
CHAPTER 3

The p-adic upper half plane

Samit Dasgupta1 and Jeremy Teitelbaum2

Introduction

The p-adic upper half plane X is a rigid analytic variety over a p-adic field K,
on which the group GL2(K) acts, that Mumford introduced (as a formal scheme)
as part of his efforts to generalize Tate’s p-adic uniformization of elliptic curves to
curves of higher genus. The Cp–valued points of X are just P1(Cp)−P1(K), with
GL2(K) acting by linear fractional transformations. Mumford showed that the ap-
propriate generalization of Tate’s elliptic curves – the “totally split” curves of higher
genus – could be constructed as the quotient of the space X by appropriate discrete
groups Γ ∈ GL2(K). Mumford’s work acquired even greater significance for number
theorists when Cerednik and Drinfeld showed that an important class of modular
curves – the Shimura curves – could be constructed by p-adic uniformization by
choosing for the discrete group Γ an appropriate arithmetic subgroup coming from
a definite quaternion algebra over Q. More recently, the p-adic upper half plane
has figured prominently in recent developments in arithmetic geometry. In Section
1 of these notes, we will construct the space X as a rigid variety and describe some
of its most fundamental geometric properties, and in subsequent sections we will
explore some of this more recent work.

Our focus in Section 2 will be the analytic theory of X, and in particular
the relationship between spaces of functions on the p-adic upper half plane and
distributions on P1(K), which is the “boundary” of X. One main result will be the
construction of the Poisson integral for X; in a manner analogous to the classical
Poisson transform, this integral allows one to recover rigid analytic functions on X

from appropriate boundary distributions by integrating against a kernel function.
In Sections 3 and 4, we establish connections between number theory and the

geometry of the p-adic upper half plane, with particular emphasis on the relation-
ship between the p-adic upper half plane and L-invariants. If E is an elliptic curve
over Q with split multiplicative reduction at p and analytic Mordell-Weil rank zero,
then [25] conjectured and [19] proved that the p-adic L-function of the modular
form f corresponding to E vanishes to order 1 and the special value of L′p(1) differs
from the classical special value by the number

L(f) =
logp(qE)
ordp(qE)
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2 3. THE p-ADIC UPPER HALF PLANE

where qE is the Tate period of the curve E at p. The paper [25] made a weak
conjecture (the exceptional zero conjecture) about the relationship between the
special values of the p-adic and classical L-functions of higher weight modular forms,
and in an attempt to make that conjecture more precise, different mathematicians
introduced a whole collection of more general L-invariants associated to such forms.
Many of these L-invariants – all of which are now known to be equal – are related
in some way to the p-adic upper half plane, and after a general discussion of L-
invariants we focus in particular on three such: one defined by the second author
of these notes; one defined by Orton; and one defined by Breuil. Much of Section 3
is devoted to Orton’s proof of the exceptional zero conjecture using her invariant,
while Section 4 discusses Breuil’s invariant and its relationship with the cohomology
of modular curves and a possible p-adic Langlands correspondence.

1. Geometry of the p-adic upper half plane

1.1. Basic notations. We let K denote a finite extension of the p-adic num-
bers Qp, and we let G be the group GL2(K). If oK denotes the ring of integers
in K, then we write Go for the maximal compact subgroup GL2(oK) in G. We
let π be a uniformizing parameter for oK and write | · | for the normalized p-adic
absolute value on K extending the p-adic absolute value on Qp. We will also use
the additive valuation

ω : K → Z
normalized so that ω(π) = 1.

Let V be a fixed two dimensional vector space over K, viewed as a space of
row vectors, on which G acts on the left by the formula

g([x, y]) = [x, y]
(
a b
c d

)−1

.

When we refer to P1 we mean specifically P(V ) with its G-action. We let Ξ0

and Ξ1 be the dual elements in V ∗ to the standard basis vectors [1, 0] and [0, 1]
in V ; they are “homogeneous coordinates” on P1. A linear form in Ξ0 and Ξ1 is
called unimodular if at least one of its two coefficients is a unit in oK and the other
coefficient lies in oK .

The coordinate function
z =

Ξ0

Ξ1

is acted on by a matrix g =
(
a b
c d

)
∈ G through the formula

g∗(z)([x, y]) = z(g−1([x, y]))
= z([x, y]g)
= z([ax+ cy, bx+ dy])

=
az + c

bz + d

1.2. The p-adic upper half plane. The central object of interest in this
series of lectures is the p-adic upper half plane X, a rigid analytic space whose
L-points are given by the rule

X(L) = P1(L)\P1(K)

for complete extension fields L of K.
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1.2.1. An admissible covering. To construct X, we need to describe an admissi-
ble covering that defines its rigid structure. We will describe an increasing sequence
of affinoid subdomains X−n in P1, for integer n ≥ 1, and some related admissible
domains Xn, so that X is the union of the X−n and the Xn. Essentially, X−n is con-
structed by deleting from P1 smaller and smaller balls around the rational points.

We will describe this in a coordinate-free way that may not be the simplest
approach in dimension 1 but is easier to generalize to higher dimension (see [35]).

Given x ∈ P1(Cp), we may choose homogeneous coordinates x = [x0, x1] for x
that are unimodular, meaning that both coordinates are integral, but at least one
is not divisible by π. For a real number r > 0, let

B(x, r) = {y ∈ P1(Cp) : ω(y0x1 − y1x0) ≥ r},

where we always take a unimodular representative [y0, y1] of y. Also define

B−(x, r) = {y ∈ P1(Cp) : ω(y0x1 − y1x0) > r}.

Lemma 1.2.1. Let x and x′ be two elements of P1(K), and let n be a positive
integer. Then B(x, n) ∩ B(x′, n) 6= ∅ if and only if [x0, x1] ≡ λ[x′0, x

′
1] (mod πn)

for some unit λ ∈ o∗K .

Proof. Suppose y ∈ B(x, n) ∩B(x′, n). Then we have the equations:

ω(x1y0 − y1x0) ≥ n

ω(x′1y0 − y1x′0) ≥ n.

Suppose for convenience that y0 is a unit. Then we can conclude that

ω(x′0x1 − x′1x0) ≥ n.

This means that the vectors [x0, x1] and [x′0, x
′
1] are linearly dependent modulo πn,

which is the claim. Conversely, if the vectors are linearly dependent mod πn, we
may construct a y in the intersection of the two sets by choosing a unimodular
representative of the kernel of the appropriate matrix made out of x and x′. �

Definition 1.2.2. For each integer n > 0, let Pn be a set of representatives
for the points of P1(K) modulo πn. Let Xn be the set

Xn := P1(Cp)\
⋃

x∈Pn

B(x, n)

Let X−n ⊂ Xn be the set

X−n := P1(Cp)\
⋃

x∈Pn

B−(x, n− 1)

Let
X =

⋃
n

Xn =
⋃
n

X−n .

We can make the sets Xn and X−n more explicit. Fix an integer n ≥ 1. Then we
can choose representatives for Pn as follows:

[ai, 1],where {ai}q
n−1

i=0 is a set of representatives in oK for oK/π
noK ;

[1, bi],where {bi}q
n−1−1

i=0 is a set of representatives in πoK for πoK/π
noK .



4 3. THE p-ADIC UPPER HALF PLANE

Then it follows from the definitions that Xn is the set of points x ∈ P1 defined by
the inequalities

ω(z(x)− ai) < n i = 0, . . . , qn − 1

ω

(
1

z(x)
− bi

)
< n i = 0, . . . , qn−1 − 1.

It will be useful later to have slightly different inequalities for the covering
domains. In particular, it is easy to check that if ω(b) < n, then

ω(1/z − b) < n⇔ ω(z − 1/b) < n− 2ω(b).

Consequently we can (choosing b0 = 0) rewrite the system of inequalities defining
Xn as

ω(z − ai) < n for i = 0, . . . , qn − 1
ω(z − 1/bi) < n− 2ω(bi) for i = 1, . . . , qn−1 − 1

ω(z) > −n
(1.2.3)

and, for X−n ,

ω(z − ai) ≤ n− 1 for i = 0, . . . , qn − 1
ω(z − 1/bi) ≤ n− 1− 2ω(bi) for i = 1, . . . , qn−1 − 1

ω(z) ≥ 1− n
(1.2.4)

Proposition 1.2.5. X is an admissible open subdomain of P1 and the coverings
of X by the families {Xn}∞n=1 and {X−n }∞n=1 are admissible coverings. In the latter
case, the covering is by open affinoid domains.

Proof. See the discussion following Lemma 3 in [35]. �

1.2.2. The ring OX of entire functions on X. The ring of entire functions on
OX is the projective limit of the affinoid algebras O(X−n ) as n→∞:

OX := lim←−
n

O(X−n ).

Many important function-theoretic properties of X flow from two key facts:
(1) X is a (smooth, one-dimensional) rigid analytic Stein space;
(2) the restriction maps between the affinoid algebras O(X−n ) are compact

maps. (Recall that a continuous linear map f : A → B between Banach
spaces is called compact if the image of the unit ball in A has compact
closure in B).

The compactness property (2) of the transition maps is a fairly general phe-
nomenon. At its core is the following special case. Consider the affinoid ball of
points z with ω(z) ≥ −1, with its associated affinoid algebra K〈πT 〉. Consider also
the restriction map to the sub-affinoid of points z with ω(z) ≥ 0, and its affinoid
algebra K〈T 〉. Ignoring the ring structure, we see that the image in K〈T 〉 of the
unit ball in K〈πT 〉 is the subspace of power series

∑
anT

n, with an ∈ oK , and
whose coefficients satisfy

ω(an) ≥ n for all n ≥ 0.

One can verify that the norm topology on K〈T 〉 identifies this subset with the
space of sequences (πnan) with an ∈ oK , equipped with its product topology. As
a product of compact sets this space is clearly compact by Tychonoff’s theorem.
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(See [34], the example following Remark 12.8). For a proof of compactness in our
more general situation, see [38], Proposition 4.

A Fréchet space is a locally convex topological vector space that is complete
and metrizable. The topology on a Fréchet space can be given by a countable family
of semi-norms. Such spaces arise naturally as projective limits of Banach spaces –
see [34, Chapter I, Section 8] for a general discussion.

In functional analysis, one can equip the space of continuous linear forms on a
locally convex topological vector space with many different topologies. One of the
most important of these is the “strong topology,” which is the topology of uniform
convergence on bounded subsets. If V is a topological vector space, we let V ′ be
the vector space of continuous linear forms and V ′b be this space equipped with the
strong topology (the “b” is for “bounded”). Recall that a topological vector space
is reflexive if V is isomorphic to (V ′b )′b by the natural map from V to V ′′ given by
evaluation. All of these topics are thoroughly treated in [34].

The principal consequence of this compactness is the following result describing
OX as a topological vector space.

Proposition 1.2.6. OX is a reflexive Fréchet space. The topology comes from
the family of norms on the Banach algebras O(X−n ).

For a proof, see [34], Proposition 16.5.
We next briefly recall the definition of a Stein space, following Kiehl ([22]):

Definition 1.2.7. A rigid space X is called a (quasi)-Stein space if there is
an increasing sequence U1 ⊂ U2 ⊂ · · · of open affinoid subdomains of X forming
an admissible covering such that the transition maps O(Ui)→ O(Ui−1) have dense
image.

One can see that this density property holds for the transition maps O(X−n )→
O(X−n−1) for n ≥ 2 by considering the set of algebraic rational functions on P1

whose polar divisors are supported on the K-rational points. This set of rational
functions forms a dense subring in each O(X−n ).

With regard to coherent sheaves, a Stein space behaves somewhat like an affine
variety does in algebraic geometry. In particular, we have the following theorem
(see [22]):

Proposition 1.2.8. Let M be a coherent sheaf on X. Then Hi(X,M) = 0 for
i > 0 (Theorem B), and, if M = H0(X,M) then the map OX ⊗M → M(X−i ) has
dense image for any i ≥ 1 (Theorem A).

One can do even better. To give a coherent sheaf M on X is the same as giving,
for each i, a finitely generated module Mi for O(X−i ). The global sections of this
sheaf are an OX-module

M = proj limMi.

As is explained in [16] (see also [42]), one can recover the Mi as O(X−i ) ⊗ M .
One can also characterize those M arising as global sections of a coherent sheaf by
requiring that these tensor products be finitely generated.

1.3. The Reduction Map.
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1.3.1. The Bruhat-Tits Tree. Our next task will be to introduce the Bruhat-
Tits tree, which functions as a beautiful combinatorial approximation of X. We
work always with the fixed two dimensional vector space V ∗ over K. By a lattice
L in V ∗ we mean a free rank-two oK module in V ∗. We say two lattices L1 and L2

are equivalent if there is a scalar a ∈ K so that L1 = aL2.

Definition 1.3.1. Let X be the graph whose vertices are equivalence classes
[L] of lattices L ⊂ V ∗, where two vertices x and y are joined by an edge if x = [L1]
and y = [L2] with

πL1 ( L2 ( L1.

Proposition 1.3.2. The graph X is a homogeneous tree of degree q + 1.

Proof. The degree assertion follows from the fact that the edges leaving a
given vertex [L1] correspond to the distinct lattices L2 satisfying the adjacency
relation

πL1 ( L2 ( L1

and these in turn are in bijection with the one-dimensional oK/πoK-subspaces in
the two-dimensional oK/πoK-vector space L1/πL1. There are q+1 such subspaces,
so there are q + 1 adjacent vertices.

Suppose that X is not a tree. A cycle in X would be minimally represented by
a chain of lattices

L′ ( Ld ( Ld−1 ( · · ·L1 ( L

where L′ = πrL for some positive integer r and where none of the intermediate
lattices are equivalent. Because L/L′ is not a cyclic oK-module, there is a smallest
i such that L/Li is cyclic but L/Li+1 is not. It follows that Li−1/Li+1 is a non-
cyclic, length 2 oK-module, so Li+1 = πLi−1. This contradicts the minimality of
the representation of the cycle, and so we conclude that X has no cycles. �

As constructed so far, the tree X is a combinatorial object. If we view each
edge of X (with its bounding vertices) as a copy of the unit interval, we obtain a
topological space called the geometric realization of X. Since it is this geometric
realization that we are principally interested in, we will just go ahead and use the
letter X to refer to it. A point on the edge in X joining the vertices [L] and [L′] is
determined by its barycentric coordinates: for t ∈ [0, 1], we write x = (1−t)[L]+t[L′]
to indicate the point “at distance t from the vertex [L] in the direction of [L′].”

The group G acts on the lattices in V ∗ and on the tree X. The stabilizer of
a lattice class [L] is the subgroup of G generated by the center of G and by the
compact open subgroup GL(L) ⊂ G. If L is the lattice spanned by Ξ0 and Ξ1, then
GL(L) is just Go = GL2(oK) ⊂ G = GL2(K).

From now on, we let L0 and L1 be the lattices 〈Ξ0,Ξ1〉 and 〈Ξ0, πΞ1〉 respec-
tively. We will also write v0 for the vertex of X corresponding to [L0], and e0 for
the edge of X running from v0 to the vertex corresponding to L1.

1.3.2. Norms. The tree X parameterizes norms on the two dimensional vector
space V ∗ in a natural way. This description actually pre-dates Bruhat-Tits (see
[18]).

Definition 1.3.3. A norm on V ∗ is a function γ : V ∗ → R ∪ {∞} such that
• γ(x) =∞ if and only if x = 0.
• γ(ax) = ω(a) + γ(x) for a ∈ K.
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• γ(x+ y) ≥ inf{γ(x), γ(y)}

Two norms γ1 and γ2 on V ∗ are considered equivalent if γ1 − γ2 = C for some
constant C ∈ R. Given a point x ∈ X, we may associate an equivalence class of
norms on V ∗. There are two cases to consider:

Case 1: x is a vertex. In this case, choose a lattice L representing x and let

γ(w) = − inf{n ∈ Z : πnw ∈ L}.

Alternatively, choose a basis `0, `1 for L and define

γ(a`0 + b`1) = inf{ω(a), ω(b)}.

Case 2: x = (1− t)[L] + t[L′]. In this case, choose a basis `0, `1 for L such
that L′ is spanned by `0, π`1. Define

γ(a`0 + b`1) = inf{ω(a), ω(b)− t}.

Notice that, in Case 2, the construction is consistent with Case 1 when t = 0 or
t = 1. It’s not hard to check, too, that Case 2 is compatible with different choices
of lattices in the equivalence classes.

Proposition 1.3.4. This construction establishes a bijection between the set
of equivalence classes of norms on V ∗ and the points of the space X.

Proof. We will construct an inverse map to the construction given above. Let
γ be any norm on V ∗. By translating γ in its equivalence class, we may assume
that there is some x ∈ V ∗ with γ(x) = 0. Let L′ be the unit ball for γ:

L′ = {x ∈ V ∗ : γ(x) ≥ 0}.

Choose a (finite) set of representatives R in L for the projective space P(L′/πL′).
The norm γ is determined by its values on elements of R, all of which lie in [0, 1).
To see this, write any w ∈ V ∗ as w = uπmr + πm+1w′ with u ∈ o∗K and w′ ∈ L′.
Then γ(w) = m+γ(r). Now, if γ(r) = 0 for all r ∈ R, then γ is the norm associated
to the lattice L as in Case 1 above. One can check further that, in this case, all
norms equivalent to γ have unit balls equivalent to L′, so the association of L′ to γ
makes sense. On the other hand, if there exists a point r with γ(r) > 0, then that
r is unique. Indeed, if there were two such elements r and r′, then these elements
span L′, from which it follows that γ(x) > 0 for all x ∈ L′, contrary to hypothesis.
Now set L = L′ + r/π. The norm γ, in this case, corresponds to the norm coming
from Case 2 with the given lattice classes [L] and [L′] and t = 1 − γ(r). In this
case, one checks that for norms equivalent to γ, the unit balls are either equivalent
to L or to L′; and that if one follows the recipe given here to construct a point in
X, one gets the same point regardless of which of these two possibilities holds for
the chosen representative norm. �

1.3.3. The group action. The group action of G on X translates to the action
on norms through the rule (g · γ)(x) = γ(g−1x).

Lemma 1.3.5. Some properties of the group action on X are:
(1) The group G permutes the vertices and edges of X transitively.
(2) The stabilizer of the lattice L0 spanned by the standard coordinates Ξ0 and

Ξ1, and the corresponding norm, is the subgroup K∗GL2(oK) in GL2(K).
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(3) If an element of G fixes the two endpoints of an edge, then it fixes the
edge pointwise; the stabilizer of the edge in X corresponding to the lattice
pair πL0 ⊂ L1 ⊂ L0, where L1 = 〈Ξ0, πΞ1〉 is, mod the center of G, the
“Iwahori subgroup”

B = {g ∈ Go : g ≡
(
a b
0 d

)
mod π}.

