Exercises

1. Prove that set of invertible elements in any monoid is a group.

2. Solve for y given that $xyz^{-1}w = 1$ in a group.

3. Assume that the equation $xyz = 1$ holds in a group G. Does it follow that $yzx = 1$? How about $yxx = 1$?

4. Fix elements a and b in a group G. Show that the equation $ax = b$ has a unique solution in G.

5. Determine the elements of the cyclic group generated by the matrix $egin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$ explicitly.

6. Let a and b be elements of a group G. Assume that a has order 5 and that $a^3b = ba^3$. Prove that $ab = ba$.

7. Prove that a nonempty subset H of a group G is a subgroup if for all $x, y \in H$ the element xy^{-1} lies in H.

8. An n^{th} root of unity is a complex number z such that $z^n = 1$. Prove that the n^{th} roots of unity form a cyclic subgroup of \mathbb{C}^\times of order n. More generally, show that every finite subgroup of the multiplicative group of any field is cyclic.

9. Let H be the subgroup generated by two elements a and b of a group G. Prove that if $ab = ba$ then H is abelian.

10. Describe all groups that contain no proper subgroup. Describe all groups that contain no proper nontrivial subgroup.

11. Let G be a cyclic group of order n, and let r be an integer dividing n. Prove that G contains exactly one subgroup of order r.

12. Let G be a cyclic group of order 6. How many of its elements generate G? How about if G has order 5, 8, or 10? And the general case of order n?

13. Prove that a group in which every element except the identity has order 2 is abelian.

14. How many elements of order 2 does the symmetric group S_4 have? What about S_5 or S_6?

15. Prove that the set of elements of finite order in an abelian group is a subgroup. Find a group whose elements of finite order do not constitute a subgroup.

16. Let M be a finite monoid that satisfies the cancellation law. Prove that M is a group.