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Abstract

In 1980, Gross conjectured a formula for the expected leading term at s = 0 of the
Deligne—Ribet p-adic L-function associated to a totally even character ¢ of a totally
real field . The conjecture states that after scaling by L(zw™!,0), this value is equal
to a p-adic regulator of units in the abelian extension of F' cut out by tw™'. In this
paper, we prove Gross’s conjecture.
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1 Introduction

In 1980, Gross stated a beautiful and precise analog of Stark’s conjecture for the behavior
of p-adic L-functions at s = 0 ([11]). Let I be a totally real field and let

x:Gr —Q (1)

be a totally odd character of the absolute Galois group of F'. Let H denote the CM, cyclic
extension of F' cut out by Y, i.e. the subfield of F fixed by the kernel of . Let p be a prime
integer. We fix once and for all embeddings Q — C and Q — C,, so x may be viewed as
taking values in C or C,. Here C, denotes the completion of an algebraic closure of Q,.
Consider the L-function associated to y with Euler factors at primes above p removed:

L*(x:5) = L(x,s) - [ J(1 = x(p)(Np) ™). (2)
plp
Here and throughout, we adopt the convention that x(p) = 0 if p is ramified in H/F,
whereas x(p) = x(Frob(p, H/F)) if p is unramifed in H/F. Let
w: Gp — pip—1 (or po, if p=2)

denote the Teichmiiller character. There is a unique meromorphic (and as long as x # w™!,
analytic) p-adic L-function
L,(xw,s): Z, — C,

determined by the interpolation property
L,(xw,n) = L*(xw",n) for n € Z=°. (3)

A classical theorem of Siegel implies that the values L*(xw™, n) for n € Z=° are algebraic.
Hence by our fixed embedding Q — C,, we can view these values as p-adic numbers.
The existence of the p-adic L-function satisfying the interpolation property (3) was proved
independently by Deligne-Ribet [7] and Cassou-Nogues [3] in the 1970s, and new approaches
have been considered recently in [4], [20] and [1].
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We partition the set of primes above p in F' as RU R’, where

R={p|p:x(p) =1}, R ={plp:x(p) #1}.

Since x is totally odd, we have L(x,0) # 0, as can be proven from the functional equation
for L(x,s) and the well-known fact that L(x!,1) # 0. It follows that

ords—o L*(x, 5) = m(x),

since r,(x) = #R is precisely the number of Euler factors above p in (2) that vanish at
s = 0. Motivated by this and the fact that L,(xw,s) and L*(x,s) agree on a dense set of
integers p-adically approaching 0, Gross stated the following conjecture regarding the order
of vanishing of L,(xw, s) at s = 0.

Conjecture 1 (Gross). We have

ords—g L, (xw, 5) = rp(Xx).

The inequality
ord,— Ly(xw, s) = 1,(x) (4)

can be shown to follow from Wiles’s proof of the Main Conjecture of Iwasawa theory, at
least for p # 2 (for example, see [22, §2.1]). Recently a more direct analytic proof of (4) that
holds for all p was given in [4, Theorem 3] and [20]. Note that both of these latter papers
use Spiess’s results on cohomological p-adic L-functions proved in [19].

Even more strikingly, Gross stated a p-adic analog of Stark’s conjecture that gives an
exact formula for the leading term of L,(xw,s) at s = 0. To state this conjecture, we first
recall Gross’s p-adic regulator Z,(x).

Let ¢ denote the unique complex conjugation of H. Let

log,: Q, — Z,

denote Iwasawa’s p-adic logarithm, normalized such that logp(p) = 0. If P is a prime ideal
of Oy lying above p, we consider two continuous homomorphisms

op =ordy: Hy — 7,
by =log,oNormpy,/q,: Hy — Z).
Let U = Og[1/p]* denote the group of p-units of H and let X be the free abelian group
on the set S, of prime ideals of Oy lying above p. The abelian groups U and X are naturally

modules for the group G = Gal(H/F'). We consider the minus subspaces of these modules
for the action of complex conjugation:

U ={ueU:c(u)=u'}, X" ={zre X :c(x)=—z}.



Consider the two G-module homomorphisms

0p: U” — X7 op(u) = (op(u))pes,,
by U — X" ®Z,  L(u) = (—ly(w))ges,.

One verifies that after tensoring with Q, the map o, induces a Q[G]-module isomorphism
U"Q—X ®Q (5)

(see for example [21, 1.4]). Denote by E the finite extension of Q, generated by the values
of the character y. We consider the xy~!-components of U~ and X :

Uy={ueU @E:ou) =u’ @}, X, ={reX @FE:o()=yx"(0)z}.

The E-vector space X, has dimension 7,(x), and by (5) the same is true for U,. After
tensoring with E (over Z and Z, respectively), the maps o, and ¢, induce E[G]-module
homomorphisms

o, 0X: Uy — X,

with oX an isomorphism. In parallel with the classical Stark regulator (see [21, 1.4.5]), Gross’s
regulator is defined by!
Ry(x) = det(€X o (0X)™") € E.

The following is often referred to as the Gross—Stark Conjecture. For simplicity we write
r for r,(x)-

Conjecture 2 (Gross). We have:

Ly (xw, 0)

rIL(x, 0) = %p(x) H (1 —x(p))- (6)

pER’

The equality (6) takes place in the field E. The statement of Conjecture 2 does not rely
on Conjecture 1.

Gross proved both Conjectures 1 and 2 in the case F' = Q; the proof of Conjecture 2
follows by combining the formula of Gross—Koblitz [12], which relates Gauss sums to the
special values of the p-adic Gamma function, with the theorem of Ferrero-Greenberg [9],
which relates the derivative of Kubota—Leopoldt p-adic L-functions to special values of the p-
adic Gamma function. This special case served as the motivation for the general formulation
of Conjecture 2.

!This definition of %,(x) differs from the regulator R,(x) defined in [11] by the simple factor
(—1)7»00) [1,), fo» with notation as in loc. cit. We have chosen our conventions to agree with [5] in or-
der to make the statement of Theorem 1 as clean as possible.



There has been further work on Conjecture 2. Federer and Gross proved that when the
order of y divides p — 1, the p-adic valuations of the two sides in Conjecture 2 are equal
using the Twasawa Main Conjecture [8, Proposition 3.10]; in particular it follows that under
this restrictive condition Conjecture 1 is equivalent to the statement Z,(x) # 0.2 Further
partial evidence has been discovered recently; see for instance [2, Theorems 3.1 and 5.2].

For notational simplicity, define

_ Ly (xw,0)
B T!L(X7 0) HpeR’(l - X(p))

The main result of this paper is a proof of the Gross—Stark Conjecture (Conjecture 2):

Zan(X)

Theorem 1. We have Z,,(x) = %Zp(x)-

In view of (4) and Theorem 1, it now follows unconditionally that Conjecture 1 is equiv-
alent to %, (x) # 0. This fact is known for » <1 (see [11, Prop. 2.13]; this observation leads
to the proof of Conjecture 1 when F' = Q, as mentioned above).

Theorem 1 was proved in the case r = 1 under certain assumptions by the first author
in joint work with H. Darmon and R. Pollack [5]. These assumptions were later removed
by the third author [22]. At the time of publication of [5], the first author believed the
higher rank case to be unapproachable using the methods of loc. cit. In the remainder of
this introduction, we present a detailed summary of the proof of Theorem 1, highlighting the
obstacles that appear when trying to generalize from r = 1 and describing the techniques
used to overcome them.

Remark 1.1. The fact that the endomorphism £X o (o%‘)*1 of U, is canonically defined
suggests the possibility that one can study its characteristic polynomial and not just its
determinant. In [6], the first author and M. Spiess state a conjectural formula for this
characteristic polynomial in terms of the Eisenstein cocycle, generalizing the Gross—Stark
Conjecture. This more general conjecture remains open.

It is a pleasure to acknowledge the encouragement and suggestions of a number of col-
leagues with whom we have discussed this problem over the last decade. We are extremely
grateful to Joel Bellaiche, David Burns, Pierre Charollois, Henri Darmon, Matthew Emerton,
Ralph Greenberg, Haruzo Hida, Chandrashekhar Khare, Masato Kurihara, Robert Pollack,
Cristian Popescu, and Michael Spiess for their advice and support.

2We thank John Coates for informing us about this paper.



1.1 Explicit Formula for the Regulator

As noted above, we have dimg U, = r. Let uy,...,u, be an E-basis for U,. Write R =
{p1,...,p-}. For each p; € R, consider the continuous homomorphisms

0; =ordy,: F, — Z,
l; =log, o Normp, /q,: Fpt — Z,,.
For each p; € R choose a prime B; of H lying above p;. Then via
Oull/p] C H C Hy, = Iy, (7)
we can evaluate o; and ¢; on elements of Oy[1/p]*, and extend by linearity to maps
0i,0; : Og[l/p]" ® E — E.