(4) B is of index two in its normalizer; this normalizer is generated by B and
any element of G that interchanges the two boundary vertices of the basic
edge in (3). One such element is

n =
(

0 1
π 0

)
.

1.3.4. Ends. Let
([Λ0], [Λ1], . . .)

be an infinite, non-backtracking sequences of adjacent vertices, which we can think
of as an infinite ray in the tree heading off to ∞. Two such sequences equivalent if
they differ by a finite initial sequence of vertices, i.e.,

([Λ0], [Λ1], . . .) ∼ ([Λ′0], [Λ
′
1], . . .)

if [Λn] = [Λn+m] for some fixed m ∈ Z, and all n large enough. An equivalence class
of such sequences is called an “end” of the tree. The set of ends of X is denoted
Ends(X) and represents the set of points “at infinity” for the tree X.

To an oriented edge e running from [Λ0] to [Λ1], we associate the subset

U(e) = {x ∈ Ends(X) : x = ([Λ0], [Λ1], . . .)}.

The collection of sets U(e), as e runs through the oriented edges of X, form the
basis for a topology on Ends(X).

Given an end x = ([Λ0], [Λ1], . . .), we can construct a representing sequence of
lattices

Λ0 ) Λ1 ) Λ2 ) · · ·
with the property that Λi/Λi+1 is isomorphic to oK/πoK . Since the sequence has
no backtracking, the argument that we used in Proposition 1.3.2 tells us that Λ0/Λi

is a cyclic oK-module of length i for each i ≥ 1, and the same is true for Λi/π
iΛ0.

As a result we may choose `i ∈ Λ0\πΛ0 such that

Λi = oK`i + πiΛ0.

Similarly,
Λi+1 = oK`i+1 + πi+1Λ0.

Because Λi+1 ( Λi and both `i and `i+1 belong to Λ0\πΛ0, we must have

`i+1 ≡ a`i (mod πiΛ0),

for some a ∈ o∗K . We conclude that we may choose the `i to form a coherent
sequence converging to a nonzero element ` of the intersection ∩Λi, and that this
intersection is one-dimensional. The kernel of ` is a point of P1, denoted N(x).

Lemma 1.3.6. The map N : Ends(X) → P1 is a G-equivariant homeomor-
phism.
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Proof. Let L0 = oKΞ0 + oKΞ1 as above. Given a point [x, y] in P1, written
with unimodular coordinates, let ` = −yΞ0 + xΞ1 ∈ L0. The end

(L0, oK`+ πL0, oK`+ π2L0, . . .)

maps, under N , to the point [x, y]. This shows the map is surjective. Conversely,
we showed above that, if ` is a generator for the intersection of the sequence of
lattices Λi representing an end

([Λ0], [Λ1], [Λ2], . . .).

with Λ0 = L0, then we must have

Λi = oK`+ πiL0,

and so the map N is bijective.
To complete the proof, observe that the image under N of the open set U(e0)

determined by the edge e0 is the set of points (unimodular as always) [x, y] such that
ax+by = 0 for some a, b ∈ oK with aΞ0+bΞ1 ≡ Ξ0 (mod πoK). This is precisely the
open set {[x, 1] : x ∈ πoK} ⊂ P1. The G-equivariance of the map can be checked
from the definitions, and using G-equivariance, one may conclude that N is open
and continuous; since it is bijective we conclude that it is a homeomorphism. �

1.3.5. Group action on the ends. The group G acts transitively on the ends.
Furthermore:

(1) The stabilizer of an end is a Borel subgroup in G. In particular, the
stabilizer of the end

([L0], [Ξ0 + πL0], [Ξ0 + π2L0], . . .)

is the subgroup

P = {g =
(
a b
0 d

)
: g ∈ G}.

(2) By (1), we may identify the ends (or P1) with G/P . To be completely
explicit, the point [x, y] ∈ P1 corresponds to the coset(

y ∗
−x ∗

)
P ∈ G/P.

In this identification, the open set corresponding to the edge e0 is BP/P ⊂
G/P .

1.3.6. The reduction map. Given a point x ∈ X(Cp) represented by homoge-
nous coordinates [a, b], we obtain a norm γx (defined up to equivalence) on V ∗ by
setting

γx(`) = ω(`(a, b))

for ` a linear form in V ∗. The fact that this is indeed a norm is just a restatement
of the fact that the coordinates a and b are linearly independent over K, which
holds because the point x belongs to

X(Cp) = P1(Cp)\P1(K).

The map x 7→ [γx] from X(Cp) to X is called the reduction map:

r : X→ X
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Lemma 1.3.7. The reduction map is G-equivariant, so g(γx)(`) = γgx(`). Let
[L0] be, as usual, the lattice spanned over oK by Ξ0 and Ξ1, and L1 the sublattice
spanned by Ξ0 and πΞ1. Then the inverse image under the reduction map of the
vertex [L0] in X is the affinoid subdomain

r−1([L0]) = {[x, 1] : x ∈ Cp and ω(x− t) = 0 for all t ∈ oK}

The inverse image of the open edge e0 running from [L0] to [L1] is the admissible
annulus

r−1(e) = {[x, 1] : x ∈ Cp and 1 > ω(x) > 0}.

Proof. The G-equivariance is a simple calculation. Let us therefore analyze
the fibers of the reduction map. Consider first r−1(L0). By definition, this is the
set of points [x, y] in unimodular coordinates such that

(1.3.8) ω(ax+ by) = inf{ω(a), ω(b)}

for all a and b in oK . This equation is a fancy way to write the requirement that,
writing z = x/y, we must have ω(az + b) = 0 as a and b run through oK . This is
precisely the condition defining our affinoid in the lemma. For the inverse image of
the edge, the condition we seek is

ω(ax+ by) = inf{ω(a) + t, ω(b)}

for some real 1 > t > 0. We may conclude that y is a unit (which might as well be
1) and that ω(x) = t. Conversely, if y = 1 and ω(x) = t, then we obtain the desired
norm. Letting t vary between 0 and 1 gives us the full result. �

The affinoids X−n that we constructed to form an admissible covering of X are
the inverse images under reduction of the subtrees of X made up of vertices and
edges at distance at most n− 1 from the fixed central vertex v0.

It’s also worth observing that points [x, y] ∈ P1(K) give rise to seminorms on
V ∗, and that the kernel of such a seminorm corresponds to an end of X. One can
extend the reduction map from X to all of P1, with the boundary points mapping to
the ends – all in a G-equivariant way. For this approach to the higher dimensional
building, see [47].

1.3.7. The holomorphic discrete series. We conclude this lecture by introducing
certain spaces of functions on X that are closely related to modular forms. Let k
be an even integer. Define O(k) to be the ring of entire functions on X, equipped
with the G-action:

g∗f =
det(g)k/2

(bz + d)k
f

(
az + c

bz + d

)
.

These spaces are called “the holomorphic discrete series” for GL2(K). For their
general construction, see [32].

In the important special case k = 2, we have a G-isomorphism

O(2) → Ω1
X

f 7→ fdz.

where we write Ω1
X for the global sections of the sheaf of one-forms on X. More

generally, for k > 0 and even we can identify O(k) with (Ω1
X)⊗k/2.
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Lemma 1.3.9. The (k − 1)-fold derivative map gives a G-equivariant map

O(2− k) → O(k)

f 7→
(
d

dz

)k−1

f

The kernel of this map is the (finite dimensional) space of polynomials in z of degree
at most k − 1.

Definition 1.3.10. We let HDR(k) be the cokernel of the derivative map de-
fined above.

When k = 2, the Stein property of X implies that HDR(2) = H1
DR(X).

2. Boundary distributions and integrals

2.1. Locally Analytic Functions and Distributions. The space of rigid
analytic functions on X is isomorphic, via an integral transform, to a space of
distributions on the boundary P1 of X. This result, due originally to Morita, is
a kind of p-adic analogue of the Poisson kernel from classical complex analysis.
In order to introduce the space of distributions that concerns us, we need a brief
digression on locally analytic functions.

2.1.1. Locally analytic functions. We first define locally analytic functions and
manifolds. Given a = (a1, . . . , an) ∈ Kn and r ∈ Rn, let B(a, r) be the closed
polydisc:

B(a, r) = {(xi)n
i=1 ∈ Kn : ω(xi − ai) ≥ ri for i = 1, . . . , n}.

A K-analytic function on such a disc (with values in a complete field L containing
K) is given by a convergent power series

f(x) =
∑

I

cI(x− a)I

Here the sum is over n-tuples I = (i1, . . . , in) with ij ≥ 0, the coefficients cI ∈ L,
and

(x− a)I =
n∏

j=1

(xj − aj)ij .

The convergence condition is

ω(cI) +
n∑

j=1

rjij →∞ as |I| → ∞

where |I| =
∑n

j=0 ij . Let us call the space of such analytic functions AL(B(a, r)).
It is a Banach space with respect to the norm

ω(f) = inf
I

ω(cI) +
n∑

j=1

rjij

 .

More generally, a K-analytic map between such discs is a map given by a
collection of power series of this form.

Definition 2.1.1. Let M be a paracompact topological space.
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(1) A K-analytic chart (Mi, φi) for M is an open set Mi together with a
homeomorphism

φi : Mi → Bi = B(0, r) ⊂ Kd

for some radius r.
(2) Two charts are compatible if the map

φi ◦ φ−1
j : Bj → Bi

is given by an analytic function.
(3) A collection of compatible charts is called an atlas for M .
(4) M , together with a maximal atlas, is called a locally K-analytic manifold.

The atlas on M allows us to identify the analytic functions on the set Mi

with those on the ball Bi via φi. We will write A(Mi, φi) for this space of power
series. One can show that any covering of a K-analytic manifold can be refined to
a pairwise disjoint covering.

We will be interested in the following spaces viewed as K-analytic manifolds:
(1) The group G = GL2(K) and the various subgroups Go, B, and P intro-

duced so far;
(2) The projective space P1.

Note the difference between P1 viewed as a rigid analytic space and as a K-
analytic manifold!

Definition 2.1.2. Let M be a K-analytic manifold. The locally analytic func-
tions on M (with values in a field L) are defined as follows. To each covering of M
by disjoint charts (Mi, φi) we associate the space of functions

Can({Mi, φi}) =
∏

i

AL(Mi, φi)

with its product topology. We define

Can(M,L) = lim−→Can({Mi, φi})
where the limit is over finer and finer coverings. We equip this space with the direct
limit topology.

Two other important function spaces associated with a K-analytic manifold are
the locally constant (or smooth) functions C∞(M,K) and the continuous functions
C(M,K). We have

C∞(M,L) ⊂ Can(M,L) ⊂ C(M,L).

The locally constant functions are closed in Can(M,L), and the analytic functions
are dense in C(M,L).

When M is compact, the coverings used to construct Can(M,L) are finite, and
the spaces ∏

AL(Mi, φi)

are Banach spaces. By the same reasoning that we sketched in 1.2.2, the transition
maps in this direct limit are compact. A topological vector space that is the direct
limit of a sequence of Banach spaces with compact transition maps is called a vector
space of compact type.

With these preliminary remarks, the following results hold for spaces of compact
type and their duals:
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(1) Compact type spaces are reflexive and complete.
(2) Closed subspaces of compact type spaces are of compact type.
(3) The quotient V/U of a vector space of compact type by a closed subspace

is of compact type.
(4) If V = lim−→Vi, with the Vi Banach spaces and the transition maps compact,

then the strong dual V ′b is a Fréchet space and satisfies V ′b = lim←−(Vi)′b.
See [34] Section 16 for points (1) and (4). For point (2), see [23] Theorem 7’

and 8.

Proposition 2.1.3. Suppose that M is compact and L is locally compact. Then
Can(M,L) is a vector space of compact type, hence reflexive and complete.

The space D(M,L) of analytic distributions on M is, by definition, the strong
dual Can(M,L)′b of the analytic functions on M .

2.1.2. Locally analytic principal series representations. Of particular interest
to us in these lectures are the following spaces of locally analytic functions. For
each even integer k, let χk be the character of the Borel subgroup P defined by the
formula

χk

((
a b
0 d

))
= (a/d)(k/2).

The “locally analytic induction” indG
P (χk) is the space

indG
P (χk) = {f ∈ Can(G,K) : f(gp) = χ−1

k (p)f(g) for p ∈ P and g ∈ G}.
This space carries a G-action on the left by the rule g(f)(h) = f(g−1h). It is an
example of a locally analytic G-representation; for more on such representations,
see [39] and [42].

We will interpret the representation indG
P (χk) as the space of “locally mero-

morphic functions on P1 having poles only at infinity of order at most −k.” To be
a bit clearer about what we mean, recall that, in Section 1.3.5, we pointed out that
P1 ∼→ G/P via the identification

[a, b] 7→
(
b ∗
−a ∗

)
P.

At the cost of singling out the point [1, 0] as the point at infinity, we can pullback
a function f ∈ indG

P (χk) to K via the map

x 7→ u(x) =
(

1 0
−x 1

)
.

This function is locally analytic on K. However, it enjoys the stronger properties
that there is an integer N such that

• f is locally analytic on the set of x ∈ K with ω(x) ≥ N , and
• we have a convergent expansion

f(z) =
∑
i≥k

ciz
−i

on the set where ω(z) < N .
The group action on indG

P (χk) becomes the action

g(f) =
(ad− bc)k/2

(bz + d)k
f

(
az + c

bz + d

)
,
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which clearly preserves the space of functions satisfying the conditions above. This
is the space of functions we say are locally analytic, except have a pole of order at
most −k at infinity.

Definition 2.1.4. For k ≤ 0, Let Can(K, k) be the space of “locally analytic
functions on K with at most a pole of order −k at infinity”, as defined above, with
its associated group action. The topology on Can(K, k) can be defined as follows.
Choose an integer N and a finite set SN = {aj} of elements in K, so that one can
cover K by the finite collection of balls

D(aj , N) := {x ∈ K : ω(x− aj) ≥ N},

together with
D(∞, N) := {x ∈ K : ω(x) ≤ N}.

The analytic functions A(D(aj , N)) on D(aj , N) are given by convergent power
series

f(x) =
∞∑

i=0

ci(x− aj)i

where ω(ci) + iN →∞ as i→∞. A(D(aj , N)) is a Banach space for the norm

ω(f) = inf{ω(ci) + iN}.

The “analytic functions with poles at infinity” A(D(∞, N)) on D(∞, N) are given
by

f(x) =
∞∑

i=k

cix
−i

where ω(ci) + iN →∞ as i→∞, with the norm

ω(f) = inf{ω(ci) + iN}.

The topology on Can(K, k) is the direct limit topology:

Can(K, k) := lim−→
N→∞

∏
a∈SN∪{∞}

A(a,N).

If k ≤ 0 and even, and we look at indG
P (χk) as Can(K, k), then we can identify

two G-invariant subspaces inside it. The first one is the finite dimensional space

P−k := the space of polynomials of degree at most −k.

The second is the space of functions f(z) that are “locally polynomial functions” on
K of degree at most−k, meaning that, for some covering ofK byD(a,N) (including
D(∞, N)), the restriction of f to each disc is a polynomial of degree at most −k.
We let Cla(K, k) denote this space. (The la stands for “locally algebraic.”)

For the sake of concreteness it is also worth noticing that, even though elements
of Can(K, k) are not strictly speaking functions on P1 (because they have poles at
∞), every element of the quotient space Can(K, k)/P−k can be represented by a
unique, truly locally analytic function on P1 that vanishes at ∞ — just subtract
off the polar part at infinity using P−k.

The methods of the paper [37] prove that the following sequence is exact, and
that the representation Can(K, k) has length 3:

(2.1.5) 0→ Cla(K, k)/P−k → Can(K, k)/P−k
( d

dx )1−k

−→ Can(K, 2− k)→ 0.
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The locally algebraic part of the representation Can(K, k) (for k ≤ 0) can be
decomposed as a tensor product of the smooth representation C∞(P1,K)/K and
the finite dimensional representation P−k.

2.2. The Integral Transform and Morita Duality. The locally analytic
representations indG

P (χk) discussed in the previous section are closely related to the
topological vector spaces O(k) that come from functions on the p-adic upper half
plane. One way to formulate this relationship, which we call Morita duality (see
[26]), is by an integral transform.

Suppose that λ : O(k)→ K is a continuous linear functional. We may construct
from λ a function Ik(λ) on K via the formula

I(λ)(x) = λ

(
1

z − x

)
.

Our goal in this section is to prove the following theorem.

Theorem 2.2.1. For k ≥ 2 and even, the map Ik yields a topological isomor-
phism

O(k)′b → Can(K, 2− k)/Pk−2.

To prove the theorem, we will proceed in stages. First, we check the G-action.
Substituting in the various definitions, we obtain:

g(Ik(g−1(λ)))(x) =
(bx+ d)k−2

(ad− bc)k/2−1
λ

(
(ad− bc)k/2−1

(bz + d)k

(bz + d)(bx+ d)
z − x

)
.

Now using the fact that

(bz + d)(bx+ d) = (bz + d)2 − (z − x)b(bz + d)

one obtains

g(Ik(g−1(λ)))(x) = λ

((
bx+ d

bz + d

)k−2( 1
z − x

+ c(z)
))

where c(z) is independent of x. Finally,(
bx+ d

bz + d

)k−2

= 1 + (z − x)H,

where H is a polynomial in x of degree k − 2, with coefficients rational functions
in z. Thus

g(Ik(g−1(λ)))(x) ≡ λ(x) (mod Pk−2),

proving G-equivariance (formally).
Next, we prove that the function Ik(λ) belongs to Can(K, 2 − k). Functional

analysis tells us that any continuous linear form λ on O(k) is induced by a con-
tinuous linear form λn : O(X−n ) → K for some integer n. More precisely, we have
the following relationship between these spaces and their strong duals (see [34],
Proposition 16.5; the subscript b refers to the strong topology):

(2.2.2) (OX)′b = (lim←−O(X−n ))′b
∼→ lim−→(O(X−n ))′b.

