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1 Symplectic Vector Spaces

1.1 Linear Symplectic Forms

Definition 1. A bilinear antisymmetric linear 2-form (henceforth simply a linear 2-form)
ω on a k-vector space V is non-degenerate if ω(v, w) = 0 implies v = 0, or, equivalently, if
v 7→ ω(v, ·) is an injection V → V ∗. A symplectic k-vector space (V, ω) is a k-vector space
V equipped with a non-degenerate linear 2-form ω, called the linear symplectic form.

Remark. One of the most natural symplectic vector spaces occurring in nature is the cotan-
gent space of a smooth manifold. We will be better equipped to understand this motivating
example when we talk about symplectic manifolds, which are logically situated after our
discussion of symplectic vector spaces. I promise that if we are willing to go without a
good discussion of this motivating example for now, we’ll come back to it and understand
it triumphantly later.

Remark. Alternating linear 2-forms are always antisymmetric. The converse is true given
the assumption that char k ̸= 2, but it need not hold otherwise.

In the finite-dimensional case, where we will spend much of our energy, an injection
V → V ∗ is automatically an isomorphism, since dimV = dimV ∗, so a symplectic vector
space is canonically isomorphic to its dual space via the isomorphism v 7→ ω(v, ·). This is
analogous to how an inner product space is canonically isomorphic to its dual space via the
isomorphism v 7→ ⟨v, ·⟩.

Examples.

• (k2, dx ∧ dy) is a symplectic vector space. Indeed, dx ∧ dy is the only linear 2-form
on k2 up to a nonzero constant, so it is also the only symplectic form on k2 up to a
nonzero constant.

• The direct sum of the symplectic vector spaces

(V, ω)⊕ (W,η) := (V ⊕W,ω ⊕ η := π∗
V ω + π∗

W η)

is a symplectic vector space, where πV : V ⊕W → V and πW : V ⊕W → W are the
projections out of a product.
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• For n ≥ 0, the n-fold direct sum of (k2, dx ∧ dy), namely

(k2n, ωstd := dx1 ∧ dy1 + · · ·+ dxn ∧ dyn),

where k2n has coordinates x1, y1, . . . , xn, yn, is a symplectic vector space.

Definition 2. Taking inspiration from inner product spaces, if W is a subspace of a sym-
plectic vector space (V, ω), we define the subspace perpendicular to W

W⊥ := {v ∈ V : ω(v, w) = 0 for all w ∈W}.

Exercise: just like for inner product spaces, if V is finite-dimensional, then dimW +
dimW⊥ = dimV and (W⊥)⊥ =W .

It is not automatic that a non-degenerate linear 2-form restricts to a non-degenerate
linear 2-form on a subspace. If this does happen, we christen the subspace with the following
appropriate name.

Definition 3. If W is a subspace of a symplectic vector space (V, ω), then W is a sym-
plectic subspace if (W,ω|W ) is a symplectic vector space, that is, if ω|W is non-degenerate,
equivalently, if W ∩W⊥ = 0, equivalently, if W⊥ is non-degenerate.

Example. The symplectic subspaces of (k2n, ωstd are exactly the subspaces of the form

span

(
∂

∂xi1
,
∂

∂yi1
, . . . ,

∂

∂xil
,
∂

∂yil

)
for some 0 ≤ i1, . . . , il ≤ n.

Exercise: if W is a symplectic subspace of the finite-dimensional symplectic vector space
(V, ω), then V splits as a direct sum of W and W⊥:

(V, ω) = (W,ω|W )⊕ (W⊥, ω|W⊥).

Compare to the case of inner product spaces.

1.2 Linear Symplectic Maps

Definition 4. A linear symplectic map φ : (V, ω) → (W, η) is a linear map φ : V →W that
preserves the symplectic form: φ∗η = ω. A linear symplectomorphism is a linear symplectic
map with a linear symplectic inverse.

Proposition 1. All linear symplectic maps are injective.

Proof. If v ∈ kerφ, then

ω(v, u) = η(φ(v), φ(u) = η(0, φ(u)) = 0

for all u ∈ V , so v = 0 by non-degeneracy.

Corollary. The category of symplectic vector spaces with linear symplectic maps between
them sucks.
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For example, if V,W ̸= 0, then the projection maps out of the product V ⊕W are not
injective, so the category doesn’t have them as morphisms. Hence V ⊕W with its projections
to V and W is not the product of V and W in this category.

Every finite-dimensional vector space is (non-canonically) isomorphic to kn for some
n ≥ 0. A similar statement holds for symplectic vector spaces.

