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Abstract

In earlier work, the second named author described how one may extract Darmon-
style L -invariants from modular forms on Shimura curves that are special at p. In
this paper, we show that these L -invariants are preserved by the Jacquet–Langlands
correspondence. As a consequence, we prove the second named author’s period con-
jecture in the case where the base field is Q. As a further application of our methods,
we use integrals of Hida families to describe Stark–Heegner points in terms of a certain
Abel–Jacobi map.
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1 Introduction

Let N and p be relatively prime positive integers with p prime and let

f =
∞∑
n=1

an(f)qn ∈ S2(Γ0(Np))p-new

be a Hecke eigenform with a1(f) = 1. In their study of p-adic L-functions associated to
modular forms, Mazur, Tate and Teitelbaum [14] introduce a p-adic invariant of f which
they call its L -invariant. Let X (f, p) be the set of primitive Dirichlet characters with
conductor prime to p such that χ(p) = ap(f) = ±1. If χ ∈ X (f, p) then the interpolation
property forces the p-adic L-function Lp(f, χ, s) of f twisted by χ to vanish at s = 0. This
is called an exceptional zero phenomenon. In this case, they conjecture in [14] that there is
a p-adic number L MTT(f) such that for all χ ∈ X (f, p) of conductor c,

L′p(f, χ, 0) = L MTT(f)
c

τ(χ)

L(f, χ, 1)

Ω
χ(−1)
f

. (1)

Here, τ(χ) is the Gauss sum associated to χ and Ω
χ(−1)
f is the real or imaginary period

of f , depending on the parity of χ. Note that (1) makes sense after fixing embeddings

Q ⊂ C, Q ⊂ Cp, as L(f, χ, 1)/Ω
χ(−1)
f is algebraic by a theorem of Shimura. It follows from

nonvanishing results on critical L-values that L(f, χ, 1) 6= 0 for some χ ∈ X (f, p), making (1)
a nontrivial statement (see [6], Lemma 2.17 and the following remark).

The existence of L MTT(f) was proved by Greenberg and Stevens in the influential pa-
per [10]. Since f is p-ordinary, i.e. ap(f) is a p-adic unit, f lives in a p-adic analytic family f of
eigenforms by the work of Hida [12]. More precisely, there is a p-adic disk U ⊂ Zp×Z/(p−1)Z
containing 2 and a p-adic analytic function an(f) : U −→ Cp for each n ≥ 1, with a1(f) = 1,
such that:

1. For all integers k ≥ 2 with k ∈ U , an(f , k) ∈ Q and the image of f(k) :=
∞∑
n=1

an(f , k)qn

in C[[q]] is the q-expansion of an eigenform in Sk(Γ0(Np)).

2. f(2) = f .

Moreover, up to shrinking U around 2, f is completely determined by f . Note that 1 −
ap(f , k)2 vanishes at k = 2 since ap(f) = ±1. Thus, it is natural to consider the derivative
of this quantity. Greenberg and Stevens show that (1) holds with

L MTT(f) =
d

dk

(
1− ap(f , k)2

)∣∣∣
k=2

=: L GS(f). (2)

Observe also that (2) extends the definition of the L -invariant from the case ap(f) = 1
originally considered in [14] to the case ap(f) = ±1.
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Mazur, Tate, and Teitelbaum further conjecture in [14] that the factor L MTT(f) is of local
type, i.e., depends only on the two-dimensional p-adic representation σp(f) of Gal(Qp/Qp)
associated to f . Greenberg and Stevens prove this in [10] by showing that L GS(f) may be
described in terms of the deformation theory of σp(f).

Since the L -invariant is a local-at-p invariant of f , it is natural to attempt to extract the
L -invariant of f from its Jacquet–Langlands lift g to another indefinite quaternion algebra
B split at p, i.e., with Bp

∼= M2(Qp), since the corresponding automorphic representations
have the same local components at p. (The case of definite quaternion algebras was resolved
by Bertolini, Darmon and Iovita [2].) Following Darmon [6], the second named author [8]
proposed a conjectural method for doing this, as follows.

We first consider a certain p-arithmetic subgroup Θ ⊂ B× of level

N+ := N/ discB, (3)

defined precisely in (29) in §6. We view Θ as a subgroup of GL2(Qp) using the chosen
isomorphism Bp

∼= M2(Qp). Let M0(X) be the space of Cp-valued measures on

X := P1(Qp)

with total measure zero (see §4). The group Θ acts on X by linear fractional transforma-
tions. This induces an action of Θ on M0(X). A Mayer-Vietoris argument, together with
multiplicity-one, shows that for each choice of sign ± at infinity,

dimCp H
1(Θ,M0(X))g,± = 1.

Here, the superscript g indicates the eigensubspace on which the Hecke operators act ac-
cording to the Hecke eigenvalues of g. The superscript ± indicates the ±1-eigenspace for
the natural conjugation action of a matrix of determinant −1 that normalizes Θ. Let ϕ±g be
a nonzero element of H1(Θ,M0(X))g,±. Our definition of the L -invariant of g will arise by
considering the image of ϕ±g under a certain integration pairing that we now define.

For each L ∈ Cp, there is a unique branch logL of the p-adic logarithm such that

logL (p) = L .

Let
Hp = P1(Cp)− P1(Qp)

be the p-adic upper half-plane. Associated to each branch of the p-adic logarithm, there is
a PGL2(Qp)-invariant integration pairing

〈· , ·〉L : M0(X)×Div0Hp −→ Cp

defined by

〈µ, {τ ′} − {τ}〉L =

∫
X

logL

(
x− τ ′

x− τ

)
µ(x),
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which, in turn, induces a pairing

H1(Θ,M0(X))×H1(Θ,Div0Hp) −→ Cp.

Let
∂ : H2(Θ,Z) −→ H1(Θ,Div0Hp)

be the boundary map in the long exact sequence in Θ-cohomology associated to the short
exact sequence defining Div0Hp:

0 −→ Div0Hp −→ DivHp
deg−→ Z −→ 0.

Proposition 1 (cf. [8, Prop. 30]). There are unique constants L D(ϕ±g ) ∈ Cp such that〈
ϕ±g , ∂H2(Θ,Z)

〉
−L D(ϕ±g )

= {0}.

We have chosen the notation L D(ϕ±g ) for these L -invariants since they are defined
following methods of Darmon [6]. The goal of this paper is to relate these L -invariants
L D(ϕ±g ) arising from the cohomology of Shimura curves to those whose origins lie in the
arithmetic of classical modular curves. Our main result is:

Theorem 2. L D(ϕ±g ) = L GS(f).

Using Theorem 2, we deduce Conjecture 2 of [8] in the case where the base field is Q;
see §8 for details. The proof of Theorem 2 falls into two steps. Applying a result of Hida’s
theory, we deform the Jacquet–Langlands lift g of f into a cohomological Hida family Φ±g .
Let ap = ap(k) be the eigenvalue of Up acting on Φ±g . Group cohomological calculations
building upon those in the first named author’s thesis [7] show that

L D(ϕ±g ) =
d

dk

(
1− ap(g, k)2

)∣∣∣
k=2

=: L GS(g).

It remains to show that L GS(g) = L GS(f). We prove this in Theorem 8, which asserts
a compatibility between the Jacquet–Langlands correspondence with the formation of Hida
families. This result is a weak analogue of results of Chenevier [5] for definite quaternion
algebras and may be of independent interest.

In the last section of this paper, we apply our computations to the theory of Stark–Heegner
points. Let E/Q be an elliptic curve and suppose thatO is a real quadratic order with fraction
field K such that (discO, N) = 1. Assume further that the sign in the functional equation
of L(E/K, s) is −1. Then for each character χ : Cl+O → C× of the narrow ideal class group
of O, the sign in the functional equation of L(E/K, χ, s) is also −1. Thus, the conjecture of
Birch and Swinnerton-Dyer leads one to expect that

rankE(HO) = ords=1 L(E/HO, s) = ords=1

∏
χ:Cl+O→C×

L(E/K, χ, s) ≥ |Cl+O |, (4)
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where HO is the narrow ring class field associated to the order O. In [8], the second named
author presented a p-adic analytic construction of local Stark–Heegner points on E, gener-
alizinga construction of Darmon [6] applicable when there is a unique prime p dividing the
conductor of E/Q that is inert in K. The local definition of Stark–Heegner points given
in [8] is contingent upon Conjecture 2 of [8] over the base field Q, which now follows from
Theorem 2. The analytically defined Stark–Heegner points are conjectured to be defined
over the field HO, and are expected to generate a finite index subgroup of E(HO) when the
inequality in (4) is an equality.