Let us choose representatives {ai} for oK/π
noK and {bj} for πoK/π

noK as in
Setion 1.2.1, with b0 = 0. The balls D(ai, n), D(1/bj , n − 2ω(bj)), and D(∞, n)
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form a covering of K as in the discussion following Definition 2.1.4. Suppose that
x ∈ D(ai, n). Then

1
z − x

=
1

(z − ai)− (x− ai)
=
∞∑

j=0

(x− ai)j

(z − ai)j+1
,

the geometric series converging when z ∈ X−n . The continuity of λ on O(X−n ) means
that

ω(λ(z − ai)−j−1) ≥ C − (n− 1)(j + 1)

for some constant C. For x ∈ D(ai, n), we have

λ

(
1

z − x

)
=
∞∑

j=0

λ

(
1

(z − ai)j+1

)
(x− ai)j ,

and the series on the right converges because

C − (n− 1)(j + 1) + nj = C + j + 1− n→∞ as j →∞.

This exhibits Ik(λ) as an analytic function on D(ai, n). On D(∞, n), we see that

λ

(
1

z − x

)
= λ

(
1

x(z/x− 1)

)
= −

∞∑
j=0

λ(zj)x−j−1

and the inequalities bounding λ, defining D(∞, n) and O(X−n ) guarantee conver-
gence as in the case considered earlier.

Notice that this calculation for Ik(λ) on D(∞, n) actually proves more — the
function Ik(λ)(x) vanishes at the point ∞. This will enable us to settle the next
step in our proof, which is to show that Ik(λ) is injective. Because Ik(λ) vanishes
at infinity, it belongs to Pk−2 only if it is identically zero. From the computations
above, we see that Ik(λ) = 0 if and only if λ vanishes on the functions zj and
1/(z − a)j for all non-negative integers j and all a ∈ K. This in turn implies that
λ vanishes on the rational functions in z having poles at rational points of P1(K).
Since these rational functions are dense in each O(X−n ), and λ is continuous, it
follows that λ must be identically zero.

In light of the functional-analytic fact (2.2.2), the continuity of Ik is implicit
in the calculation above. More precisely, we showed that Ik, restricted to those λ
which factor through O(X−n ), is a bounded linear functional from this Banach space
to the Banach space of locally analytic functions that are analytic for the specific
covering we used in the calculation. This implies that Ik is continuous.

We must show that Ik is surjective, and that it is a topological isomorphism.
In fact, the second claim follows from the first by the open mapping theorem (see
[34], Proposition 8.8). To prove surjectivity, we will construct linear forms λ of a
particular form. This will require something of a digression.

2.2.1. Residues. Given an edge e of the tree X, we know that the fiber r−1(e)
of the reduction map at e is an admissible open set that is an annulus. Let us look
for the moment at the particular admissible open set

U = r−1(e0) = {[a, 1] : 1 > ω(a) > 0} ⊂ X

described in Lemma 1.3.7. This space is a union of affinoid subdomains

Un = {[a, 1] : 1− (1/n) ≥ ω(a) ≥ (1/n)}
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as n→∞, and the space of rigid functions on U is the Fréchet space arising as the
projective limit of the corresponding affinoid algebras:

O(U) = lim←−O(Un).

In concrete terms, O(U) consists of power series

f(z) =
∑
z∈Z

cjz
j

that converge on each Un. This condition amounts to the requirement that

ω(cj) + j/n→∞

for all n and j →∞, and

ω(cj) + j(1− 1/n)→∞

as for all n as j → −∞. The family ρn of seminorms defining the topology are

ρn(f) = inf{ω(cj) + j/n, ω(cj) + j(1− 1/n)}.

Proposition 2.2.3. The (rigid) DeRham cohomology of the annulus U is one
dimensional and spanned by dz/z.

Proof. The only obstacle to formal integration of a rigid function on U to
obtain another rigid function is dz/z. �

Let Res be the isomorphism Res : H1
DR(U)→ K such that Res(dz/z) = 1.

Definition 2.2.4. Given an oriented edge e of X and a rigid analytic one-form
f(z)dz in Ω1(X), we define Rese(fdz) to be Res(g−1(fdz)|U) where g ∈ G is any
element such that ge0 = e.

This definition makes sense because the Iwahori group B acts trivially on
H1

DR(U) and preserves the orientation of e0. The normalizer of B, which reverses
the edge e0, sends z to π/z. It follows that Rese′(fdz) = −Rese(fdz) if e and e′

are opposite to one another.

2.2.2. Surjectivity of the integral transform. We can now use the residue map
to prove that our integral transform Ik is surjective. Because of the G-equivariance
of Ik, it suffices to prove that any analytic function on oK ⊂ K is in the image of
Ik. Let

f(x) =
∞∑

j=0

bjx
j ,

where ω(bj) → ∞ as j → ∞, be the desired target function. We will find a linear
form λ such that Ik(λ) = f . To do this, let fa be the restriction of f to the disk
D(a, 1) = a+πoK , where a runs through a set of representatives for oK/πoK . The
function f0 is given by the same power series as our original function f . The other
functions fa can be written as power series

fa(z) =
∞∑

j=0

baj (x− a)j

where the coefficients baj satisfy ω(baj )→∞ as j →∞. Note that these representa-
tive power series on the disks D(a, 1) are overconvergent — they converge on the
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bigger disk D(0, 0). Each fa is a translate, under the group action, of an overcon-
vergent power series on D(0, 1) like f0. Thus, to prove surjectivity, it suffices to
prove that f0 is in the image of Ik. For this, we use the following lemma.

Lemma 2.2.5. Let {bj}∞j=0 be a sequence of elements of K with the property
that, for some integer n > 0, ω(bj) + j/n→∞. Then

f 7→
∞∑

j=0

bj Rese(zjf)

is a continuous linear form on O(U).

Proof. This follows from a computation with the semi-norms defining the
topology on O(U). �

The lemma applies to the particular coefficients of our analytic function f . We
compute

Ik(λ)(x) =
∞∑

j=0

bj Res
(

zj

z − x

)
.

Now we distinguish two cases. When x ∈ D(0, 1) and z ∈ U , we have ω(x) > ω(z)
and we see from the geometric series that

zj

z − x
=
∞∑

`=0

zj−1−`x`.

As a result, we have

Ik(λ)(x) =
∞∑

j=0

bjx
j = f(x).

On the other hand, when x 6∈ D(0, 1), but z ∈ U , we have ω(x) < ω(z) and thus
we obtain the expansion

zj

z − x
=
∞∑

`=0

z`+jx−`−1

and all residues of this function vanish. Therefore Ik(λ) is supported on D(0, 1),
where it agrees with f(x). This proves surjectivity, and completes the proof of
Theorem 2.2.1.

2.2.3. The Poisson Kernel. The Poisson Kernel Jk is the transpose of the map
Ik:

Jk : (Can(K, 2− k)/Pk−2)′b → O(k).

Proposition 2.2.6. Let µ be a continuous linear form on Can(K, 2− k) van-
ishing on Pk−2. The transpose Jk is given by

Jk(µ)(z) =
∫
P1(K)

1
z − x

dµ.

Proof. Much of this calculation reproduces what we did in the proof of the
main theorem. For example, the G-equivariance follows by essentially the same
argument that we used earlier. We need to prove that Jk(µ) is rigid analytic on
X, and that λ(Jk(µ)) = µ(Ik(λ)). The second of these properties is formal once
we know the analyticity, so we will focus on that. Choose a large integer N and
representatives ai for oK/π

NoK and bj for πoK/π
NoK (with b0 = 0) so that the
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balls D(ai, N), D(1/bj , N − 2ω(bj)) for j 6= 0, and D(∞, N) cover K, as in (1).
Then

Jk(µ)(z) =
∑∫

D

1
z − x

dµ

where the sum is over the discs in the covering. For a typical such disc D(a,N),
we have

1
z − x

=
1

(z − a)− (x− a)
=
∞∑

`=0

(x− a)`

(z − a)`+1

converging when ω(x− a) > ω(z − a), in particular when z ∈ X−N . The continuity
of the distribution µ means that

ω

(∫
D(a,N)

(x− a)`dµ

)
≥ C +N`

for some constant C. Applying this to the sum, we obtain∫
D(a,n)

1
z − x

dµ =
∞∑

`=0

∫
D(a,n)

(x− a)`dµ

(z − a)`+1
.

Since ω(z− a) ≤ N − 1 on X−N , we see that this series gives a rigid function on X−N .
Assembling the different discs shows that Jk(µ) is in fact rigid analytic on X−N . �

Corollary 2.2.7. Let f ∈ O(k) be a rigid function, and choose N > 0. Let
ai, bj be chosen as in the proof of the theorem (or as in equation (1)). Then f
restricted to X−N has a “partial fraction expansion”

f(z) =
∞∑

j=0

c∞j z
j +

qN−1∑
i=0

∞∑
`=1

ci`
(z − ai)`

+
qN−1−1∑

i=1

∞∑
`=1

di
`

(z − 1/bi)`
.

2.2.4. Morita Duality. We have shown that there is a duality pairing (first
established by Morita ([26]) for k ≥ 2:

O(k)× Can(K, 2− k)/Pk−2 → K

given by
〈F (z), f(x)〉 = I−1

k (f)(F ) = J−1
k (F )(f).

We can refine our understanding of this duality by looking more closely at the
Jordan-Holder factors of the locally analytic representation on the right. Let us look
at the restriction of the pairing to the subspace of locally polynomial functions:

O(k)→ (Cla(K, 2− k)/P2−k)′b.

Functional analysis tells us that this map is surjective. Furthermore, if we re-
fer back to the definition of locally analytic functions on P1(K), we see that the
topology induced on the locally polynomial subspace Cla(K, k) comes from viewing
Cla(K, k) as the direct limit of its finite dimensional subspaces. (This is because
the set of locally polynomial functions relative to a fixed covering of P1(K) is finite
dimensional, and these finite dimensional subspaces are cofinal with all such sub-
spaces.) The continuous dual, with respect to this topology, is just the full linear
dual. The subspace (Cla(K, k)/Pk−2)′ consists of all linear functionals on Cla(K, k)
that vanish on Pk−2. To make this map more explicit, let us extract the following
piece of information from the proof of the main theorem.
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Lemma 2.2.8. Let P (z) be a polynomial of degree at most k−2, and let λ(f) =
Rese(P (z)f(z)dz). Then Ik(λ) is the function in Can(K, 2−k)/Pk−2 equal to P (x)
on D(0, 1) = πoK and zero elsewhere.

Now we can make the dual of the locally polynomial functions completely ex-
plicit. To give a linear form λ on Cla(K, 2− k)/Pk−2, it suffices to know the values
λ(P (x)|U(e)) for all polynomials P (x) of degree at most k − 2 and all open sets
U(e) corresponding to edges e of X. We can collect this information in a function

cλ : Edges(X)→ Hom(Pk−2,K)

defined by cλ(e) = (P (x) 7→ λ(P (x)|U(e))).
To make sure that the linear form λ vanishes on Pk−2, we need two properties:
(1) cλ(e′) = −cλ(e), when e′ is the edge obtained by reversing e.
(2) cλ is harmonic, meaning ∑

e 7→v

cλ(e) = 0

where the sum is over the edges leaving a given vertex.

Definition 2.2.9. LetM be an abelian group. Then a function c : Edges(X)→
M is called an (M -valued) harmonic cocycle if it satisfies the two conditions given
above.

In our special case, given F (z) ∈ O(k) (with k ≥ 2 as usual), we define a
function

cF : Edges(X) → Hom(Pk−2,K)
cF (e)(P (x)) = 〈F, P (x)|U(e)〉.

The function cF is determined by the residue map – indeed, suppose that
e′ = ge, where e is the original basic edge used to define Rese. Then

cF (e′)(xj) = 〈F, xj |U(e′)〉 = 〈F, g((g−1(xj)|U(e))〉
= 〈g−1(F ), g−1(xj)|U(e)〉.

Substituting in the definitions of the group actions, and remembering that the
space of polynomials Pk−2 is a subset of the space of locally algebraic functions
Cla(K, 2− k) we see that

cF (e′) = Rese(g−1
∗ (zjF (z)dz))(2.2.10)

where the group action is the usual action on differentials — ignoring k. For this
reason, we call the map F 7→ cF the residue map.

Definition 2.2.11. Let Char(k) be the space of harmonic functions on the
edges of the tree X with values in Hom(Pk−2,K).

Referring back to Equation 2.1.5, we have the following commutative diagram
for k ≥ 2:

(Can(K, 2− k)/Pk−2)′b //

��

(Cla(K, 2− k)/Pk−2)′b

��

// 0

OX(k) Res // Char(k) // 0
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The remaining question for understanding OX(k), for k ≥ 2 is to understand
the kernel of the residue map. This is answered by the following result

Theorem 2.2.12. The kernel of the residue map is the image of OX(2− k) in
OX(k) (see Lemma 1.3.9). In particular:

(1) This image is closed;
(2) Char(k)

∼→ HDR(k);
(3) OX(2− k)/Pk−2

∼→ Can(K, k)′b for k ≥ 0 and even.

Proof. It is easy to see that the image of OX(2− k) in OX(k) belongs to the
kernel of the residue map. Indeed, if

f =
∞∑

i=−∞
ciz

i

then
djf

dzj
=
−j−1∑
i=−∞

biz
i +

∞∑
i=0

biz
i

for some constants bi — from this it is clear that Res(P (z)f(z)dz) = 0 for all
polynomials P (z) of degree at most j − 1. Conversely, a function g(z) on U is
in the image of the (1 − k)th derivative if and only if the coefficients ci, for i =
−1, . . . , k− 1, are all zero. Since that image is G-equivariant, we can conclude that
Rese(P (x)F (x)dx) = 0 for all e if F is in the image. Working with the derivatives,
one can further check that the following diagram commutes:

Can(K, 2− k) //

��

Can(K, k) //

��

0

OX(k)′b // OX(2− k)′b
where the upper arrow comes from Equation 2.1.5 and the lower one is the dual map
to the derivative map in Lemma 1.3.9. Therefore, the key point is that OX(2−k) has
closed image. We won’t give all the details of the proof of this, but it follows from
the “partial fractions” decomposition given in Corollary 2.2.7. The idea is to see
that, if Res(zjf(z)) vanishes on all edges e, then the terms of the form 1/(z−a)j in
the partial fractions decomposition vanish for 0 ≤ j ≤ k−2. Then one can formally
integrate the partial fractions decomposition k−1 times and obtain a rigid function
that still converges on some X−n . These integrals can be glued together because the
obstruction to doing so lies in H1(X,O), which is zero by the Stein property. �

2.3. Bounded Distributions. The bounded harmonic functions, relative to
a suitably chosen norm, play a special role in the analytic theory of the p-adic upper
half plane. To explore this, choose a norm on Pk−2 (for k ≥ 2) that is invariant by
the Iwahori group B which stabilizes our standard edge e0. (There are many such
choices; for example, the sup-norm on the coefficients of the polynomials in Pk−2

will do). We will use the same notation ω for this norm, and for the associated
dual norm on Hom(Pk−2,K).

If c ∈ Char(k), we say that c is bounded if

(2.3.1) ω(c) = inf
g∈G/B

ω(g−1(c(ge0)))
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exists. Notice that ω(c) is well-defined, because the B-invariance of the norm on
Hom(Pk−2,K) means that the terms in the infimum are independent of the choice
of coset representatives. We write Cb

har(k) for the space of bounded harmonic
functions — they form a Banach space with respect to the given G-invariant norm.

The bounded elements in Char(2) are the harmonic functions whose values are
p-adically bounded.

The boundedness condition translates into an estimate for the “integrals” of
locally polynomial functions in Cla(K, 2− k). This, in turn, leads to the following
version of the “Theorem of Amice-Velu-Vishik.”

Theorem 2.3.2. Suppose that c is a bounded harmonic function in Char(k).
Then there is a unique continuous linear form λc : Can(K, 2−k)→ K that vanishes
on Pk−2 and satisfies the following conditions:

(1) λgc = g(λc).
(2) λc(P (x)|U(e0)) = c(e0)(P (x)) for P (x) of degree at most k − 2.
(3) There is a constant A such that, for all n ≥ 0, m ≥ 0, and a ∈ oK , we

have

ω(λc((x− a)n|a+ πmoK)) ≥ A+m(j − 1− k/2).

(4) We have

λc

(( ∞∑
m=0

cm(x− a)m

)
|a+ πmoK

)
=
∞∑

m=0

cmλ((x− a)m|a+ πmoK).

Proof. We only sketch the proof. A computation with the various group
actions shows that conditions (1) and (2) give us a well-defined way to compute
λc(P (x)|U) for any compact open set U in P1 and any polynomial P ∈ Pk−2. The
harmonicity of c implies that λc vanishes on Pk−2. To integrate a locally polynomial
function, choose g ∈ G carrying U to the standard open set U(e0) and compute

λc(P (x)|U) = λc(P (x)|g−1(U(e0))) = λgc(g−1(P )|U(e0)).

(one checks that this does not depend on the choice of g.) The boundedness property
of c turns into the estimate (3), at least for 0 ≤ n ≤ k− 2. If e is an edge such that
U(e) does not contain ∞, then it must be of the form a+ πmoK . In that case, we
wish to estimate, for 0 ≤ n ≤ k − 2, the value of λc:

(2.3.3) λc((x− a)n|a+ πmoK)) = λc(g−1([π(j−(k−2)/2)mx]n|oK)

where

g =
(

1 0
aπ−m π−m

)
.

Let A be ω(c) = ω(gc). Then

ω(g(λc)(xn|oK)) = c(e0)(xn) ≥ A.
Combined with equation 2.3.3 we obtain (3).

Finally, we show how to compute λc(f |U(e0)) for locally analytic f . Cover
U(e0) = πoK by open sets a+ πmoK for some large m. On each open set, let Pa,m

be the truncation of the Taylor expansion of f on the disc a + πmoK obtained by
discarding terms of degree greater than k − 2. Define

Sm =
∑

a

λc(Pa,m|a+ πmoK)



2. BOUNDARY DISTRIBUTIONS AND INTEGRALS 23

using the fact that we know how to integrate polynomials of low degree. Then the
estimate (3) implies that the limit, as m→∞, of Sm exists. This gives our integral.
See [25, Section 11] for one proof with details. See [6, Theorem 2.5] for another
proof. �

Corollary 2.3.4. Let OX(k)b be the space of rigid functions F such that
Res(F ) is a bounded harmonic function. The residue map gives an isomorphism
between OX(k)b and Char(k)b; the inverse of this map is the Poisson integral.

Proof. The kernel function 1
z−x is locally analytic; given a bounded harmonic

function, we can apply the corresponding linear form to it. The proof that the result
is rigid analytic is another argument with the geometric series that relies on the
estimate (3) to obtain convergence. �

The bounded functions OX(k) can be characterized differently. The spaces
O(X−n ) are Banach spaces; fix one such n and let ω(F ) denote, for the moment, the
norm of a function F restricted to O(X−n ).

