Applying persistent homology to brain artery and vein imaging

Ezra Miller

Duke University, Department of Mathematics

ezra@math.duke.edu

joint with

Paul Bendich & Aaron Pieloch (Duke Math)

J.S. Marron & Sean Skwerer (Chapel Hill Stat/Oper.Res.)

University of Georgia
12 November 2014

<u>Outline</u>

- 1. Artery trees
- 2. Prior analyses
- 3. Homology
- 4. Persistence
- 5. Bar codes
- 6. Statistical analysis
- 7. Reflections on TDA
- 8. Next steps
- 9. Fly wings
- 10. Stratified persistence
- 11. Future directions

Goal: Statistical analysis taking 3D geometry into account

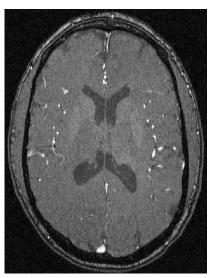
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH

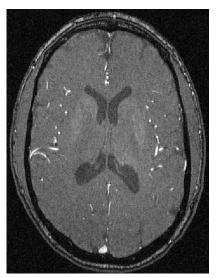
from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH



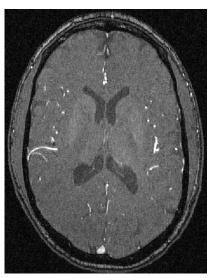
from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH



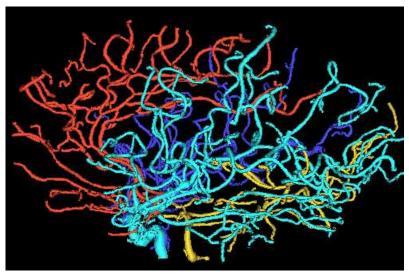
from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH



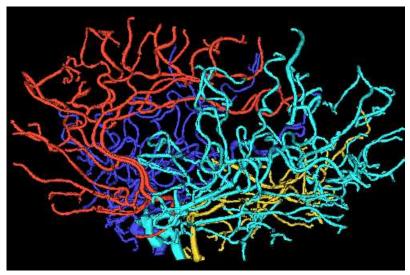
from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH



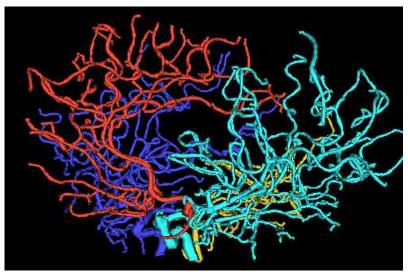
from Elizabeth Bullitt, Dept. of Neurosurgery, UNC-CH



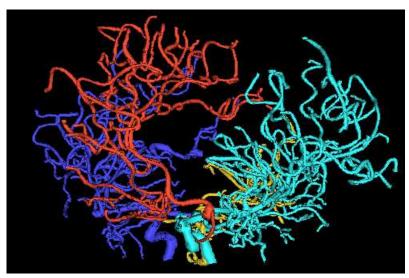
[Bullitt and Aylward, 2002]



[Bullitt and Aylward, 2002]

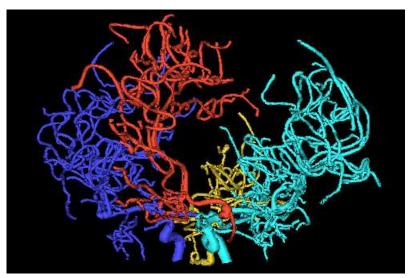


[Bullitt and Aylward, 2002]



[Bullitt and Aylward, 2002]

3



[Bullitt and Aylward, 2002]



[Bullitt and Aylward, 2002]

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

Goal: Statistical analysis taking 3D geometry into account

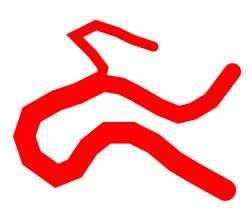
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The images:

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

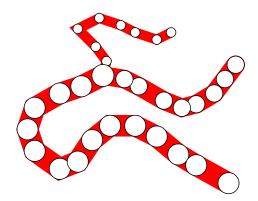
The images:



Goal: Statistical analysis taking 3D geometry into account

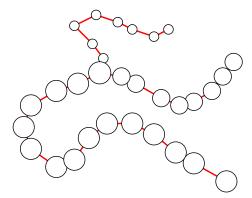
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The images:



Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:

,

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

The data structure:

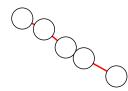
,

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

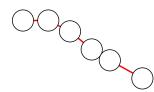
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- · explore how age affects vascularization



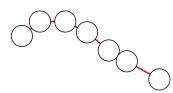
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- · explore how age affects vascularization



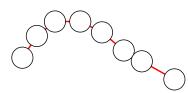
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



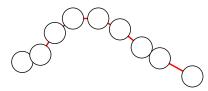
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



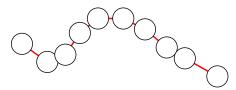
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



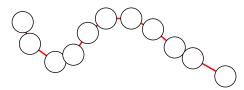
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



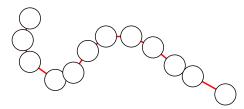
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



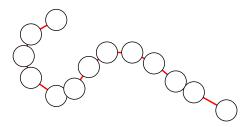
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

Goal: Statistical analysis taking 3D geometry into account

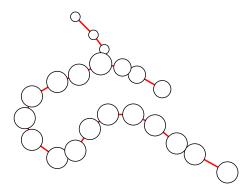
- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization

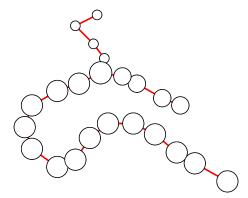
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



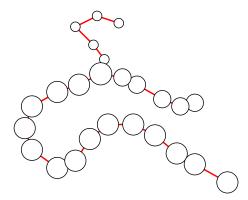
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



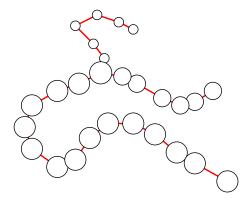
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



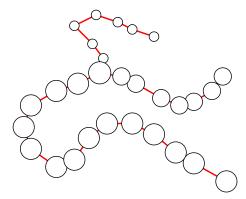
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



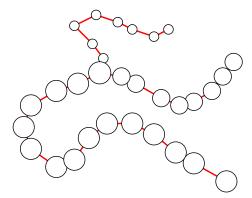
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



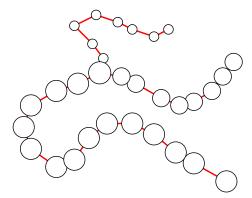
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



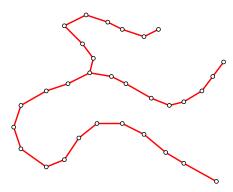
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



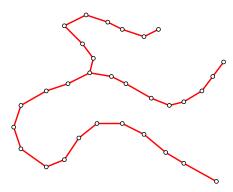
Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



Goal: Statistical analysis taking 3D geometry into account

- predict stroke tendency
- screen for loci of pathology, such as tumors
- explore how age affects vascularization



Prior analyses

Discrete methods [Aydin, et al. 2009]

- disregard metric and embedding
- compare combinatorial structures
- no correlations detected

Phylogenetic trees [SAMSI WG 2013]

- connect cortical surface landmarks to nearest leaves
- apply averaging algorithm [M.—, Owen, Provan; Bačák 2012] in tree space [Billera, Holmes, Vogtmann 2001]
- too combinatorial again: found nothing but sticky mean at origin

Dyck paths [Dan Shen and J.S. Marron, et al. 2014]

- pay attention to edge lengths but disregard 3D embedding
- complicated tree pruning
- Pearson correlation \sim .25

- · combinatorics and branch length not enough;
- location and twist are crucial.

Prior analyses

Discrete methods [Aydin, et al. 2009]

- · disregard metric and embedding
- compare combinatorial structures
- no correlations detected

Phylogenetic trees [SAMSI WG 2013]

- connect cortical surface landmarks to nearest leaves
- apply averaging algorithm [M.—, Owen, Provan; Bačák 2012] in tree space [Billera, Holmes, Vogtmann 2001]
- · too combinatorial again: found nothing but sticky mean at origin

Dyck paths [Dan Shen and J.S. Marron, et al. 2014]

- pay attention to edge lengths but disregard 3D embedding
- complicated tree pruning
- Pearson correlation \sim .25

- · combinatorics and branch length not enough;
- location and twist are crucial.