The strongest theoretical evidence presented to date for the conjectures of [6] on the
rationality of Stark–Heegner points is the main result of [3] which proves the rationality of
certain linear combinations of Stark–Heegner points. A key tool in the proof of this result is
a description of the formal group logarithms of Stark–Heegner points in terms of periods of
Hida families. In §9, we prove such a formula for the Stark–Heegner points of [8]. We intend
to pursue the analogue of the rationality result of [3] in future work.

2 Modular forms on quaternion algebras

and the cohomology of Shimura curves

Let f be as in the introduction with level Np, p - N . In order to ensure that f admits a
Jacquet–Langlands lift to an indefinite quaternion Q-algebra, we suppose that the tame part
N of the level of f admits a factorization

N = N−N+, (N−, N+) = 1,

such that f is N−-new. We work under the additional simplifying assumption that N− is
squarefree.

Let B be the indefinite quaternion Q-algebra with discriminant N−. Let Rmax be a
maximal order in B. Let ` be a prime with ` - N−. Since B is split at `, we may choose an
embedding

ι` : B →M2(Q`)

such that ι`(Rmax) ⊂M2(Z`). Define

R =

{
α ∈ Rmax : ι`(α) ≡

(
∗ ∗
0 ∗

)
(mod N+Z`) for all ` - N−

}
, (5)

R0 =

{
α ∈ Rmax : ι`(α) ≡

(
∗ ∗
0 ∗

)
(mod pN+Z`) for all ` - N−

}
. (6)

The rings R and R0 are Eichler orders in B of level N+ and pN+, respectively. Set

Γ = R×+/{±1}, Γ0 = R×0,+/{±1},

where the subscript + indicates elements with positive reduced norm.
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Since B is split at the infinite place of Q, we may choose an embedding

ι∞ : B −→M2(R). (7)

The groups Γ and Γ0 may be viewed as discrete groups of transformations of the complex
upper half-plane H by identifying them with subgroups of PGL2(R) via ι∞. The quotients

Y (C) := Γ\H, Y0(C) := Γ0\H

are Riemann surfaces, compact exactly when N− 6= 1. Let H∗ = H∪P1(Q) be the extended
complex upper half-plane and define

X(C) =

{
Y (C) if N− 6= 1,

Γ\H∗ if N− = 1.

Define X0(C) analogously. The Riemann surfaces X(C) and X0(C) are compact and may be
identified with the loci of complex points of Shimura curves X and X0 that admit canonical
models over Q. Of course, these are just the classical modular curves in the case N− = 1.
For the remainder of this section, we assume that N− 6= 1.

Let Sk(Γ) (resp. Sk(Γ)) be the spaces of holomorphic (resp. antiholomorphic), weight k
cusp forms on X(Γ). The spaces Sk(Γ0) and Sk(Γ0) are defined analogously. These spaces
admit the action of a commutative algebra of Hecke operators, all commuting with complex
conjugation (see §3).

Theorem 3 (Jacquet–Langlands correspondence). Let k ≥ 2 be an integer. There is an
isomorphism

Sk(Γ0(N))N
−-new ∼= Sk(Γ) (resp. Sk(Γ0(Np))N

−-new ∼= Sk(Γ0))

that is equivariant with respect to the Hecke operators T` for ` - Np, U` for ` | N+, W` for
` | N−, and Tp (resp. Up).

Therefore, there is a one-dimensional subspace of S2(Γ0), independent of the choice of
isomorphism in the Jacquet–Langlands correspondence, on which the Hecke operators act
via the eigenvalues of f . Let g be a nonzero element of this space. We call g a Jacquet–
Langlands lift of f . Let a`(g) = a`(f) be the eigenvalue of T`, U`, or −W` acting on g in the
cases ` - Np, ` | pN+, and ` | pN−, respectively.

We are also interested in cohomological avatars of g. We have canonical isomorphisms of
Betti and group cohomology

H∗(Γ, E) ∼= H∗(X(C), E), H∗(Γ0, E) ∼= H∗(X0(C), E)

for any characteristic zero field E endowed with the trivial action of Γ. By the de Rham
theorem and the Hodge decomposition,

H1(Γ0,C) = H1(X0(C),C)

= H1,0(X0(C),C)⊕H0,1(X0(C),C)

∼= S2(Γ0)⊕ S2(Γ0).
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Therefore, if E is any field containing the Hecke eigenvalues of g, we have

dimE H
1(Γ0, E)g = 2,

where the superscript g indicates Hecke eigenspace corresponding to the system of Hecke
eigenvalues of g:

H1(Γ0, E)g = {c ∈ H1(Γ0, E) : T`(c) = a`(g)c for ` - N , U`(c) = a`(g)c for ` | pN+}.

(See §3 for a detailed description of Hecke operators acting on group cohomology.) Note
that this space is stable for the Atkin-Lehner involutions −W` for ` | pN− with eigenvalues
a`(g). Conjugation by an element of R×0 of reduced norm −1 induces an automorphism
of H1(Γ0, E) under which the subspace H1(Γ0, E)g is stable. This action corresponds to
complex conjugation of cusp forms and is denoted W∞. Therefore, H1(Γ0, E)g decomposes
into one-dimensional ±-eigenspaces for this action:

H1(Γ0, E)g = H1(Γ0, E)g,+ ⊕H1(Γ0, E)g,−.

We denote by g± a nonzero element of H1(Γ0, E)g,±. In Section 4 we construct a cohomolog-
ical Hida family Φ±g that specializes to g± in weight 2, and in Section 6 we use Φ±g to define
the Darmon L -invariant L D(g±).

3 Hecke operators and group cohomology

In anticipation of the delicate group cohomological calculations to follow, we carefully set
up notation for describing the action of Hecke operators on various cohomology groups.
Let G ⊂ K be an inclusion of groups, x an element of K, M a G-module, and M ′ an
xGx−1-module. Suppose that ξ : M →M ′ is a group homomorphism such that

ξ(gm) = xgx−1ξ(m). (8)

for all g ∈ G and m ∈ M . In our applications, M ⊂ M ′′ for a K-module M ′′, and ξ is the
map m 7→ xm with M ′ = xM ⊂M ′′. The map ξ induces a homomorphism

ξ∗ : H∗(G,M) −→ H∗(xGx−1,M ′) (9)

as follows: Let F• → Z be a resolution of Z by free K-modules. Note that Fr is also a
free G-module and a free xGx−1-module. In what follows, we will often take Fr = Z[Kr+1].
Formally, ξ induces a map of cochain complexes relative to this resolution,

ξ∗ : HomG(Fr,M) −→ HomxGx−1(Fr,M
′), ξ∗(ϕ)(fr) = ξ(ϕ(x−1fr)),

which induces (9). We now use this formalism to define the Hecke operators that play a role
in this paper.
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• Suppose that ` > 0 is a prime divisor of N−. Then there exists an element λ ∈ R0

whose reduced norm is ` and such that λ generates the unique two-sided ideal of R0 with
norm `. The element λ normalizes R0 by [17, Chapitre II, Corollaire 1.7]. Taking G = Γ0

or Γ, K = B×/Q×, x = λ. Let M be a G-module such that M = λM (i.e. this equality
holds in a K-module M ′′ containing M). The formalism above then yields the Atkin-Lehner
involutions

W` : Hr(Γ0,M) −→ Hr(Γ0,M), W` : Hr(Γ,M) −→ Hr(Γ,M). (10)

• Let wp ∈ R0 be an element of reduced norm p that generates the normalizer of Γ0 in
R[1/p]×+ and define

Θ̃ = R[1/p]×+

/
Z[1/p]×. (11)

The groups Γ0, Γ and
Γ′ := wpΓw

−1
p

are all subgroups of Θ̃. Using the above formalism with G = Γ0 or Γ, K = Θ̃ and x = wp
yields Atkin-Lehner maps

Wp : Hr(Γ0,M) −→ Hr(Γ0,M
′), Wp : Hr(Γ,M) −→ Hr(Γ′,M ′), (12)

with M ′ = wpM . We note that these maps are isomorphisms, as applying the same formalism
with w−1

p instead of wp yields inverse homomorphisms W−1
p .

• Let ` > 0 be a prime with ` - N−. Choose an element λ ∈ R0 of reduced norm `. When
` | pN+, we insist that

ι`(λ)I` ∈
(

1 0
0 `

)
I`, (13)

where I` is the Iwahori subgroup of GL2(Z`) defined by

I` =

{
α ∈ GL2(Z`) : α ≡

(
∗ ∗
0 ∗

)
(mod `)

}
.