Theorem 2.3.5. The residues Res(F ) are bounded, and F ∈ OX(k)b if and
only if ω(gF ) ≥ C for some constant C and all g ∈ G.

Proof. See [10]. �

2.4. Discrete groups, modular forms, and uniformization. The p-adic
upper half plane was originally introduced by Mumford as a way to construct
families of algebraic curves lying at the boundary of moduli space. Mumford showed
that, for appropriate discrete subgroups Γ ⊂ G, the quotient X/Γ has the structure
of an algebraic curve.

The work of Cerednik and Drinfeld made clear the arithmetic significance of
Mumford’s p-adic uniformization theory. They showed that one could construct
Shimura curves — modular curves parameterizing abelian surfaces with quater-
nionic multiplication — via p-adic methods.

We will recall a few of the features of this theory. For more of the story, see the
work of Gerritzen and van der Put ([17]) or Mumford’s original paper ([27]). For
the arithmetic theory and uniformization of Shimura curves, see Drinfeld’s original
(7 page) paper ([12]) or the book by Boutot and Carayol that explains that paper
in detail ([4]).

Choose a definite quaternion algebra B over Q with discriminant N . From
the theory of such algebras, we know that N must be a squarefree integer with an
odd number of prime divisors. Now choose a prime p not dividing N and fix an
isomorphism B ⊗Q Qp→̃M2(Qp). Finally, pick a maximal Z[1/p] order A ⊂ B.
The strong approximation theorem tells us that all such A are conjugate in B. The
units A∗ of A form a discrete subgroup Γ of G. More generally, one can choose
a non-maximal Z[1/p]-order A′ in A and let Γ′ be the units of A′. The groups Γ′

form a family of congruence subgroups of Γ.
The main results of p-adic uniformization in this setting say that:
(1) The groups Γ′ act discontinuously on the tree X. For A′ small enough,

this action is free, Γ′ is a finitely generated free group, and X/Γ′ is a finite
graph.

(2) The quotient SN (Γ′) = X/Γ′ exists as a rigid space; it can be embedded in
projective space as a closed rigid subvariety, and therefore is an algebraic
curve.
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(3) The quotient algebraic curve SN (Γ′) is a Shimura curve. It classifies two-
dimensional, principally polarized abelian varieties with endomorphism
ring equal to a maximal order in the indefinite quaternion algebra with
discriminant Np and with level structure determined by A′ ⊂ A.

(4) The curve SN (Γ′) is totally split over Qp, meaning that it has a regular
model over Zp with the property that all of the components of this model
are reduced rational curves and all intersection points of components are
ordinary double points. The intersection graph of this configuration is
exactly X/Γ′.

(5) The genus of SN (Γ′) is the genus of the graph X/Γ′. (The genus of a
graph is the number of independent cycles in the graph, or more formally
the rank of the first homology group of its geometric realization.)

Of particular interest to us are the spaces OX(k)Γ
′

where Γ′ is a congruence
group associated to a quaternion algebra. For k ≥ 2, elements of this space are
“modular forms for Γ′” – that is, functions satisfying the condition

f(γz) = (az + c)k det(γ)−k/2f(z) for γ ∈ Γ.

Such a modular form of (even) weight k corresponds to a global section of the
k/2-fold tensor power of the canonical bundle (Ω1)k/2 on SN (Γ′).

Proposition 2.4.1. The residue map Res : OX(k)Γ
′ → Char(k)Γ

′
is an iso-

morphism.

Proof: The essential point is that the quotient graph X/Γ′ has finitely many
edges. If we choose finitely many representative edges e1, . . . , em for this quotient,
then the value c(e) of a harmonic function on a general edge is determined by
its value on one of these finitely many edges. It follows that the norm ω(c) is
bounded below. In other words, any Γ′-invariant harmonic function is bounded.
As a result, we can use Corollary 2.3.4 to construct a preimage for c. This proves
surjectivity. When k = 2, the space of harmonic functions Char(2) is just the space
of harmonic functions on the graph X/Γ′, and this is g-dimensional where g is the
genus of X/Γ′. On the other hand, the elements of OX(k)Γ

′
give rise to holomorphic

differential forms onX/Γ′, and that space is also g dimensional — therefore the map
is injective. When k > 2, the space of invariant harmonic cocycles is determined by
specifying, on each edge of X/Γ′, an element of Pk−2; while, for each vertex, one
obtains k−1 linear relations. Thus the dimension of the space Char(k)Γ

′
is at least

(k−1)(E−V ) = (k−1)(g−1) where E and V are the number of vertices and edges,
respectively in the quotient graph X/Γ′. The Riemann-Roch theorem implies that
the space OX(k)Γ

′
, corresponding to the k/2-tensor power of the canonical bundle,

has dimension (k − 1)(g − 1). By dimension counting we see the map is surjective
in each case.

2.5. Hecke Operators. The quaternion algebra B has an associated Hecke
algebra. Without attempting to work out the whole theory of this algebra, we will
indicate the key idea. As above, we let A denote a fixed, maximal Z[1/p]-order,
and A′ be a sub-Z[1/p]-order of A.

For any unramified prime ` of B, the order A` = A ⊗ Z` can be assumed
isomorphic to the ring M2(Z`). For any ` outside of a finite set S containing the
ramified primes, we have A′` = A`. From the strong approximation theorem and
the adelic theory of quaternion algebras (see [46, III.4-5]) we see that, for ` 6∈ S,
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there are exactly `+ 1 inequivalent left ideals of A′ of index `, and these ideals are
principal. Let x1, . . . , x`+1 be generators for these ideals. A unit γ in A′ permutes
these ideals:

A′xiγ = A′xj .

Suppose now that f ∈ OX(k)Γ
′
. Then

(T (`)f)(z) =
`+1∑
i=1

xi(f)

is again Γ′-invariant, because, for γ ∈ Γ′, the left multiplication by g permutes the
xi.

For ` outside the finite set S, the operators T (`) generate a commutative algebra
T called the Hecke algebra. Since the units B× of B act on the tree X through
the embedding B× ↪→ GL2(Qp), one obtains an action of T on the edges of X and
therefore on Char(k). Tracing through the definitions, and using the G-equivariance
of the residue map, we obtain:

Proposition 2.5.1. The residue map

OX(k)Γ
′
→ Char(k)Γ

′

is a Hecke module isomorphism.

In practical terms, this means that one can compute the Hecke module structure
of the spaces of modular forms on the upper half plane by working combinatorially
on the tree.

It is also worth noting that the action of the Hecke operators on the finite
dimensional spaces Char(k)Γ

′
arises in the theory of classical automorphic forms

for B. The matrices representing this action are called Brandt matrices and there
is extensive literature on them. See [46, Exercise II.5.8], as well as the papers by
Pizer and collaborators ([29]).

3. L-invariants and modular symbols

Now we change course dramatically, and begin a discussion leading to the
connection between the global arithmetic of modular forms and the p-adic analysis
we’ve discussed so far in these lectures.

We will rely implicitly on a fairly significant chunk of the theory of classical
modular forms. Beyond the basic definitions of modular forms and the theory of
Hecke operators, we will make extensive use of the theory of modular symbols and
the connection between periods of modular forms and special values of L-functions.
The literature on all of these topics is vast. For the foundations, one may consult
Shimura’s famous book [44]. The beginning of the paper [25] develops some of the
elementary theory of modular symbols and L-functions.

The work of Mazur–Swinnerton-Dyer ([24], see also [25]) explains how to attach
to an eigenform f of even weight k and level M a p-adic L-function Lp(f, χ, s) that
interpolates the “algebraic parts” Lalg(f, χ, j), for j = 0, . . . , k − 2 of the special
values of the classical L-function of f and its twists by Dirichlet characters χ. The
resulting L-function plays a central role in the Iwasawa theory of modular forms
and in the p-adic Birch–Swinnerton-Dyer conjecture.

Let χ be a Dirichlet character with χ(p) = w = ±1, and let f be an eigenvector
for the Hecke operators. In the special case M = Np, where N is an integer not
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divisible by the prime p, and the form f is an eigenvector for the Atkin-Lehner Up-
operator with eigenvalue ap = w · p(k−2)/2, [25] showed that the order of vanishing
of the p-adic L-function Lp(f, ω

k−2
2 χ, s) at s = (k − 2)/2 is one higher than that

of the classical L-function L(f, χ, s) at s = k/2 (the two functions having different
traditional normalizations on the variable s). Here ω is the Teichmuller character.
The “exceptional zero conjecture” proposed in [25] asserted that there is an invari-
ant L(f), depending only on the local Galois representation associated to f , such
that

L′p(f, ω
k−2
2 χ, (k − 2)/2) = L(f)L(f, χ, (k − 2)/2)alg.

When k = 2 and f is the modular form associated to an elliptic curve E, the
assumption that p precisely divides the level M and that ap = ±1 means that E
has multiplicative reduction at p. In that case, [25] presented numerical evidence
that

L(f) =
log(q)
ord(q)

where q is the Tate period of the elliptic curve E at p and log is the p-adic logarithm.
This weight 2 form of the conjecture was proved by Greenberg–Stevens ([19]) using
Hida theory.

In the higher weight case, in the period since [25], a number of different can-
didates for the invariant L(f) have been proposed. (See [7] for more background
and references.) These include:

(1) An invariant LT (f) built by taking advantage of the theory of p-adic
uniformization of Shimura curves — we will discuss this in more detail
later;

(2) An invariant LC(f) built using Coleman’s theory of p-adic integration on
modular curves;

(3) An invariant LFM (f) due to Fontaine–Mazur built using Fontaine’s clas-
sification of p-adic representations;

(4) An invariant LO(f) due to Darmon (in weight two) and Orton (in general)
using “modular form-valued distributions” (also to be discussed later in
this lecture);

(5) An invariant LB(f) due to Breuil that derives from his investigations of
p-adic Langlands theory (discussed in the next lecture).

All of these invariants are known to be equal:
(1) LT = LFM = LC by Coleman-Iovita ([5]) and Iovita-Spiess ([21]).
(2) LO = LB by Breuil ([2])
(3) LB = LFM by Colmez. ([8]).
(4) LO = LT by Bertolini, Darmon, and Iovita ([1]).

The Exceptional Zero Conjecture itself has been proved in general by Stevens
(for the Coleman invariant), by Kato, Kurihara and Tsuji (for the Fontaine–Mazur
invariant), by Darmon and Orton for LO(f), by Emerton using Breuil’s invariant,
and by Bertolini–Darmon–Iovita using LT (f). Stevens’s and the Kato–Kurihara–
Tsuji result remain unpublished, but one can consult [9] for information. For the
other results, see [14], [28],[11], and [1].

3.1. LT (f) and p-adic uniformization. As an application of the theory
developed in Lectures I and II, let us describe the construction of the invariant
LT (F ) when F is a modular form for a Shimura curve. In other words, we are
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in the situation of section 2.4. We begin with a definite quaternion algebra B of
discriminant N and a prime p not dividing N . Let A′ be an order contained in a
fixed maximal Z[1/p]-order A in B, and let Γ′ be the discrete group of units in A′.
Let F be a modular form of weight k (k even and k ≥ 2) for Γ′. Assume that F is
an eigenform for the Hecke algebra of the quaternion algebra B.

From our integration theory, associated to this F we have a distribution λF on
Can(K, 2− k)/Pk−2. We define two elements of H1(Γ′,Hom(Pk−2,Cp)) using this
distribution. Fix any point z ∈ X(Cp) and set :

hF
log(γ, P (x)) = λF

(
P (x) log

(
x− γ(z)
x− z

))

hF
ord(γ, P (x)) = λF

(
P (x) ord

(
x− γ(z)
x− z

))
.

The functions P (x) log(x−γ(z)
x−z ) and P (x) ord(x−γ(z)

x−z ) both belong to Can(K, 2−k),
since both are locally analytic and have the correct pole order at infinity. The fact
that hF

log and hF
log are cocycles that depend on z only up to a coboundary is a

straighforward calculation.
One can interpret hF

log as a period of the form F (z)dz on SN (M). Using the
expression of F as a Poisson integral, we have (formally):

hF
log(γ, P (x)) =

∫ γ(z)

z

∫
P1

1
z − x

dλF

as follows from a change in the order of integration. Using the theory of Coleman
integration, one can give meaning to this integral, and in fact this argument is
legitimate — see [45].

Similarly, one can interpret hF
ord as a period on the tree. Choose z so that r(z)

is a vertex v on the tree. Then one has the following.

Lemma 3.1.1. The integral defining hF
ord reduces to a sum on the tree:

hF
ord(γ, P (x)) =

∑
v 7→γ(v)

ce(P (x))

where the sum is over the edges e on the minimal path joining v to γ(v).

Proof. Let e be an oriented edge in the tree X, and let s, t ∈ X be points
whose reductions are the source and terminal vertices of e, respectively. Then for
u ∈ P1(K), one readily verifies that

ord
(
u− t
u− s

)
=

{
−1 if u ∈ U(e)
0 otherwise,

where U(e) is the open subset of P1(K) associated to the oppositely oriented edge
of e (see Section 1.3.4). Choosing points z = z0, z1, . . . , zn = γ(z) reducing to
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successive vertices on the path from z to γ(z) we obtain

hF
ord(γ, P (x)) =

n∑
i=1

λF

(
P (x) ord

(
x− zi+1

x− zi

))

= −
n∑

i=1

c(ei)(P (x))

=
n∑

i=1

c(ei)(P (x))

where ei joins the reductions of zi and zi+1. �

Theorem 3.1.2. (Schneider, DeShalit) The two maps hord : F 7→ hF
ord and

hlog : F 7→ hF
log are homomorphisms

O(k)Γ
′
→ H1(Γ′,Hom(Pk−2,Cp))

commuting with the natural action of the Hecke algebra T ⊗ Cp on both sides.
Furthermore, hord is an isomorphism.

Proof. See [10] and [31]. �

With this theorem, we can construct the invariant LT (F ). Theorem 3.1.2 and
the fact that the F -isotypic component of O(k)Γ

′
is 1-dimensional yields:

Definition 3.1.3. There is a unique LT (F ) ∈ Cp such that

hF
log − LT (F )hF

ord = 0

in H1(Γ′,Hom(Pk−2,Cp)). This is called the LT –invariant of the form F .

3.2. Modular Symbols. To develop the additional theory of L-invariants
following Breuil and Darmon, we must undertake a digression into the theory of
modular symbols, and also develop some of the ideas of Darmon’s integration on
X × H, where H is the classical upper half plane. We follow, in part, Breuil’s
presentation ([2]) in this discussion.

Fix a normalized newform f of even weight k ≥ 2 on Γ0(M) for some integer
M . We assume that T`f = a`f for (`,M) = 1. The eigenvalues a` generate an
extension E of Q with ring of integers R. We will view E as a subfield of Cp.

In working with these formulae, one caveat is necessary. It’s traditional in
the theory of modular forms to work with the right action (the “slash” action) on
modular forms given by the formula:

f(z)|g = (cz + d)−k det(g)k/2−1f

(
az + b

cz + d

)
.

Since we have consistently worked with left actions, we use the associated left action

g(f)(z) = f(z)|gt

where gt is the transpose of g.
The following theorem of Shimura is the starting point of the theory we will

describe.
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Theorem 3.2.1. There are nonzero periods Ω±f ∈ C such that, for any P (z) ∈
Pk−2(R) and any rational number r, we have(∫ ∞

r

f(z)P (z)dz
)±

:= πi

(∫ ∞
r

f(z)P (z)dz ±
∫ ∞
−r

f(z)P (−z)dz
)
∈ RΩ±f ∈ C.

Let D be the set of divisors on P1(Q), and let D0 be the subspace of divisors
of degree zero. We associate to our form f the “modular symbol”

φ±f ∈ Hom(D0,Hom(Pk−2(E), E))

by defining

φ±f ([r]− [s])(P ) :=
1

Ω±f

(∫ r

s

f(z)P (z)dz
)±

=
1

Ω±f

(∫ ∞
s

f(z)P (z)dz
)±
− 1

Ω±f

(∫ ∞
r

f(z)P (z)dz
)±

.

The modular symbol enjoys the following invariance property for g ∈ Γ0(M):

φ±f ([g(r)]− [g(s)])(P ) =

(∫ g(s)

g(r)

f(z)P (z)dz

)±

=
(∫ s

r

f(g−1(z))P (g−1(z))dg−1(z)
)±

=
(∫ s

r

(−bz + a)k−2f(z)P (
dz − c
−bz + a

)dz
)±

= φ±f ([r]− [s])(g−1(P )(z))±

so that
φ±f ∈ Hom(D0,Hom(Pk−2, E))Γ0(M).

Theorem 3.2.1 implies that for any element [r] − [s] of D0, the corresponding
linear form

φf ([r]− [s]) ∈ Hom(Pk−2(E), E)

is bounded.
3.2.1. Modular symbols and L-values. Both the algebraic part of the L-function

associated to a modular form and its p-adic L-function may be expressed in terms
of modular symbols.

Definition 3.2.2. The algebraic part of the special value(s) of the classical
L-function associated to f and a Dirichlet character χ of conductor c is given by
the formula

Lalg(f, χ, j) =
cj+1j!

(−2πi)jτ(χ)Ωw∞
f

L(f, χ, j + 1),

where w∞ = χ(−1).

A computation using the expression for the L-function of f as the Mellin trans-
form of the modular form f yields the following formula expressing Lalg in terms
of modular symbols.
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Lemma 3.2.3. We have

Lalg(f, χ, j) =
∑

ν∈(Z/cZ)×

χ(ν)φw∞
f

([
−ν
c

]
− [∞]

)(
(cz + ν)j

)
for j = 0, . . . , (k − 2)/2.

Proof. See [25, Section 8]. �

Next, we briefly recall the construction of the p-adic L-function from [25]. Let

Zp,c := lim
←

Z/pncZ ∼= Zp × Z/cZ.

For x ∈ Zp,c, let xp denote the projection of x to Zp. For a ∈ Z×p,c, write D(a, r) :=
a+ cpr ⊂ Z×p,c.