Gross’s regulator is equal to the following ratio of determinants:

~det(—Li(uy))ij=1..r
Zp(X) = det(0;(w)))ij=1..r

€FE. (8)

It is clear that this ratio is independent of the chosen basis {u;}. Furthermore, the ratio is
independent of the choice of ; since replacing B; by o(3;) has the effect of scaling the ith
row of both matrices in (8) by x (o). Finally, one sees that det(o;(u;)) # 0 since the Dirichlet
unit theorem implies that the y~!-component of the group of p;-units of H is 1-dimensional
for each p;, € R, and hence for the appropriate basis {u;} the matrix (0;(u;)) can be made
to equal the identity.

1.2 Cohomological Study of the Conjecture

For each place v of F', choose a decomposition group G, C Gp and let I, C G, be the
associated inertia group. This choice corresponds to an embedding F C F, for each place
v and in particular specifies a prime of H C F above v. We assume in the sequel that the
specified prime above p; for p; € R is equal to the prime JB; used in (7).

If V is an E-vector space, we let V(x!) denote the E[Gr]-module in which ¢ € G acts
by multiplication by x~'(). Let

Hp(Gp, E(x™)) Cc H(Gr, E(x™))

denote the subspace of continuous Galois cohomology classes « unramified outside R, i.e.
those classes x such that res;, k € H'(I,, E(x™!)) is trivial for all v € R. Note that for each
prime p; € R we have x(Gy,) = 1 and hence

H Gy, E(x™Y)) = HY(Gy,, E) = Hom(Gy,, B) = Home(Fy, B),
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where the last isomorphism invokes the reciprocity isomorphism of local class field theory?

recy, : }/WP\* — G;lo. (9)

Here ]3}1_ =lim F" /(F,)™ denotes the profinite completion of Fy . Since o; and /; are con-
tinuous maps for the topology on Fy defined by the subgroups (F};)™, we obtain continuous
homomorphisms.

—

0i: by — 2 — 7y,

—

&'Z Fpt — Zp.

Define the subspace of “cyclotomic classes”

Heyo(x) € Hy(Gp, E(x ™))

cyc

to be the set of s such that for p; € R, the restriction res,, K € H'(G,,, E) lies in the E-span
of 0; and ¢;, viewing these as continuous homomorphisms F/’;"‘i — E. Then dimp H, Clyc (x)=r
(this is a straightforward generalization of [5, Lemma 1.5]). Let ki,...,k, be a basis, and
for each p; € R write

resp]. Ri = ;05 -+ yijéj,

where z;;,y;; € E. Inspired by R. Greenberg’s study of exceptional zeroes [10], we define

det(xi;)ij=1..r

L = )
lg(X) det(yij)i,jzl...r

Using the above mentioned generalization and the fact that xi,..., , are linearly indepen-
dent, it can be shown that det(y;;); j=1..» # 0.

We now relate this algebraic Z-invariant to the unit group U,. Let k € Hi(Gp, E(x™1)).
Extending by FE-linearity, we can view res,, £ as a continuous homomorphism

resy, K: f/ﬁ_ ®@F — E.
In §2, we prove the following orthogonality result regarding H;(Gp, E(x™ 1)) and U,.

Proposition 1. Let k € HL(Gr, E(x ")) and u € U,. Viewing u as an element off/?p:i @k

via (7), we have

Z(respi K)(u) = 0. (10)

i=1

3Throughout this article, we adopt Serre’s conventions [17] for the local reciprocity map. Therefore, if
u € O , then ecyc(rec(u)) = Normo,, /z, u, where €y is the usual cyclotomic character defined in (26), and
rec(ww ') is a lifting to G&" of the Frobenius element on the maximal unramified extension of Fy, if w € Fyy
is a uniformizer.



Using Proposition 1, one readily proves that

Zag(X) = Zp(x)-

When r =1 (say R = {p}), Conjecture 2 is therefore equivalent to the existence of a nonzero
class & € Hl.(x) such that res, & = Zn(x)0p+£,. The construction of such a class is carried
out in [5] and [22]. The natural generalization of this strategy for r > 1 is to construct r
linearly independent classes in HY,.(x) and to use them to compute Z,(x). However, despite
much effort, we do not in fact know how to construct even a single cyclotomic cohomology
class in the general case. The construction for » = 1 relies crucially on the injectivity of the
local restriction

Hy(Gr, E(x™")) — H'(Gy, E) (11)

when R = {p}, which in general fails for fixed p € R if r > 1.
As described below, in the general case we are still able to construct a class

k€ Hp(Gr, B(x™))

for some E-vector space B with partial knowledge about the local restrictions resy, k. Our
method of proof involves abandoning the hope of constructing cyclotomic classes and cal-
culating .Z,.(x). Instead, we directly use the orthogonality (10) with x and a basis of U,.
We describe below how the resulting equations can be used to prove that %, (x) = %Z,(x).
First we describe the mechanism through which the analytic .Z-invariant .%,,(x) appears in
our work and the construction of the cohomology class k.

1.3 An Infinitesimal Eigenform

Our technique for constructing a cohomology class related to p-adic L-functions is Ribet’s
method, which first appeared in [16] and was later used to great effect by Mazur and Wiles
to prove the Main Conjecture of Iwasawa theory [15], [24]. We consider the space of cuspidal
Hida families of Hilbert modular forms for ' with tame level n = cond(x), and let T denote
its Hecke algebra over A = Ogl[[T]].

In [5], a certain linear combination of products of Eisenstein series was used to construct
a cuspidal Hida Family .# that specializes in weight 1 to the Eisenstein series Ej(1, xs)-
Here g denotes the character x viewed with modulus divisible by all primes in S, so the
Eisenstein series F1(1, xs) is the stabilization of the classical weight 1 form Fi(1,x) at all
primes p above p with Up-eigenvalue equal to 1. In the case r = 1 considered in loc. cit.,
the form .# remains an eigenform in an infinitesimal neighborhood of weight 1, yielding a
A-algebra homomorphism

0: T — E[T)/T? (12)
t—a(t-.F) (mod T?).



We fix a topological generator v € 14-2pZ,, and normalize our conventions so that for k € Z,,
setting T = u*~! —1 corresponds to specializing in weight k; in particular, 7" = 0 corresponds
to weight k = 1. The explicit nature of the construction of .# allows us to calculate

1

T) =1 0 log (NI h =
(1) + x([) log,(NI), where log, (1)

T, (13)

for primes [ of F* such that [ { np. (Here and throughout, (v) = z/w(z) for » € Z3;.) The
p-adic L-function L,(xw,1 — k) occurs as the constant term of one of the Eisenstein series
used in the construction of .%, and as a result an explicit computation shows that

@(Up) =1+ gan(X)ﬂ" (14>

(Equations (13) and (14) hold if R’ is nonempty; if R’ is empty then slightly modified
equations hold.)

In the general case, it is natural to attempt to construct a A-algebra homomorphism
T — E[T]/T™ analogous to (12). However, the form F constructed in [5] is not an
eigenform modulo 77+, and it is unclear if the construction can be modified to define such
an eigenform. The key idea to circumvent this problem, drawn from [22], is to simply study
the Hecke orbit of the form .. Modulo 77", this orbit is not 1-dimensional over A/T"*! but
it is still finite dimensional and explicitly computable. Therefore we obtain a representation
of T into a finite-dimensional E-algebra, namely the endomorphism ring over F of the space
of Fourier expansions modulo 77! of the forms in the Hecke orbit of .%. These arguments
are explained in detail in §3, culminating with the proof of the following theorem and its
generalizations needed to handle all cases.

Let €: Gp — A* denote the A-adic cyclotomic character (see (27) below). Write

L™ (x,0)
Tan!L<X7 O) HpeR’(l - X(p>) .

(Of course, Conjecture 1 states that r,, = r and hence 2% (x) = Zan(x), but we are not
assuming this conjecture.)

Tan = ran(X) = ord,—o LP(XW’ S)’ gaikn(X) -

Theorem 2. Suppose R' is nonempty and write R = {p1,...,p,}. There exists a A-algebra
homomorphism

0: T — W =E[me,...,e]/ (7 & em g6 + (—1)= L5 (x)7"™)
such that Ty — 1+ xe(l) for linp, Uy 1 forl|norle R, and Uy, — 1+ ;.

If R is empty, we construct a slightly more complicated homomorphism. Note that W
is a local ring with maximal ideal my, = (T €1, ..., €,).



1.4 Construction of a Cohomology Class
Let m C T denote the kernel of the composition of ¢ with the canonical projection

Let L = Frac(T(w)) denote the total ring of fractions of the localization of T at the prime
ideal m. Theorems of Wiles and Hida imply the existence of a continuous irreducible Galois
representation

p: Gp — GLy(L)
a(o) b(o)
T ( (o) do)
that is unramified outside np and such that for primes [ { np, the characteristic polynomial

of p(Froby) is
char(p(Froby))(z) = 2* — Tix + xe(l), (15)

where T denotes the image of T} in L.
Let B denote the T-module generated by the b(c). Using the fact that o(77) = 1+ xe(l)
together with (15), we show that after choosing an appropriate basis for p the map

k: Gp — B = B/mB

given by k(o) = b(o) - x"}(0) is a cocycle yielding a cohomology class in H' (G, B(x™1)).
For all q | p, the representation p|g, is known to be reducible with a certain specified semi-
simplification. This can be used to show that x is unramified outside R.

