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1 Symplectic Vector Spaces

1.1 Linear Symplectic Forms

Definition 1. A bilinear antisymmetric linear 2-form (henceforth simply a linear 2-form)
w on a k-vector space V is non-degenerate if w(v,w) = 0 implies v = 0, or, equivalently, if
v = w(v,-) is an injection V' — V*. A symplectic k-vector space (V,w) is a k-vector space
V equipped with a non-degenerate linear 2-form w, called the linear symplectic form.

Remark. One of the most natural symplectic vector spaces occurring in nature is the cotan-
gent space of a smooth manifold. We will be better equipped to understand this motivating
example when we talk about symplectic manifolds, which are logically situated after our
discussion of symplectic vector spaces. I promise that if we are willing to go without a
good discussion of this motivating example for now, we’ll come back to it and understand
it triumphantly later.

Remark. Alternating linear 2-forms are always antisymmetric. The converse is true given
the assumption that char k # 2, but it need not hold otherwise.

In the finite-dimensional case, where we will spend much of our energy, an injection
V — V* is automatically an isomorphism, since dimV = dim V*, so a symplectic vector
space is canonically isomorphic to its dual space via the isomorphism v — w(v,-). This is
analogous to how an inner product space is canonically isomorphic to its dual space via the
isomorphism v — (v, -).

Examples.

e (k% dx A dy) is a symplectic vector space. Indeed, dz A dy is the only linear 2-form
on k2 up to a nonzero constant, so it is also the only symplectic form on k2 up to a
nonzero constant.

e The direct sum of the symplectic vector spaces
Viw)ye (W)= (Ve Wwen:=mryw+myn)

is a symplectic vector space, where 7y : VAW — V and myy : V& W — W are the
projections out of a product.



e For n > 0, the n-fold direct sum of (k2, dz A dy), namely
(™, werq = da Ady' + -+ + da™ A dy™),
where k%" has coordinates z',y',..., 2", y", is a symplectic vector space.

Definition 2. Taking inspiration from inner product spaces, if W is a subspace of a sym-
plectic vector space (V,w), we define the subspace perpendicular to W

Wt ={veV:wl,w)=0 forall we W}.

Exercise: just like for inner product spaces, if V' is finite-dimensional, then dim W +
dim W+ =dimV and (W+)*+ = W.

It is not automatic that a non-degenerate linear 2-form restricts to a non-degenerate
linear 2-form on a subspace. If this does happen, we christen the subspace with the following
appropriate name.

Definition 3. If W is a subspace of a symplectic vector space (V,w), then W is a sym-
plectic subspace if (W,w|w) is a symplectic vector space, that is, if w|y is non-degenerate,
equivalently, if W N W+ = 0, equivalently, if W is non-degenerate.

Example. The symplectic subspaces of (k*",wyq are exactly the subspaces of the form
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P Oxir’ gy’ Pxit’ Gyt

for some 0 < iy,...,4; < n.

Exercise: if W is a symplectic subspace of the finite-dimensional symplectic vector space
(V,w), then V splits as a direct sum of W and W+:

(Vow) = (Wwlw) & (W, wly).

Compare to the case of inner product spaces.

1.2 Linear Symplectic Maps

Definition 4. A linear symplectic map ¢ : (V,w) — (W,n) is a linear map ¢ : V' — W that
preserves the symplectic form: ¢*n = w. A linear symplectomorphism is a linear symplectic
map with a linear symplectic inverse.

Proposition 1. All linear symplectic maps are injective.

Proof. If v € ker ¢, then
w(v,u) = n(e(v), p(u) =n(0,p(u)) =0
for all u € V, so v = 0 by non-degeneracy. O

Corollary. The category of symplectic vector spaces with linear symplectic maps between
them sucks.



For example, if V, W = 0, then the projection maps out of the product V & W are not
injective, so the category doesn’t have them as morphisms. Hence V@W with its projections
to V and W is not the product of V and W in this category.

Every finite-dimensional vector space is (non-canonically) isomorphic to k™ for some
n > 0. A similar statement holds for symplectic vector spaces.

Proposition 2. If chark # 2, every finite-dimensional symplectic k-vector space (V,w) is
(non-canonically) linear symplectomorphic to (k*™,wsia) for some n > 0.