The p-adic L-function is constructed from the (unique) distributions µ±f,MTT

on the space of locally analytic functions on Z×p,c satisfying

(3.2.4)
∫

D(a,r)

P (xp)dµ±f,MTT(x) =
(
wp

k−2
2

)−r

φ±f

(
[∞]−

[
a

prc

])
(P (prcz + a))

for all polynomials of P degree at most (k − 2)/2. Here and in the sequel, the left
side is shorthand notation for

µ±f,MTT

(
δD(a,r)(x)P (xp)

)
,

where δD(a,r) denotes the characteristic function of the open set D(a, r).
The boundedness properties of the modular symbols imply that there is a

unique distribution on locally analytic functions on Zp,c that, restricted to locally
polynomial functions, satisfies the condition in equation 3.2.4. This is another in-
stance of the p-adic integration theory that we referred to in Theorem 2.3.2. For
details of the construction, see [25, Section 11].

Let χ : Z×p,c → C×p , and define 〈·〉 : Z×p,c → 1 + pZp by 〈x〉 := xp/ωTeich(x),
where ωTeich(x) is the p-adic Teichmuller character. The p-adic L-functions at-
tached to f and χ are defined as follows:

L±p (f, χ, s) :=
∫
Z×p,c

χ(x)〈x〉sdµ±f,MTT(x).

If ε = χ(−1) · (−1)
k−2
2 = ±1, then L−ε

p (f, χ, s) = 0 and Lε
p(f, χ, s) will be a prioiri

non-trivial. Thus writing Lp = L+
p + L−p , we see that Lp = Lε

p.
3.2.2. Modular symbols and the tree. Darmon introduced the remarkable idea

of blending p-adic integration and the p-adic upper half plane with classical modular
forms in his paper [11]. Assume that the level M of the preceding section can be
written M = Np with (N, p) = 1. Define

Γp
0(N) =

{(
a b
c d

)
∈ SL2(Z[1/p]), c ≡ 0 (mod N)

}
.

Similarly, let

Γ̃p
0(N) =

{(
a b
c d

)
∈ GL2(Z[1/p])+, c ≡ 0 (mod N)

}
where GL2(Q)+ is the group of invertible matrices with positive determinant.
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Definition 3.2.5. Let H be the classical upper half plane over C. Define
S0

k(X,Γp
0(N)) to be the complex vector space of “harmonic, modular form-valued”

functions
F : Edges(X)×H→ C

satisfying the following conditions:

(1) F (γe, z) = γ(F (e, z)) = F (e, z)|γt for γ =
(
a b
c d

)
∈ Γp

0(N).

(2) F (e′, z) = −F (e, z) where e′ is the edge opposite to e.
(3)

∑
e 7→v F (e, z) = 0 where the sum is over the edges leaving v.

(4) Each F (e, ·) is a cusp form of weight k on H for the group

Γe = {γ ∈ Γp
0(N) : γe = e}.

The group GL2(Q)+ acts on the left on S0
k(X,Γp

0(N)) via the formula

g(F )(e, z) = g(F (g−1e, z)) = (bz + d)−k det(g)k/2−1F

(
g−1e,

az + c

bz + d

)
.

The space S0
k(X,Γp

0(N)) is quite small. Notice that, if F ∈ S0
k(X,Γp

0(N)), then
the restriction F (e0, ·) of F to the basic edge e0 satisfies

γ(F (e0, z)) = F (e0, z)

for all

γ =
(
a b
c d

)
∈ Γp

0(N) ∩ Γe0 = Γ0(Np).

In other words, F (e0, ·) is a cusp form for Γ0(M) = Γ0(Np).

Proposition 3.2.6. The restriction map

S0
k(X,Γp

0(N))→ Sk(Γ0(Np),C)

is injective and has image equal to the subspace of forms that are “new at p.”

Proof: See [28, Section 2.1]. The point is that the harmonicity requirement
amounts to the statement that the form has to be in the kernel of the trace map(s)
from forms of level Np to forms of level N . �

Given a p-new form f , we can find a corresponding element of S0
k(X,Γp

0(N))
by defining

F (ge0, z) = g(f(z)) = word(det(ad−bc))(bz + d)−k det(g)k/2−1f

(
az + c

bz + d

)
for g ∈ Γ̃, where w is the sign such that Wp(f) = −wf for the Atkin-Lehner
operator Wp.

3.2.3. Modular symbols, harmonic cocycles, and distributions. Let f be a cusp
form of level M that is new at p, and let F be the element of S0

k(X,Γp
0(N)) as-

sociated to f by Proposition 3.2.6. Define a harmonic function Φf with values in
Hom(Pk−2(E), E) on the edges of X by the rule

Φ±f ([r]− [s])(e)(P ) := φ±F (e,·)([r]− [s])(P ).

Proposition 3.2.7. (Orton) The harmonic function Φ±f ([r]− [s]) is bounded.
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Proof: We need to verify that

ω(Φ±([r]− [s])(γe)(γP )) ≥ N
for some fixed integer N and polynomials P with coefficients in R. But

φ±F (γe,·)([r]− [s])(P ) = ±
(∫ s

r

γ(f)(z)γ(P )(z)dz
)±

= ±

(∫ γ(s)

γ(r)

f(z)P (z)dz

)±
and this is bounded by Theorem 3.2.1. �

From this boundedness result, we obtain from Φ±f ([r] − [s]) a distribution
λ±f ([r] − [s]) on Cla(K, 2 − k) that extends to Can(K, 2 − k) following the pro-
cedure discussed in Section 2.3.

Let M := Hom(D0,Hom(Pk−2(Cp),Cp)), the space of modular symbols valued
in the dual of the space of polynomials of degree at most k− 2. Then choosing any
a ∈ X, we obtain maps

{Cusp forms of level Np new at p} → H1(Γp
0(N),M)

defined by

(3.2.8) lc±f (γ)([r]− [s])(P ) = λ±f ([r]− [s])
(
P (x) log

(
x− γa
x− a

))
and

(3.2.9) oc±f (γ)([r]− [s])(P ) = λ±f ([r]− [s])
(
P (x) ord

(
x− γa
x− a

))
.

The cohomology classes of these maps are independent of the choice of a.

3.3. Orton’s L-invariant. The difficulty with the invariant LT is that it is
only indirectly related to the Mazur-Swinnerton-Dyer p-adic L-function that plays
a role in the exceptional zero conjecture. This is because the p-adic L-function is
constructed using a modular form on the usual upper half plane corresponding to
a usual modular curve, while the construction of the LT invariant uses a Shimura
curve. The connection between these two constructions comes from the Jacquet-
Langlands lifting theorem, which asserts that there is a correspondence between
modular forms on Shimura curves and certain modular forms on classical modular
curves. In fact, not all forms on modular curves come from Shimura curves, and so
the invariant LT isn’t even defined for a modular form on Γ0(N ′), with N ′ general.

The invariant LO constructed by Darmon and Orton is a hybrid object that
mixes p-adic uniformization with classical modular forms. It’s construction has
something of the same flavor as that of LT , but it is directly connected to both the
p-adic L-function and the classical L-function of a form f on Γ0(N). In this section
we will construct Orton’s invariant (see Definition 3.3.4) and relate it to L-values.

3.3.1. Cohomology of Modular Symbols. For each prime ` - N , we define an
action of the Hecke operator T` on H1(Γp

0(N),M). Let {δj}`j=0 be a set of matrices
in GL2(Q) such that

Γp
0(N)

(
1 0
0 `

)
Γp

0(N) =
⊔̀
j=0

Γp
0(N)δj .
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For each γ ∈ Γp
0(N) and j = 0, . . . , `, there exists a unique γj ∈ Γp

0(N) and index
i(γ, j) such that δjγ = γjδi(γ,j). Let c̃ be a cohomology class in H1(Γp

0(N),M)
represented by a cocycle c. The cohomology class represented by the cocycle

T`(c)(γ) := `
k−2
2

∑̀
j=0

δ−1
j c(γj)

is independent of choices, and is defined to be T`(c̃).

We now define an Atkin-Lehner involution “at infinity.” Let α∞ =
(
−1 0
0 1

)
.

The operator W∞ on H1(Γp
0(N),M) is defined by

W∞(c)(γ) := α∞c(α∞γα∞).

Definition 3.3.1. Let V be a space endowed with an action of the Hecke
algebra T. For a sign w∞ = ±1, let V f,w∞ denote the space of elements v ∈ V
such that T`(v) = a` · v for each ` - N and W∞(v) = w∞ · v, where a` denotes the
eigenvalue of f for the Hecke operator T`.

In the next section, we will prove:

Lemma 3.3.2. For each w∞ = ±1, the cohomology group H1(Γp
0(N),M)f,w∞

is a 1-dimensional Cp-vector space.

Lemma 3.3.3. For each w∞ = ±1, we have

lcw∞f , ocw∞f ∈ H1(Γp
0(N),M)f,w∞ .

Proof. (Sketch; see [28, Lemma 5.3]) The fact that lcw∞f , ocw∞f are in the
f, w∞-isotypic subspace of H1(Γp

0(N),M) follows from the corresponding fact for
Φ. More precisely, one can show that

`(k−2)/2
∑̀
j=0

Φw∞
f ([δjx]− [δjy])(δje)(P |δ−1

j
) = a`Φw∞

f ([x]− [y])(e)(P )

and
Φw∞

f ([α∞x]− [α∞y])(α∞e)(P |α−1
∞

) = w∞Φw∞
f ([x]− [y])(e)(P )

from the corresponding formulas for φw∞
f . �

In Corollary 3.3.22 we will show that ocw∞f 6= 0. In view of Lemmas 3.3.2 and
3.3.3, we therefore propose:

Definition 3.3.4. For each w∞ = ±1, define Lw∞
O ∈ Cp by the equality

lcw∞f = Lw∞
O · ocw∞f .

The goal of the remainder of this section is to prove Lemma 3.3.2. To simplify
the notation, let V := Hom(Pk−2(Cp),Cp). Applying Hom(−, V ) to the short exact
sequence

0→ D0 → D → Z

defining D0, we obtain

(3.3.5) 0→ V → F →M→ 0,

where F := Hom(D,V ) and M := Hom(D0, V ).
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Consider the long exact sequence arising from (3.3.5) by taking cohomology for
Γ0(N). The first term V Γ0(N) is trivial when k > 2 and equal to Cp when k = 2
[20, p. 165 Lemma 2]. Furthermore, H2(Γ0(N), V ) = 0 [20, p. 162, Prop. 1].

For each cusp of Γ0(N), i.e. for each class in Γ0(N)\P1(Q), we choose a
representative x ∈ P1(Q) and let Γ0(N)x denote the stabilizer of x in Γ0(N). The
module F is easily seen to be a sum of induced modules:

F =
⊕

x

IndΓ0(N)
Γ0(N)x

V.

By Shapiro’s Lemma, we therefore have

Hi(Γ0(N),F) =
⊕

x

Hi(Γ0(N)x, V ).

In the long exact sequence associated to (3.3.5), the map

H1(Γ0(N), V )→ H1(Γ0(N),F) ∼=
⊕

x

H1(Γ0(N)x, V )

is simply the direct sum of restriction maps; its kernel is called the parabolic coho-
mology group, and denoted H1

par(Γ0(N), V ). We thus obtain two exact sequences:

(3.3.6) 0→

(⊕
x

V Γ0(N)x

)
/V Γ0(N) →MΓ0(N) → H1

par(Γ0(N), V )→ 0

and

0→ H1
par(Γ0(N), V )→ H1(Γ0(N), V )→⊕

x

H1(Γ0(N)x, V )→ H1(Γ0(N),M)→ 0.(3.3.7)

The key results we will use to study these sequences are the classical Eichler-
Shimura isomorphisms, which state [20, Section 6.2]:

H1
par(Γ0(N), V ) ∼= Sk(Γ0(N))⊕ Sk(Γ0(N))(3.3.8)

H1(Γ0(N), V ) ∼= Sk(Γ0(N))⊕ Sk(Γ0(N))⊕ Ek(Γ0(N)).(3.3.9)

The sequences (3.3.6) and (3.3.7) are Hecke equivariant, as are the Eichler-Shimura
isomorphisms. The Hecke structure of the module on the left in (3.3.6) is given
by the action of the Hecke operators on the cusps of Γ0(N); therefore it is not
surprising that [28, §7.2]:

Lemma 3.3.10. We have an isomorphism of Hecke modules:(⊕
x

V Γ0(N)x

)
/V Γ0(N) ∼= Ek(Γ0(N)).

We leave the proof to the reader, as well as that of:

Lemma 3.3.11. Given a Hecke equivariant short exact sequence of finite dimen-
sional Cp-vector spaces 0 → V1 → V2 → V3 → 0 with V f

1 = 0, the map V2 → V3

induces an isomorphism V f
2 → V f

3 . Alternatively, if V f
3 = 0, then the map V1 → V2

induces an isomorphism V f
1 → V f

2 .

Proposition 3.3.12. We have MΓ0(N),f = 0.
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Proof. This follows from the previous two lemmas, sequence (3.3.6), and the
Eichler-Shimura isomorphism (3.3.8), since f is a form of level Np which is not old
at p. �

Arguing similarly for N replaced by Np, we find:

Proposition 3.3.13. For each w∞ = ±1, the space MΓ0(Np),f,w∞ is a 1-
dimensional Cp-vector space.

Turning now to sequence (3.3.7), we note that each group Γ0(N)x is infinite
cyclic, generated by an element denoted πx. Thus H1(Γ0(N)x, V ) = V/(πx − 1)V .
One checks (see [20, p. 166 (2a)], for example) that this is a 1-dimensional Cp-
vector space. A dimension count in (3.3.7) using the Eichler-Shimura isomorphisms
shows that H1(Γ0(N),M) is trivial when k > 2, and has dimension 1 when k = 2;
in either case the module is Eisenstein, so we obtain:

Proposition 3.3.14. We have H1(Γ0(N),M)f = 0.

We are now in a position to prove Lemma 3.3.2. The group Γp
0(N) is the amalga-

mation of the groups Γ0(N) and its conjugate Γ0(N)′ :=
(
p 0
0 1

)−1

Γ0(N)
(
p 0
0 1

)
,

with respect to their intersection Γ0(Np). This fact follows from the fact that a
fundamental domain for the action of Γp

0(N) on the tree X is given by the single
edge e0 with stabilizer Γ0(Np), and its two boundary vertices with stabilizers Γ0(N)
and Γ0(N)′. From this amalgamation property, one deduces an exact sequence (see
[43, §2.6]):

0 // MΓp
0(N) // MΓ0(N) ⊕MΓ0(N)′ // MΓ0(Np)

rrddddddddddddddddddddddddddddddddddddddddd

H1(Γp
0(N),M) // H1(Γ0(N),M)⊕H1(Γ0(N)′,M).

By breaking this exact sequence into short exact sequences, we find from
Lemma 3.3.11, Proposition 3.3.12 and Proposition 3.3.14 that:

(3.3.15) MΓp
0(N),f = 0 and (MΓ0(Np))f,w∞ →̃ H1(Γp

0(N),M)f,w∞ .

Proposition 3.3.13 then concludes the proof of Lemma 3.3.2.

3.3.2. Specializations of the cohomology classes. Fix a positive integer c and an
integer ν relatively prime to c. The pair (c, ν) gives rise to a Q-algebra embedding
Ψ : Q×Q→M2(Q) via the formula

Ψ(1, 0) =
(

1 ν/c
0 0

)
.

Let s be the order of p2 in (Z/cZ)×. The group Ψ(Q××Q×)∩Γp
0(N) is an infinite

cyclic group, generated by

γΨ :=
(
ps (ps − p−s)ν/c
0 p−s

)
.

The fixed points of γΨ are xΨ =∞ and yΨ = −ν/c, and the polynomial

PΨ(z) = (cz + ν)
k−2
2
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is fixed by γΨ as well.

Definition 3.3.16. Define

(3.3.17) LI±Ψ := lc±f (γΨ)([xΨ]− [yΨ])(PΨ)

and

(3.3.18) W±Ψ := oc±f (γΨ)([xΨ]− [yΨ])(PΨ).

Since γΨ fixes xΨ, yΨ, and PΨ, one easily checks that b(γΨ)([xΨ]−[yΨ])(PΨ) = 0
for a coboundary b; thus the equations for LIΨ and WΨ are well-defined. As we
now explain, the values LIΨ and WΨ encode the central critical values of the p-adic
and classical L-functions attached to f . As usual, let χ be a Dirichlet character of
conductor c with χ(p) = w and χ(−1) = w∞.

Theorem 3.3.19. With notation as above, we have

(3.3.20) Lalg

(
f, χ,

k − 2
2

)
=

1
2s

∑
ν∈(Z/cZ)×

χ(ν)Ww∞
Ψ

and

(3.3.21) L′p

(
f, ω

k−2
2 χ,

k − 2
2

)
=

1
2s

∑
ν∈(Z/cZ)×

χ(ν)LIw∞
Ψ .

Consequently,

L′p(f, ω
k−2
2 χ, (k − 2)/2) = Lw∞

O (f)L(f, χ, (k − 2)/2)alg.

(This is the “exceptional zero conjecture” (for weight k ≥ 2) as originally posed in
[25, Section 15]).

Proof. The proofs of equations (3.3.20) and (3.3.21) involve calculations on
the tree. This will take the next few sections. �

Corollary 3.3.22. ocw∞f 6= 0.

Proof. A result of Rohrlich [30] implies that there is a Dirichlet character χ
as desired such that L(f, χ, k/2) 6= 0. �

3.3.3. First part of proof of Orton’s Theorem. The first step in proving Orton’s
theorem is to evaluate WΨ. We begin with an explicit evaluation of the right side
of equation (3.2.9), which defines a cocycle representing the cohomology class ocf .

Lemma 3.3.23. Suppose that a ∈ X reduces to a vertex v of the tree X. Then
we have

oc±f (γ)([r]− [s])(P ) =
∑

e∈(v→γv)

Φ±f ([r]− [s])(e)(P ),

where (v → γv) represents the unique path in X from the vertex v to the vertex γv,
and the sum on the right side is indexed by the oriented edges e in this path.

Proof. This is the same argument that we used in Lemma 3.1.1. �

For each ν ∈ (Z/cZ)×, let Jν denote the coset ν〈p〉 ⊂ (Z/cZ)×. Let s′ denote
the order of p modulo c, so s = s′ if s′ is odd and s = s′/2 if s′ is even. For a ∈ Jν ,
denote by j(a) the equivalence class mod s′ such that a ≡ νpj(a) (mod c). Note
that the expression wj(a) is well-defined if either w = 1 or s′ is even.
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Proposition 3.3.24. We have

W±Ψ = β
∑
a∈Jν

wj(a)φ±f

([
−a
c

]
− [∞]

)(
(cz + a)(k−2)/2

)
,

where

β =


1 if s′ is even
2 if s′ is odd and w = 1
0 if s′ is odd and w = −1.