In the case r = 1, the injectivity of the restriction map (11) can be used to show that
after rescaling by a certain element of L, we have B C m. Applying the homomorphism
¢ to the cocycle k yields a class k, € H,(Gp, E(x™")). The known shape of the local
representation p|g, can be used to prove that r,, is cyclotomic. Using equation (14), one
shows that res, k = £, (X) - 0p + {p, giving the desired result Z,(x) = Zan(X)-

In the case r > 1, there is an unknown constant x; € L for each place p; such that we have
a formula for the restriction of the function x;b(c) to Gy,. In particular we can show that
x;b(G,,) C m. However, the failure of the injectivity of (11) appears to make it impossible
to deduce that z; B C m. In fact, for » > 3, we believe that this is false.* In particular, we
are unable to show that the cohomology class k is cyclotomic.

As mentioned above, our new method is to apply the orthogonality (21) with x and a
basis {u;} of U,. We obtain r equations

T

Z(reSp]. K)(u) =0

=1

Ifr =2 and F, @ Q, for i = 1,2, then the injectivity of (11) does hold, and one can give a proof of
Theorem 1 in this special case using Theorem 2 and methods analogous to those of [5].
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in B. This implies that

det((res, x)(u;)) =0 (16)
in Br/mBp since it is the determinant of a matrix whose rows all sum to 0, where By is the
T-module generated by products b(oy) - - - b(0,) with o; € G,,. The fact that 2;b(Gy,) C m
implies that ([];_, z;)Br C m", and scaling (16) by []/_, z; yields an equation in m"/m"*!.
We can apply the homomorphism ¢ to this equation to yield a formula in the 1-dimensional
E-vector space mj,, = E-T". An explicit computation shows that when r,, = r, this equality
is

(=) LX) - det(0;(u;)) + det(¢;(u;)) = 0. (17)

Equation (17) is equivalent to the desired result %, (x) = %,(x). (When r,, > r, we obtain
F,(x) = 0, which is the desired result in this conjecturally vacuous case.)

2 Orthogonality Between Cohomology and Units

Let V be an E-vector space. Recall that Hi(Gp,V(x™!)) denotes the group of cohomology
classes unramified outside R. We begin by proving Proposition 1 stated in the introduction.

Proposition 2.1. Let k € Hy(Gp, V(x™Y)) and u € U,. We have

r

Z(respi K)(u) =0.

=1

We will provide two proofs. The first is more conceptual and invokes Poitou-Tate duality
and the Kummer isomorphism, though we state without proof certain identifications that
are needed. The second proof is rather more direct and relies only on class field theory.

Proof 1 of Proposition 2.1. As explained in [5, Prop. 1.4], Hilbert’s Theorem 90 yields iso-
morphisms®

Define
Hy(Gr, E(x)(1)) € H'(Gr, E(x)(1))

to be the subspace of classes r such that res,x € H'(G,, E(x)(1)) lies in the image of
(Of{’wébE)X_l under ¢, for each v ¢ R. It is then clear that (18) induces an isomorphism

0: Uy = Hp(Gr, E(x)(1)). (20)

°In (18), H*®E = QEl(H* ® Og/p™)) ®o, E, and similarly in (19).
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Recall that for each place p; € R there is a perfect Tate duality pairing
< ) >F‘i : Hl(GPia E(X)(l)) X Hl(GPm E(Xil)) —F.

It follows from Poitou-Tate duality that the images of H5(Gr, V(x™")) and HL(Gr, E(x)(1))
under the product of the restriction maps res,, are orthogonal under the local Tate duality

map
r _ r DRIIH
(o r: s HY(Gy, VIXTY) x Tz HY(Gy,, E(X)(1)) V. (21)
The desired result follows from this orthogonality and the fact that
(r,0(u))p, = (resy, £)(u). (22)
O

We now present an alternate and more direct proof of (10) using only general facts from
class field theory.

Proof 2 of Proposition 2.1. Since H is the fixed field of yx, the restriction of k to G yields

a class
1

resy Kk € Hl(GH, V(X_l))G = Homcts(GH7 V)X7 )

where the group on the right is the E-vector space of continuous group homomorphisms
f: Gy — V such that

floho™) = x"1(a)f(h) for o € Gp,h € Gy. (23)

Since x is unramified outside R, the homomorphism resy x is trivial on the inertia group
I, C I, for each place v € R, where w is the place of H specified by the choice of G,. From
(23), it follows that resy  is trivial on the inertia group I, for every place w ¢ Ry, where
Ry denotes the set of places of H lying above those in R. Therefore the homomorphism
resy k factors through the maximal abelian extension of H unramified outside Ry, which
we denote by K. By class field theory, we have an isomorphism

rec: Ay /H* [ Ojp. — Gal(K/H), (24)

w&Rpr

where Ay is the ring of adeles of H and by convention O3, = C* if w is a complex place.
Let u € O, , the group of Ry-units of H. The idele

Tw = (uyu,. .. u, 1,1,..0)

with component 1 at each w € Ry and component u at each w € Ry is clearly trivial in the
quotient (24). The fact that resy x factors through Gal(K/H) therefore implies that

0 = (resy )(1) = (resy k)(rec(m,)) = > (vesyk)(u) =Y > (resym, £)(u).

wERKH i=1 ceG

12



Equation (23) implies that

res(p,) (1) = X7 (o) resp, (07" (u)),

and noting that via (7) we have resy, = res,,, we obtain

r

Z(respi k)(uy) =0  where u, = Z o(u) ® x(o).

i=1 ceG

Since elements of the form u, for u € O%  generate the E-vector space Uy, the desired result
follows. o

We conclude this section by proving a crucial injectivity result from global to local coho-
mology groups.

Proposition 2.2. Let V' be an E-vector space. The restriction map

r

[[zress,: HR(Gr, V(X)) — [ H' L. V)

i=1 1=1
18 1njective.

As mentioned in the introduction, the fact that in the general case this injectivity fails
to hold when [];_, res;, is replaced by a single res;, (or even a single resy,) represents an
important distinction from the rank 1 setting.

Proof. The proposition states that there are no nonzero classes in the cohomology group
HY(Gp,V(x™!)) that are unramified everywhere. To see this, first note that the restriction
map

resy s HY(Gp, V(X)) — HY(Gy, V)X
is an isomorphism, since the preceding and following terms in the inflation-restriction ex-
act sequence are the groups H*(G,V(x™!)) for i = 1,2. These groups vanish since G =
Gal(H/F) is finite and the E-vector space V' is torsion-free.

If k is unramified everywhere, then as in the second proof of Proposition 2.1 we see that
resy k factors through the maximal abelian unramified extension of H. Since this extension
(the Hilbert class field of H) is a finite extension of H, it follows that resy k = 0 once again
using the fact that V is torsion-free. The fact that resy is an isomorphism then implies that
r = 0 as desired. O
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3 Homomorphism on the Hida Hecke Algebra

Our goal in this section is to prove Theorem 2 from the introduction and its various gener-
alizations that are needed to handle all cases. This involves rather technical computations
involving the Hecke action on certain explicitly defined Hida families. The reader who is
willing to take Theorem 2 as a black box and is interested in the deduction of the equality
Lan(X) = Zp(x) from this theorem can skip ahead to §4 without any loss of continuity.

We first recall the notation and conventions of [5, §2 and §3] and [22] for Hida families
of Hilbert modular forms for F'.

3.1 Notation on Hida Families

Let A = Ogl[[T]] where, as in the introduction, E is a finite extension of Q, containing the
values of the character y. For each k € Z, we have a “specialization to weight £” Og-algebra
homomorphism

Ve: A — Op given by T+ uF 1 — 1, (25)

where u is a topological generator of 1+ 2pZ, (for instance, we may choose u =1+ p if p is
odd and u = 5 if p = 2). Under this convention, specialization to weight 1 corresponds to
the augmentation map 7" +— 0. Let Ay = Og[[T]](r) denote the localization of A in weight
1, i.e. the localization of A with respect to the prime ideal (7)) = kervy. Note that p is
invertible in A(y), so in particular Ay is an E-algebra. Furthermore Ay is a DVR and we

choose the uniformizer )
- log, u

T.

™

This uniformizer is normalized to have the following property making translation between
the k-variable and the m-variable straightforward. Suppose h € A(;y can be written o = 7"/
where h' € A’{l), and let f: U — E be defined for a sufficiently small neighborhood U C Z,
containing 1 by f(k) = vx(h). Then f has a zero of order n at k = 1 and

f(")(l)/n! = v (h').

Next we recall the A-adic cyclotomic character. This is the character e: Gp — A*
satisfying vy (e(0)) = (€cye(0))*~! for any k € Z,,. Here

€cye: Gr —> 2y (26)

is the usual cyclotomic character defined by o(¢) = (<) for any p-power root of unity (.
The character € is given explicitly by the formula

6(0’) = (1 + T)Ing<€CyC(U)>/10gp U (27)

Recall that n denotes the conductor of the character x. We denote by M(n, x) the A-
module of A-adic Hilbert modular forms for F' with tame level n and character y. For each
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F € M(n,x) and integer k > 2, the specialization v;(.%) lies in the space My (np, yw'™*)
of Hilbert modular forms for F of weight k, level np, and character yw'=*. The subspace
of cusp forms in M(n, x) is denoted S(n,x). The A-module M(n, ) is equipped with an
action of Hecke operators T; for primes [ { np and U, for [ | p. Following Hida, we let

n!

e = lim HUP
n—oo
plp

be the ordinary projector and denote by
M(n,x) =eM(n,x),  S(n,x) =eS(n,x)

the spaces of Hida families and cuspidal Hida families, respectively. We denote by T and T
the A-algebras of Hecke operators acting on M°(n, x) and S°(n, x), respectively.

