Ny Ny, and in particular are relatively prime to the n

occuring above.

Now by definition (see [LLZ, §2.7]), the curves arising in the definition of Zg js are the images
C; of the maps Yl(NBZM) — Y1(M)? given by z +— (2,2 + j/Ng) with ged(j, Ng) = 1 under the
usual complex analytic isomorphism Y;(M)(C) = I'1(M)\H. For any z € H, the elliptic curves
E; =C/(1,z) and E; = C/(1, 2+ j/Nga) are related by a cyclic Ng—isogeny.

Suppose that (x1,x2) € gr(Zy,) and that (xq,22) lies on some C;. The elliptic curves E;
and E» underlying the points x1,xo are related on the one hand by a cyclic isogeny of degree
divisible by n, with ged(n, N3) = 1, and on the other hand by a cyclic isogeny of degree N 52 It
follows (by composing one of these isogenies with the dual of the other) that Ej is related to
itself by a nontrivial cyclic isogeny. (This argument does not quite work if n = 1, but it may be
easily fixed, e.g. by replacing the constant 1 by an appropriate linear combination of 7T;, with
n > 1; we leave the necessary modifications to the reader.) The only elliptic curves related to
themselves by cyclic isogenies are those with complex multiplication. This proves the claim that

E; (and hence the isogenous curve Es) have complex multiplication.
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Now, the functions on the curves C; used in the definition of Zg s are Siegel units. It is
well-known from the theory of complex multiplication that Siegel units of level N, BQM evaluated
at CM points are units in abelian extensions of quadratic imaginary fields, unless NV gM is a
power of a prime /¢, in which case one obtains f-units (see e.g. [Ram]). The same is true for
the values of Siegel units at cusps at which the units are regular (one obtains circular units in
abelian extensions of Q). In conclusion, we find that by g := (E5 ., Zf,y) lies in O ® Q for
some number field H (or Og[1/0]* ® Q if NEM is a power of a prime /).

To conclude the proof, we must show that Galois acts on by, g via the character n = X;Izﬂ*l B.
This finishes the proof even in the case that N, EM is a power of a prime /, since the inclusion
(O3 ® Q)" C (Ok[1/4]* ® Q)" is an isomorphism when 7 # 1 as we have assumed.

The intersection pairing ( , ) is Galois equivariant. Galois clearly acts on =g 5 via 5. The
Hecke operators, and hence also the idempotent T, are defined over Q. Galois acts on twy, via
¢! (see [LLZ, Prop. 2.7.5(3)]). The Atkin-Lehner involution Wy, is defined over Q(uy,), and
for a prime ¢ { Ny, Frobenius at g acts on Wi, via o4(Wn,) = W, o(q). The diamond operators
act on f* through the character XJII. Combining these observations, it follows that Galois acts
on Zyy by ijlw—l‘ The desired result follows. O

THEOREM 7.5. Let M = NfNé as above. Suppose that 8 and 1 have the same parity. We have

Liy,u(f. f9871 1)
logoo(bfﬂl’vﬁ) = Nﬁ2]\jm<f*’f*>M A(f¢’f7ﬁ_1’ 1)

where A(fy, f, 871, s) is as in (57) and log., is as defined in §4.2.

Proof. In view of the definition of bs, 3 given in (64), the result follows by combining Theo-
rem 5.2, Corollary 6.2 , and Proposition 7.2 with g = f. O

Similarly combining Theorem 5.4, Corollary 6.5, and Proposition 7.2 we obtain:

THEOREM 7.6. Let k € Wy with v(k) = v2 . Suppose that 3 and ) have the same parity. With
notation and assumptions as in Section 6.3, we have

al—1 ap —2w+2r —p—r! —w—r'
S 4iT(a)):'}£ézi>1a) Vo) log,,(bf.y.5)-

Lp(F, Fw, R, K, Vl,,B) =

8. Factorization on half of weight space

8.1 Two-variable factorization

We are now in a position to prove Theorem 2 from the Introduction, which states:
Lp(Fa F,, K, K, U) = 6(’%7 U) ’ Lp(sym2 F, 9, kR, U)LP(XFwa 2 0-/’%)
for kK € Wp and o € W such that o(—1) = —¢(—1).