Consider a double coset decomposition

Γ0 · λ · Γ0 =
⋃
i

γaΓ0. (14)

Let Σ be the subsemigroup of Θ̃ generated by Γ0 together with λ and let M be a Σ-module.
Let F• → Z be a resolution of Z by free Θ̃-modules and define an endomorphism T` of the
cochain complex HomΓ0(F•,M) by

(T`ϕ)(fr) =
∑
i

γiϕ(γ−1
i fr), fr ∈ Fr. (15)
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It is routine to check that T` does not depend on the choice of coset representatives and
descends to a well defined endomorphism T` of H∗(Γ0,M). When ` | pN+, we write U`
instead of T` for this operator.

• Finally, let Π denote the matrix λ ∈ R0 of reduced norm p chosen above to satisfy (13)
when ` = p. Let

Π′ = wpΠw
−1
p .

Then

ιp(Π
′)Ip =

(
p 0
0 1

)
Ip.

Let U ′p be the Hecke operator associated to the double coset Γ0Π′Γ0. It is easy to check that

U ′p = Wp ◦ Up ◦W−1
p . (16)

Note that this holds on the level of cochains if we choose compatible double coset decompo-
sitions:

Γ0ΠΓ0 =
⋃
i

γaΓ0, Γ0Π′Γ0 =
⋃
i

(wpγaw
−1
p )Γ0.

4 p-adic measures, Hida families, and

Greenberg–Stevens L -invariants

Let Y be a compact topological space with a basis of compact-open subsets and let A be
a subring of Cp. Write C∞(Y ) = C∞(Y,A) for the group of locally constant, A-valued
functions on Y , equipped with the sup-norm. An A-valued measure on Y is a bounded A-
linear functional on C∞(Y,A). We write M(Y ) = M(Y,A) for the space of such measures,
which can be identified with the space of finitely additive, A-valued functions on the set of
compact-open subsets of Y whose values are bounded. For details, see [15, §7.1].

Let

X = (Z2
p)
′ := Z2

p − p(Z2
p),

X∞ = Z×p × pZp ⊂ X.
(17)

The spaces M(X) and M(X∞) are naturally modules for the Iwasawa algebra

Λ := Zp[[1 + pZp]],

where group-like elements act via the natural diagonal action of 1 + pZp on X:

([`]µ)(h(x, y)) := µ(h(`x, `y)), ` ∈ 1 + pZp.

Let
ε : Λ −→ Zp (18)
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be the augmentation map defined by [`] 7→ 1 and let Iε be the kernel of ε. Letting γ be a
topological generator of 1 + pZp, it follows that Iε is generated by

$ := [γ]− 1.

The group GL2(Zp) acts on X from the left by viewing elements of X as column vectors.
The group Γ acts on X via the embedding ιp : R× ↪→ GL2(Zp), and X∞ is stable under
Γ0. Therefore, we may consider the cohomology groups H∗(Γ,M(X)) and H∗(Γ0,M(X∞)).
These cohomology groups are canonically isomorphic:

Lemma 4. The map H∗(Γ,M(X))→ H∗(Γ0,M(X∞)) induced by the Γ0-equivariant inclu-
sion X∞ ↪→ X is an isomorphism.

Proof. The p+ 1 translates of X∞ by Γ cover X. It follows that

M(X) = Co-IndΓ
Γ0
M(X∞).

The lemma now follows from Shapiro’s lemma.

Let us assume that our measures take values in Zp (so M(X) denotes M(X,Zp), etc.).
We set

W̃ := H1(Γ0,M(X∞)) ∼= H1(Γ,M(X)).

View Λ as a Zp[[Z×p ]]-algebra via the canonical projection

Z×p −→ 1 + pZp, ` 7→ 〈`〉 := `/ω(`),

where ω is the Teichmuller character. Define the Λ-algebra

W := W̃⊗Zp[[Z×p ]] Λ.

As ΠX∞ ⊂ X∞, the semigroup Σ of §3 acts on M(X∞). Therefore, the formalism of §3
endows W with an action of the Up-operator. In addition to the Up-action, the group W
enjoys an action of:

• Hecke operators T` for primes ` - pN and U` for ` | N+,

• Atkin-Lehner involutions W` for ` | N−.

See §3 for the definitions of these operators. Let T be the commutative Λ-subalgebra of
EndΛ W generated by these operators. Let ρ : M(X∞) −→ Zp be the total measure map. It
induces a corresponding map

ρ : W −→ H1(Γ0,Zp). (19)

The map ρ respects the decomposition into ±-eigenspaces:

ρ : W± −→ H1(Γ0,Zp)
±.

Let e = limn→∞ U
n!
p denote Hida’s ordinary idempotent and, for any T-module M , let

M o = eM . In particular, To = eT is Hida’s ordinary Hecke algebra.
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Theorem 5 (Hida’s control theorem). There is an exact sequence

0 −→ $W±,o −→W±,o ρ−→ H1(Γ0,Zp)
±,o −→ 0. (20)

The kernel of the Λ-algebra homomorphism To → Qp given by sending a Hecke operator
to its eigenvalue on g is a prime ideal p ⊂ To lying above the augmentation ideal Iε ⊂ Λ.
The following fundamental result is due to Hida in the case N− = 1 (see [10]), and was
extended in [1] to the case N− 6= 1.

Theorem 6. There is a unique minimal prime P ⊂ p, and the quotient R := To/P is a
finite flat extension of Λ unramified above Iε.

Let R be as in the theorem and let Rp be the localization of R at p. Let E be the field
of fractions of the integral closure of Zp in R. It is a finite extension of Qp. We write

ε : Rp → Rp/$Rp
∼= E

for the reduction map. This notation is justified as this map extends the augmentation
ε : Λ→ Zp.

Write (W ⊗Λ Rp)
±,g for the subspace of (W ⊗Λ Rp)

± on which T acts via the canonical
map T→ Rp. Note that

(W⊗Λ Rp)
±,g ⊂ (W⊗Λ Rp)

±,o = W±,o ⊗Rp

and that
H1(Γ0,Zp)⊗Λ Rp = H1(Γ0,Zp)⊗Zp E = H1(Γ0, E). (21)

On the left of (21), we view H1(Γ0,Zp) as a Λ-module via the augmentation ε.

Corollary 7 (see [1, §3.6]). The sequence

0 −→ $(W⊗Λ Rp)
±,g −→ (W⊗Λ Rp)

±,g −→ H1(Γ0, E)±,g → 0

obtained by tensoring (20) with Rp over Λ and taking g-isotypic components is exact, and

rankRp(W⊗Λ Rp)
±,g = 1.

We now view g± as an element of H1(Γ0, E)±,g. By Corollary 7, we may choose a lift

Φ±g ∈ (W⊗Λ Rp)
±,g (22)

of g±. The element Φ±g is well defined up to multiplication by an element of 1 + $Rp. We
call Φ±g a Hida family through g±. We denote its Up-eigenvalue by ap(Φ

±
g ) ∈ Rp. Since

ε(ap(Φ
±
g )) = ap(g

±) = ap(g) = ap(f) = ±1,

we see that 1− ap(Φ
±
g )2 lies in $Rp. There is a “derivative map”

dε : $Rp/($Rp)
2 −→ E
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that extends the map Iε/I
2
ε → Zp given by the p-adic logarithm:

[`]− 1 7→ log(`). (23)

Since ` ∈ Z×p , we need not specify a branch of the p-adic logarithm. We define the Greenberg–
Stevens L -invariant of g by

L GS(Φ±g ) = dε
(
1− ap(Φ

±
g )2
)
∈ E.

The derivative map dε is related to the usual notion of derivative in the following way.
For 0 < r ≤ 1, let Ar be the subring of Qp[[x]] consisting of those powers series that converge
on the closed disk centered at 0 with radius r. Evidently, if r < s, then there is a canonical
inclusion As ⊂ Ar. Therefore, we may set A =

⋃
rAr. Define i : Λ → A1 by sending a

group-like element [`], for ` ∈ 1 + pZp, to the function k 7→ `k−2. Since R is unramified
over Iε and A is Henselian, there is a unique extension of i to a Λ-algebra homomorphism
i : Rp → A. An element λ ∈ Rp lies in $Rp if and only if the associated analytic function
i(λ) has a zero at k = 2. In this case, dε(λ) = i(λ)′(2).

Theorem 8. We have an equality of Greenberg–Stevens L -invariants L GS(Φ±g ) = L GS(f).