Of particular interest to us will be the Eisenstein series. Let & > 1 be an integer and
let » be a narrow ray class character of F' such that 7 is totally odd or totally even, with
parity agreeing with k. Let b denote the modulus of 1, which we do not assume to equal
the conductor of n (i.e. n» need not be a primitive character). Excluding the exceptional
case where F' = Q,k = 2, and b = 1, there is an Eisenstein series Ex(1,7) with normalized
Fourier coefficients given by

C(Cl, Ek(lv 77)) = Z U(t)Ntk_l

ta,(t,b)=1
for integral ideals a C O and constant coefficients (assuming b # 1 or k # 1)°
(0, By(1,m) =278 QAL (n, 1 — k),  Xe CIT(F),

where the subscript b emphasizes that the Euler factors at primes dividing b are removed.
(For details regarding our conventions on Hilbert modular forms and their Fourier coeffi-
cients, see [, §2].) These classical Hilbert modular forms interpolate p-adically in the sense
that there is an Eisenstein series &(1,x) € M°(n,x) such that vx(&(1,x)) = Ex(1, xw' ™)
for all k£ > 1, where the character yw!'™* is understood to always have modulus divisible by
all primes above p (even if kK =1 (mod p — 1)). The constant coefficients of v4(&(1, x)) can
be expressed as 277 QL (yw, 1 — k).

6If b = 1 and k = 1, the constant coeffcients are given by

ex(0, E1(1,m)) = 27 QUL(x,0) + x (A L(x 1, 0)).
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3.2 Construction of a Cusp Form

We now recall the construction of a certain Hida family of cusp forms from [5] and [22]. For
any integer k, we let Ay = Ap_,x-111) denote the localization of A in weight k, i.e. the
localization at the prime ideal (T'—u*~' +1) = ker vj,. Similarly we let M°(1,w™")() denote
the localization of the space of Hida families of modular forms with respect to weight k, i.e.

Mo(l,w_l)(k) = Mo(l,w_l) XA A(k).

Lemma 3.1 ([22], Theorem 2). There exists a Hida family 4 € M°(1,w™ ")) with the
property that vy(9) = 1 and cx(0,9) =1 for all A € CI*(F).

Lemma 3.1 was proved in [5] under the assumption of Leopoldt’s conjecture using Eisen-
stein series, but it was demonstrated unconditionally in [22]. We write

Gk = Vk(g> € Mk(p,w*k).

Now, for each integer k > 1, we define a modular form F}, € My(np, xw'™). If R" is not
empty (we call this case 1), let

L,(xw,1—k
Fy, = Ek(Lleik) - El(LXR’) -Gt - %-

Here x g denotes the character y viewed with modulus divisible by all primes in R’, so

L(xw,0) = L(x,0) [T (1 = x(p))

peR!

(28)

is equal (up to the constant 2_[F:Q]) to the value of the constant terms of F;(1, xr). By
construction, F}, has constant terms equal to 0. If R’ is empty (this setting will be subdivided
further into two cases, case 2 and case 3) we let

LP(Xw7 1 - k)
L(x,0)

e Lp(xw,1—k) L(x™',0)

E 1—k . D ) . ) ]

L) TR L e - F)

Fk = Ek(Lleik) - EI(LX) : kal :

(29)

Again F} has constant terms equal to 0.
The forms F}, interpolate to Hida families. Note that

(@ (14T = 1)) = v (G(T)).

Therefore, in case 1 the A-adic family

L(xw)

F = E(1,x) = Bi(Lxn)9((1+T)u" = 1)) - L(xs,0)
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satisfies v (%) = F}, for all positive integers k in a neighborhood of 1 in Z,, where L(xw) €
Ay is the element such that v, (L(xw)) = Ly(xw, 1 — k). Similarly, if R' = ¢ we define

F =610 - B S0+ D - 0) L5 S D)W G0
where E( L . 0)
= X)X rac
W= W) Lo © e
satisfies

L(0) Ly 'w,1—Fk)
for all k € Z, with L,(x 'w,1 — k) # 0. In our calculations, we will require that the A-adic
form Z is regular in weight 1, i.e. % € M?°(n, ). This will be the case unless WV has a
pole in weight 1, i.e. if

ord, W = ran(X) — ran(x ') < 0.

(Of course, Conjecture 1 implies that 7.,(x) = 7(X) = ry-1 = 7an(X), so it should be the case
that ord, W = 0; however we are proving Conjecture 2 without assuming Conjecture 1, so
we need to consider the possibility ord, W < 0.) Now, swapping x and x~! has the effect
of inverting W. Therefore, in the case that W has a pole at k = 1, it suffices instead to
assume that W has a zero at k = 1 and to prove Conjecture 2 for y~! (i.e. to prove that
Li(x™Y) = Z,(x")). Therefore, we assume that ord, W > 0 and subdivide the setting
R’ = ¢ into two cases:

o Case 2: (W) # 0; we must prove Z,(x) = Zan(X)-
e Case 3: v;(W) = 0; we must prove Z,(x) = Zan(x) =0 and Z,(x ') = L (x ).

Now, the A-adic family of modular forms .Z has been constructed such that its constant
coefficients at oo vanish—in the terminology of [16], .% is a “semi-cusp form.” The following
result was proved in [5, Corollary 2.10 and Proposition 3.4].

Theorem 3.2. There exists a Hecke operatort in the Hecke algebra T 1y such that 1, (t)(Ei(1, xs)) =
Ei(1,xs) and such that # =t-e- F is a cuspidal Hida family, i.e. F € 8°(n, x)q)-

3.3 Hecke Action in Case 1 (R # ¢)

We now study the action of the Hecke operators on the form .%#. The action of the Hecke
operators above p is more complicated than the setting » = 1 considered in [5], and our
methods here draw from those introduced in [22].
Any Hida family is determined by its Fourier expansion; there is a canonical A-algebra
embedding
e: 8 — [] Ay (@, H))aco,-

aCOp
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Recall the definition of r,, and .Z (x) given in (2).

We define H to be the image of the Hecke orbit of .%# under the reduction of ¢ modulo
w1 This is a finitely-generated module over Agy)/a"» ™ = E[x|/a"*1 and we obtain a
canonical A-algebra homomorphism

¢: T — Endpgpr/rrants H. (32)
By identifying the image of (32), we can now prove Theorem 2 from the introduction.
Theorem 3.3. Suppose R’ is nonempty. There exists a A-algebra homomorphism
0 T — W, =E[me,....6]/(m™ T & am ereg- e + (=1) L% (x)m")
such that

Ti— 14 xe(l) forl{np
U1 forU|norle R, and
Upi'_>1+€ia R:{pl,...,pr}.

Proof. By definition, 7" fully divides £(xw) in A(yy. Since 14(¥) = 1, it follows that modulo

7"t we can write the second term appearing in the definition of .# more simply, namely:

' = B(1,xn) (1 + Thu" — 1)) %
= (L1 E(L ) L5 ()7 (mod 7. (33)

To be clear, this congruence means that the two sides have Fourier coefficients that are
congruent modulo 77"n*1, In particular, modulo 7”1 the Hecke action on .#’ depends only
on the action on the form E;(1, xg/). More precisely, if 7 € T then we have

7.7 = (=)= (1) (EL(1, xr)) - L5 ()7 (mod 7"»T1). (34)
Let us therefore study the action of the Hecke operators on Ej(1, yg). We have

TiEA (1, xr) = (1 + x(0)EL(L, xR, [fnp.
UE\(1,xr) = E1(1, xr), [[norleR.