Proof. Suppose we choose a in equation (3.2.9) to reduce to the central vertex
v0 of X. Then the definition of WΨ in (3.3.18) and Lemma 3.3.23 yield

W±Ψ =
∑

e∈(v0→γΨv0)

Φ±f

(
[∞]−

[
−ν
c

])
(e, PΨ).

The edges e in the sum may be written ej = γ−1
j e0 where γj =

(
1 −ν′
0 pj

)
, where

ν′ is an integer such that ν′ ≡ −ν/c (mod p2s), and j = 0, . . . , 2s− 1. We evaluate
each term in the sum:

Φ±f
(
[∞]−

[
−ν
c

])
(γ−1

j e0, PΨ) = w|γj |Φ±f
(
[γj∞]−

[
γj

(
−ν
c

)])
(e0, PΨ|γ−1

j
)

= wjΦ±f

(
[∞]−

[
(−ν − cν′)/pj

c

])(
e0,

(
cz +

cν′ + ν

pj

) k−2
2
)
.(3.3.25)

From the invariance of f under the transformation z 7→ z + 1, it is clear that the
expression in (3.3.25) depends on the integer (cν′+ν)/pj only up to its equivalence
class modulo c. As j = 0, . . . , 2s− 1, these integers run over the set Jν : once if s′

is even and twice if s′ is odd. In the latter case, the coefficients wj appear with
opposite sign in the two occurences when w = −1, and with the same sign when
w = 1. The result follows. �

We may now prove the first half of theorem 3.3.19. Let χ be a Dirichlet char-
acter of conductor c with χ(p) = w and χ(−1) = w∞. Note that β 6= 0, and hence
s′ = 2s/β. Then by Proposition 3.3.24 we have:

1
2s

∑
ν∈(Z/cZ)×

χ(ν)Ww∞
Ψ =

1
s′

∑
ν∈(Z/cZ)×

χ(ν)
∑
a∈Jν

wj(a)φw∞
f

([
−a
c

]
− [∞]

)(
(cz + a)(k−2)/2

)
.(3.3.26)

As ν ranges over (Z/cZ)×, the sets Jν cover (Z/cZ)× with each element repeated
s′ times. Furthermore, for a ∈ Jν we have χ(ν)wj(a) = χ(ν · pj(a)) = χ(a). We find
that (3.3.26) equals∑

a∈(Z/cZ)×

χ(a)φw∞
f

([
−a
c

]
− [∞]

)(
(cz + a)(k−2)/2

)
.

Equation (3.3.20) now follows from Lemma 3.2.3.
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3.3.4. Second part of the Proof of Orton’s Theorem. In this section, we relate
the distribution λf to the p-adic L-function of f . Let us now compare the distri-
bution µ±f,MTT on Z×p,c to the Darmon-Orton modular symbol of distributions λ±f .
Let Ψ be an embedding as in section 3.3.2. For each integer i, define

U(vi) := {t ∈ P1(Qp)− {xΨ, yΨ} : ord(MΨ(t)) = i}.

The motivation for this notation is as follows. Let (xΨ → yΨ) denote the bi-infinite
path from the end of X corresponding to xΨ to the end corresponding to yΨ. The
vertices of (xΨ → yΨ) may be labelled {vi} in such a way that U(vi) is the set of
points corresponding to ends of X that intersect (xΨ → yΨ) precisely at vi. If ei is
the edge from vi−1 to vi, then U(vi) = U(ei)− U(ei+1). A fundamental region for
the action of γΨ on P1(Qp)− {xΨ, yΨ} is given by:

FΨ :=
2s−1⋃
i=0

U(vi).

For z ∈ FΨ, write i(z) = ord(MΨ(z)), i.e. the index i such that z ∈ U(vi). We also
define

J∞,ν = {a ∈ Z×p,c : a ≡ νpj (mod c) for some j = j(a)}.

Proposition 3.3.27. If F is a locally analytic function on Z×p , then∫
FΨ

pi(z)· k−2
2 F

(
cz + ν

pi(z)

)
dλ±f ([xΨ]− [yΨ])(z) = β

∫
J∞,ν

wj(x)F (xp)dµ±f,MTT(x).

Proof. For j = 0, . . . , 2s − 1, write J∞,ν,j = {a ∈ Z×p,c : b ≡ νpj (mod c)}.
We will show
(3.3.28)

wjpj· k−2
2

∫
U(vj)

F

(
cz + ν

pj

)
dλ±f ([xΨ]− [yΨ])(z) =

∫
J∞,ν,j

F (xp)dµ±f,MTT(x).

The result will then follow by summing from j = 0 to j = 2s − 1; as j varies the
J∞,ν,j cover J∞,ν once if s′ is even, twice if s′ is odd, and with opposite sign in the
latter case when w = −1.

To prove (3.3.28), fix an integer n > 2s. Refine each U(vj) by

U(vj) =
⋃

a∈(Z/pnZ)

Uj,a, where Uj,a =
{
t ∈ U(vj) : (ct+ ν)/pj ≡ a (mod pn)

}
and correspondingly refine J∞,ν,j as

J∞,ν,j =
⋃

a∈(Z/pnZ)×

D(ba,j , n)

where ba,j = (ν + cν′)/pj + ac and ν′ ∈ Z satisfies ν′ ≡ −ν/c (mod n+ 2s). Then
from the definition of the distribution µf,MTT, we have for a polynomial P of degree
≤ k − 2:∫

D(b,n)

P (x)dµ±f,MTT(x) = wnp−n( k−2
2 )φ±f

(
[∞]−

[
b

pnc

])
(P (pncz + b))

= wnp−n( k−2
2 )Φ±f

(
[∞]−

[
b

pnc

])
(e0, P (pncz + b)) .(3.3.29)
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where b = ba,j . Now if γ =
(

1 −ν′ − pja
0 pn+j

)
, then Uj,a = γ−1U(e0). Thus using the

transformation property of Φ±f under γ, the right side of (3.3.29) may be written:

wjp−n( k−2
2 )Φ±f

([
γ−1(∞)

]
−
[
γ−1

(
b

pnc

)])(
γ−1e0, P (pncz + b) |γ

)
= wjpj( k−2

2 )Φ±f
(
[∞]−

[ν
c

])(
γ−1e0, P

(
cz + ν

pj

))
= wjpj( k−2

2 )
∫

Uj,a

P

(
cz + ν

pj

)
dλ±f ([xΨ]− [yΨ])(z)

Thus we have proven the result for polynomials of degree ≤ k−2 on the arbitrarily
small balls D(b, n) and U(j, a). By the uniqueness properties of the extensions
of µ±f,MTT and λ±f from the distributions on Pk−2 to the space of locally analytic
functions, the result follows. �

3.3.5. End of Orton’s Theorem. In this section we conclude the proof of The-
orem 3.3.19. Recall the definition:

LI±Ψ =
∫
P1(Qp)

log
(
x− γΨz

x− z

)
PΨ(x)dλ±f ([xΨ]− [yΨ])(x).

Recall also how λ±f ([xΨ] − [yΨ]) is applied to a locally analytic function such as
log(x−γΨz

x−z )PΨ(x): we cover P1(Qp) by smaller and smaller open balls, write the
function as a power series on each open ball, truncate the power series to a polyno-
mial of degree k − 2, evaluate λ±f ([xΨ]− [yΨ]) on each of these polynomials on the
open balls via Φ±f ([xΨ]− [yΨ]), and sum the results; the limit as the covers become
uniformly finer is the desired value.

In the present case, we write

(3.3.30) P1(Qp) = γ−n
Ψ U(e0) t

n⊔
j=−n

γj
ΨFΨ t γn+1

Ψ U(e0),

where e0 denotes the edge e0 with the opposite orientation. We will refine the
middle term of (3.3.30) later, but indicate first why, in the limit, the end divisions
contribute nothing to the integral. Let Tn(x) denote the truncation of the power
series of log(x−γΨz

x−z )PΨ(x) expanded around yΨ on the open set γn+1
Ψ U(e0) to a

polynomial of degree k − 2. From the invariance of Φ under Γ, and the fact that
γΨ stabilizes xΨ, yΨ, and PΨ, we have

lim
n→∞

∫
γn+1U(e0)

log
(
x− γΨz

x− z

)
PΨ(x)dλ±f ([xΨ]− [yΨ])(x)

= lim
n→∞

Φ±f ([xΨ]− [yΨ])(γn+1e0, Tn(x))

= lim
n→∞

Φ±f ([xΨ]− [yΨ])(e0, Vn(x)),

where Vn is the truncation to a polynomial of degree k − 2 of the power series of

log
(
γn+1
Ψ x− γΨz

γn+1
Ψ x− z

)
PΨ(x) = log

(
x− γ−n

Ψ z

x− γ−(n+1)
Ψ z

)
PΨ(x)
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on U(e0) expanded around yΨ. We leave it to the reader to verify (or consult [28,
§6.4]) the explicit formula:

Vn(x) =

k−2
2∑

i=1

(
−
(
γ−n
Ψ z − yΨ

)−i
+
(
γ
−(n+1)
Ψ z − yΨ

)−i
)
c

k−2
2

i
(x− yΨ)i+ k−2

2 .

As n→∞, γ−n
Ψ z → xΨ =∞, so the coefficients above tend to zero. Thus we have

proven that

lim
n→∞

∫
γn+1U(e0)

log
(
x− γΨz

x− z

)
PΨ(x)dλ±f ([xΨ]− [yΨ])(x) = 0,

and a similar result holds for the other end term in the decomposition (3.3.30).
Now we are left to analyze

LI±Ψ,n :=
n∑

j=−n

∫
γj
ΨFΨ

log
(
x− γΨz

x− z

)
PΨ(t)dλ±f ([xΨ]− [yΨ])(x).

For each term in the sum we invoke the change of variables x 7→ γ−j
Ψ x; using the

Γp
0(N)-invariance of λ±f we obtain

LI±Ψ,n =
n∑

j=−n

∫
FΨ

log

(
γj
Ψx− γΨz

γj
Ψx− z

)
PΨ(t)dλ±f ([xΨ]− [yΨ])(x)

=
n∑

j=−n

∫
FΨ

log

(
x− γ1−j

Ψ z

x− γ−j
Ψ z

)
PΨ(t)dλ±f ([xΨ]− [yΨ])(x)

=
∫

FΨ

log
(
x− γ1+n

Ψ z

x− γ−n
Ψ z

)
PΨ(t)dλ±f ([xΨ]− [yΨ])(x),(3.3.31)

as the sum telescopes. Now in the limit as n → ∞, we have γ1+n
Ψ z → yΨ and

γ−n
Ψ z → xΨ; thus we would like to say that in the limit, we can replace the argument

of log in (3.3.31) by a linear fractional transformation taking yΨ to 0 and xΨ to∞,
namely, MΨ(t) := t+ ν/c. More precisely, let

Mn(t) =
−yΨγ−n

Ψ z

γn+1
Ψ z

·
x− γ1+n

Ψ z

x− γ−n
Ψ z

.

Now since ∫
FΨ

PΨ(x)dλ±f ([xΨ]− [yΨ])(x)

= Φ±f ([xΨ]− [yΨ])(e2s, PΨ)− Φ±f ([xΨ]− [yΨ])(e0, PΨ)

= Φ±f ([xΨ]− [yΨ])(γΨe0, PΨ)− Φ±f ([xΨ]− [yΨ])(e0, PΨ)
= 0,

it follows that

LI±Ψ,n =
∫

FΨ

log(Mn(x))PΨ(x)dλ±f ([xΨ]− [yΨ])(x).
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Since Mn(x)→MΨ(x) as n→∞ for any x ∈ FΨ, the continuity of λ gives

LI±Ψ =
∫

FΨ

log(MΨ(x))PΨ(x)dλ±f ([xΨ]− [yΨ])(x)

=
∫

FΨ

log(cx+ ν)(cx+ ν)
k−2
2 dλ±f ([xΨ]− [yΨ])(x)

=
∫

FΨ

pi(z)· k−2
2 log

(
cx+ ν

pi(z)

)(
cx+ ν

pi(z)

) k−2
2

dλ±f ([xΨ]− [yΨ])(x)

= β

∫
J∞,ν

wj(t)t
k−2
2

p log(tp)dµ±f,MTT(t),

by Proposition 3.3.27. We are now in a position to conclude the proof of The-
orem 3.3.19. Let χ be a Dirichlet character of conductor c with χ(p) = w and
χ(−1) = w∞. We evaluate:

1
2s

∑
ν∈(Z/cZ)×

χ(ν)LIw∞
Ψ =

1
s′

∑
ν∈(Z/cZ)×

χ(ν)
∫

J∞,ν

wj(t)t
k−2
2

p log(tp)dµw∞
f,MTT(t)

=
1
s′

∑
ν∈(Z/cZ)×

∫
J∞,ν

χ(t)t
k−2
2

p log(tp)dµw∞
f,MTT(t).(3.3.32)

Now as ν ranges over (Z/cZ)×, the sets J∞,ν cover Z×p,c, with each point being
covered s′ times. Thus (3.3.32) becomes∫

Z×p,c

χ(t)t
k−2
2

p log(tp)dµw∞
f,MTT =

∫
Z×p,c

χ(t)(ω(t)〈t〉)
k−2
2 log(tp)dµw∞

f,MTT

=
d

ds

(∫
Z×p,c

χ(t)ω(t)
k−2
2 〈t〉sdµw∞

f,MTT

)
|s= k−2

2

=
d

ds
Lw∞

p (f, ω
k−2
2 χ, s)|s= k−2

2
.

Finally, we remark that

(ω
k−2
2 χ)(−1) = w∞(−1)

k−2
2 ,

so
Lp(f, ω

k−2
2 χ, s) = Lw∞

p (f, ω
k−2
2 χ, s).

This concludes the proof of Theorem 3.3.19.

4. Breuil duality and p-adic Langlands theory

4.1. Brief remarks on the p-adic Langlands program. In this lecture,
we approach the Darmon-Orton theory developed earlier from the point of view of
p-adic Langlands theory. In general terms, the classical Langlands program sets up
a correspondence between Galois representations and classical automorphic forms.
The p-adic Langlands program, which is currently in an early but exciting phase of
development, seeks (at least in its local version) to relate classes of continuous p-adic
representations of reductive groups to local p-adic Galois representations. Because
p-adic representations are so much more complicated than complex representations,
and continuous p-adic representations are more complicated than classical smooth
representations, the p-adic Langlands program requires the introduction of many
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new concepts. For an overview of some of the ideas in the (local) p-adic Lang-
lands program, see the introduction to Breuil’s paper [2]. See also the paper [14],
which adopts a representation theoretic perspective on many of the ideas we have
discussed.

To get a taste of these new ideas in the situation of interest to us in these
lectures, let us denote by σ(f) the p-adic representation of Gal(Q/Q) attached to
the newform f of weight k ≥ 2 and level M . The philosophy of the p-adic Langlands
program suggests that one should be able to recover this Galois representation from
purely automorphic data associated to f . Similarly, the “local” p-adic Langlands
program should relate the local representation σp(f) := σ(f)|Gal(Qp/Qp) to the local
automorphic component πp(f) of the representation of GL2 determined by f .

From the classical theory, we know that when the level of f is exactly divisible
by p, the local automorphic component πp(f) does not contain enough information
to isolate σp. Indeed, in this case, πp(f) is always the Steinberg representation
and it is exactly the L invariant of f (and its weight) that provide the additional
information necessary to identify the local Galois representation associated to f .
In the papers [2] and [3] Breuil seeks to answer the question:

How can we extract the L-invariant of f from “automorphic”
information?

Breuil’s answer to this question begins with a certain p-adic completion Ĥ1
c (N)⊗

E of the étale cohomology of the tower of modular curves of level Npr. This com-
pletion is a p-adic Banach space with a Hecke action and GL2(Qp) action that
preserves its norm, defined over the finite extension E of Qp generated by the
Hecke eigenvalues of f . (This space is defined in more detail in the next section.)
Roughly speaking, the part of the space Ĥ1

c (N) ⊗ E cut out by insisting that the
Hecke algebra act through the eigenvalues of the form f contains the locally alge-
braic representation

Symk−2(E2)⊗E πp(f) “∼=”Cla(Qp, 2− k)/Pk−2 ⊗ E

embedded GL2(Qp)–equivariantly, where the symbol “∼=” means “more or less the
same as.” For a thorough discussion of these ideas, see [14, Section 4], which in
turn refers to [13].

Denote by π̂p(f) the closure of Symk−2E2 ⊗E πp(f) in Ĥ1
c (N) ⊗ E. Breuil

proves that:
(1) when k > 2, σp(f) is absolutely irreducible, and π̂p(f) indeed exactly

determines L(f).
(2) When k = 2, σp(f) is reducible and is not determined by π̂p(f). However,

Breuil shows that Ĥ1
c (N) ⊗ E contains a topologically reducible Banach

space representation of length 2 with π̂p(f) its unique sub-object, which
determines L(f), and which depends only on σp(f).

For the purposes of these notes, we will be mainly interested in how Breuil’s
point of view gives an alternate definition of the L-invariant. As before, we assume
that the level of f is M = Np, with p - N . In this situation, the sign w occurring
in the previous section is w = a−1

p · p k−2
2 . Let nr(w) denote the representation of

GL2(Qp) which sends x 7→ wordp(det(x)). For each L ∈ E, Breuil uses the theory of
modular symbol-valued measures on the upper half plane to define a Banach space
representation B(k,L) of GL2(Qp). He then proves:
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Theorem 4.1.1. There exists a (unique) LB(f) ∈ E such that

HomGL2(Qp)

(
B(k,L)⊗ nr(w), (Ĥ1

c (N)⊗ E)f
)
∼=

{
0 if L 6= −LB(f)
E2 if L = −LB(f).

Furthermore, we have LB(f) = L+
O(f) = L−O(f).

Here (Ĥ1
c (N)⊗ E)f denotes the f -isotypic component of Ĥ1

c (N)⊗ E, i.e. the
subspace on which the Hecke algebra acts via the eigenvalues of f . In the remainder
of this lecture, we discuss B(k,L) and sketch a proof of Theorem 4.1.1.

4.2. Completed Étale cohomology. Let K =
∏

`K` be an open compact
subgroup of GL2(Ẑ). We denote by Y (K) the open modular curve over Q, whose
complex points are given by:

Y (K)(C) := GL2(Q)\GL2(AQ)/SO2(R)R×K.

The number of geometric connected components of Y (K) is the size of

(Q+)×\A×Q,f/det(K).