Proof. Let R′ be a finitely generated R-subalgebra of Rp such that Φ±g ∈ (W⊗ΛR
′)g,±. With

notation as above, there is some r0 such that i(R′) is contained in Ar0 .
Let Pk−2(Qp) be the space of homogeneous polynomials of degree k−2 in indeterminates

x and y and let Vk−2(Qp) be its Qp-linear dual. Define a “specialization to weight k map”

ρk : M(X∞) −→ Vk−2(Qp)

by the rule

ρk(Φ)(P ) =

∫
X∞

P (x, y)Φ(x, y).

This map being Γ0-equivariant, it induces a homomorphism

ρk : H1(Γ0,M(X∞)) −→ H1(Γ0, Vk−2(Qp)).

The map ρ defined in (19) coincides with ρ2 in this more general notation.
If |k − 2|p ≤ r, we may extend ρk to a map

ρk : H1(Γ0,M(X∞))⊗Λ Ar −→ H1(Γ0, Vk−2(Qp))

by setting

ρk

(∑
i

ϕi ⊗ αi

)
=
∑
i

αi(k)ρk(ϕi).

One may verify formally that ρk is Hecke-equivariant.
Let a` be the image in Ar0 of the eigenvalue of T`, −〈`〉

k−2
2 W`, or U` acting on Φ±g in the

cases ` - Np, ` | N−, and ` | N+p, respectively. Here 〈`〉 denotes the projection of ` onto

12



1 + pZp. Set a1 = 1 and define an in terms of the a` with ` | n by the usual formulas for
Hecke operators.

We may shrink r0 if necessary to ensure that ρk(Φ
±
g ) is a nonzero element ofH1(Γ0, Vk−2(Qp))

for all k ≥ 2 with |k − 2|p ≤ r0 and k ≡ 2 (mod p − 1). The class ρk(Φ
±
g ) is an eigenvec-

tor for the `-th Hecke operator with eigenvalue a`(k). Thus, {a`(k)} is a system of Hecke
eigenvalues occuring in H1(Γ0, Vk−2(Qp)). In particular, {a`(k)} ⊂ Q ⊂ Qp. By the Eichler-
Shimura isomorphism [16, §4], this system of Hecke eigenvalues also occurs in Sk(Γ0). By
the Jacquet–Langlands correspondence, it occurs in Sk(Γ0(pN)) as well. Thus, if we set

h :=
∞∑
n=1

anq
n ∈ Ar0 [[q]],

then h(k) =
∑

an(k)qn is in fact the q-expansion of a classical cusp form of weight k on
Γ0(Np) for k ≥ 2, |k − 2|p ≤ r0, k ≡ 2 (mod p− 1). Furthermore, it is clear that h(2) = f .
Therefore, by the uniqueness of the Hida family through f [12, Corollary 1.3, Pg. 554],
it follows that an(k) = an(f , k) for |k − 2|p ≤ r0. In particular, this is true for n = p;
Theorem 8 follows.

Finally, we record a result that will be important later. Set

W0 = H1(Γ,M0(X))⊗Zp[[Z×p ]] Λ.

Lemma 9. The canonical map

(W0 ⊗Λ Rp)
±,g → (W⊗Λ Rp)

±,g (24)

is an isomorphism.

Proof. The map ρ : M(X)→ Zp gives rise to the short exact sequence

0 −→M0(X) −→M(X)
ρ−→ Zp −→ 0.

Since R is Λ-flat, we may tensor the associated long exact sequence in Γ-cohomology with
Rp to obtain

· · · −→ H0(Γ, E) −→W0 ⊗Λ Rp −→W⊗Λ Rp −→ H1(Γ, E) −→ · · · .

The space H0(Γ, E) is Eisenstein (i.e. T` acts as 1 + `), so its g-isotypic component is trivial.
Since the maps in the sequence above are Hecke-equivariant, it follows that the map (24) is
injective. Similarly, if Φ ∈ (W ⊗Λ Rp)

±,g, then its image in H1(Γ, E) must be zero. This
holds because g is p-new of level Γ0, so the system of Hecke eigenvalues of g does not occur
in H1(Γ, E). Therefore Φ is the image of an element Φ̃ ∈W0⊗ΛRp. Let ` be any prime such
that the eigenvalue a`(g) of the Hecke operator T` is not equal to ` + 1. Let a`(Φ) denote
the T` eigenvalue of Φ, i.e. the image of T` in Rp. We claim that

Φ̃′ :=
T` − (`+ 1)

a`(Φ)− (`+ 1)
Φ̃ (25)

13



is a lift of Φ to (W0⊗ΛRp)
±,g. First note that the division in (25) is allowed in the localization,

since the image of a`(Φ)− (`+ 1) under reduction modulo p is a`(g)−(`+1) 6= 0. Next, it is

clear that Φ̃′ maps to Φ under (24) since Φ has T` eigenvalue a`(Φ). Finally, let λ ∈ To, and

let aλ(Φ) be the corresponding eigenvalue of Φ. Then (λ− aλ(Φ))Φ̃ maps to 0 in W⊗Λ Rp

and hence arises from H0(Γ, E). Since this module is Eisenstein, it is killed by T` − (`+ 1),

and it follows that (λ−aλ(Φ))Φ̃′ = 0. This shows that Φ̃′ lies in (W0⊗ΛRp)
±,g, and concludes

the proof of the lemma.

Using Lemma 9, we may view Φ±g an element of (W0 ⊗Λ Rp)
±,g.

5 Some commutative diagrams

In this section, we establish some commutative diagrams involving the operators Up, U
′
p,

and Wp acting on the group cohomology of various spaces of p-adic measures. In fact, these
diagrams are so natural that they commute on the level of cochains; this fact will be used
heavily in the calculations of §7. Recall the group Θ̃ defined in (11). We describe cohomology

classes in terms of homogeneous cochains relative to the complex of projective Θ̃-modules

Fr := Z[Θ̃r+1]. (26)

Thus, if G is a subgroup of Θ̃, our group of M -valued r-cochains is

Cr(G,M) := HomG(Fr,M). (27)

Coboundary maps d : Cr(G,M)→ Cr+1(G,M) are defined by the usual formula

dϕ(g0, . . . , gr+1) =
r+1∑
i=0

(−1)iϕ(g0, . . . , ĝi, . . . , gr+1).

We write

Zr(G,M) = Ker(d : Cr(G,M)→ Cr+1(G,M)),

Br(G,M) = Image(d : Cr−1(G,M)→ Cr(G,M)),

and have
Hr(G,M) = Zr(G,M)/Br(G,M).

Defining
Xp = Zp × Z×p = w−1

p X∞, (28)

we obtain Atkin-Lehner maps as in (12) with M = M(X∞) and M ′ = M(Xp).

Proposition 10. The following diagrams commute:

14



1. Cr(Γ,M(X))
ρX∞

uukkkkkkkkkkkkkk ρXp

))RRRRRRRRRRRRRR

Cr(Γ0,M(X∞))
Up

// Cr(Γ0,M(X∞))
W−1

p

// Cr(Γ0,M(Xp))

2. Cr(Γ′,M(wpX))
ρ′pXp

uukkkkkkkkkkkkkk ρ′X∞

))SSSSSSSSSSSSSS

Cr(Γ0,M(pXp))
U ′p

// Cr(Γ0,M(pXp))
W−1

p

// Cr(Γ0,M(X∞))

Here the maps ρ are the natural restriction maps.

Proof. Let ϕ ∈ Zr(Γ,M(X)). Let g ∈ Θ̃r+1 and let h be a locally analytic function on Xp. In
the following, we will write j! for the extension-by-zero of a function j on X∞ to a function
on X. We compute:

(W−1
p UpρX∞ϕ)(g)(h) = (UpρX∞ϕ)(wpg)(h|w−1

p )

=
∑

0≤i≤p−1

(ρX∞ϕ)(δ−1
i wpg)(h|w−1

p δi)

=
∑

0≤i≤p−1

ϕ(δ−1
i wpg)((h|w−1

p δi)!)

=
∑

0≤i≤p−1

ϕ(g)((h|w−1
p δi)!|δ−1

i wp)

=
∑

0≤i≤p−1

ϕ(g)(h!1π−1(i+pZp))

= (ρXpϕ)(g)(h).

Key in the above calculation is that w−1
p δi belongs to Γ and that

w−1
p δi(X∞) = γiw

−1
p (X∞) = γi(Xp) = π−1(i+ pZp).

Part 2 of the proposition follows from applying the operator Wp to part 1.

Next, we will be interested in understanding the map

WpUp : Hr(Γ,M(X))→ Hr(Γ′,M(wpX))

with respect to the decomposition wpX = X∞ t pXp.