The action of the operators U, for p € R is more subtle and leads to an interesting phe-
nomenon. A direct calculation shows that for p € R, we have

UpEr(1,xr) = Er(1, xrr) + Er(1, XRogey)-

More generally, for R C J C S, and p € S, we have

El(laXJU{p}) ifp ¢ J,
U, —1E{(1 = 35
( P ) 1( ’XJ) {0 iftpeJ ( )
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Note that for [{np, we have T{(&(1,x)) = (1 + xe(l))& (1, x). Since

1+ xe() =1+ x(I) (mod ),

it follows from (34) and the definition of .# that modulo 7"=»*!  the Hecke operator T; acts
as multiplication by the scalar 1+ ye([) on Z. By the commutativity of the Hecke algebra,
the same is clearly true for .%# and its entire Hecke orbit H. The same argument shows that
Ui for [|nor [ € R acts as the identity on H. Therefore the homomorphism (32) satisfies

p(Ti) = 1+ xe()  for [1np, (36)
e(Uy) =1 forl|norleR. (37)

Recall that R = {p;,...,p,}. For p, € R, the operator U,, — 1 annihilates &(1,x). It
follows from this along with (33) that = annihilates the image of (U,, —1).# in H. Similarly
using (34) and (35), it follows that the image of (U,, — 1)2% is 0 in H. If we let €; denote
the image of U,, — 1 under the homomorphism ¢ given in (32), it is therefore clear that

&=0 and € -m =0 for all 4. (38)

Finally, we consider the action of [[;_,(U,, — 1). We have

H<Upi —1D)F =t-e((=1)""Ei(1, x5)Zn(x)7™)  (mod 7"

i=1

= te() LT E(LY) (mod 77
= (~1)= g, () P (mod 7 +1).
Therefore we have
G E + (D)™ ZL007™ =0 in Endpig/paa H. (39)

Combining (36)—(39), we have therefore proved that there is a surjective A()-algebra
homomorphism
W1 — (p(T) ®@E FE

such that €; — €. To conclude the proof, we must show that this homomorphism is injective.
This can be achieved by counting dimensions. The algebra W; has dimension 2" +17,, —1 over
E, and is generated as an E-vector space by 1,m, 7%, ..., 7™~ ! and the products HjeJ €; for
all subsets J C R, J # ¢. We must therefore show that the elements 1, 7,72, ..., 7"~ and
the products [ jes € are E-linearly independent in Endgr)/rran+1 H, and for this it suffices
to show that their images on .# are E-linearly independent. It is clear that the coefficients
of ZF, 7.7 ,...,m"= L% in any putative linear combination must be zero, since these forms
all vanish to distinct orders less than r,, at £ = 1. We have already calculated that up to a
nonzero constant multiple, the forms [[;_ ;€7 for J # ¢ are congruent to Ei(1, xruy)m"™
modulo 771, These forms are easily seen to be linearly independent over F, and the result
follows. m
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Remark 3.4. Consider the A-subalgebra T” C T generated by the operators Ty for [ { np,
Ufor|norle R, and
Uy =1"*1[U, - 1)
peJ
for nonempty subsets J C R. One checks that the images of these Hecke operators under ¢
lie in the E-subalgebra of W; generated by m. Therefore, restricting the homomorphism ¢
to T/ and reducing modulo 7" (this reduction is only relevant if r,, > r) yields a A-algebra

homomorphism
¢ T — Ex]/x"!
satisfying
Ti— 1+ xe(l) for [ np,
U—1 for[[norle R,
U;—0 for p #J C R,

UR = (_1)T+1$an(X)7rr'

This holds even if r,, > r, in which case Z,,(x) = 0. The homomorphism ¢’ can be
constructed directly and more simply than ¢ by considering the mod 7" *!-eigenvalues of the
form %, i.e. for all T € TV we have

77 =¢ (7). (mod ).

A careful study of the arguments of §5 reveals that the homomorphism ¢’ is sufficient for
our applications; to be precise, only the images of the operators in T/ under ¢ are needed
to expand the determinant in (85) and to obtain (87). Nevertheless, we have included the
construction of the homomorphism ¢ on the full Hecke algebra T for completeness.

Remark 3.5. If = 1, there is a natural Aj-algebra homomorphism W; — E[r]/n*
sending €; — Zn(x)m. (Note that this holds even if r,, > r = 1, in which case Z,,(x) = 0.)
The composition of ¢ with this homomorphism is precisely the homomorphism constructed
in case 1 in [5].

3.4 Hecke Action in Case 2: R' = ¢, (W) #0

In this section, we handle the more complicated setting where R’ = ¢. Recall that we are
assuming that W € A(y) so that the family .% is regular in weight 1. Define the A(;)-algebra

Wy = Em,e1,... 60,y]/ I,
where

IW2 :(WT‘an‘i’l, yT‘an‘Fl7 y(ﬂ. _ y)7 ﬂ.’f‘anW _ y’r’an (W + 1)7
e, 16s e+ () L) — ).

20



Theorem 3.6. Suppose R’ is empty. If 1i(W) # 0, then there exists a A-algebra homomor-

phism
p:' T — Wy
such that
1 —€(l)
Ti— 14 xe(l) + (x() — 1) y forlinp
-1
U1 W1 for [ n, and
70
Upi — 1+

Proof. The proof follows that of Theorem 3.3. We again let ‘H denote the image of the Hecke

span of .Z in the space of Fourier coefficients modulo 7"an+1

algebra homomorphism
@: T — EndE[ﬂ]/ﬂranH H.

Fix a prime q { np such that x(q) # 1. Define

_ Ty — 1 — xe(q)
(x(q) = 1)(1 = e(q))/m

An explicit computation shows that

S T(l).

Y. =n&(x, )V (mod m"=F1),

It therefore follows that
1 —e(l)

T = (1 + xe(l) + (x(I) = 1) Y) F  (mod 7™ +1), [{np

H—1
UF = (1 + LY) F (mod 7™ +1), [|n.
7r

One also computes Y& (x, 1) = 7&(x, 1) and hence:

, and consider the canonical A-

(40)

In computing (45), one uses &(1,x) = &(x,1) = Ei(1, xs) (mod 7). Now we consider the

action of the Hecke operators above p on .% modulo 7”1, As in Theorem 3.3, we have

Uy —12F =7U,—1)Z =0 (mod 7"*"),

and clearly also
(Uy—1)YZF =0 (mod 7).
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We furthermore compute:

r

[[w, -7

i=1

(D)™ E (1, xs) L ()™ (mod 77 t)

(_l)ran‘f'lga*n(x)(ﬂ-ran _ Yran)j (mod 71-7’&1‘"!‘1)7

hence

r

[[w, -1z

i=1

(LG (O™ — Y™ F  (mod 7). (48)

Combining (41)—(48), we see that there is a surjective A(j)-algebra homomorphism
Wy — ¢(T) ®o, E (49)

such that y maps to the image of Y in Endgis/zran+1 H and €; maps to the image of Uy, — 1.
For future reference, we note that we have not yet used the condition v1(W) # 0 in this
proof.

To conclude the proof, we must demonstrate that the homomorphism (49) is an injection,
which we again accomplish by counting dimensions. The algebra W5 has dimension 2"» +
2r., — 2 as an E-vector space and is generated by the images of

]-77T7 7T27 s ’7T7’an_17 Y, 927 e 7yran)
and the products €; = Hjej ¢; for all subsets J C R, J # ¢, R.
First suppose 11 (W) # —1 (in addition to the assumption v;(W) # 0 of the theorem)
and suppose we have an F-linear combination of the forms

{(n' FYe t U{Y F e U {H(Upj - 1)9} CH
J#6,R

jed

that vanishes. We must show that each of the coefficients in this linear combination is zero.
Now .# does not vanish at k = 1, i.e. 1n(F) = (1 +vi(W))Ei(1,xs) # 0, and it is the
only form in our list with this property; therefore its coefficient in our linear combination
must be zero. Next we consider the two order 1 terms in our list, namely 7F and Y F.
Suppose the coefficients of these two terms in our linear combination are o and . Then by
considering leading terms, we must have a(1 + 14 (W)) + 11 (W) = 0. However by applying
Y and then considering leading terms, we also find a + § = 0. These two equations imply
that o = 8 = 0. Continuing in this fashion, we see that all the coefficients of the terms in
our linear combination with order less than r,, must vanish. It remains to prove that the

image of the forms Y™ .Z and {H icsUp, = 1)F } # in H are linearly independent over
J#.R

)

E. However, modulo 7"»*1 these forms are congruent up to non-zero scalars to the forms
m"m By (1, xy) for J C R, J # ¢. As noted earlier, these forms are linearly independent.
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If 5(W) = —1, a similar argument goes through. The minimal order forms in our
list are .# and Y.%; these each have order 1 and their leading terms (i.e. their images in
H modulo 7?) are linearly independent. This implies that their coefficients in our linear
combination are zero. The next minimal order forms are 7.% and Y2.%, which each have
order 2 and have leading terms that are linearly independent. Continuing in this way, we are
reduced to proving that the order r,, forms 7"»~1.% Y7 % and { [Le,(Up, —1).F }J#)R

are linearly independent modulo 7" ", The linear independence of all but the first of these

jed

forms follows exactly as in the previous case. We must therefore prove that 77 ~1.% cannot

be written as a linear combination of Y% and {H iesUp; = 1)F } ) modulo 771,
J#p,

However, applying Y to such a putative linear combination, we would find that 7"~V .# =
0 (mod 7"=*1) since Y annihilates all of the forms Y"*».% and {HjeJ(UF'j - 1)?}

modulo 7"+ But

J#¢,R

Y Z =a B (1, xs)n(W) 0 (mod 7=,
This concludes the proof. O

Remark 3.7. Note that when 7 = 1 and w = v, (W) # 0, —1, there is a natural A()-algebra
homomorphism W, —s E[r]/m? given by

y—m-w/(w+1), e LX)/ (w+ 1),

We therefore obtain a A-algebra homomorphism T — E[rx]/m? such that:

x() +w
Ti— 14+ x(h)+ T w (log(NO)T, [+np
U — 1, [ ’ n
7
1 T =5, = :
Up — +1+w : R =25, ={p}

This is exactly the homomorphism constructed in case 2 in [5].