Proposition 2. If char k ̸= 2, every finite-dimensional symplectic k-vector space (V, ω) is
(non-canonically) linear symplectomorphic to (k2n, ωstd) for some n ≥ 0.

Thus, every finite-dimensional symplectic vector space is even-dimensional.

Proof. If dimV = 0, 1, this is trivial, and if dimV = 2, this is because there is a unique
linear 2-form up to scaling, so suppose dimV > 2. Pick a nonzero vector e ∈ V . Non-
degeneracy implies there is f ∈ V such that ω(e, f) = 1. The assumption char k ̸= 2 implies
ω alternating implies e, f are linearly independent, so W = span(e, f) is a 2-dimensional
symplectic subspace of V . Thus (V, ω) = (W,ω|W ) ⊕ (W⊥, ω|W⊥), and we are done by
induction.1

We can use this proposition to prove another characterization of non-degeneracy:

Proposition 3. Let dimV = 2n and let ω be a linear 2-form on V . If char k ̸= 2 and
n! ̸= 0 in k, then ω is non-degenerate iff ωn ̸= 0.

Proof. Suppose ω is non-degenerate. By the preceding proposition, WLOG (V, ω) =
(k2n, ωstd). It is an exercise to check that

ωn
std = n! dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn ̸= 0.

Suppose ω is degenerate. Then there exists e1 ∈ V such that ω(e1, ·) = 0. Extend e1 to
a basis e1, . . . , e2n for V . Then ωn(e1, . . . , e2n) = 0, so ωn = 0.

1.3 The Symplectic and Heisenberg Groups

There are two groups we can associate to a symplectic vector space.

Definition 5. The symplectic group of (V, ω) is

Sp(V, ω) := {linear symplectomorphisms (V, ω) → (V, ω)}.

The symplectic group of (V, ω), dimV = 2n, is a subgroup of SL(V ) because a map
that preserves ω will also preserve the nonzero linear top form ωn, and preserving a nonzero
linear top form is equivalent to preserving the determinant. In the special case dimV = 2,
we have n = 1 and ωn = ω so Sp(V, ω) = SL(V ). But in general, there are more elements
in SL(V ) than in Sp(V, ω).

Example. If we pick a basis e1, . . . , e2n for V , then we can define the 2n by 2n matrix
Ω representing the bilinear 2-form ω as the matrix with ω(ei, ej) as its ijth entry. Then a
linear map V → V preserves ω if and only if its matrix representation A satisfies ATΩA = Ω,
so

Sp(V, ω) = {A : ATΩA = Ω}.
1If one wishes to be all too careful, they can check that if a factor in a direct sum of symplectic vector

spaces is replaced by a symplectomorphic symplectic vector space, the result of the direct sum is symplec-
tomorphic.
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If (V, ω) = (k2n, ωstd), we order the coordinates on k
2n as x1, . . . , xn, y1, . . . , yn, and we take

the standard basis on k2n, then Ω may be written especially compactly:

Ω =

(
0 In

−In 0

)
.

On the other hand, if we order the coordinates as x1, y1, . . . , xn, yn, as we have been doing
in this talk, the matrix is

Ω =


0 1
−1 0

. . .

0 1
−1 0

 .

Definition 6. If k = R, the Heisenberg group of (V, ω), which we denote Heis(V, ω), is the
set V × R with group multiplication given by

(v, t) · (w, s) := (v + w, t+ s+ ω(v, w)/2).

Example. Putting the coordinates x, y, t on R3, the group Heis(R2, ωstd) is the set R3 with
multiplication given by

(x, y, t) · (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + (xy′ − yx′)/2).

This group, which you may have seen before, is called the 3-dimensional Heisenberg group.
In general, for n ≥ 3, Heis(Rn−1, ωstd) is called the n-dimensional Heisenberg group.

2 Real Symplectic Geometry

2.1 Symplectic Forms

Definition 7. A 2-form ω on a smooth boundaryless manifold M is non-degenerate if ωp

is non-degenerate for all p ∈ M and symplectic if it is non-degenerate and closed. If ω is
symplectic, the pair (M,ω) is a symplectic manifold.

Three easy observations are at hand. First, the tangent spaces to a symplectic manifold
are symplectic vector spaces, so the dimension of a symplectic manifold is even. Second,
just as a Riemannian manifold (M, g) has a musical isomorphism TM ∼= T ∗M given by
(x, v) 7→ (x, g(v, ·)), a symplectic manifold (M,ω) has an isomorphism TM ∼= T ∗M given
by (x, v) 7→ (x, ω(v, ·)). Third, ωn is a nonvanishing top form, a.k.a. a volume form. A
volume form defines both an orientation on M and a Radon measure on M .

Examples.