Thus, every finite-dimensional symplectic vector space is even-dimensional.

Proof. If dimV = 0,1, this is trivial, and if dim V' = 2, this is because there is a unique
linear 2-form up to scaling, so suppose dimV > 2. Pick a nonzero vector ¢ € V. Non-
degeneracy implies there is f € V such that w(e, f) = 1. The assumption char k # 2 implies
w alternating implies e, f are linearly independent, so W = span(e, f) is a 2-dimensional
symplectic subspace of V. Thus (V,w) = (W,w|w) @ (W, w|y 1), and we are done by
induction. O

We can use this proposition to prove another characterization of non-degeneracy:

Proposition 3. Let dimV = 2n and let w be a linear 2-form on V. If chark # 2 and
n! # 0 in k, then w is non-degenerate iff w™ # 0.

Proof. Suppose w is non-degenerate. By the preceding proposition, WLOG (V,w) =
(k" wsta). It is an exercise to check that

w;d:n!dxl/\dyl/\---/\das”/\dy”750.

Suppose w is degenerate. Then there exists e; € V such that w(eq, ) = 0. Extend e; to
a basis eq,...,eq, for V. Then w™(ey,...,e2,) =0, so w™ = 0. O

1.3 The Symplectic and Heisenberg Groups
There are two groups we can associate to a symplectic vector space.
Definition 5. The symplectic group of (V,w) is

Sp(V,w) := {linear symplectomorphisms (V,w) — (V,w)}.

The symplectic group of (V,w), dimV = 2n, is a subgroup of SL(V) because a map
that preserves w will also preserve the nonzero linear top form w™, and preserving a nonzero
linear top form is equivalent to preserving the determinant. In the special case dimV = 2,
we have n = 1 and w™ = w so Sp(V,w) = SL(V). But in general, there are more elements
in SL(V') than in Sp(V,w).

Example. If we pick a basis ej,...,es, for V, then we can define the 2n by 2n matrix
(2 representing the bilinear 2-form w as the matrix with w(e;, e;) as its ijth entry. Then a
linear map V' — V preserves w if and only if its matrix representation A satisfies ATQA = Q,
SO

Sp(V,w) = {A: ATQA = Q}.

11If one wishes to be all too careful, they can check that if a factor in a direct sum of symplectic vector
spaces is replaced by a symplectomorphic symplectic vector space, the result of the direct sum is symplec-
tomorphic.



If (V,w) = (k*,wsq), we order the coordinates on k2™ as x!,... 2" y!, ..., y", and we take

the standard basis on k%7, then Q may be written especially compactly:

0 1,
0= (5 5.

On the other hand, if we order the coordinates as z',y',..., 2", y", as we have been doing
in this talk, the matrix is

Definition 6. If kK = R, the Heisenberg group of (V,w), which we denote Heis(V,w), is the
set V' x R with group multiplication given by

(v,t) - (w,8) := (V+w,t+ s+ w(v,w)/2).

Example. Putting the coordinates z,y,t on R?, the group Heis(R?, wgtq) is the set R3 with
multiplication given by

(z,y,t) - (2", ¢/ ) = (@ + 2" y+y t+t' + (xy —ya')/2).

This group, which you may have seen before, is called the 3-dimensional Heisenberg group.
In general, for n > 3, Heis(R" ™!, wyq) is called the n-dimensional Heisenberg group.

2 Real Symplectic Geometry

2.1 Symplectic Forms

Definition 7. A 2-form w on a smooth boundaryless manifold M is non-degenerate if w,
is non-degenerate for all p € M and symplectic if it is non-degenerate and closed. If w is
symplectic, the pair (M,w) is a symplectic manifold.

Three easy observations are at hand. First, the tangent spaces to a symplectic manifold
are symplectic vector spaces, so the dimension of a symplectic manifold is even. Second,
just as a Riemannian manifold (M, g) has a musical isomorphism T'M = T*M given by
(z,v) — (z,9(v,-)), a symplectic manifold (M,w) has an isomorphism T'M = T*M given
by (z,v) — (z,w(v,-)). Third, w™ is a nonvanishing top form, a.k.a. a volume form. A
volume form defines both an orientation on M and a Radon measure on M.