Proposition 11. The following diagram commutes:

Cr(Γ,M(X))
ρX∞ //

WpUp

��

Cr(Γ0,M(X∞))

U2
p

��
Cr(Γ′,M(wpX))

ρ′X∞

// Cr(Γ0,M(X∞))
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Proof. The result follows from the following commutative diagram and equation (16). Note
that the commutativity of the triangle on the right is the statement of part 2 of Proposi-
tion 10.

Cr(Γ,M(X))
Up //

ρX∞

��

Cr(Γ,M(X))
Wp //

ρX∞

��

Cr(Γ′,M(wpX))
ρ′X∞

))SSSSSSSSSSSSSS

ρ′pXp

��

Cr(Γ0,M(X∞))

Cr(Γ0,M(X∞))
Up

// Cr(Γ0,M(X∞))
Wp

// Cr(Γ0,M(pXp))
W−1

p U ′p

55kkkkkkkkkkkkkk

Proposition 12. The following diagram commutes:

Hr(Γ,M(X))
ρXp //

WpUp

��

Hr(Γ0,M(Xp))

p∗
��

Hr(Γ′,M(wpX))
ρ′pXp

// Hr(Γ0,M(pXp))

Here the map p∗ : Hr(Γ0,M(Xp))→ Hr(Γ0,M(pXp)) is induced by p∗h(x, y) = h(px, py) for
a locally analytic function h on pXp.

Proof. The result follows from the following commutative diagram.

Cr(Γ,M(X))
Up //

ρX∞

��

ρXp
--[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[ Cr(Γ,M(X))

Wp //

ρX∞

��

Cr(Γ′,M(wpX))

ρ′pXp

��

Cr(Γ0,M(Xp))

Cr(Γ0,M(X∞))
Up

// Cr(Γ0,M(X∞))
Wp

// Cr(Γ0,M(pXp))
W−2

p =p−1
∗

55kkkkkkkkkkkkkk

The commutativity of the diagonal map ρXp with the arrows that lie below it follows from
part 1 of Proposition 10. The fact that W 2

p = p∗ follows from the fact that w2
p ∈ pΓ0 and

hence induces the same map on Γ0-cohomology as multiplication by p.

6 p-arithmetic cohomology classes

and Darmon L -invariants

Let
Θ = ker

(
ordp ◦ nrd : Θ̃ −→ Z/2Z

)
, (29)
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where nrd : B× → Q× is the reduced norm map. Thus, Θ is a normal subgroup of Θ̃ of index
two and Θ̃/Θ is generated by the image of wp. By analyzing its action on the Bruhat-Tits
tree of PGL2(Qp), the group Θ can be expressed as an amalgamation (free product) [8]:

Θ ∼= Γ ∗Γ0 Γ′.

Associated to such an amalgamation and a Θ-module M , there is a Mayer-Vietoris sequence:

· · · // Hr−1(Γ0,M)
δ // Hr(Θ,M)

(resΘ
Γ ,resΘ

Γ′ ) //

Hr(Γ,M)⊕Hr(Γ′,M)
(resΓ

Γ0
− resΓ′

Γ0
)

// Hr(Γ0,M) // · · · .
(30)

Recall that we defined X = P1(Qp). View Qp as a subspace of P1(Qp) via the inclusion
z 7→ (z : 1). Thus, (x : y) can be identified with the fraction x/y. Set ∞ = (1 : 0). We view
Zp ⊂ Qp as a subspace of X and set

X∞ = X − Zp = wpZp.

Our first goal in this section is to use (30) in order to construct a cohomology class in
H1(Θ,M0(X))± associated to g±. (Such a class is constructed in [8] using different methods.)
The map

π : X −→ X, π(x, y) = (x : y)

and the induced pushforward of measures π∗ : M(X) −→ M(X) can be described via the
following isomorphism, a consequence of the fact that π is a Z×p -fibration:

M(X) ∼= M(X)⊗Zp[[Z×p ]] Zp. (31)

Here, Zp is given the structure of Zp[[Z×p ]]-algebra via the augmentation map defined in (18).
Recall that by Lemma 9, we may assume that the cohomological Hida family Φ±g associated to
g± belongs to H1(Γ,M0(X))⊗Zp[[Z×p ]]Rp. For notational simplicity, we suppress the ⊗Zp[[Z×p ]]Rp

in the sequel and write g± ∈ H1(Γ,M0(X)); this does not affect any subsequent arguments
in a substantive way, though our measures now take values in E.

Proposition 13. There is a unique cohomology class ϕ±g ∈ H1(Θ,M0(X)) such that

resΘ
Γ ϕ
±
g = π∗Φ

±
g , resΘ

Γ′ ϕ
±
g = π∗WpUpΦ

±
g .

Proof. The uniqueness follows from (30) as H0(Γ0,M
0(X)) = 0. We must show the existence

of ϕ±g . To this end, let

ϕ±g = π∗Φ
±
g ∈ H1(Γ,M0(X)), ϕ′±g = π∗WpUpΦ

±
g ∈ H1(Γ′,M0(X)).

From (30), we must show that resΓ
Γ0
ϕ±g = resΓ

Γ0
ϕ′±g in H1(Γ0,M

0(X)). Since the kernel of
H1(Γ0,M

0(X))→ H1(Γ0,M(X)) is Eisenstein, it suffices to prove this equality after viewing
ϕ±g and ϕ′±g as taking values in M(X). Let

ρZp : H1(Γ,M(X)) −→ H1(Γ0,M(Zp)) ρ′X∞ : H1(Γ′,M(X)) −→ H1(Γ0,M(Zp))

ρX∞ : H1(Γ,M(X)) −→ H1(Γ0,M(X∞)) ρ′X∞ : H1(Γ′,M(X)) −→ H1(Γ0,M(X∞))
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be the maps induced by the inclusions Zp ↪→ X and X∞ ↪→ X and restriction of groups to
Γ0. From the decomposition

H1(Γ0,M(X))) = H1(Γ0,M(Zp))⊕H1(Γ0,M(X∞)),

we must show that
ρZpϕ

±
g = ρZpϕ

′±
g , ρX∞ϕ

±
g = ρ′X∞ϕ

′±
g .

By Propositions 11 and 12, the following diagrams commute:

H1(Γ,M(X))
ρZp

((RRRRRRRRRRRRR

WpUp

��

H1(Γ,M(X))
ρX∞ //

WpUp

��

H1(Γ0,M(X∞))

U2
p

��
H1(Γ′,M(X)

ρ′Zp

// H1(Γ0,M(Zp)) H1(Γ′,M(X))
ρ′X∞

// H1(Γ0,M(X∞))

The diagram on the left proves ρZpϕ
±
g = ρZpϕ

′±
g , one of the desired identities. The one on

the right says ρ′X∞ϕ
′±
g = U2

pρX∞ϕ
±
g . By (31),

U2
pρX∞ϕ

±
g = ε(ap(Φ

±
g ))2ρX∞ϕ

±
g = ρX∞ϕ

±
g ,

completing the proof.

For each choice of L ∈ P1(E), we define an integration map

κL : Hr(Θ,M0(X))→ Hr+1(Θ, E)

as follows: Let C(X) denote the space of continuous E-valued functions on X. Choose a
base-point τ ∈ Hp(E) = P1(E)− P1(Qp) and define

ξL ,τ ∈ C1(Θ̃, C(X)/E)

by

ξL ,τ (g0, g1) =


logL

(
z − g1τ

z − g0τ

)
if L ∈ E,

ordp

(
z − g1τ

z − g0τ

)
if L =∞.

It is easy to see that dξL ,τ = 0 and that the cohomology class represented by ξL ,τ does not
depend on τ .

Let G be any subgroup of Θ̃, let ϕ ∈ Cr(G,M0(X)), and consider the cup product

ξL ,τ ∪ ϕ ∈ Cr+1(G, (C(X)/E)⊗E M0(X)).

The Θ̃-invariant integration pairing (C(X)/E)⊗E M0(X)→ E induces a map

I : Cr+1(G, (C(X)/E)⊗E M0(X))→ Cr+1(G,E).
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Set κL ,τ (ϕ) = I(ξL ,τ ∪ ϕ) ∈ Cr+1(G,E), i.e.

κL ,τ (ϕ)(g0, . . . , gr+1) =

∫
X

logL

(
z − g1τ

z − g0τ

)
ϕ(g1, . . . , gr+1). (32)

One may compute directly that

dκL ,τ (ϕ) = κL ,τ (dϕ). (33)

Therefore, the correspondence ϕ 7→ κL ,τ (ϕ) induces a map

κL : Hr(G,M0(X)) −→ Hr+1(G,E),

which, as our notation suggests, does not depend on the choice of τ . Define

H1(Γ0, E)p-new := H1(Γ0, E)
/

Image
(
H1(Γ, E)⊕H1(Γ′, E)→ H1(Γ0, E)

)
and let

δ : H1(Γ0, E)p-new ↪→ H2(Θ, E) (34)

be the injective map induced by the connecting homomorphism in the Mayer-Vietoris se-
quence (30).