Proof of Theorem 2. By continuity, it suffices to prove the result on the dense set of points (x, o)

in Wp x W such that v(k) = 1o and o = vy g where 8 has the same parity as 1. The equation
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we want to prove is:

Lp(F) Fa /l)Z)7 R, K, Vl,ﬁ) — g(’£7 O-)Lp(sym2 Fa wv R, VI,B)LP(Xva 1/0”3&—1)- (65)
Theorem 7.6, equation (36), and equation (42) give formulae for the three p-adic L-functions in

this equation. We recall the notation £ = ¥8~1, n = ypvaf!, cond(af™) = p", cond(a) = p’.
Note that, relative to the classical notation, we have

Ly(xXFt,v0 ga-1) = EXFY: 1 a-1) Lp(xp 9™ Ba ™! 1)

B Y Ix Y
- Gy o)

The second equation here uses (42) along with the well-known formula 7(x)7(x 1) = x(—1)Ny
and the fact that Sa~! has the same parity as y 1. We have from (36):

“U(-1) ap(NFT(B)(p) " L(Sym® f,E,1)
1 ey @W(f) —anlff)

Lp(SYHlQ Fa ¢7 "{7 O') =

and from Theorem 7.6:

a(=1)ap(f) > ) wp)

LP(Fv Flﬁv’ia K, Vl,ﬁ) = 47;7—(0‘)7—(6710‘) logp(bfﬂ/’,ﬂ)'

Cancelling common terms, our desired result may therefore be written:

L(Sym? f,¢,1)

—mir - 1= (@) log, (uy). (66)

N

log, (bf.y,5) = 7(B)

Meanwhile, we consider the classical factorization formula

where in each instance Lj; indicates that Euler factors at primes dividing M have been removed.
Combining Theorem 7.5 and equation (40), we obtain
2mi(f*, f*)
log. (b .
) B Hgar 1 — €O

1
= —5Lar(Sym? £,€,1) TT(1 = n(0)) logoc ().
oN
Now, the Euler product on the left represents exactly the missing terms between Ly (Sym? f, £, 1)
and the imprimitive L-value L(Sym? f,£,1). Also, since (f*, f*) = (f, f), our formula reads:

L(Sym? f,¢,1)

10go (bfp) = 7(8) —4milf, f)

[1 = () logs (uy). (67)

4N

Since by ¢ and u,, are both elements in the 1-dimensional Q-vector space U, on which the linear
map log, is injective, it follows from (67) that we have

L(Sym? f,&,1)

bre=T(671 : 1—n(0)u
f,€ ( ) —47T2<f, f) g( 77( )) n
in U,. Applying log,, we obtain exactly the desired result (66). O
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8.2 One variable factorization

We now prove Theorem 1 on half of weight space. Recall that this theorem states that for a

p-ordinary cuspidal newform f of weight k£ and nebentype character x, we have

Ly(f® f ©@1,0) = Ly(Sym® f @ ¢, 0)Ly(X'¢, zov; ) ), o €W,

where x = xpX’ is the decomposition of x into p-power and prime-to-p parts. We prove the result
when o(—1) = —(-1).

Proof of Theorem 1 when o(—1) = —1p(—1). Let N be the prime-to-p part of the level of f. Let
F be the Hida family of tame level N such that F), = f (or F,, = the ordinary p-stabilization of
f, if p does not divide the level of f) for some arithmetic weight x with v(k) = v (so X' = xF
and x, = a). Recall equations (37) and (39):
L,(Sym? F, x,0)
Lp(Sym® f @ ¢, 0) = S(f) 5.2 Y- :

' P(Sym® f,4,0)S(f,v)
L (F,F,w,li,li,(f)
Ly(f®f®,0)=5(f) =2 .

2 V=SB 16,0051 0)

In view of Theorem 2 and the above equations, our result boils down to

K,O) = — RO’il — P(fafv¢70-)
E(k,0) ZlHN(l Xrro ' (£)/0) S

(68)

Now the Euler factors of the imprimitive L-functions L(f, f,1,s) and L(Sym? f,4, s) agree
at primes ¢ | N, namely, they both equal (1 — ay(f)?¥(£)¢~*). Furthermore, in view of the
decomposition p;®@p @1 = (Sym? f@v)@®(xwe? 1), the Euler factors of the primitive L-functions
L(f ® f ® 4, s) and L(Sym? f ® v, s) disagree by a factor of (1 — y¢~5+*~1). Therefore, the
ratio of the polynomials Py(f, f, 4, x) and P,(Sym?, 1, z) is exactly (1 — (x©)(£)¢*~'z). Plugging

in 0~1(¢) for = and substituting x = v, in (68), the desired result follows. O

9. Functional equations

For the remainder of the paper, we assume that p does not divide the level N of the newform
f. In order to deduce Theorem 1 on the half of weight space satisfying o(—1) = ¥(—1) from
the other half where we have already proven the result, we will prove functional equations for
Ly(f ® f ®¢,0) and L,(Sym? f, o) that switch the two halves.

9.1 Symmetric Square L-series

THEOREM 9.1 (Jacquet-Gelbart). Let f be a newform of weight k and nebentype character x.
Let 1 be a Dirichlet character. Define

A(Sym® f ® ¢, s) =Tr(s — k + 2 — ayy)Tc(s)L(Sym® f @ ¢, s).