• For n ≥ 0, (R2n, ωstd := dx1∧dy1+· · ·+dxn∧dyn) is a symplectic manifold.2 Similarly,
any finite-dimensional symplectic vector space over R is a symplectic manifold.

• Any nonvanishing 2-form on a surface is a symplectic form. Therefore, a surface admits
a symplectic structure iff it is orientable.

2We are overloading notation by referring to both this differential form and the linear form from the
previous section by the same notation ωstd.
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• The product of two symplectic manifolds is symplectic.

• If N has a symplectic form η, the pullback f∗η of η through an immersion f :M → N
is a symplectic form on M . As a special case, an open submanifold of a symplectic
submanifold is symplectic.

• If M is a smooth manifold without boundary, T ∗M admits a natural structure as a
symplectic manifold. This important example is what I referred to in the first remark
of the talk as one of the most natural ways that symplectic vector spaces (indeed,
symplectic manifolds) arise in nature. Let π : T ∗M → M be the bundle projection.
The map π induces, at the point (p, φ) ∈ T ∗M , the pointwise pullback map

π∗
(p,φ) : T

∗
pM → T ∗

(p,φ)(T
∗M).

The Liouville 1-form τ is the 1-form on T ∗M defined by τ(p,φ) := π∗
(p,φ)φ. Exercise:

in charts, −dτ = ωstd. Hence, not only is −dτ a natural symplectic form on T ∗M , but
also, if you do this exercise, you will see how the formula dx1 ∧ dy1 + · · ·+ dxn ∧ dyn
might have arisen naturally to someone studying the cotangent bundle, even if they
hadn’t yet defined symplectic forms.

The following proposition is an obstruction to a manifold admitting a symplectic struc-
ture. For example, it establishes that S0 and S2 are the only spheres that admit symplectic
structures.

Proposition 4. If (M2n, ω) is a closed symplectic manifold, ωk is nontrivial in H2k
dR(M)

for all 0 ≤ k ≤ n.

Proof. WLOG assume M is connected.
If ωk = dα is exact, then ωk+1 = dα ∧ ω = d(α ∧ ω) is too. Repeating this, ωn is exact,

so
∫
M
ωn = 0 since M is closed.

On the other hand, choose a finite oriented atlas {Ui} for M . If Ui has coordinates
x1, . . . , x2n, then the coordinate expression of ω in Ui is ω = fi dx

1∧· · ·∧dx2n for fi : Ui → R
nonvanishing. But since the atlas is finite and oriented and M is connected, the signs of the
fis all agree. Therefore, if ψi is a partition of unity subordinate to {Ui},∫

M

ωn =
∑
i

∫
Ui

ψiω
n

is a sum of terms all of the same sign, so it is ̸= 0.

2.2 Symplectic Maps and Gromov’s Non-Squeezing Theorem

Definition 8. A symplectic map f : (M,ω) → (N, η) is a smooth map f : M → N that
preserves the symplectic form: f∗η = ω. A symplectomorphism is a symplectic map with a
symplectic inverse. A symplectic embedding is a symplectic map that is also an embedding.
The symplectomorphism group of (M,ω) is the group

Sympl(M,ω) := {symplectomorphisms (M,ω) → (M,ω)}.

Our question in this talk is this: how rigid are symplectic maps? For example, we
know smooth maps are extremely wobbly and flexible, and the space of diffeomorphisms
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on a smooth manifold is huge, and we know that contrastingly, Riemannian isometries are
extremely rigid and inflexible, with the space of self-isometries on a generic Riemannian
manifold trivial. We can build a sequence of inclusions

{smooth maps} ⊃ {symplectic maps} ⊃ {volume-preserving maps}.

It seems a priori likely to me that symplectic maps are more similar, whatever that means,
to volume-preserving maps than they are to smooth maps. If we take this far enough, maybe
we can guess that symplectic maps can be described as volume-preserving maps plus some
small extra condition?

This guess is completely wrong, due to Gromov’s famous theorem:

Theorem 1 (Gromov’s Non-Squeezing Theorem). Let

B2n(r) := {z = (x1, y1, . . . , xn, yn) ∈ R2n : |z| < r}
= ball of radius r

and

Z2n(R) := B2(R)× R2n−2

= {(x1, y1, . . . , xn, yn) ∈ R2n : |(x1, y1)| < r}
= cylinder of radius R

be endowed with symplectic structures as open subsets of (R2n, ωstd). Then

∃ symplectic embedding B2n(r) → Z2n(R) ⇐⇒ r ≤ R.

(a) The ball of radius 1 sits symplectically inside
the cylinder of radius 1 as a subset.