Prior analyses

Discrete methods [Aydin, et al. 2009]

- disregard metric and embedding
- compare combinatorial structures
- no correlations detected

Phylogenetic trees [SAMSI WG 2013]

- connect cortical surface landmarks to nearest leaves
- apply averaging algorithm [M.—, Owen, Provan; Bačák 2012] in tree space [Billera, Holmes, Vogtmann 2001]
- too combinatorial again: found nothing but sticky mean at origin

Dyck paths [Dan Shen and J.S. Marron, et al. 2014]

- pay attention to edge lengths but disregard 3D embedding
- complicated tree pruning
- Pearson correlation \sim .25

- · combinatorics and branch length not enough;
- location and twist are crucial.

Prior analyses

Discrete methods [Aydin, et al. 2009]

- disregard metric and embedding
- compare combinatorial structures
- no correlations detected

Phylogenetic trees [SAMSI WG 2013]

- connect cortical surface landmarks to nearest leaves
- apply averaging algorithm [M.—, Owen, Provan; Bačák 2012] in tree space [Billera, Holmes, Vogtmann 2001]
- · too combinatorial again: found nothing but sticky mean at origin

Dyck paths [Dan Shen and J.S. Marron, et al. 2014]

- pay attention to edge lengths but disregard 3D embedding
- complicated tree pruning
- Pearson correlation \sim .25

- · combinatorics and branch length not enough;
- location and twist are crucial.

Topological space $X \rightsquigarrow \text{homology } H_iX \text{ for each dimension } i$.

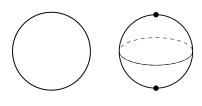
Topological space $X \rightsquigarrow \text{homology } H_iX \text{ for each dimension } i$.

Topological space $X \rightsquigarrow \text{homology } H_iX \text{ for each dimension } i$.

Topological space $X \rightsquigarrow \text{homology } H_iX \text{ for each dimension } i$.

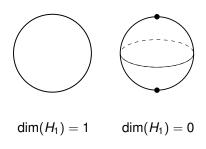
$$dim(H_1) = 1$$

Topological space $X \rightsquigarrow \text{homology } H_iX \text{ for each dimension } i$.

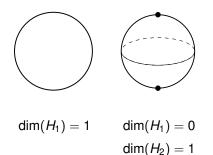


$$\dim(H_1)=1$$

Topological space $X \leadsto \text{homology } H_iX \text{ for each dimension } i$.

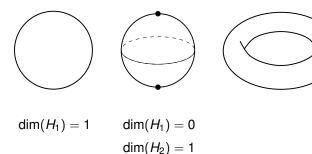


Topological space $X \leadsto \text{homology } H_iX \text{ for each dimension } i$.

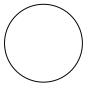


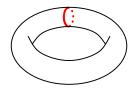
Topological space $X \rightsquigarrow \text{homology } H_iX \text{ for each dimension } i$.

vector space that measures "i-dimensional holes" in X



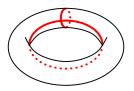
Topological space $X \rightsquigarrow \text{homology } H_iX \text{ for each dimension } i$.





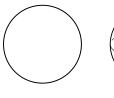
$$\begin{aligned} \text{dim}(H_1) &= 1 & & \text{dim}(H_1) &= 0 \\ & & \text{dim}(H_2) &= 1 \end{aligned}$$

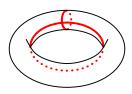
Topological space $X \rightsquigarrow \text{homology } H_iX \text{ for each dimension } i$.



$$\label{eq:dim} \begin{split} dim(H_1) &= 1 \qquad &dim(H_1) = 0 \\ dim(H_2) &= 1 \end{split}$$

Topological space $X \rightsquigarrow \text{homology } H_iX \text{ for each dimension } i$.