There is an analytic function e(Sym? f,v,s) = A-B® with A € Q, B = cond(Sym? f®v) € Z>°,
such that

A(Sym?® f ®1,2k — 1 — ) = €(Sym?® f,1, s)A(Sym? f @ ¢~ 'x 2, s).
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Mirroring the notation from §3.2, we let €(Sym? f, 1, 0) = Ao (B) be the analytic function on
W that agrees with e(Sym? f, 1), s) for s € Z.

THEOREM 9.2 (Schmidt). Let f be a newform of weight k and nebentype character x . Let 1)
be a Dirichlet character of conductor N,. Suppose that p{ N;Ny,. We have

Lyp(Sym?® f @ ¢, vap_1/0) = &(Sym? f,4,0) Lp(Sym® f @ ¢~ 'x %, 0)
Proof. Theorem 5.5(b) of [Sc| states that
(o) = C(B, Mo~ (My)€y-1(11/0),

where C'(X,)\) and M), are defined on page 607 of loc. cit. Substituting (33) and (34) into
this equation with A = ¢!y ~! yields the desired result through a tedious but straightforward

calculation. O

9.2 Rankin L-series

In vast generality, L-functions of motives are expected to satisfy certain functional equations.
For the L-function L(f ® g ® v, s) associated to the tensor product of two modular forms, this
functional equation is known due to the Rankin—Selberg formula and the functional equation
satisfied by non-holomorphic Eisenstein series. We will not require an exact formula for the root
number, only that it is an algebraic number (see [LLZ, Prop 4.1.5] for the statement below).

THEOREM 9.3. Let f and g be newforms of weights k > { and nebentype characters xy, Xg,
respectively. Let ¢ be a Dirichlet character. Define
Af@g®i,s)=Tc(s)l'c(s — L+ 1)L(f @ g1, s).
There is an analytic function e(f,g,1,s) = A- B* with A € Q", B = cond(f ® g ® ¢) € Z>°,
such that
Afogopk+l—1=s)=c(f,9,9,9)AMf ©g@v X7 xg ", 9).

THEOREM 9.4. Let f and g be newforms of weights k > { and nebentype characters xy, Xy,
respectively. Let ¢ be a Dirichlet character of conductor Ny. Suppose that p { NyNyNy. We
have

Ly(f © g @ ¥, vgre-1/0) = €(f, 9,4, 0)Lp(f © g2 ¥~ X xg ' o)

Proof. Consider the functional equations for classical and p-adic Rankin L-series given in [LLZ,
Thm 4.2.3 and Prop 5.4.4]. For any N divisible by Ny, N, and indivisible by p, we have

D(f,g,l/N,k—i—E—l—s):Nl_s Z eQWin(f|WN7g‘WN7y73)7 (69)
yE%Z/Z
Dp(f,9,1/N, 2" o) = No ™ (N) > ™ Dp(flwy glwy: 4, 0). (70)
yE%Z/Z

The functions D and D), are defined in [LLZ, §4.2 and §5.4]. We apply this with g replaced by
gy and N = lem(Ny, Ny - Ni) Now f|w, is a constant multiple of (ijtl)(TLZ) for n = N/Ny.

34



FACTORIZATION OF p-ADIC RANKIN L-SERIES

Meanwhile (gy)|w, shares the same Ty-eigenvalues as Iyslyp for £+ N. As a result, for each
y € +Z/Z, the function D(f|wy., (9y)|lwy,y,s) is a multiple of D(fX;1,ng_1¢,1, 1/N, s), where
the multiple is rational function with algebraic coefficients in terms of the form d° with d | N.

In summary, we have
D(f?.gllh 1/N7k +€ -1- S) = R(S)D(fx;17gxgl¢—1a 1/N7 S)? (71)
Dp(f7 g’ll)? 1/N7 I/k+g,1/0’) = E(O—)Dp(ijjl?gxg*ld,—la 1/N7 0)7 (72)

where R(s) is a rational function in terms d*® as above and R is the unique meromorphic function
on W such that R(vs) = R(s) for s € Z. Now by [LLZ, Theorem 4.2.3], we have

D(f,94,1/N,s) = C(s)Mf @ g @1, 8)P(f, 9,9, 5) (73)

where C(s) = ol—kjk—C N2s+2—k—L 41 P(f,g,1,s) is as in (25). We then rewrite (71) and (72)
as
D(fvgwal/N7k+€_1—S) D(fX;17‘gX;1”¢171’1/N’8)
Clk+{—1=5)P(f.g,0,k+{—1—5) C)IP(fg.b0s)
Dp(f’ g¢7 1/N7 Vk;+f_1/0') _ él(a-) Dp(fxglygxglwfl, ]./N, O')
CWrse1 /)P 9,0, Vi /o) C(o)P(f,9,X; ' xg ¥, 0)"