Examples.

e Forn >0, (R?", wsq := de Ady'+- - -+dz™ Ady™) is a symplectic manifold.? Similarly,
any finite-dimensional symplectic vector space over R is a symplectic manifold.

e Any nonvanishing 2-form on a surface is a symplectic form. Therefore, a surface admits
a symplectic structure iff it is orientable.

2We are overloading notation by referring to both this differential form and the linear form from the
previous section by the same notation wgtq.



e The product of two symplectic manifolds is symplectic.

e If N has a symplectic form 7, the pullback f*n of  through an immersion f: M — N
is a symplectic form on M. As a special case, an open submanifold of a symplectic
submanifold is symplectic.

e If M is a smooth manifold without boundary, T*M admits a natural structure as a
symplectic manifold. This important example is what I referred to in the first remark
of the talk as one of the most natural ways that symplectic vector spaces (indeed,
symplectic manifolds) arise in nature. Let 7w : T*M — M be the bundle projection.
The map 7 induces, at the point (p, p) € T*M, the pointwise pullback map

WE‘WP) Ty M — T(“;,gp)(T*M).
The Liouville 1-form 7 is the 1-form on T*M defined by 7, ) = Wfpmcp. Exercise:
in charts, —d7T = wgyq. Hence, not only is —d7 a natural symplectic form on 7% M, but
also, if you do this exercise, you will see how the formula dz' A dy' + - - + dz™ A dy™
might have arisen naturally to someone studying the cotangent bundle, even if they
hadn’t yet defined symplectic forms.

The following proposition is an obstruction to a manifold admitting a symplectic struc-
ture. For example, it establishes that S° and S? are the only spheres that admit symplectic
structures.

Proposition 4. If (M*",w) is a closed symplectic manifold, w* is nontrivial in H2% (M)
for all0 <k <n.

Proof. WLOG assume M is connected.

If w* = da is exact, then Wt = da A w = d(a A w) is too. Repeating this, w™ is exact,
so [, w" = 0 since M is closed.

On the other hand, choose a finite oriented atlas {U;} for M. If U; has coordinates
2!, ..., 2%", then the coordinate expression of w in U; is w = f; dz* A---Adz?®" for f; : U; — R
nonvanishing. But since the atlas is finite and oriented and M is connected, the signs of the

fis all agree. Therefore, if 1); is a partition of unity subordinate to {U;},

/M W= ;/U vt

is a sum of terms all of the same sign, so it is # 0. O

2.2 Symplectic Maps and Gromov’s Non-Squeezing Theorem

Definition 8. A symplectic map f : (M,w) — (N,n) is a smooth map f : M — N that
preserves the symplectic form: f*n = w. A symplectomorphism is a symplectic map with a
symplectic inverse. A symplectic embedding is a symplectic map that is also an embedding.
The symplectomorphism group of (M,w) is the group

Sympl(M,w) := {symplectomorphisms (M,w) — (M,w)}.

Our question in this talk is this: how rigid are symplectic maps? For example, we
know smooth maps are extremely wobbly and flexible, and the space of diffeomorphisms



on a smooth manifold is huge, and we know that contrastingly, Riemannian isometries are
extremely rigid and inflexible, with the space of self-isometries on a generic Riemannian
manifold trivial. We can build a sequence of inclusions

{smooth maps} D {symplectic maps} D {volume-preserving maps}.

It seems a priori likely to me that symplectic maps are more similar, whatever that means,
to volume-preserving maps than they are to smooth maps. If we take this far enough, maybe
we can guess that symplectic maps can be described as volume-preserving maps plus some
small extra condition?

This guess is completely wrong, due to Gromov’s famous theorem:

Theorem 1 (Gromov’s Non-Squeezing Theorem). Let

B*(r) = {z = (z',y},..., 2", y") € R*™ : |z| < 1}

= ball of radius r
and

Z?"(R) := B*(R) x R*"~?
={(@" 2"y € R (2 yh) <}
= cylinder of radius R

be endowed with symplectic structures as open subsets of (R®", wgq). Then

3 symplectic embedding B*"(r) — Z*"(R) <= r<R.