For a positive integer n, we write H1(Y (K),Z/pnZ) for the Betti cohomology of
the complex space Y (K)(C), or equivalently, the étale cohomology of the algebraic
variety Y (K)Q. Similarly, H1

c (Y (K),Z/pnZ) represents cohomology with compact
supports. For ∗ = c or ∗ = empty, the Z/pnZ-module H1

∗ (Y (K),Z/pnZ) is
naturally endowed with an action of Gal(Q/Q). In the most concrete terms, the
Galois action on H1

c (Y (K),Z/pnZ) can be understood by identifying this space
with the pn torsion of the jacobian of the closed curve X(K), relative to its set of
cusps.

In addition, H1
∗ (Y (K),Z/pnZ) is endowed with a Hecke action. First let

H1
∗ (Y (K),Zp) = lim

←
H1
∗ (Y (K),Z/pnZ).

Note that for K ′ ⊂ K, the group K acts on the right on Y (K ′) and hence on the
cohomology H1

∗ (Y (K ′),Zp). Furthermore, the collection of such K ′ forms a direct
system under inclusion, with an inclusion K1 ⊂ K2 ⊂ K inducing a K-equivariant
map

H1
∗ (Y (K2),Zp)→ H1

∗ (Y (K1),Zp).
If we take the direct limit of this system, it is clear that H1

∗ (Y (K),Zp) maps to
this direct limit, and lies in the subspace which is invariant under the action of K:

H1
∗ (Y (K),Zp) ⊂ (lim

→
K′

H1
∗ (Y (K ′),Zp))K .

Now we may define the Hecke action. For each ` with K` = GL2(Z`), write

K

(
1 0
0 `

)
K =

⊔
δiK

for the matrix (
1 0
0 `

)
∈ GL2(Q`) ⊂ GL2(AQ).

For x ∈ H1
∗ (Y (K),Zp), define T`(x) :=

∑
δ−1
i x in (lim→K′ H

1
∗ (Y (K ′),Zp))K ; one

must check that the image T`(x) again lies in H1
∗ (Y (K),Zp). This action induces

the action on the quotients H1
∗ (Y (K),Z/pnZ) = H1

∗ (Y (K),Zp)/pn as well. The



44 3. THE p-ADIC UPPER HALF PLANE

Hecke operator S` is defined similarly via the matrix
(
` 0
0 `

)
. The Galois and

Hecke actions commute.
Now let Kp =

∏
` 6=pK` be an open compact subgroup of GL2(Ẑ), with trivial

component at p. Let K(pr) := ker(GL2(Zp)→ GL2(Z/prZ)) and define

H1
∗ (K

p) := lim
→r

H1
∗ (Y (KpK(pr)),Zp)

The transition maps in the inductive limit for ∗ = empty are the usual con-
travariant maps on cohomology induced by the projection maps Y (KpK(pr+1) →
Y (KpK(pr)). For ∗ = c, the transition maps are the duals of the trace maps
H1
∗ (Y (KpK(pr+1)),Zp) → H1

∗ (Y (KpK(pr)),Zp) induced by the projections. The
Zp-module H1

∗ (K
p) is torsion-free. Furthermore, it is endowed with a smooth left

GL2(Qp)-action which we now describe.
For each γ ∈ GL2(Qp), right multiplication by γ−1 induces a map Y (γ−1Kγ) 7→

Y (K), which in turn gives a map H1
∗ (Y (K),Zp)→ H1

∗ (Y (γ−1Kγ),Zp). Given any
element x ∈ H1

∗ (K
p), we may choose an index r large enough so that x is represented

by an element in H1
∗ (K

pK(pr),Zp), and such that γ−1KpK(pr)γ ⊂ KpK(ps) for
some s > 1. Then the image of x under the composition of maps

H1
∗ (K

pK(pr),Zp)→ H1
∗ (γ
−1KpK(pr)γ,Zp)→ H1

∗ (K
pK(ps),Zp)

represents an element of H1
∗ (K

p), which is defined to be γx.
Finally, we define

Ĥ1
∗ (K

p) := lim
←n

(
lim
→r

H1
∗ (Y (KpK(pr)),Z/pnZ)

)
∼= lim
←n

H1
∗ (K

p)/pn.

For the remainder of this article, we will be interested in particular in the case

Kp =


(
a b
c d

)
∈ GL2

∏
` 6=p

Z`

: c ≡ 0 (mod N), a ≡ 1 (mod N)

 .

In this case, Y (KpK(pr)) = Y (N, pr) := Y1(N) ×Y (1) Y (pr), the open modu-
lar curve whose connected geometric component Y 0(N, pr) can be identified with
Γ1(N) ∩ Γ(pr)\H.

The modules H1
∗ (K

p) and Ĥ1(Kp) are endowed with Zp-linear actions of
Gal(Q/Q), the Hecke operators T`, S` for ` - Np, and GL2(Qp). This last action
endows Ĥ1

c (Kp) ⊗ Qp with the structure of an admissible unitary Banach space
representation of GL2(Qp). We will simply write H1

c = H1
c (N) and Ĥ1

c = Ĥ1
c (N)

for H1
c (Kp) and Ĥ1

c (Kp), respectively.

4.3. GL2(Qp) representations and modular symbols. In order to connect
the theory of p-adic Banach representations of GL2(Qp) with the work of Orton,
Breuil gave a reinterpretation of the space of GL2(Qp)-equivariant maps from an
arbitrary Banach space into Ĥ1

c , in terms of modular symbols. Let E denote a
finite extension of Qp.

Theorem 4.3.1 ([3], Théorème 2.4.2). Let B be a unitary p-adic Banach space
representation of GL2(Qp) with coefficients in E, and let B∗ := HomE(B,E) be
its GL2(Qp) unitary Banach dual. We have a canonical Hecke equivariant isomor-
phism

(4.3.2) HomGL2(Qp)(B, Ĥ1
c ⊗Zp

E) ∼= HomΓ̃p
1(N)(D0, B

∗),
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where the left hand side denotes continuous E-linear GL2(Qp)-equivariant maps
between the two indicated unitary Banach space representations, and the right side
denotes B∗-valued modular symbols φ such that

φ([γr1]− [γr2])(b) = φ([r1]− [r2])(γ−1b)

for all γ ∈ Γ̃p
1(N). (Note: a unitary representation means that the norm is G-

invariant).

We state this theorem as Breuil does, for the groups

Γ̃p
1(N) =

{(
a b
c d

)
∈ GL2(Z[1/p])+ : c ≡ 0 (mod N), a ≡ 1 (mod N)

}
and

Γp
1(N) =

{(
a b
c d

)
∈ SL2(Z[1/p])+ : c ≡ 0 (mod N), a ≡ 1 (mod N)

}
.

This is a slightly more general setting then that in the previous section, where we
worked with Γp

0. No doubt the results in the previous section hold in this more
generally setting, since the difference between Γp

1 and Γp
0 is “away from p,” but we

have not attempted to make this generalization and we content ourselves here with
following Breuil.

The Hecke equivariance in Thoerem 4.3.1 is with respect to the operators T`

and S` for ` - Np, and w∞. These operators act on the left of (4.3.2) via their
action on Ĥ1

c , and on the right via the usual action on modular symbols.
To prove Theorem 4.3.1, let M be the closed unit ball in B. We will show that

there is a Hecke equivariant isomorphism
(4.3.3)

HomGL2(Qp)

(
M,H1

c ⊗ OE/π
n
EOE

) ∼= HomΓ̃p
1(N) (D0,HomOE

(M,OE/π
n
EOE)) .

Theorem 4.3.1 follows by passing to the limit over n and tensoring with E.
To prove (4.3.3), we begin by providing an alternate description of the left

hand side. Denote by IndGL2(Z/prZ)
1 1Z/pnZ the Z/pnZ-module of functions f :

GL2(Z/prZ)→ Z/pnZ. Denote by

(4.3.4) HomΓ1(N)(D0, IndGL2(Z/prZ)
1 1Z/pnZ)

the Z/pnZ-module of group homomorphisms φ : D0 → IndGL2(Z/prZ)
1 1Z/pnZ such

that
φ([r1]− [r2])(xγ) = φ([γr1]− [γr2])(x)

for all [r1] − [r2] ∈ D0, x ∈ GL2(Z/prZ), and γ ∈ Γ1(N). The Z/pnZ-module in
(4.3.4) is endowed with a left GL2(Z/prZ)-module action via:

(4.3.5) (g(φ))([r1]− [r2])(x) := φ([r1]− [r2])(g−1x).

We then have:

Lemma 4.3.6. For each pair of integers n > 0 and r > 1, there is a canonical
GL2(Z/prZ)-equivariant isomorphism

(4.3.7) H1
c (Y (N, pr),Z/pnZ) ∼= HomΓ1(N)(D0, IndGL2(Z/prZ)

1 1Z/pnZ).

Furthermore, this isomorphism is equivariant with respect to the Hecke operators
T`, S` for ` - Np, and transforms the action of complex conjugation on the left to
that of w∞ on the right.
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Proof. We will give the geometric intuition behind the slightly weaker iso-
morphism

(4.3.8) H1
c (Y 0(N, pr),Z/pnZ) ∼= HomΓ1(N)(D0, IndSL2(Z/prZ)

1 1Z/pnZ).

The curve Y 0(N, pr) may be thought of as the many holed torus X0(N, pr), minus
a certain finite number of cusps. By Poincaré duality, the left side of (4.3.8) is

Hom(H1(X0(N, pr), cusps;Z),Z/pnZ),

the Z/pnZ-dual of the homology of the torus X0(N, pr) relative to its set of cusps.
Meanwhile, the right side of (4.3.8) is HomΓ1(N)∩Γ(pr)(D0,Z/pnZ) by Shapiro’s
Lemma. It thus remains to prove:

(4.3.9) Hom(H1(X0(N, pr), cusps;Z),Z/pnZ) ∼= HomΓ1(N)∩Γ(pr)(D0,Z/pnZ).

Given an element [x] − [y] ∈ D0, consider any path in H ∪ P1(Q) starting at x
and ending at y. The image of this path in Γ1(N) ∩ Γ(pr)\(H ∪ P1(Q)) yields
a well-defined element of H1(X0(N, pr), cusps;Z). The theory of modular symbols
states that this identification induces an isomorphism as in (4.3.9).

The compatibility of the isomorphism with the Hecke algebra involves compu-
tations with the group action. The isomorphism (4.3.7) follows from similar, but
more involved reasoning. For details of all of this, see [3, Lemme 2.3.2]. �

Passing to the inductive limit over r in (4.3.7), we obtain a Hecke equivariant
isomorphism

(4.3.10) H1
c /p

n ∼= HomΓ1(N)(D0, IndGL2(Zp)
1 1Z/pnZ),

where IndGL2(Zp)
1 1Z/pnZ denotes the Z/pnZ-module of locally constant functions

GL2(Zp)→ Z/pnZ. The right hand side of (4.3.10) is endowed with a left GL2(Zp)
action, as given in equation (4.3.5). This action may be extended to GL2(Qp) as
follows. For any g ∈ GL2(Qp) and x ∈ GL2(Zp), we may write g−1x = ba with
b ∈ GL2(Zp) and a ∈ Γ̃p

1(N). We then define

(4.3.11) (g(φ))([r1]− [r2])(x) := φ([ar1]− [ar2])(b).

One easily checks that this definition is independent of the choice of a and b,
and yields a well-defined GL2(Qp)-action extending the GL2(Zp)-action defined
in (4.3.5). Furthermore, with this action, the isomorphism (4.3.10) is GL2(Qp)-
equivariant.

We are now in a position to prove (4.3.3). In view of (4.3.10), we must construct
an isomorphism

ϕ : HomGL2(Qp)

(
M,HomΓ1(N)(D0, IndGL2(Zp)

1 1OE/πn
EOE

)
)

��
HomΓ̃p

1(N) (D0,HomOE
(M,OE/π

n
EOE)) .

Such a map ϕ is given by

ϕ(F )([r1]− [r2])(m) := F (m)([r1]− [r2])(1)

for all m ∈M . Its inverse ψ is given by

ψ(G)(m)([r1]− [r2])(h) := G([r2]− [r1])(h−1m)
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for all m ∈ M and h ∈ GL2(Zp). We leave it to the reader to verify (or consult
[3, Proposition 2.4.1]) that the functions ϕ and ψ indeed map the indicated spaces
to one another, that the two maps are mutually inverse, and that they are Hecke
equivariant. This concludes the proof of Theorem 4.3.1.

4.4. Breuil Duality. Breuil Duality is a generalization of the Morita Duality
that we discussed in Section 2.2.4. For details on this duality, see the proof of [3,
Theorem 3.2.3]. In this section, we continue to assume that the ground field (over
which X is defined) is the field Qp.

Let OE(k) be the space of rigid analytic functions H : X → E with a left
G = GL2(Qp) action given by((

a b
c d

)
H

)
(z) :=

det(g)k/2

(bz + d)k
H

(
az + c

bz + d

)
.

Let | · |p be the usual p-adic absolute value, and let ε be the character ε : Q∗p →
Z∗p defined by

ε(x) = x|x|p.
We view ε as a character of G through the determinant:

ε(g) = ε(det(g)).

Let OE,ε(k) be the space obtained by adjusting the action of the center of G

OE,ε(k) = ε(2−k)/2 ⊗ OE(k).

We now define the space OE(k,L) for each L ∈ E. This space consists of
the integrals of functions in OE,ε(k). These integrals are not rigid analytic, but
involve a fixed “branch” of the p-adic logarithm determined by the number L. (See
the partial fractions expansion in Lemma 2.2.7 and consider what’s involved in
integrating it formally).

Definition 4.4.1. Let logL : C×p → Cp be the branch of the p-adic logarithm
which satisfies logL(p) = L.

Let

U =
s⊔

i=0

Ui

be a covering of Qp in Cp by pairwise disjoint opens Ui, such that U0 := {z ∈ Cp :
|z| > r0} and Ui := {z ∈ Cp : |z − zi| < ri} for 1 ≤ i ≤ s, with ri ∈ |E×| and
zi ∈ Qp. Define O(2− k,L) to be the space of functions H : X→ Cp such that the
restriction to each affinoid XU := Cp − U ⊂ X with U as above, has the form:

H|XU
= HU +

s∑
i=1

k−2∑
n=0

ci,nz
n logL(z − zi),

with ci,n ∈ E and HU an E-rational rigid analytic function on XU . The space
O(2− k,L, E) is endowed with the left GL2(Qp) action given by((

a b
c d

)
H

)
(z) := ε(ad− bc)−

k−2
2

(bz + d)k−2

(ad− bc)(k−2)/2
H

(
az + c

bz + d

)
.
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As Lemma 2.2.7 suggests, the (k − 1)st derivative map induces a short exact
sequence of GL2(Qp)-representations:

(4.4.2) 0→ Pk−2(E)⊗ ε
2−k
2 → O(2− k,L, E)→ OE,ε(k)→ 0.

Let Clog(Qp, 2−k,L, E) be the space of locally analytic functions h on Qp such
that in a neighborhood of ∞ we have,

(4.4.3) h(z) = −2P (z) logL(z) + zk−2
∞∑

n=0

an

zn

with an ∈ E and P (z) ∈ Pk−2(E). The space Clog(Qp, 2 − k,L, E) has a direct
limit topology similar to that on Can(Qp, 2− k,E) defined in Definition 2.1.4. To
be precise, given a covering U of Qp in Cp as above, a collection of power series
fi on Ui, along with a function f0 as in Equation (4.4.3) on the set U0, gives an
element f in Clog. The functions defined relative to a fixed covering form a Banach
space, and the full space Clog(Qp, 2 − k,L, E) is the direct limit of these Banach
spaces as the coverings are refined.

The group action on Clog(Qp, 2− k,L, E) is given by the formula

g∗(h)(z) = ε(k−2)/2(g)
(bz + d)k−2

det(g)(k−2)/2

[
h(
az + c

bz + d
) + P (

az + c

bz + d
) logL(

ad− bc
(bz + d)2

)
]
.

Define

(4.4.4) Σ(Qp, 2− k,L, E) = Clog(Qp, 2− k,L, E)/Pk−2(E).

Let us now consider the dual exact sequence to (4.4.2). For even integer k ≥ 2,
Morita duality (Theorem 2.2.1) identifies the dual of the rightmost term OE,ε(k) in
(4.4.2) with the space

Can
ε (Qp, 2− k,E)/Pk−2 := ε

k−2
2 ⊗ (Can(Qp, 2− k,E)/Pk−2(E)),

where Can(Qp, 2− k,E) is the space of E-valued locally analytic functions on Qp

with poles of the correct order at∞. Breuil duality (Theorem 4.4.5 below) identifies
the dual of the larger space O(2−k,L, E) with the space Σ(Qp, 2−k,L, E) of (4.4.4).
Thus the dual exact sequence to (4.4.2) may be written:

0 // Can
ε (Qp, 2− k,E)/Pk−2

// Σ(Qp, 2− k,L, E)

ttiiiiiiiiiiiiiiiii

ε(k−2)/2 ⊗Hom(Pk−2(E), E) // 0.

The map on the right side of this series picks out the logarithmic part at infinity of
the function h, taking into account the group action.

Theorem 4.4.5. There exists a unique G-invariant pairing

〈 · , · 〉B : Clog(Qp, 2− k,L, E)/Pk−2(E)× O(2− k,L, E)→ E

satisfying:

(1) for z ∈ X, 〈 (x−z)k−2

(k−2)! logL(x− z), G〉 = G(z);
(2) if f ∈ Can

ε (Qp, 2− k,E)/Pk−2 then

〈f,G〉B = 〈f,G(k−1)〉M ;
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(3) if G ∈ OE,ε(2− k), then

〈f,G〉B = (−1)k−1〈f (k−1), G〉M ,

where 〈 · , · 〉M is the Morita pairing.

Proof. See [2, Section 3]. �

Of particular importance in Breuil’s work are two Banach spaces, B(2− k,L)
and B(2−k) that contain the spaces Σ(Qp, 2−k,L, E) and Can

ε (Qp, 2−k,E)/Pk−2

respectively as dense subspaces. One way to think of the space B(2− k) is as the
continuous dual of the space Oε,E(k)b of functions f ∈ Oε,E(k) having bounded
residues, defined as in Corollary 2.3.4 or Section 2.3 — and, in fact, this is literally
true, provided one equips Oε,E(k)b with the proper topology. It is also true that
B(2− k) is the completion of the space Cla(Qp, 2− k,E)/Pk−2(E) of locally poly-
nomial functions on Qp with respect to a certain norm. When k = 2, this is just
the sup-norm.