= Ri(s)

where
C(s)P(f. 9.1, s)
C(k+€_ 1 _S)P(f?ga,(vb?k_‘_é_ 1_5)
Comparing Theorem 9.3, (73), and (74), we obtain Ri(s) = e(f,g,%,s) and hence R;(0) =
€(f,g,%,0). The desired result now follows from (75), since the quotients on the left and right

Rl (8) = R(S)

sides of this equation are (up to the same constant) by definition L,(f ® g ® ¥, vg1¢—1/0) and
Ly(f®g® wilelxgl), respectively. 0

9.3 Conclusion of the the proof of Theorem 1
One readily verifies that
A(f® f@i,s) = ASym® f @ ¥, )A(xt,s —k +1)

using (1) and the duplication formula for the Gamma function. Comparing the functional equa-
tions in Theorems 3.2, 9.1, and 9.3, it follows that

e(f, f:1,5) = e(Sym? f, ), s)e(xtp, s — k + 1),
and hence
f, fr,0) = €(Sym?® f, 4, 0)e(xt, 0 /vi—1)-
Theorem 1 for o(—1) = 1(—1) now follows from the result for o(—1) = —(—1) by applying

the functional equations for the three p-adic L-functions involved, since the map o — vor_1/0

switches these two halves of weight space.
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10. Greenberg’s conjecture
We conclude by filling in details for the proof of Theorem 4 sketched in the introduction.

10.1 Conjecture at s =1

We must prove equation (14), which we recall:

LH(F @ £ @ X k) = Zes(ad ) - S(f) (1 - ;) L% (ad £,1). (76)

By definition (see (3) and (37)), we have
— _ L(FFfl VkaVk)
L[k’] 1 =1 1 -9 TP\ XTI TR TR
p<f®f®X ) ) p(f®f®x 7Vk) (f) P(f,f,X_laVk)
Theorem 5.1d” of [Hi3| together with the observation that the derivative of 1 — a,(F)/a,(f) at
K= 18 %iﬂcs(ad f) implies that

(77)

1
Np(N)

Ly(F, Fyr, Uy v, vg) = %ng(ad ATa-e : (78)

¢(|Np
The extra factor of (Nyp(N))~! comes from a difference in conventions for the interpolation
property of L,(F,F,-1). With k(P) = k(Q) = k in the notation of [Hi3], there is a factor of
N in [Hi3, Theorem 5.1d] whereas there is none in our Theorem 3.7; also Hida’s period (see
[Hi3, 4.13]) involves (f, f)rynv) = (f5 f)r.(v)/ (V). Combining (77) and (78), we see that (76)

is equivalent to

L5 (ad f,1) = %Pu, foxhw) [ - 7 N¢1<N>
(N

Recall that L2'8(ad f, 1) is by definition the algebraic part of L(ad f, 1) using the same period as
in the interpolation formula for the definition of L,(ad f,s). (Note that the choice of period is

. (79)

therefore inessential, as scaling the period by a factor scales both L*&(ad f, 1) and L;,(ad f,1) by

the same factor, leaving %, (ad f, 1) independent of choice of period.) From (32), we see that
L(ad f,)T'(k)
L8(ad f,1) = : : 80

Now the following formula for the imprimitive L(ad f, 1) is well-known from Rankin’s method (for

example, combine the last displayed equation on [Hi3, pg. 5] with the factorization Dy (s, f, f*) =
LmP(ad f,s —k+1)(n(s —k+1)):
_ 4bH(S )

L™P(ad f,1) = TN () (81)
Now
L(ad f,1) = L™"(ad f, 1) P(Sym® f, x ", v) " (82)
and
P(f, f,x V) = P(Sym® fxhw) [J - ¢ (83)
/N

as discussed at the end of §8. Combining (80)—(83) yields (79) and therefore completes the proof.
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10.2 Conjecture at s =0
The functional equation (Theorem 9.2) yields

LLOV(ad fa 0) ’ E(Sme fv X_17 Vk—l) = _Lg[al}/(ad fa ]-)

Meanwhile we have
L(ad f,0)I'(k — 1)
akgk=1(f, f)

where the first inequality follows from the interpolation formula (31) and the second by combining

L¥8(ad f,0) = = L*8(ad f,1)/e(Sym® f,x ', k — 1),

(80) and the classical functional equation (Theorem 9.1). Since

&Sym? f,x ! vp1) = e(Sym? f,x 1k — 1),
we obtain
Zan(ad f,0) = Zn(ad f,1)

as desired, in view of the sign in (11). This concludes the proof.
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