Proposition 14. The cohomology class ϕ±g defined in Proposition 13 satisfies the following:

1. The identity κ∞(ϕ±g ) = δ(g±) holds in H2(Θ, E).

2. There is a unique L ∈ E, denoted −L D(g±), such that κL (ϕ±g ) = 0.

Proof. The first statement is argued in the proof of Lemma 32 of [8]. By Lemmas 32 and
33 of [8], the eigenspace of H2(Θ, E)± on which the Hecke operators away from p act via
the eigenvalues of g is 1-dimensional and is spanned by κ∞(ϕ±g ) = δ(g±), where δ is as
in (34). The class δ(g±) is nonzero as g± is a nonzero p-new form and δ is injective on
such classes. Since the map κ0 (the one corresponding to L = 0) is Hecke-equivariant,
there is a unique constant L D(g±) ∈ E such that κ0(ϕ±g ) = L D(g±)κ∞(ϕ±g ). But the
identity logL = log0 +L ordp implies that κL = κ0 + L κ∞, and the second statement of
the proposition follows with L = −L D(g±).

Definition 15. The quantity L D(g±) is called the Darmon L -invariant of g±.

7 Equality of the Greenberg–Stevens

and Darmon L -invariants

Let L ∈ E. The goal of this section is to prove the following:
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Theorem 16. We have
κL (ϕ±g ) = (L GS(g) + L )δ(g±)

in H2(Θ, E). Therefore, L D(g±) = L GS(g).

Since the Riemann surfaces Γ\H and Γ′\H are compact if and only if N− 6= 1, we have

H2(Γ, E) ∼=

{
E if N− 6= 1,

{0} if N− = 1.

In either case, this space is Eisenstein for the Hecke operators. Since the restriction maps
are Hecke-equivariant,

resΘ
Γ κL (ϕ±g ) = 0, resΘ

Γ′ κL (ϕ±g ) = 0.

Fix a base point τ ∈ Hp(E) and a representative ϕ ∈ C1(Θ,M0(X)) for the cohomology
class ϕ±g ∈ H1(Θ,M0(X)). Let ψ ∈ C1(Γ, E) and ψ′ ∈ C1(Γ′, E) be 1-cochains such that

dψ = κL ,τ (ϕ)|Γ, dψ′ = κL ,τ (ϕ)|Γ′ .

Then ψ − ψ′ is a 1-cocycle on Γ0 = Γ ∩ Γ′ and, tracing through the construction of the
connecting homomorphism in the long exact sequence in cohomology associated to (34), one
finds that

δ([ψ − ψ′]) = κL (ϕ±g ) (35)

in H2(Θ, E). Through a general cohomological calculation, we will find explicit formulas for
ψ and ψ′ and show that

[ψ − ψ′] = (L GS(g) + L )g±. (36)

Equations (35) and (36) prove Theorem 16.
Let ϕ ∈ C1(Θ,M0(X)) be a cocycle representing the class ϕ±g . Let

Φ = Φ±g ∈ H1(Γ,M0(X))

denote the Hida family defined in (22) that lifts resΘ
Γ [ϕ] with respect to the push-forward

map π∗ : M0(X) → M0(X). Let ϕ̃0 ∈ C1(Γ,M0(X)) be a cocycle representing Φ. Then
there exists a cochain m ∈ Z0(Γ,M(X)) such that

π∗ϕ̃0 = ϕ+ dm.

Since F0 = Z[Θ̃] is Θ-projective and thus Γ-projective, we may lift m to a cochain m̃ ∈
C0(Γ,M(X)). Setting ϕ̃ = ϕ̃0 − dm̃ ∈ C1(Γ,M0(X)), we obtain a cocycle representing Φ
that satisfies

π∗ϕ̃ = ϕ. (37)

For any σ ∈ Cr(Γ,M0(X)) and σ′ ∈ Cr(Γ′,M0(wpX)), define λL (σ) ∈ Cr(Γ, E) and
λ′L (σ′) ∈ Cr(Γ′, E) by the formulas

λL (σ)(g0, g1, . . . , gr) =

∫
X

logL (x− (g0τ)y)σ(g0, g1, . . . , gr)(x, y), (38)

λ′L (σ′)(g0, g1, . . . , gr) =

∫
wpX

logL (x− (g0τ)y)σ′(g0, g1, . . . , gr)(x, y).
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These maps are Γ and Γ′-invariant, respectively, because the values of σ and σ′ have total
measure zero.

Lemma 17. For any σ ∈ Cr(Γ,M0(X)) and σ′ ∈ Cr(Γ′,M0(wpX)), we have

dλL (σ) = κL (π∗σ) + λL (dσ), dλ′L (σ′) = κL (π∗σ
′) + λ′L (dσ′).

Proof. Letting h = (g0, . . . , gr+1) and hi = (g0, . . . , ĝi, . . . , gr), we have

dλ(σ)(h) =

∫
X

logL (x− (g1τ)y)σ(h0)(x, y) +
r+1∑
i=1

(−1)i
∫

X
logL (x− (g0τ)y)σ(hi)(x, y)

=

∫
X

logL

(
x− (g1τ)y

x− (g0τ)y

)
σ(h0)(x, y) +

∫
X

logL (x− (g0τ)y) dσ(h)(x, y)

=

∫
X

logL

(
z − g1τ

z − g0τ

)
π∗σ(h0)(z) + λL (dσ)(h)

= κL (π∗σ)(h) + λL (dσ)(h),

as desired. The second equality is proved in a similar manner.

Lemma 17 implies that if we define

ψ = λL (ϕ̃) ∈ C1(Γ, E), (39)

then dψ = κL (ϕ). Similarly, define

ψ′ = λ′L (WpUpϕ̃) ∈ C1(Γ′, E). (40)

Then

dψ′ = κL (π∗WpUpϕ̃) + dλ′L (dWpUpϕ̃)

= κL (WpUpϕ) + 0

= κL (ϕ),

where the last equality is justified by the following lemma:

Lemma 18. We have the identity of Θ-cochains WpUpϕ = ϕ.

Proof. Consider the following diagram.

Cr(Γ,M(X))
ρX∞

uukkkkkkkkkkkkkk ρZp

))SSSSSSSSSSSSSS

Cr(Γ0,M(X∞))
Up

//

ρ−1
X∞

��

Cr(Γ0,M(X∞))
Wp

//

ρ−1
X∞

��

Cr(Γ0,M(Zp))

ρ−1
Zp

��
Cr(Γ,M(X))

Up

// Cr(Γ,M(X))
Wp

// Cr(Γ′,M(X))

The maps ρ−1
X∞

and ρ−1
Zp

are isomorphisms by Shapiro’s lemma. The bottom squares of the
diagram commute by definition and the upper triangle commutes as it is the pushforward
via π∗ of diagram 1 of Proposition 10. The lemma follows.
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Having found explicit formulas for ψ and ψ′ in (39) and (40), respectively, we now turn
towards proving (36). Recall that Φ = [ϕ̃] is a Up-eigenvector with eigenvalue ap(Φ) satisfying
ε(ap(Φ)) = ±1. We defined L GS(Φ) = dε(1− ap(Φ)2).

Proposition 19. The class of the cocycle ψ − ψ′ in H1(Γ0, E) is equal to

(L GS(Φ) + L )ρ∗[ϕ],

where ρ∗ : H1(Θ,M0(X))→ H1(Γ0,M(X∞))→ H1(Γ0, E) is the composition of the canon-
ical restriction map ρX∞ with the total measure on X∞ map (as in (19)).

Proof. We use the decompositions

X = X∞ t Xp, wpX = X∞ t pXp

to study the integrals defining ψ and ψ′ (see (17) and (28)). Writing h = (g0, g1), we find:

(ψ − ψ′)(h) =

∫
X∞

logL (x− (g0τ)y)ϕ̃(h) +

∫
Xp

logL (x− (g0τ)y)ϕ̃(h) (41)

−
∫

X∞
logL (x− (g0τ)y)WpUpϕ̃(h)−

∫
pXp

logL (x− (g0τ)y)WpUpϕ̃(h).