3.5 Hecke Action in Case 3: R' = ¢,11(W) =0

Suppose that W has a zero at k = 1, i.e. Tan(X) > ran(x™'). For notational simplicity we
write s = 7an(x) and ¢ = r,,(x'). Define the A)-algebra

W3 = E[n,€e1,...,6,9]/Iw,
where

IW3 :(7]—8+17 yt+17 y(ﬂ- - y)a WtW - ytv
6127 €T, €Y, €1€2 " € + (_1>S$a*n<X)7Ts)'
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Theorem 3.8. Suppose R’ is empty and that W has a zero of order s —t > 1. There exists
a A-algebra homomorphism

p: T — W3
such that
1 —€(l)

Tr= 1+ xe(l) + (x(I) = 1)
e(l) — 1y

y forl{np

U1+

for U] n, and
Proof. As noted earlier, the proof of Theorem 3.6 carries through without the use of the
assumption v (W) # 0 up through the construction of the homomorphism (49). It is the

injectivity of this homomorphism that used the condition v4 (W) # 0. Indeed, if 11 (W) =0
as we are currently assuming, then (49) is not injective. We have

YHLZ = 718 (, )W =0 (mod 7°HY)
since 7~ | W, hence Y'"1.Z = 0 (mod 7**!). Furthermore
YLZ = n'&(x, )W = ' W.F  (mod 7°t1).

It follows that the homomorphism (49) factors through the quotient W3 of Wy, and to
conclude the proof it remains to show that the induced map W5 — ¢(T) ®o, F is injective.
For this it suffices to show that the forms

(r Y, UV Z Y U {H(Upj - w‘}
JeJ JCR,J#.R

are E-linearly independent modulo 7*™!. The demonstration of this fact is similar to the
previous cases and left to the reader. O

4 Construction of a Cohomology Class

We write
o: T — W

where W = Wy, Wy, or W3 in cases 1, 2, and 3, respectively, for the homomorphism ¢ given
in Theorems 3.3, 3.6, and 3.8. We write my, for the maximal ideal of W and m C T for the
kernel of the composition

T——W—W/my =E.
The height 1 prime ideal m is generated by T' € A, Ty — (1 + xe(l)) for [{np and U, — 1 for
[] np.
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Let Ty denote the localization of T at the prime ideal m. Let L = Frac(T(y)) denote
the total ring of fractions of the local ring T'y). Since the tame character x in our space of
Hida families has conductor equal to the tame level n of our families, there are no n-old forms
and therefore Ty, is reduced. This simple yet crucial observation was not mentioned in [5];
we thank H. Hida for pointing it out to us and refer the reader to [13, Proof of Theorem 3.6
and Corollary 3.7, pp. 381-382] for further details. As a result, we have a canonical injection
T (m) — L where L is isomorphic to a product of fields

t
L=]]Lsx (50)
=1

Each L, is a finite extension of Frac(A) and corresponds to a cuspidal Hida eigenfamily
€. For an integral ideal a C Op, the normalized Fourier coefficient c¢(a,.74) is equal to the
image in L of the Hecke operator T;,. These coeflicients generate a finite local A-subalgebra
of Ly, that we denote Ay, and call the Hecke algebra of J7;. The image of T(y) in L, is
the localization of A, at a height 1 prime ideal m 4 lying above (T) C A, and the explicit
description of the homomorphism ¢ implies that for prime ideals | C O we have

c(,) =1+ x() (mod my) for [{np,

(51)
c(l,.) =1 (mod m ) for [| np.

These congruences simply state that the specialization of 7 at the prime ideal m; is the
weight 1 form Fi(1, xg).

4.1 Representations Associated to Hida Families

As above, let S denote a cuspidal Hida eigenfamily specializing at a weight 1 prime ideal
m, C Ay to the form Fi(1,xs) (i.e. satisfying (51)). Let Ly = Frac(A,) denote the
fraction field of A . The following theorem ([23, Theorems 2 and 4]) of Hida and Wiles is
crucial for the construction of our cohomology class.

Theorem 4.1 (Hida, Wiles). There exists a continuous irreducible Galois representation
pr: Gr —> GLa(Ly)

where L is endowed with the A-adic topology (i.e. the topology induced by the maximal ideal
(g, T) of A, where mg is a uniformizer for E), such that:

1. py is unramified outside np;

2. for primes U{ np, the characteristic polynomial of p(Froby) is

char(pz(Froby))(z) = 2% — c(l, )z + xe(I); (52)
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3. for allp | p, we have

—1
XE€n *
prla, ~ ( (f‘%a Mo ) 7 (53)

where ny = Gy — Ny is unramified and n, y(rec(w™")) = c(p, H’). Here w € F}
is a uniformizer and rec: Fy — G{}b is the local Artin reciprocity map.

Note that by (52) we have char(p(Frob,))(z) € A [z], and hence by Cebotarev we
have

char(p.(0))(x) € Axlz] (54)

for all 0 € Gp. Moreover by (51), (52), and another application of Cebotarev we have

char(pr(0))(z) = (z — 1)(x — x(0)) (mod muy) (55)

for all o € Gp. Note that in applying Cebotarev and the continuity of p,»r to deduce (54)
and (55), we are using the fact that A and m, are finitely generated A-modules and hence
are closed in the A-adic topology on L .

In order to rigidify the representation p,, we choose an element 7 € Gp such that
x(7) # 1. Let Ay, denote the completion of the localization of A at m with respect to
its maximal ideal. We denote the maximal ideal of Ay, by my = myA,,,. By (55) and
Hensel’s Lemma, p(7) has distinct eigenvalues Ay, A2 € Ay, such that Ay =1 (mod m )
and Ay = x(7) (mod m). After extending scalars to Ly, = Frac(Ay,, ), we can choose a
basis for our representation consisting of eigenvectors for p,(7), i.e. such that

= (3 a)- (56)

In the next section, we will demonstrate how to define a cohomology class using the upper
right entries of the representation p, in this basis as 7 ranges over the .77,. Ribet showed
how to gain local information about this cohomology class by comparing the “global” basis
satisfying (56) to the “local” basis indicated in (53). This argument, which Mazur [14] has
called “Ribet’s Wrench,” does not succeed in our context if the global basis and local basis
are the same. We must show, therefore, that 7 can be chosen so that its eigenvectors do
not agree with the eigenvectors of p(G,) for any p | p. Furthermore, we must do this
simultaneously for all the finitely many . that occur.

Lemma 4.2. Let v € Li%) be a nonzero vector in the representation space of py, and let

G, C Gp denote the subgroup of elements o such that v is an eigenvector for p (o). If
X(G,) # 1, then G, has infinite index in Gp.

Proof. Fix a 7 € G, such that x(7) # 1. As above let A\;, Ay € A, be the eigenvalues of
p(T) such that A =1 (mod m) and Ay = x(7) (mod m_ ). Choose a basis for p(c) =
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) whose first vector is v and such that ps(7) is diagonal; hence

= (4 5 ) o =5 0. 67)

Let us for the moment assume that the first of these cases holds, as the second case is similar
and proceeds in the same fashion.
By (54) we have
ax(0) +dy(o) =trprp(o) € Ay C An,,

for any o € G and moreover by (55) we have

anw(0)+dw(o) =1+ x(o) (mod m). (58)
Now by (57): )
axp(T)=XM =1 (mod I’fljf), (50)
dw(T) =X = x(7) (mod m_y)
We have
1+ x(o)x(7) = an(oT) + dyw(oT) (mod m_y) (60)
= ay(0) +dyp(o)x(7) (mod my), (61)

where (60) follows from (58) with o replaced by o7 and (61) follows from (59). Now (58)
and (61) imply that

ax(o) =1 (mod my), dy(o) = x(o) (mod my). (62)

(In particular, a(0),dy(0) € Am,,.)

Let Cy denote the A -module generated by the elements ¢ (o) for ¢ € Gp and let C
denote the Ay, ,,-module generated by the ¢ (c). The continuity of p» and the compactness
of G imply that Cf is compact. It follows that Cj is a finitely-generated A -module, and
hence that C'is a finitely generated A, ,-module.

The equation

c(0T) = cu(0)aw(T) + dw(o)cr(T)

together with (62) implies that ¢,(0) € C/mC is a 1-cocycle representing a cohomology
class k € HY(Gp, C /. C(x)).

The restriction of k to G, clearly vanishes, since ¢(G,) = 0. If G, has finite index in G,
then the inflation-restriction sequence shows that r itself is a trivial cohomology class, i.e.
we have € (0) = (x(0) —1)x for some z € C'/mC. Evaluating at ¢ = 7 we see that in fact
x = 0, i.e. the image of ¢y in C/mC is zero. However, the ¢, (o) generate the module
C/tC by definition. Therefore C'//m_»C = 0 and hence by Nakayama’s Lemma, we must
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have C' = 0; hence ¢ is zero as a function on Gr. This contradicts the irreducibility of p»,
and hence G, must have infinite index in Gp.

If the second case in (57) holds, then ¢, (0) € C/mC represents a cohomology class
k € HY(Gp,C/m»C(x™')) and the same argument goes through. O

For each prime p € R and each Hida family S as above, let v, » € L2m3f be the
eigenvector for p(Gy).