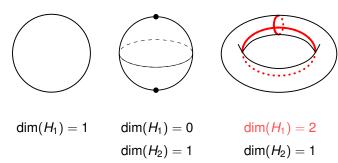
$$\dim(H_1)=1$$

$$\dim(H_1)=0$$

$$dim(H_1) = 0 \qquad \qquad dim(H_1) = 2$$
$$dim(H_2) = 1$$

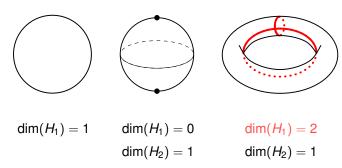
Topological space $X \leadsto \text{homology } H_i X \text{ for each dimension } i$.

vector space that measures "i-dimensional holes" in X



Topological space $X \leadsto \text{homology } H_i X \text{ for each dimension } i$.

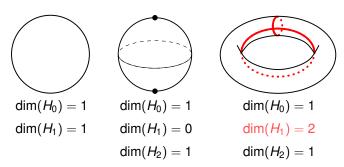
vector space that measures "i-dimensional holes" in X



i = 0 case: H_i counts connected components of X

Topological space $X \leadsto \text{homology } H_iX \text{ for each dimension } i$.

vector space that measures "i-dimensional holes" in X



i = 0 case: H_i counts connected components of X

Persistent homology

Build X step by step

· measure evolving topology.

Def. Let X_{\bullet} be a filtered space, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology H_iX_{\bullet} is $H_iX_1 \to H_iX_2 \to \cdots \to H_iX_m$, a sequence of vector space homomorphisms.

Examples:

- 1. Given a function $f: X \to \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which H_iX_t changes.
- 2. Any simplicial complex: build it simplex by simplex in some order.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments

Persistent homology

Build X step by step

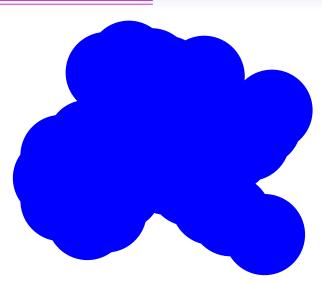
· measure evolving topology.

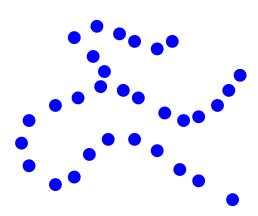
Def. Let X_{\bullet} be a filtered space, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology H_iX_{\bullet} is $H_iX_1 \to H_iX_2 \to \cdots \to H_iX_m$, a sequence of vector space homomorphisms.

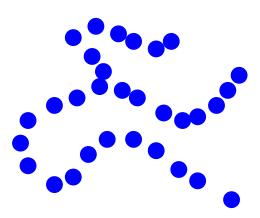
Examples:

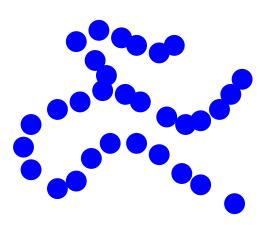
- 1. Given a function $f: X \to \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which H_iX_t changes.
- 2. Any simplicial complex: build it simplex by simplex in some order.

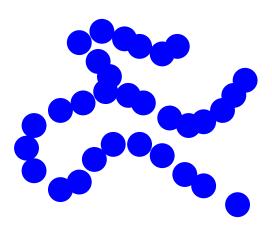
History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments

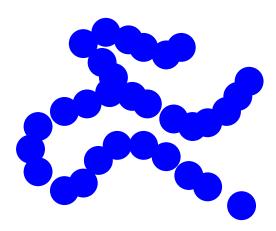


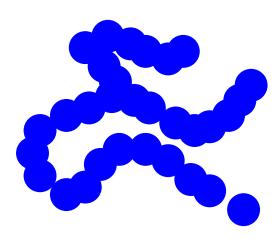


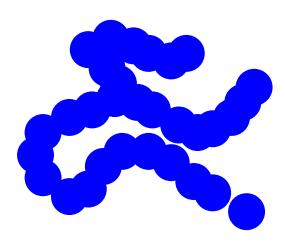


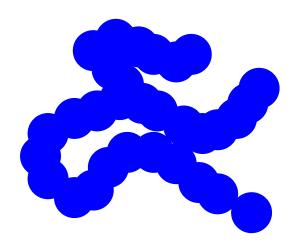


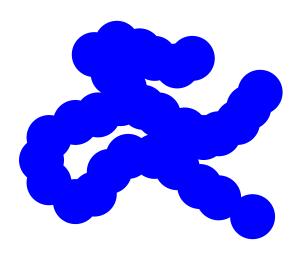


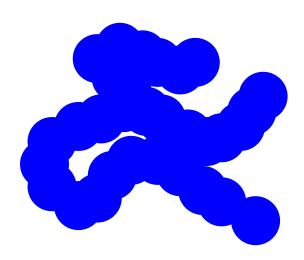


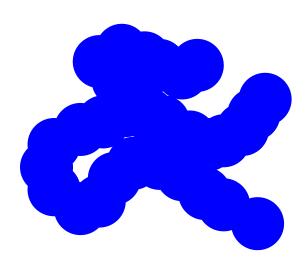


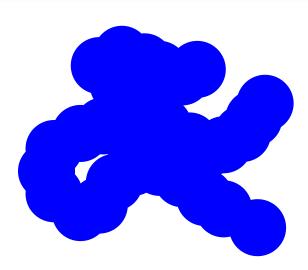


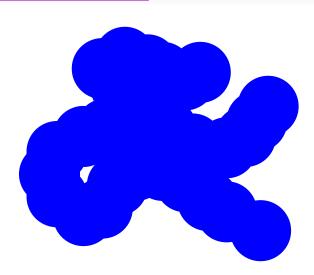


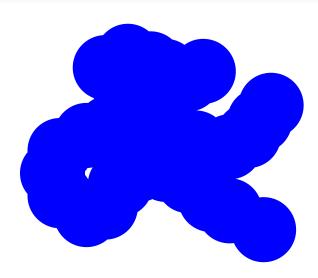


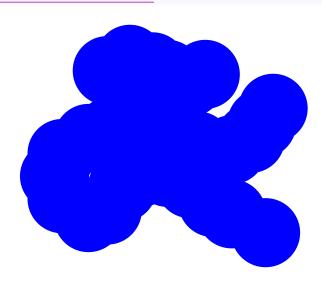


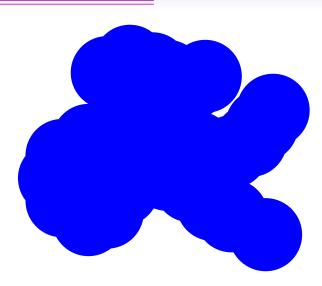


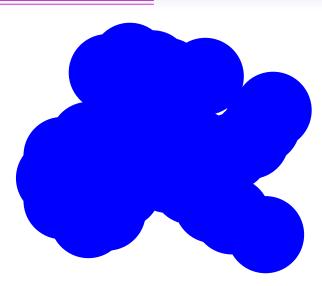


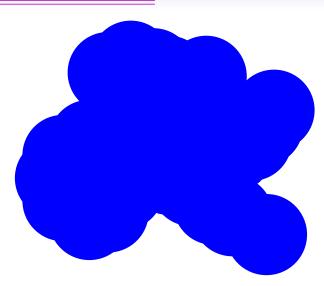


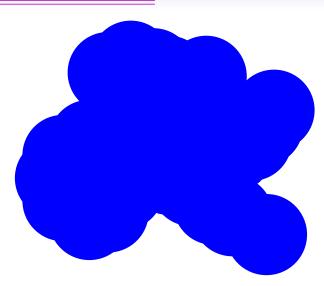












Persistent homology

Build X step by step

· measure evolving topology.

Def. Let X_{\bullet} be a filtered space, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology H_iX_{\bullet} is $H_iX_1 \to H_iX_2 \to \cdots \to H_iX_m$, a sequence of vector space homomorphisms.

Examples:

- 1. Given a function $f: X \to \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which H_iX_t changes.
- 2. Any simplicial complex: build it simplex by simplex in some order.

History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments

Persistent homology

Build X step by step

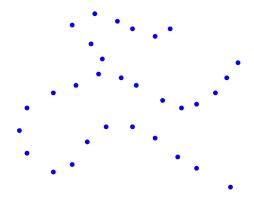
measure evolving topology.