Propositions 11 and 12 allow us to rewrite these last two integrals as∫
X∞

logL (x− (g0τ)y)WpUpϕ̃(h) =

∫
X∞

logL (x− (g0τ)y)U2
p ϕ̃(h) (42)

and ∫
pXp

logL (x− (g0τ)y)WpUpϕ̃(h) =

∫
pXp

logL (x− (g0τ)y)p∗ϕ̃(h)

=

∫
Xp

logL (px− (g0τ)py)ϕ̃(h)

=

∫
Xp

logL (x− (g0τ)y)ϕ̃(h) + L ϕ̃(h)(Xp). (43)

Combining (41), (42), and (43), we obtain

(ψ − ψ′)(h) =

∫
X∞

logL (x− (g0τ)y)(1− U2
p )ϕ̃(h)−L ϕ̃(h)(Xp). (44)

We now view ϕ̃ as an element of Zr(Γ0,M
0(X∞)) and calculate the class in Hr(Γ0, E)

represented by the right side of (44). We have that ϕ̃(h)(Xp) = ϕ(h)(Zp) = −ϕ(h)(X∞),
and hence represents the class −ρ∗[ϕ] in Hr(Γ0, E). Therefore the last term in (44) represents
the class L ρ∗[ϕ].
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It remains to prove that the first term in (44) represents the class L GS(ϕ̃)ρ∗[ϕ] in
H1(Γ0, E). Since (1− U2

p )Φ = αΦ with α = 1− ap(Φ)2, we may write

(1− U2
p )ϕ̃ = αϕ̃+ dν (45)

for some ν ∈ C0(Γ0,M(X∞)). Pushing forward via π∗, we obtain

(1− U2
p )ϕ = 0 + π∗(dν).

Since the term on the left is zero, we obtain dπ∗(ν) = 0. Thus π∗ν represents a class in
H0(Γ0,M(X∞)).

Lemma 20. The cohomology group H0(Γ0,M(X∞)) is zero.

Proof. It is easy to see that

Ip = {g ∈ GL2(Zp) : g is upper-triangular modulo p}

acts transitively on the set of balls in X∞ of radius p−n for any n ≥ 1. Since Γ0 is p-adically
dense in Ip, Γ0 acts transitively on this set as well. It follows that if µ is a Γ0-invariant
measure on X∞, then µ(B) = p−n+1µ(X∞) for all compact-open balls B ⊂ X∞ of radius
p−n. Since the values of µ are assumed to be p-adically bounded, it follows that µ = 0.

By the lemma, we conclude that π∗ν is a coboundary. Arguing above as in the definition of
the cocycle ϕ̃ satisfying (37), we may alter ν by a coboundary to assume that π∗ν = 0.

We may now calculate the cohomology class represented by (44). Substituting (45) into
(44), the term from αϕ̃ yields ∫

X∞
logL (x− (g0τ)y)αϕ̃(h). (46)

By Proposition 21 below, the expression in (46) represents the class L GS(ϕ̃)ρ∗[ϕ] inH1(Γ0, E).
It remains to prove that the term arising from dν is trivial in cohomology, i.e. that

h 7→
∫

X∞
logL (x− (g0τ)y)dν(h) (47)

is a coboundary. Note that the right side of (47) is equal to∫
X∞

logL (x)dν(h) +

∫
X∞

logL (1− (g0τ)/z)π∗dν(h). (48)

The last term of (48) is zero since π∗dν = 0. The first term of (48) is equal to the coboundary
of the 0-cochain given by

g0 7→
∫

X∞
logL (x)ν(g0). (49)

We leave to the reader the exercise of using the equation π∗ν = 0 to show that the 0-cochain
in (49) is Γ0-invariant. This proves that (47) is a coboundary and completes the proof of the
proposition.
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The following proposition, applied with α = 1 − ap(Φ)2, was used above to extract the
invariant L GS(Φ) from the cohomology class [Φ].

Proposition 21. Let σ ∈ Zr(Γ0,M(X∞)), let α ∈ Iε ⊂ Λ and define

η(g0, . . . , gr) =

∫
X∞

logL (x− (g0τ)y)ασ(g0, . . . , gr).

Then η ∈ Zr(Γ0, E) and represents the class

[η] = dε(α)ρ∗[σ] ∈ Hr(Γ0, E).

Proof. Since α ∈ Iε, we have π∗(ασ) = 0; in particular, ασ has total measure 0. It follows
from this fact and a routine calculation that η is a cochain. That η is a cocycle follows from
the equations d(ασ) = αdσ = 0.

To evaluate the class [η] ∈ Hr(Γ0, E), we consider α of the form [`]− 1 for ` ∈ 1 + pZp.
Writing h = (g0, . . . , gr), we have

η(h) =

∫
X∞

logL (x− (g0τ)y)([`]σ − σ)(h)

=

∫
X∞

(logL (`x− (g0τ)`y)− logL (x− (g0τ)y))σ(h)

=

∫
X∞

logL (`)σ(h)

= log(`) · σ(h)(X∞)

= dε([`]− 1)ρ∗σ(h).

This proves the result for α = [`] − 1, and hence gives the result for general α ∈ Iε as the
ideal Iε is generated over Λ by such elements.

This concludes the proof of Proposition 19, and since ρ∗ϕ
±
g = g±, we deduce (36) and

hence Theorem 16. Combining with Theorem 8, we also complete the proof of Theorem 2.

8 Multiplicative integrals and period lattices

In this section, we suppose that the Hecke eigenvalues of g belong to Z. In this case, it is
shown in [8, §8] that we may take

ϕ±g ∈ H1(Θ,M0(X,Z))g,±.

That is, we may find an element ϕ±g ∈ H1(Θ,M0(X,Z))g,± whose image in H1(Θ,M0(X,E))
is a basis for H1(Θ,M0(X,E))g,±. Using this integral cohomology class, we may define
multiplicative versions of many of the objects considered in previous sections.
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Following Darmon [6], we consider the multiplicative integration pairing

C(X)×/E× ×M0(X,Z) −→ E×, (f, µ) 7→ ×
∫
X

fµ (50)

defined by

×
∫
X

fµ = lim
||U||→0

∏
U∈U

f(zU)µ(U).

Here, U is a finite cover of X by compact open sets and zU is an arbitrary point of U . The
limit is taken over uniformly finer covers U . It is clear that for any L , we have

logL ×
∫
fµ =

∫
logL (f)µ.

The pairing (50) is easily seen to be GL2(Qp)-equivariant and thus induces a corresponding
pairing

〈·, ·〉× : H1(Θ, C(X)×/E×)×H1(Θ,M0(X,Z)) −→ E×. (51)

Let ∆ = DivHp and let ∆0 = Div0Hp. From the long exact sequence associated to the
short exact sequence of GL2(Qp)-modules 0 → ∆0 → ∆ → Z → 0, we extract a connecting
homomorphism

∂ : H2(Θ,Z) −→ H1(Θ,∆0).

Let j : ∆0 → C(X)×/E× be the map sending a divisor D to a rational function on X with
divisor D. (Note that such a function is only well-defined up to multiplication by a nonzero
scalar.) The map j being GL2(Qp)-equivariant, it induces a corresponding map

j∗ : H1(Θ,∆0) −→ H1(Θ, C(X)×/E×).

We may also define multiplicative refinements of the cocycles κL ,τ (ϕ) as follows. Let
τ ∈ Hp, let ϕ ∈ Cr(Θ,M0(X,Z)), and define κτ (ϕ) ∈ Cr+1(Θ, E×) by the rule

κτ (ϕ)(g0, . . . , gr+1) = ×
∫
X

(
z − g1τ

z − g0τ

)
ϕ(g1, . . . , gr+1) ∈ E×.

As with κL ,τ , the homomorphism κτ induces a map

κ : Hr(Θ,M0(X,Z)) −→ Hr+1(Θ, E×)

that does not depend on τ .
By the universal coefficients theorem, there is a natural surjective map

Hr+1(Θ, E×) −→ Hom(Hr+1(Θ,Z), E×).

Lemma 22. The image of κ(ϕ±g ) in Hom(H2(Θ,Z), E×) is given by

ξ 7→
(
〈j∗∂ξ, ϕ±g 〉×

)−1

.
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Proof. Suppose

ξ =
∑
i

1⊗ (γi, δi, εi) ∈ Z2(Θ,Z) = Z⊗Θ Z[Θ3]

is a 2-cycle on Θ with values in Z. Tracing through the construction of the connecting
homomorphism, one computes that ∂[ξ] is represented by the cycle∑

i

(γiτ − δiτ)⊗ (δi, εi).

Therefore,

〈j∗∂ξ, ϕ±g 〉× =
∏
i

×
∫
X

(
z − γiτ
z − δiτ

)
ϕ±g (δi, εi).

By the definition of the map in the universal coefficients theorem, the image of κ(ϕ±g ) in
Hom(H2(Θ,Z), E×) sends ξ to∏

i

κ(ϕ±g )(γi, δi, εi) =
∏
i

×
∫
X

(
z − δiτ
z − γiτ

)
ϕ±g (δi, εi).