Lemma 4.3. There exists a 7 € Gp such that x(7) # 1 and such that v, » is not an
eigenvector for puy(T) for all € and p.

Proof. In the notation of Lemma 4.2, we must show that there exists a 7 € Gr such that
x(7) #land 7 ¢ G, , for all p and 2. Label the v, » such that x(G,, ,,) # Llasvi,..., v,
and the remaining v, » as Vpy1,. .., Um.

We construct 7 inductively. Let 79 € Gal(H/F) be nontrivial, so x () # 1. Let Hy = H.
We define 7; for ¢« = 1,...,n recursively as follows. Since G,, has infinite index in G by
Lemma 4.2, there exists an o; € H;_; in the fixed field of G, acting on F. Let H; be the
Galois closure of H(«;) over F', and let 7; be an element of Gal(H;/F') such that 7;|p, , = i1
and 7;(a;) # ;. Then any 7 € G restricting to 7; will satisfy x(7) # 1 and 7 ¢ G,,, since
7 acts nontrivially on the fixed field of G,,.

After defining 7,...,7, in this way, let 7 € G be any element restricting to 7,, on
H,. Then by construction, x(r) # 1 and 7 ¢ G,, for i = 1,...,n. Clearly 7 ¢ G,, for
i=n+1,...m,since x(7) # 1 and x(G,,) =1 for these 7. This concludes the proof. O

4.2 Construction of the Cohomology Class

Recall that T(y) denotes the localization of T at the prime ideal m, and that

denotes its total ring of fractions. Let T denote the image of T in T (). The product of the
Galois representations p,z for ¢ = 1,...,t yields a continuous Galois representation

p: Gp — GL2(L),
where L is endowed with the A-adic topology, satisfying:
1. p is unramified outside np;
2. for primes [ { np, the characteristic polynomial of p(Froby) is
char(p.»(Frob))(x) = 2% — T + xe(l), (63)

where T denotes the image of T} in T;
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3. for all p | p, we have

1
X1, ‘e *)
pla, ~ ; 64
|p (0 T (64)

where n: G, — T is unramified and n,(rec(w™')) = U,. Here w € Fy is a uni-
formizer.

Let T, denote the completion of T, with respect to its maximal ideal mT ). We write
m = mT,, for the maximal ideal of T,. Let 7 € G satisfy the conditions of Lemma 4.3. By
Hensel’s Lemma, there exist unique roots Ay, Ay € Ty, of the characteristic polynomial of p(7)
such that Ay = 1 (mod m), Ay = x(7) (mod m). We extend scalars for the representation
p to Ly = Frac(Ty,) and choose a basis for the representation consisting of the associated
eigenvectors for p(7), i.e. such that

=% a)- (65

We can now construct our desired cohomology class following the method introduced

in the proof of Lemma 4.2. Write p(o) = ( ZEZ; Z((g; ) . Using (63) and the fact that

T =1+ x(\) (mod m), it follows from Cebotarev that
a(o) +d(oc) € T C Ty (66)

and
a(o) +d(c) =1+ x(0) (mod mT). (67)

Our applications of Cebotarev and the continuity of p to deduce (66) and (67) rely on the
fact that T and m C T (and hence their images in T(y)) are finitely generated A-modules
and are therefore closed in the A-adic topology.
Following the argument from (58)—(62) and using (65), we deduce that a(0),d(c) € Ty
and
a(c)=1 (mod m), d(o) = x(o) (mod m). (68)

Now let B denote the T\,-module generated by the b(o) for o € Gr. Repeating the compact-
ness argument from the proof of Lemma 4.2 shows that B is a finitely generated T-module.
Define the E-vector space B = B/mB and let b(c) denote the image of b(c) in B. The
equation

b(oo’) = a(o)b(c”) + b(o)d(a), 0,0 € Gp

together with (68) implies that the function

k(o) = b(o)x (o) (69)

is a 1-cocycle representing a cohomology class [k] € HY(Gr, B(x™1)).
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4.3 Interlude on the Homomorphism ¢

The local Artin ring W is complete with respect to its maximal ideal myy,, since m%‘,““ = 0.
As a result, the homomorphism ¢: T — W extends canonically to a surjective homomor-
phism
Om: Ty — WL

The arguments used to deduce the congruences (68) can be refined to calculate the images
of a(o) and d(o) under the homomorphism ¢,. The key observation that allows this is the
following. While it is clear that ¢, (mod my ) decomposes as the sum of two characters
(namely, 1 and x), the same is in fact true for the full homomorphism ¢y,. In cases 2 and 3,
define the “A-adic cyclotomic character in the variable 3",

e: Gp — W*

to be the character e with the variable 7 replaced by y, i.e. if €(o) = Y o0, a;7", then

(o) =Y aiy (70)

— 1+ —E(U)ﬁ_ Ly (71)

Note that (70) is a finite sum since y is nilpotent, and (71) holds from the relation my = y* in
the ring W. Define €,_, (o) similarly, with y replaced by m —y. Define two homomorphisms

1, P2 Gp — W

as follows:

e,(0) cases 2 and 3,

(o) = {Xe(a) case 1

X€r—y(0)  cases 2 and 3.

(o) = {1 case 1

Lemma 4.4. We have
pm(a(o)) = ¢i(0)

onl(0)) = o). "
Proof. A direct computation shows that for [ np, we have
©m(T7) = ¥y (Froby) + 1o (Froby). (73)
Furthermore, it is easy to see that e,e,_, = € using the relation 7y = 32, and hence
P19g = xe. (74)
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Now, (73) implies that
pm(a(0) +d(0)) = P1(0) + 1a(0) (75)
for all o € Gp. The fact that ¢ =1 (mod my) and 1» = x (mod my,) along with

pm(char(p(0))(z)) = (z = 1(0))(x — P2(0)),
which follows from (74) and (75), implies that

(A1) = 1 (7), (76)
Pm(A2) = (7). (77)
Now (75) applied with o7 implies that
P (a(0))1(7) + @m(d(0))2(T) = P1(07) + 1ha(0T). (78)
Solving (75) and (78) yields (72) as desired. O

Remark 4.5. Let I be the kernel of ¢': Ty, — E[rn]/(7"*1). As in §4.2, Lemma 4.4
can be used to construct a cohomology class [&] in HY(GF, (B/IB)(¢115")). Applying the
arguments of [15] (see also [18]) one can deduce a lower bound for the E-dimension of B/IB as
follows. Let J (the “Eisenstein ideal”) denote the kernel of the structure map Ay — T /1.
Then there are isomorphisms Aqy/J = Ty /I = Elx]/(x"*1). Hence J = (7"*t1) C Agy.
Let Fitt 4 M denote the initial Fitting ideal of a finitely presented A-module M. Then

Fitta,, (B/1B) (mod J) = Fitt, ,,,,(B/IB) = Fittr,,/1(B/IB) = Fitty, B (mod I) = 0.
The last equality holds because B is a faithful Ty-module. Hence Fitt,,,(B/IB) C J and
dimg B/IB > dimg A1)/ J = 7an + 1.

However, it is unclear if [k] can be used to construct r cyclotomic cohomology classes in

Hy(Gr, E(x7))-

4.4 Local Behavior of the Cohomology Class

We now study in detail the cohomology class x constructed in §4.2.
For each place p | p, there is a basis for which the representation p|g, takes the shape
A, B
given in (64). Let ( poor
G Dy
local basis to our fixed global basis satisfying (65), i.e. such that

(i oy (& ey = (& ) (e )
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Lemma 4.6. The elements A, and Cy, are invertible in Ly,.

Proof. First note that Ty C [[._, Am,,. and hence

t
Ly C H L., where Ly, = Frac(Am%i).
i=1

We must show that the projections of A, and C, onto each factor L., are nonzero for

¢ =1,...,t. But if the image of A, or C, is zero in L then it is easy to see that the

My, )
eigenvector for p(Gy) acting on L, is an eigenvector for p (7). But we chose 7 in §4.2
to satisfy the conditions of Lemma 4.3, so this is not the case. This proves the result. O

Comparing top left entries of the matrix equation (79) and using Lemma 4.6, we find

_ A

b(o) C,

(an_le(a) — a(a)) , o€ G,. (80)
Lemma 4.7. The cohomology class [k] € HY(Gp, B(x™")) defined in (69) is unramified
outside R.

Proof. Tt is elementary to see that any class [k] € H'(Gp, B(x™!)) is unramified outside p.
Indeed, let v be a place of F' not lying above p and let w be the place of H lying above v
according to the choice of decomposition group G,, C Gr. By inflation-restriction, it suffices
to prove that the restriction of [k] to G,, C Gy is unramified. However, since x|, = 1, this
restriction is an element

res, (k] € H'(Gy, B) = Homy (G, B).

Now, the image of I,, in G2 is a pro-¢ group where ¢ is the prime of Q below w (or trivial,
if w is a complex place) and B is a pro-p group, being a finite-dimensional E-vector space.
Therefore there are no non-zero continuous homomorphisms between these groups and hence
resy, ([k]) = 0.