(b) The ball of radius /2 can be squeezed in-
side the cylinder of radius 1 by rescaling the
coordinates. This map does not preserve the
(a) The ball of radius 1 sits symplectically inside  symplectic form, even though it preserves vol-
the cylinder of radius 1 as a subset. ume.




In other words, an oversized ball cannot be symplectically squeezed in to a small cylinder
even though a volume-preserving embedding can easily do the trick! Explicitly, for example,
for any r > 0, the linear map A : R* — R* given by the diagonal matrix

1/r
1/r

r

sends B*(r) into Z*(1) and is volume-preserving, but it is not symplectic as ATQA #
(using the appropriate matrix € from earlier).

The proof of Gromov’s Non-Squeezing Theorem studies the moduli space of pseudo-
holomorphic spheres inside the manifold CP! x T?"~2, It is too difficult and too far afield
for me to squeeze a proper discussion of it into this already lengthy talk. Instead, we will
end the talk with a treat.

3 Naive p-Adic Symplectic Geometry

Fix a prime p. Naive p-adic analytic manifolds are like real manifolds, but with the p-adic
field Q,, replacing R.

Definition 9.

e A naive n-dimensional p-adic analytic manifold M is a Hausdorff space with an open
cover {U,} and homeomorphisms onto their images o : Uy — ¢(Us) C (Qp)™ such
that the transition functions g@agogl are bianalytic.

e A map f: M — N is analytic if it is analytic in charts. The set of analytic maps
M — Q, is denoted Q°(M).

e A tangent vector at ¢ € M is a linear map Q°(M) — Q, satisfying the Leibniz rule
v(fg) =v(f)g(q)+ f(q)v(g). The set of all tangent vectors at ¢ € M forms the tangent
space Ty M. The union of all tangent spaces forms the tangent bundle T'M.

e A wvector field is an analytic map X : M — TM such that X(¢q) € T,M. The
set of vector fields is denoted X(M). A k-form is a multilinear antisymmetric map
X(M)F — QO(M).

e Naive p-adic analytic symplectic manifolds, analytic symplectic maps, analytic sym-
plectomorphisms, and analytic symplectic embeddings are all defined analogously to
the real case.

Examples.

o ((Q))*", weta := dz* Ady* + -+ +dz™ Ady™) is a naive 2n-dimensional p-adic analytic
symplectic manifold.

e Open subsets and finite products of naive p-adic analytic (symplectic) manifolds are
also naive p-adic analytic (symplectic) manifolds.



e Recall that the p-adic absolute value ||, : Q, — Rxq is defined as |z|, := p~°'d»(®)
and the p-adic norm ||-||, : (@)™ — R> is defined as

I @)l = max{[e ..., [a"],).

Let r, R be p-adic absolute values (let r, R be in the codomain of ||,). Define the
p-adic ball and p-adic cylinder

Byt (r) == {z € (Q)*" : ||z, < pr}

Z3"(R) := B*(R) x (Q,)*"~*
and endow them with symplectic structures from their structures as open subsets of
((Q@p)*", wsta)-

Is the Non-Squeezing Theorem true for naive p-adic analytic symplectic manifolds? Will
we have to study some p-adic moduli space of pseudo-holomorphic spheres to know? Earlier
this year (2025), Crespo-Pelayo [1] built a simple analytic symplectomorphism that answers
both questions negatively.

Theorem 2 (Crespo-Pelayo [1]). For n > 2, there is an analytic symplectomorphism
(@) = Z;"(1).
Proof. The symplectomorphism sends the element

(T1,Y1, -, Tn,Yn) € (Qp)zn

to the element
(@, Y1, T, Yl 3, Y, -, Ty Yn) € Z7(1),

where ], v}, x5, y5 are as follows. Write out the p-adic expansions of z1,y1, 2, yo:

1 = ap-a1a2 ...

Yy = bo.b1b2 .
I = Cp.C1C2 . ..
Yo = do.d1d2 .

where ag, by, co,dy € Z, and each of the sequences a;,b;,¢;,d; € {0,...,p— 1} for i > 1
eventually 0. Then z,y}, x5, y5 have the p-adic expansions

x] = agp

y1="bo

Th = C0.a1€1A2C203C3 . . .

yy = do.bidybadabsds . . ..

This map is analytic and preserves the symplectic form because it is a translation on
any p-adic ball of radius 1. O
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