Def. Let X_{\bullet} be a filtered space, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology H_iX_{\bullet} is $H_iX_1 \to H_iX_2 \to \cdots \to H_iX_m$, a sequence of vector space homomorphisms.

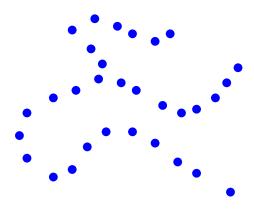
Examples:

- 1. Given a function $f: X \to \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which H_iX_t changes.
- 2. Any simplicial complex: build it simplex by simplex in some order.

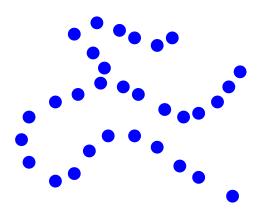
History. invented by [Frosini, Landi 1999], [Robins 1999], [Edelsbrunner, Letscher, Zomorodian 2002]: includes efficient computation; [many others, including Carlsson]: further developments



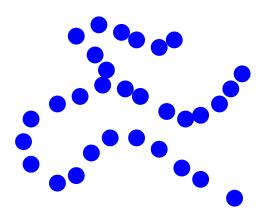
$$\dim(H_0)=31$$



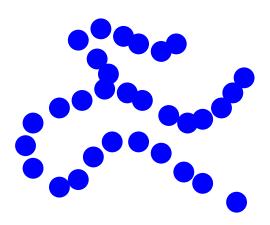
$$dim(H_0) = 31$$



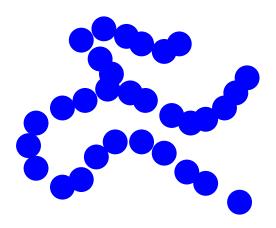
$$\dim(H_0)=31$$



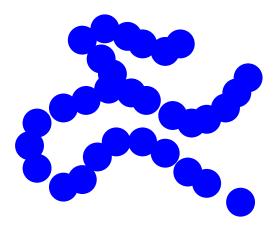
$$\dim(H_0)=26$$



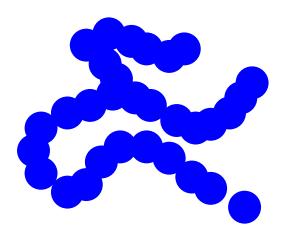
$$\dim(H_0)=21$$



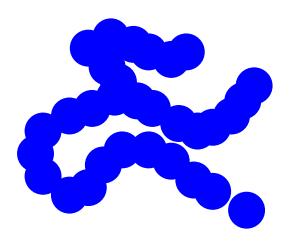
$$\dim(H_0)=12$$



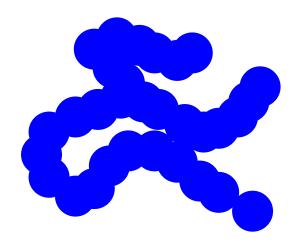
$$dim(H_0) = 6$$



$$dim(H_0) = 2$$

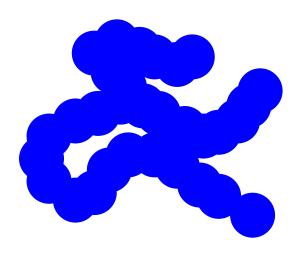


$$dim(H_0) = 2$$

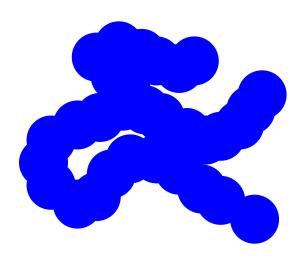


$$\dim(H_0)=1\qquad \dim(H_1)=2$$

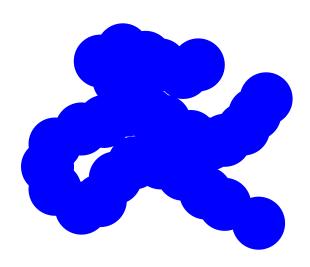
/