The result follows.

In view of Lemma 22, we set

L±g = 〈j∗∂H2(Θ,Z), ϕ±g 〉× = 〈H2(Θ,Z), κ(ϕ±g )〉 ⊂ E×.

Proposition 23 ([8, Proposition 30]). L±g is a lattice in E×.

Therefore, there is a unique L ∈ E such that logL (L±g ) = 0. We define the L -invariant
of the lattice L±g , denoted L (L±g ), to be the negative of this constant L .

Proposition 24. The L -invariant of the lattice L±g is equal to L D(ϕ±g ).

Proof. By the universal coefficients theorem,

logL (L±g ) = logL 〈H2(Θ,Z), κ(ϕ±g )〉
= 〈H2(Θ,Z), κL (ϕ±g )〉

is equal to 0 if and only if κL (ϕ±g ) = 0. By definition, this occurs if and only if L =
−L D(ϕ±g ).

Corollary 25 ([8, Conjecture 2]). Let q be the Tate period of the elliptic curve E/Q associated
to f . Then

L (L±g ) = logp(q)/ ordp(q).

Proof. By Proposition 23 and Theorem 2, L (L±g ) = L D(ϕ±g ) = L GS(f). By the Galois-
theoretic portion of the proof of the Greenberg–Stevens theorem [10, Theorem 3.18], we have
L GS(f) = logp(q)/ ordp(q).
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In [8], the second named author gave a construction of local Stark–Heegner points on
E×/L±g . We conjectured that the elliptic curve E×/L±g is isogenous to E/E, yielding a
construction of local points on E . Corollary 25 proves this conjecture and makes the con-
struction unconditional. In the following section, we apply the above techniques further to
obtain a formula for the formal group logarithms of these Stark–Heegner points in terms of
Hida families.

9 Abel–Jacobi maps and Stark–Heegner points

In the section we recall the definition of Stark–Heegner points and give a formula for the
formal group logarithms of these points in terms of Hida families. This formula will be used
in [9] to prove partial results towards the rationality of the Stark–Heegner points following
the methods of [3].

Let Hp,ur denote the unramified p-adic upper half-plane:

Hp,ur = P1(Cp)− r−1(P1(Fp)) ⊂ Hp,

where r : P1(Cp) → P1(Fp) is the reduction map. The action of GL2(Zp) on Hp preserves
Hp,ur. We set

∆ur = DivHp,ur, ∆0
ur = Div0Hp,ur.

If τ1, τ2 ∈ Hp,ur, z ∈ X and (x, y) ∈ X, then the quantities

logL

(
z − τ
z − τ ′

)
, logL (x− yτ)

do not depend on L because the arguments are p-adic units. For this reason, we do not spec-
ify a branch of the p-adic logarithm and simply write log. The natural GL2(Qp)-equivariant
pairing

〈· , ·〉 : M0(X)× C(X)/E −→ Cp

induces a pairing
〈· , ·〉 : H1(Γ,M0(X))×H1(Γ, C(X)/E) −→ Cp. (52)

Define j : ∆0
ur → C(X)/E by

j({τ2} − {τ1})(z) = log

(
z − τ2

z − τ1

)
.

Since it is Γ-equivariant, j induces a homomorphism

j∗ : H1(Γ,∆0
ur) −→ H1(Γ, C(X)/E).

We define one more pairing

〈·, ·〉 : H1(Γ,M0(X))×H1(Γ,∆0
ur) −→ Cp
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by 〈ϕ, ξ〉 = 〈ϕ, j∗ξ〉.
Let T(p) be the Hecke generated by the operators away from p, i.e. the operators T` for

` - pN , U` for ` | N+ and the involutions W` for ` | N− (see §3). There is a natural action
of T(p) on H1(Γ,∆0

ur) described by double cosets such that, endowing Hom(H1(Γ,∆0
ur), E)

with the corresponding dual action, the map

A : H1(Γ,M0(X)) −→ Hom(H1(Γ,∆0
ur), E),

ϕ 7−→
(
ξ 7→ 〈ϕ, ξ〉

)
induced by the pairing (52) is T(p)-equivariant. For g as in the previous sections, define

A±g = A(ResΘ
Γ ϕ
±
g ).

We have A±g ∈ Hom(H1(Γ,∆0
ur), E)g,±, where Hom(H1(Γ,∆0

ur), E)g,± is the eigenspace on

which T(p) acts via the Hecke eigenvalues of g and W∞ acts as ±1.

Proposition 26. There is a unique homomorphism AJ±g ∈ Hom(H1(Γ,∆ur), E)g,± such that
the diagram

H1(Γ,∆0
ur)

//

A±g %%JJJJJJJJJJ
H1(Γ,∆ur)

AJ±gyytttttttttt

E

commutes, where the horizontal map is induced by the inclusion ∆0
ur ↪→ ∆ur.

The proof of Proposition 26 is given in [8, §10] and is very similar to the first half of the
proof of Lemma 9.

Remark 27. We have chosen the notation AJ±g for this map because it formally resembles
an Abel–Jacobi map.

Define J : ∆ur → C(X)/E by

J({τ})(x, y) = log(x− yτ).

Since it is Γ-equivariant, J induces a homomorphism

J∗ : H1(Γ,∆) −→ H1(Γ, C(X)/E).

The natural Γ-equivariant pairing

M0(X)× C(X)/E −→ E

induces a corresponding pairing

H1(Γ,M0(X))×H1(Γ, C(X)/E) −→ E.
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Corollary 28. The map AJ±g : H1(Γ,∆ur)→ E is given by

AJ±g (ξ) = 〈Φ±g , J∗ξ〉.

Proof. It is easy to see that the element ÃJ
±
g of Hom(H1(Γ,∆ur), E) defined by ξ 7→ 〈Φ±g , J∗ξ〉

belongs to the (g,±)-eigenspace. Since π∗Φ
±
g = ResΘ

Γ ϕ
±
g , the diagram

H1(Γ,∆0
ur)

j∗ //

��

H1(Γ, C(X)/E)
〈ResΘ

Γ ϕ±g ,·〉

))SSSSSSSSSSSSSSSS

π∗

��

E

H1(Γ,∆ur) J∗
// H1(Γ, C(X)/E)

〈Φ±g ,·〉

55kkkkkkkkkkkkkkkk

commutes, implying that

H1(Γ,∆0
ur)

//

A±g %%JJJJJJJJJJ
H1(Γ,∆ur)

fAJ
±
gyytttttttttt

E

commutes as well. Therefore, by Proposition 26, AJ±g = ÃJ
±
g .

Let K be a real quadratic field and let O ⊂ K be an order such that (discO, Np) = 1.
There is an embedding

ψ : K −→ B

such that ψ(O) = ψ(K) ∩ R. For details regarding this point, see [17, Chapter III, 5C].
Suppose further that p is inert in K. Then ψ(K×) acts on P1(E) via ιp with two fixed points
τψ and τψ in Hp,ur, conjugate under the action of Gal(Kp/Qp). Let ε be a generator of the
unit group of O. Then since ψ(ε)τψ = τψ, we have

{τψ} ⊗ (1, ψ(ε)) ∈ Z1(Γ,∆ur).

Let C[ψ] be the corresponding class in H1(Γ,∆ur). The brackets around ψ indicate that
C[ψ] depends only on the Γ-conjugacy class of the embedding ψ. Assuming that the Hecke
eigenvalues of g lie in Z, we may associate an elliptic curve E/Q to g by the Eichler-Shimura
construction. Let logω be the logarithm of the formal group law on E associated to the
differential dq/q on E×/qZ. Note that logω factorizes as

E(E) −→ E×/qZ −→ E,

where the left arrow is the inverse of the Tate uniformization of E and the right arrow is
logL with

−L = L GS(g) = L D(ϕ±g ) = L MTT(g) =
logp(q)

ordp(q)
.
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The points
AJ±g (C[ψ]) ∈ E = logω E(E)

are called Stark–Heegner points on E . We conjecture in [8, §10] that the locally defined points
AJ±g (C[ψ]) in fact belong to logE(E(HO)), where HO is the ring class field of K associated to
the order O. By the results of this section, we have the following formula for AJ±g (C[ψ]) in
terms of the Hida family Φ±g :

Corollary 29.
AJ±g (C[ψ]) = 〈Φ±g , J∗C[ψ]〉.

In [9], we apply this formula with the methods of [3] to prove partial results towards the
rationality of the Stark–Heegner points AJ±g (C[ψ]) over HO.
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