To avoid too many functional analytic complications, we content ourselves with
listing some key properties of B(2− k):

(1) B(2− k) is a Banach space.
(2) When k > 2, it is the completion of the locally polynomial functions

Cla
ε (Qp, 2− k,E)/Pk−2 in a certain G-invariant norm.

(3) Let Char(k, ε, E) denote the space of harmonic cocycles with values in
Hom(Pk−2(E), E) and group action twisted by ε

k−2
2 . There is a continuous

duality between the space Oε,E(k)b ∼→ Char(k, ε, E)b of bounded rigid
functions and B(2−k); with the proper topology on the harmonic cocycles,
each is the continuous dual of the other.

(4) The space Can
ε,E(Qp, 2− k,E)/Pk−2 is dense in B(2− k).

Similarly, one can identify a space of bounded functions O(2− k,L, E)b in the
space O(2 − k,L, E). In simple terms, a function is bounded if it, and all of its
translates by the G-action, are bounded on a fixed affinoid domain in X. This space
of bounded functions is then given a topology so that its dual is a Banach space
B(2− k,L).

The relevant properties of B(2− k,L) are:
(1) B(2− k,L) is a Banach space with a G-invariant norm.
(2) There is a continuous duality between the “bounded” elements O(2 −

k,L, E)b of Oε,E(2− k,L) and B(2− k,L).
(3) When k > 2, the surjection O(Qp, 2 − k,L) → Oε,E(k) becomes an iso-

morphism.
To avoid too many functional-analytic complications, we will not give a precise

definition of the Banach spaces B(2− k) and B(2− k,L). See [3, Section 3.1-3.3]
for the full definition, which relies on the duality described in [41].

One important remark: the fact that O(2 − k,L, E)b is non-zero is highly
nontrivial! The paper [2] proves this when L = L(f) for some cusp for f of level
Np; see the papers of Colmez for the general case.

4.5. Orton’s L-invariant from Breuil’s viewpoint. In this section we
combine the ideas of Breuil and Morita duality with the Darmon picture of modular
symbols on the tree to approach Breuil’s interpretation of the L-invariant.
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We first assemble a few facts. First, recall from Proposition 3.2.7 that, given a
p-new cusp form f on Γ1(N) we have a function

Φ±f : D0 × Edges(X)× Pk−2 → E

that, holding the D0-variable fixed, is a bounded harmonic cocycle in Char(k)b on
X.

At the same time, the cohomological calculations from Section 3.3.1 tell us that

Lemma 4.5.1. We have w∞Φ±f = ±Φ±f , and

HomΓp
1(N)(D0, Char(k))f = EΦ+

f ⊕ EΦ−f .

Proof. This is essentially the content of Proposition 3.3.13. Since the map is
Hecke equivariant, and the group Γp

1(N) acts transitively on the edges (at least up
to orientation) the function Φf is determined by its value on e0, where it must lie
in a one dimensional subspace. �

Theorem 4.5.2. The residue map Oε,E(k) → Char(k, ε, E) induces isomor-
phisms

HomΓp
1(N)(D0,Oε,E(k)b) ∼= HomΓp

1(N)(D0,Oε,E(k))
∼= HomΓp

1(N)(D0, Char(k, ε, E)b).

Furthermore,

HomΓp
1(N)(D0,O(2− k,L)b) ∼= HomΓp

1(N)(D0,O(2− k,L))

In words: an invariant modular symbol with values in harmonic cocycles automat-
ically takes values in bounded harmonic cocycles.

Proof. We will prove the first result; the second is proved similarly, but since
we avoided giving a precise definition of the norm on O(2 − k,L), we won’t give
details. Suppose φ : D0 → Char(k, ε, E) is Γp

1(N) invariant. To compute the value
φ(m)(e) ∈ Hom(Pk−2(E), E), first use transitivity of the Γp

1(N) action on the edges
to find γ so that e = γe0. Then

φ(m)(e) = γ(φ(γ−1(m))(e0)).

Next use the fact that the stabilizer of e0 in Γp
1(N) is Γ1(pN) and that D0/Γ1(pN)

is finitely generated; in other words, there are finitely many mi ∈ D0, τi ∈ Γ1(pN),
and integers ai so that

γ−1(m) =
∑

aiτimi.

Therefore

ω(γ−1φ(m)(γe0)) = ω(φ(γ−1(m))(e0)) = ω(φ(
∑

aiτimi)(e0)) ≤ inf
i
ω(φ(mi)(e0)).

Thus the cocycle is automatically bounded. Now use the Poisson integral to inte-
grate the associated measure (using Corollary 2.3.4) to obtain, for each m ∈ D0,
an element in Oε,E(k) which is, of necessity, bounded. �

Let Φ±F ∈ HomΓp
1(N)(D0,O(k)) denote the elements which map to

Φ±f ∈ HomΓp
1(N)(D0, Char(k)b)
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under the isomorphism of Theorem 4.5.2. Using the Poisson integral, we may write

Φ±F (m)(z) =
∫
P1(K)

1
z − x

dΦ±f (m)

viewing Φ±f as a bounded distribution.

Lemma 4.5.3. We have w∞Φ±F = ±Φ±F , and

HomΓp
1(N)(D0,O(k))f = EΦ+

F ⊕ EΦ−F .

Proof. This follows directly from Lemma 4.5.1 and Theorem 4.5.2. �

Before we proceed, we introduce some extra notation. Fix L ∈ E. If H is a
rigid analytic E-rational function on Ω, we may view H as an element of O(2) and
choose a lift H̃ of H via the surjection O(2,L)→ O(2); i.e. H̃ is a logL-rigid anti-
derivative of H. The function H̃ is determined up to a constant, so for z1, z2 ∈ Ω,
the value ∫ z2

z1

H(z)dz := H̃(z1)− H̃(z2)

is well-defined, and called a Coleman line integral relative to the choice of L.
For each L ∈ E and Q ∈ Ω, we define a 1-cocyle

c±L,Q ∈ Z
1(Γp

1(N),Hom(D0,Hom(Pk−2(E), E)))

by the rule

γ 7→ c±L,Q(γ)([r1]− [r2])(P (z)) :=
∫ γQ

Q

Φ±F ([r1]− [r2])(z)P (z)dz.

The class of c±L,Q in H1(Γp
1(N),Hom(D0,Hom(Pk−2(E), E))) is independent of Q

and is denoted c±L.

Proposition 4.5.4. We have

c±L,Q(γ)([r1]− [r2])(P (z)) = Φ±f ([r1]− [r2])
(

logL

(
z − γQ
z −Q

)
P (z)

)
and hence

c±L = lc±f + L · oc±f .
Proof. We give a completely formal, but essentially correct proof. Use the

representation of ΦF as a Poisson integral to write c±L,Q as a “double integral”:

c±L,Q(γ)([r1]− [r2])(P (z)) =
∫ γQ

Q

∫
P1(K)

P (z)
z − x

dΦ±f ([r1]− [r2]).

Interchanging the order of integration, using the selected branch of the logarithm,
and taking into account the fact that dΦ±f vanishes on polynomials, yields

c±L,Q(γ)([r1]− [r2])(P (z)) =
∫
P1(Qp)

∫ γQ

Q

P (z)
z − x

dΦ±f ([r1]− [r2])

=
∫
P1(Qp)

logL

(
x− γQ
x−Q

)
P (x)dΦ±f ([r1]− [r2])

as claimed. The last statement then follows from the fact that

logL(z) = log(z) + L ord(z).

�
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Theorem 4.5.5. As usual, k ≥ 2 and even. For every L ∈ E, the surjection
O(2− k,L)→ O(k) induces an injection:

(4.5.6) HomΓp
1(N)(D0,O(2− k,L))f ↪→ HomΓp

1(N)(D0,Oε,E(k))f ,

and

Φ±F ∈ HomΓp
1(N)(D0,O(2− k,L))f ⇔ L = L±O(f).

Proof. The exact sequence (4.4.2) induces a Hecke- and GL2(Q)-equivariant
sequence

0 → Hom
(
D0, Pk−2(E)⊗ ε−

k−2
2

)
→ Hom(D0,O(2− k,L))(4.5.7)

→ Hom(D0,Oε,E(k))→ 0.

Take Γp
1(N)-invariants and f -isotypic components. We have

HomΓp
1(N)

(
D0, Pk−2 ⊗ ε−

k−2
2

)f

= 0

by an argument as in Lemma 3.3.15.
Let

δL : HomΓp
1(N)(D0,O(k))→ H1

(
Γp

1(N),Hom
(
D0, Pk−2 ⊗ ε−

k−2
2

))
denote the coboundary map in the long exact sequence associated to (4.5.7). Recall
that Φ±F ∈ HomΓp

1(N)(D0,O(k))f . We will show that

(4.5.8) δL(Φ±F ) = 0⇔ L = −L±O(f).

Thus if L 6= −L±O(f), then Φ±F 6∈ HomΓp
1(N)(D0,O(2−k,L)). Suppose on the other

hand that L = −L±O(f). We have an exact sequence of finite dimensional E-vector
spaces:

0 → HomΓp
1(N)

(
D0, Pk−2 ⊗ ε−

k−2
2

)
→ HomΓp

1(N)(D0,O(2− k,L))(4.5.9)

→ ker(δL)→ 0.

The f -isotypic component of the leftmost non-trivial term in (4.5.9) is trivial; this
implies that the rightmost nontrivial arrow induces an isomorphism on f -isotypic
components. Since Φ±F ∈ (ker δL)f , we have that Φ±F ∈ HomΓp

1(N)(D0,O(2−k,L))f

as desired.
It remains to prove (4.5.8). Let Φ̃ denote a lift of Φ±F via the surjection

Hom(D0,O(2− k,L))→ Hom(D0,O(k)).

By definition, δL(Φ±F ) is the class of the 1-cocycle ∆L defined by

γ 7→ ∆L(γ) := γ(Φ̃)− Φ̃ ∈ Hom
(
D0, Pk−2(E)⊗ ε−

k−2
2

)
.

(Recall that the map from O(2− k,L) to O(k) is the (k − 1)st derivative.)
For m ∈ D0 and γ ∈ Γp

1(N), the functions γΦ̃(m) and Φ̃(m) are logL-rigid
functions of a variable T ∈ X, and the difference is a polynomial in T of degree at
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most k − 2; around each point z0 ∈ X we therefore have the representation

γΦ̃(γ−1(m))− Φ̃(m) =
k−2∑
i=0

γΦ̃(γ−1m)(i)(z0)
(T − z0)i

i!

−
k−2∑
i=0

Φ̃(m)(i)(z0)
(T − z0)i

i!
,(4.5.10)

where the exponent (i) represents the ith derivative.
Now one checks that

(4.5.11)
k−2∑
i=0

γΦ̃(γ−1m)(i)(z0)
(T − z0)i

i!
= γ

(
k−2∑
i=0

Φ̃(γ−1m)(i)(γ−1z0)
(T − γ−1z0)i

i!

)
.

Now we will correct ∆L by a coboundary in order to make it possible to finish
the computation. Fix Q ∈ X. Define ψ ∈ Hom(D0, Pk−2 ⊗ ε−

k−2
2 ) by the formula

ψ(m) :=
k−2∑
i=0

Φ̃(m)(i)(Q)
(T −Q)i

i!
,

and let dψ be the coboundary dψ(γ) = γψ−ψ. Using (4.5.10) and (4.5.11) applied
to z0 = γQ, one calculates
(4.5.12)

(dψ(γ)−∆L(γ))(m) =
k−2∑
i=0

Φ̃(m)(i)(γQ)
(T − γQ)i

i!
−

k−2∑
i=0

Φ̃(m)(i)(Q)
(T −Q)i

i!
.

Now we apply ( d
dz ) to the function

k−2∑
i=0

Φ̃(m)(i)(z)
(T − z)i

i!

and obtain

Φ̃(m)(k−1)(z)
(T − z)k−2

(k − 2)!
= Φ±F (m)

(T − z)k−2

(k − 2)!
.

We can therefore express the right side of (4.5.12) as a Coleman line integral relative
to L:

dψ(γ)−∆L(γ) =
1

(k − 2)!

∫ γQ

Q

Φ±F (m)(z)(T − z)k−2dz.

To compare this with c±L,Q, we must first recall the fact that Pk−2(E) and
Hom(Pk−2(E), E)) are isomorphic irreducible G-representations. Up to scalar mul-
tiplication, there is a unique isomorphism between these spaces. In fact, expanding
the representative for ∆L(γ) we have computed above, we find

∆L(γ) ≡ 1
(k − 2)!

k−2∑
j=0

(−1)j

(
k − 2
j

)
T j

∫ γQ

Q

zk−2−jΦ±F (m).

In the isomorphism between Pk−2(E) and Hom(Pk−2(E), E), This polynomial cor-
responds (up to multiples) to the cocycle

δL(γ)(xj) =
∫ γQ

Q

zjΦ±F (m)
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which is nothing but c±L,Q. Consequently ∆L is cohomologous to zero precisely
when c±L,Q = 0; the equivalence (4.5.8) follows from Proposition 4.5.4. �

Note that, taking into account Theorem 4.5.2, we have in fact proven:

Corollary 4.5.13. Let L ∈ E. If L 6= −L±O(f), then

HomΓp
1(N)(D0,O(2− k,L)b)f,± = 0.

If L = −L±O(f), then we have isomorphisms

HomΓp
1(N)(D0,O(2− k,L)b)f,± ∼= HomΓp

1(N)(D0,O(k)b)f,± = EΦ±F .

4.6. Conclusion of proof of Breuil’s Theorem.

Lemma 4.6.1. For any L ∈ E, we have

HomΓ̃p
1(N)(D0,O(2− k,L)b ⊗ nr(w−1))f = HomΓp

0(N)(D0,O(2− k,L)b)f .

Proof. In view of Corollary 4.5.13, we must verify that WpΦ±F = λΦ±F where
Wp is a matrix in Γ̃p

1(N) which does not lie in Γp
1(N). Such a matrix is given by(

pu v
Nps t

)
where u, v, s, t are integers with put−Nsv = 1. The desired result then

follows from

F (W−1
p α, z) =

pk−1

ap
F (α,Wpz)(pNsz + pt)−k,

which itself follows from f |Wp = −apf . For the details, see [2, Proposition 5.1.1]
�

Combining Theorem 4.3.1, Theorem 4.5.2, Lemma 4.6.1, and the duality be-
tween B(2− k,L) and O(2− k,L)b, we find that
(4.6.2)
HomGL2(Qp)(B(k,L)⊗ nr(w), Ĥ1

c (Kp
1 (N))⊗ E)f ∼= HomΓp

1(N)(D0,O(2− k,L))f

for all L ∈ E.
We may now deduce Breuil’s Theorem:

Theorem 4.6.3. Let L ∈ E. We have L+
O = L−O and if we let LB denote this

common value we have:

H = HomGL2(Qp)

(
B(k,L)⊗ nr(w), (Ĥ1

c (Kp
1 (N))⊗ E)f

)
satisfies

H ∼=

{
0 if L 6= −LB(f)
EΦ+

F + EΦ−F if L = −LB(f).

Proof. The equality of the L±O invariants is a consequence of the fact that the
space H in the statement of the theorem carries an action by the Hecke algebra
for f . Given one homomorphism h in this space, one can construct another by
taking, for example, T`(h) for some ` prime to Np. These two homomorphisms
are then independent (because, by the Eichler-Shimura relations, f picks out a
two-dimensional subspace of the target). Thus H cannot be one-dimensional, and
therefore the two L invariants must agree. The full result then follows from (4.6.2)
and Corollary 4.5.13. �
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Breuil shows further that EΦ+
F + EΦ−F ∼= σp(f)∗. He also proves that for all

L ∈ E, we have
HomGL2(Qp) (B(k,L)⊗ nr(w), π̂p(f)) = 0

if L 6= −LB(f) and that if k > 2,

HomGL2(Qp) (B(k,−LB(f))⊗ nr(w), π̂p(f)) = E.

In the introduction to this lecture, we asked Breuil’s question: can we extract
the L-invariant of f from automorphic information? This result shows that this
is, indeed, the case. This result is, essentially, a “formula” for LB(f) that uses
only representation theoretic information. Indeed, the space π̂p(f) is born inside
a large p-adic Banach space representation constructed from global automorphic
data – the cohomology of modular curves. One might view it as the global p-adic
automorphic representation attached to the modular form f . Breuil then shows
that the L invariant of f identifies exactly which member of the family B(k,−L) of
Banach spaces occurs in this large representation. We should view B(k,−LB(f))
as the local representation at p associated to f in the big representation π̂p(f).
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théorèmes de Čerednik et de Drinfel′d , Astérisque No. 196-197 (1991), 7, 45–158 (1992)
[5] R. Coleman and A. Iovita, The Frobenius and monodromy operators for curves and abelian

varieties. Duke Math. J. 97 (1999), no. 1, 171–215.

[6] P. Colmez, Fonctions d’une variable p-adique, Preprint, 2005. Available at
http://www.math.jussieu.fr/~colmez/publications.html.

[7] P. Colmez, Zèros supplémentaires de fonctions L p-adiques de formes modulaires, Algebra

and Number Theory, edited by R. Tandon, Hindustan book agency (2005), 193-210. See
also http://www.math.jussieu.fr/~colmez/publications.html, #22

[8] P. Colmez, Une correspondance de Langlands locale p-adique pour

les représentations semi-stables de dimension 2, preprint, 2004. See
http://www.math.jussieu.fr/~colmez/publications.html, #4.

[9] P. Colmez, La conjecture de Birch et Swinnerton-Dyer p-adique, Sém. Bourbaki 2002-03,
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295 (2004), 291–299.

[41] P. Schneider and J. Teitelbaum, Banach space representations and Iwasawa theory. Israel

J. Math. 127 (2002), 359–380.
[42] P. Schneider and J. Teitelbaum, Algebras of p-adic distributions and admissible represen-

tations , Invent. Math. 153 (2003), no. 1, 145–196.

[43] J. P. Serre, Trees. Translated from the French original by John Stillwell. Corrected 2nd
printing of the 1980 English translation. Springer Monographs in Mathematics. Springer-

Verlag, Berlin, 2003. x+142 pp. ISBN: 3-540-44237-5
[44] Shimura, G. Introduction to the arithmetic theory of automorphic functions. (reprint of

1971 edition) Princeton University Press, Princeton, NJ 1994.

[45] J. T. Teitelbaum, Values of p-adic L-functions and a p-adic Poisson kernel , Invent. Math.
101 (1990), no. 2, 395–410.
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