Next we show that [«] is unramified (in fact locally trivial) at primes p € R’. By definition
of R', there exists & € Gy such that x() # 1. Since 7,(6) = €(6) = a(6) = 1 (mod m), it
follows that x7, 'e(6) — a(5) € Ty, and hence by (80) we have A,/C, € B. Reducing (80)
modulo mB we see that res, x is a coboundary:

wo) = (1= (@) 4/Ch, o€y
Therefore res,[x] = 0 as desired. O

Lemma 4.8. The T-module B is generated by b(c) for all o € I,,p € R.
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Proof. Let B; be the Ty-module generated by b(o) for all ¢ € I,,p € R. Let B; = B/By.
We want to show that B; = 0. Let [s;] denote the image of the cohomology class [x] in
HY(Gp,(B;/mB)(x™!)). By Lemma 4.7, the class [#;] is unramified outside R. But by the
definition of Bj, the image of k(o) in B;/mB;y is trivial for o € I,, p € R, and therefore
(k1] is unramified everywhere. By Proposition 2.2, it follows that [k;] = 0. Repeating the
argument at the end of Lemma 4.2 shows that B; = 0. Indeed, writing x; as a coboundary
and evaluating at 7 shows that x; = 0 as a function. Yet the values of k; generate By / mB;
and hence B;/mB; = 0. Since By is a finitely generated Ty-module, Nakayama’s Lemma
implies that B; = 0 as desired. O

Lemma 4.9. Let R = {p1,...,p,}. We have B C %tﬁ_k Y

b1 Chpr

Proof. This follows from Lemma 4.8 and equation (80), together with the observation that
for p € R, we have x(I,) =1 and

ne(0) =€(oc) =alo) =1 (mod m), o€ 1.

5 Computation of the Regulator

We now assemble the constructions of the previous sections and complete the proof of The-
orem 1, which states that Z,,(x) = Z,(x). Let I denote the kernel of the homomorphism
Om: T — W.

5.1 Proof of Z,,(x) = %,(x) in Cases 1, 2, and 3

Let [k] € Hh(Gp, B(x™')) denote the cohomology class constructed in §4.2. Let uy, ..., u,
denote an E-basis of U,. By Proposition 2.1 and Lemma 4.7, we have

> resy k(u;) =0in B forj=1,...,r (81)
i=1
For each fixed j, we can write u; = >, yjx ® e, where y;, € Og[l/p]* and e;;, € E. For
eacht=1,...,r, let A
0 = Y ey € EGy]
k

where y(Q € Gy, is any element whose image in Gf}f is equal to the image of y;, under the

J
local Artin reciprocity map (9) (as usual we use (7) to embed Oy[1/p]* C F). Then noting

that x(Gy,) = 1, we have by definition:

res,, (u;) = b(o;;) in B where b(0;;) = Zejkb(y](g) € B.
!
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Therefore (81) can be written
Z b(o;j) € mB for each j =1,...,7. (82)

Now by (80), we have
A i
bow) = D en (' elwid) — o) (83)
k

where we have written for simplicity A;,C;, and n; for A,,, C,,, and 7n,,. As we have noted,
the term in parenthesis on the right lies in m since 7;, €, a all lie in T, and are congruent to
1 modulo m. Furthermore we have:

0 () = Up ™™ = 14 0,(yp) (Uy, — 1) (mod )
(W) =1+ bilyp)m (mod 72)
a(yly) =1+ aj(y;) (mod (1)), (84)
where a}(y;;) € m is any element such that

Om(a)(yjr)) = {0 case 1

li(yjr)y  cases 2 and 3.

The congruence (84) follows from Lemma 4.4. Of course 7% € m?. Therefore
nteyh)) — alysy) = Glyp)m + 0iyse) (Up, — 1) — i) (mod (#°,1)).
Hence (83) can be written more simply as

o) = 5 (Elag )+ o0(ug) (T, — 1) = o) + i)

)

for some m;; € (m* I). Now in view of Lemma 4.9, which implies that mB C 3 _,_, %ﬁ‘lQ,
(82) can be written

r A»L
c (Ci(uj)m + 0i(u;)(Up, — 1) — ai(uj) + my;) =0 foreach j=1...,r,

i=1

after altering the m;; by elements of m?. It follows that
A; ,
det | = (Gi(uy)m + 0i(uy) (Up, = 1) = a;(uz) +mi) | =0

since it is the determinant of a matrix whose rows all sum to 0. Cancelling the constants %
(which are invertible by Lemma 4.6) from the rows of this matrix, we obtain

det (€;(uz)m + 0i(u;) (Up, — 1) — az(uy) + my;) = 0.
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This determinant now takes place in the ring T\, and in fact all of its entries lie in the
maximal ideal m. We apply the homomorphism ¢, to this equation to obtain an equation
in the ring W:

det((€;(uj)m + 05 (uj)e; +nij) =
det (£ (u;) (7 — y) + 0i(u;)e; + nij) =

case 1, (85)

0
0 cases 2 and 3, (86)

where n;; € m},. Since each entry of this matrix lies in myy, it is clear that the n;; do not
effect the value of the determinant modulo m}}f{l. Finally, using the relations in the ring W
(in particular that ;7 = 0 and €;y = 0) it is easy to calculate these determinants. In case 1

we find
0 = det(4;(uj)m + 0;(uj)e;) (mod mj;h)
= det(¢;(u;))7" + det(0;(u;))er - - - €, (mod mj;h)
= det(li{u))r" + detlo(u)) (1)L 00w (mod mif).  (8)

If 7,y = 7, then 22 (x) = Zn(X) and since " ¢ my;\!, it follows that

Zan(X) = (=1)" det(€i(u;)) / det(oi(u;)) = Z,(x)

as desired. If r,, > 7, then 7" = 0 (mod mj;f'), so (87) implies that det(¢;(u;)) = 0, hence
p(x) = 0. Since Z,,(x) = 0 in this case as well, we again find %, (x) = Z,(x)-
Cases 2 and 3 are nearly identical, once one uses the relations in the ring W to observe

that (1 —y)" =" —y" ¢ mj;F'.

5.2 Proof of Z,(x ') =%,(x') in Case 3

As noted in §3.2, to complete the proof we must show that Z,(x™!) = %Z,(x™') in case 3.
For this, we repeat the arguments from §4.4 onward using the “c-cocycle” coming from our
representation rather than the “b-cocycle”. To be precise, we let C' denote the T,,-module
generated by the elements c(o) for all ¢ € G and write C' = C/mC. Then the equation

c(oc’) = c(o)a(o) + d(o)e(o’), oo’ € Gp

together with (68) implies that the function ¢: G — C is a 1-cocycle defining a cohomology
class
el € H'(Gr, C(x))-

The elementary argument at the beginning of the proof of Lemma 4.7 shows that [¢] is
unramified outside p, and hence outside R since R’ is empty in case 3. The analogue of (80),
which is seen by equating lower left entries in (79), is the following:

c(o) = f%: (xn, 'e(o) — d(0)) , o € Gj.
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Lemma 5.1. For p € R and o € I,, we have that

pm(e(0) —d(0)) € yW.

Proof. Lemma 4.4 implies that ¢n(d(0)) = €;—,(0). Using the relation 7y = y?, it is easy to
see that €(0) — e,_,(0) = ¢,(0) — 1 in W. The result follows. O

From Lemma 5.1, the arguments of Lemmas 4.8 and 4.9 apply without change to show
that

CP1
C - Apl

Ay,

where y = ¢ 1 (yW) is an ideal of Ty,
We can next repeat the argument of §5.1 without change, where now uq, ..., u, denotes
an E-basis of U,-1. Noting that pn(d(0)) = x€ér—y(0) by Lemma 4.4 and hence that

(X7, €(0) —d(0)) = €y(0) =14+ 0i(@)es, 0 € Gy,

(where 7 € Fp*z is such that rec(a) is the image of o in G2), the analogue of (86) is the
equation
det((£i(u;)y + 0i(u;)ei +nij) = 0

with n;; € myy. We obtain

det(¢;(u;))y" + det(0;(u;))(=1)* 125 (x)m* =0 (mod myn"). (88)
Note that in the ring W = W3, we have
L)
t t s—t an s
Yy =Wr = (-1 e,
T Zaen
hence (88) can be written
det(€;(uy))y" + det(oi(uy)) (1)L (x )y =0 (mod muy"). (89)

This congruence yields an equality in y”/myy", the 1-dimensional E-vector space generated
by the image of y". If t = r, then Z (x) = Zun(x) and we obtain

det(€i(uj)) + det(0;(u;)) (1) Zn(x ) = 0,

hence Zn(x ™) = Z,(x ') as desired. If t > r, then y* € myy” so (89) yields det(¢;(u;)) =
and hence Z,(x ') = 0. Since Z,,(x™*) = 0 in this case as well, we again find %, (x~ )
Z,(x~1). This completes the proof.

Remark 5.2. We note that this argument fills in a hole at the end of the proof of Theorem
4.4 in [5]. There it was simply suggested without elaboration that switching the roles of b
and ¢ yields a cohomology class giving the desired result for xy~!. This is indeed the case
if ron(x) = 7 = 1, but in the case ran(x) > ran(x ') one needs a version of the argument
presented here and in particular the whole homomorphism ¢; the homomorphism ¢,
constructed in [5] does not suffice in case 3.
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