(b) The ball of radius
√
2 can be squeezed in-

side the cylinder of radius 1 by rescaling the
coordinates. This map does not preserve the
symplectic form, even though it preserves vol-
ume.
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In other words, an oversized ball cannot be symplectically squeezed in to a small cylinder
even though a volume-preserving embedding can easily do the trick! Explicitly, for example,
for any r > 0, the linear map A : R4 → R4 given by the diagonal matrix

A =


1/r

1/r
r

r


sends B4(r) into Z4(1) and is volume-preserving, but it is not symplectic as ATΩA ̸= Ω
(using the appropriate matrix Ω from earlier).

The proof of Gromov’s Non-Squeezing Theorem studies the moduli space of pseudo-
holomorphic spheres inside the manifold CP 1 × T 2n−2. It is too difficult and too far afield
for me to squeeze a proper discussion of it into this already lengthy talk. Instead, we will
end the talk with a treat.

3 Naive p-Adic Symplectic Geometry

Fix a prime p. Naive p-adic analytic manifolds are like real manifolds, but with the p-adic
field Qp replacing R.

Definition 9.

• A naive n-dimensional p-adic analytic manifold M is a Hausdorff space with an open
cover {Uα} and homeomorphisms onto their images φα : Uα → φ(Uα) ⊂ (Qp)

n such
that the transition functions φαφ

−1
β are bianalytic.

• A map f : M → N is analytic if it is analytic in charts. The set of analytic maps
M → Qp is denoted Ω0(M).

• A tangent vector at q ∈ M is a linear map Ω0(M) → Qp satisfying the Leibniz rule
v(fg) = v(f)g(q)+f(q)v(g). The set of all tangent vectors at q ∈M forms the tangent
space TqM . The union of all tangent spaces forms the tangent bundle TM .

• A vector field is an analytic map X : M → TM such that X(q) ∈ TqM . The
set of vector fields is denoted X(M). A k-form is a multilinear antisymmetric map
X(M)k → Ω0(M).

• Naive p-adic analytic symplectic manifolds, analytic symplectic maps, analytic sym-
plectomorphisms, and analytic symplectic embeddings are all defined analogously to
the real case.

Examples.

• ((Qp)
2n, ωstd := dx1 ∧ dy1 + · · ·+ dxn ∧ dyn) is a naive 2n-dimensional p-adic analytic

symplectic manifold.

• Open subsets and finite products of naive p-adic analytic (symplectic) manifolds are
also naive p-adic analytic (symplectic) manifolds.
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• Recall that the p-adic absolute value |·|p : Qp → R≥0 is defined as |x|p := p−ordp(x)

and the p-adic norm ∥·∥p : (Qp)
m → R≥0 is defined as

∥(x1, . . . , xm)∥p := max{|x1|p, . . . , |xn|p}.

Let r,R be p-adic absolute values (let r,R be in the codomain of |·|p). Define the
p-adic ball and p-adic cylinder

B2n
p (r) := {z ∈ (Qp)

2n : ∥z∥p < pr}
Z2n
p (R) := B2(R)× (Qp)

2n−2

and endow them with symplectic structures from their structures as open subsets of
((Qp)

2n, ωstd).

Is the Non-Squeezing Theorem true for naive p-adic analytic symplectic manifolds? Will
we have to study some p-adic moduli space of pseudo-holomorphic spheres to know? Earlier
this year (2025), Crespo-Pelayo [1] built a simple analytic symplectomorphism that answers
both questions negatively.

Theorem 2 (Crespo-Pelayo [1]). For n ≥ 2, there is an analytic symplectomorphism

(Qp)
2n ∼= Z2n

p (1).

Proof. The symplectomorphism sends the element

(x1, y1, . . . , xn, yn) ∈ (Qp)
2n

to the element
(x′1, y

′
1, x

′
2, y

′
2, x3, y4, . . . , xn, yn) ∈ Z2n

p (1),

where x′1, y
′
1, x

′
2, y

′
2 are as follows. Write out the p-adic expansions of x1, y1, x2, y2:

x1 = a0.a1a2 . . .

y1 = b0.b1b2 . . .

x2 = c0.c1c2 . . .

y2 = d0.d1d2 . . .

where a0, b0, c0, d0 ∈ Zp and each of the sequences ai, bi, ci, di ∈ {0, . . . , p − 1} for i ≥ 1
eventually 0. Then x′1, y

′
1, x

′
2, y

′
2 have the p-adic expansions

x′1 = a0

y′1 = b0

x′2 = c0.a1c1a2c2a3c3 . . .

y′2 = d0.b1d1b2d2b3d3 . . . .

This map is analytic and preserves the symplectic form because it is a translation on
any p-adic ball of radius 1.
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