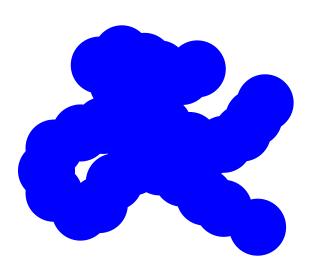
$$\dim(H_0)=1\qquad \dim(H_1)=1$$



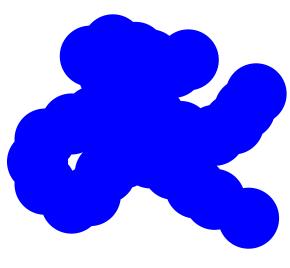
$$\dim(H_0)=1\qquad \dim(H_1)=1$$



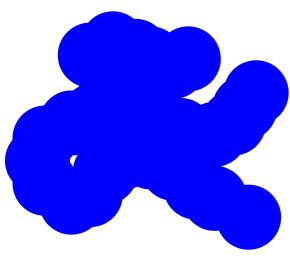
$$\dim(H_0)=1\qquad \dim(H_1)=3$$



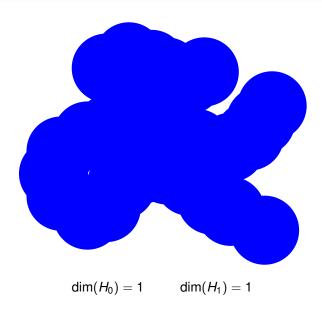
$$\dim(H_0)=1\qquad \dim(H_1)=1$$

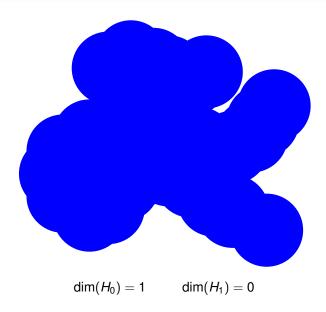


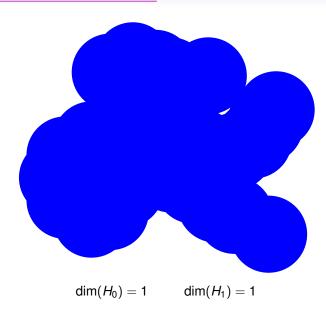
$$\dim(H_0)=1\qquad \dim(H_1)=1$$



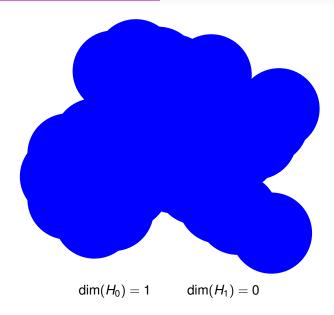
$$\dim(H_0)=1\qquad \dim(H_1)=1$$







7



Build X step by step

measure evolving topology.

Def. Let X_{\bullet} be a filtered space, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology H_iX_{\bullet} is $H_iX_1 \to H_iX_2 \to \cdots \to H_iX_m$, a sequence of vector space homomorphisms.

Examples:

- 1. Given a function $f: X \to \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which H_iX_t changes.
- 2. Any simplicial complex: build it simplex by simplex in some order.

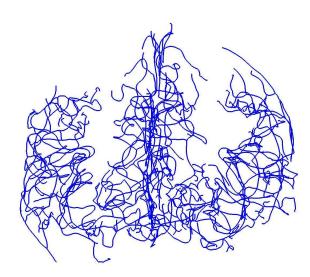
Build X step by step

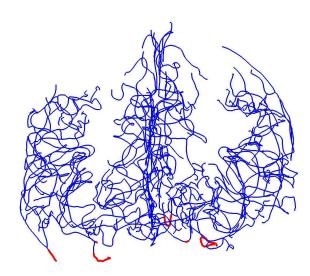
measure evolving topology.

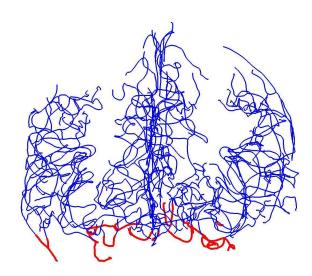
Def. Let X_{\bullet} be a filtered space, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology H_iX_{\bullet} is $H_iX_1 \to H_iX_2 \to \cdots \to H_iX_m$, a sequence of vector space homomorphisms.

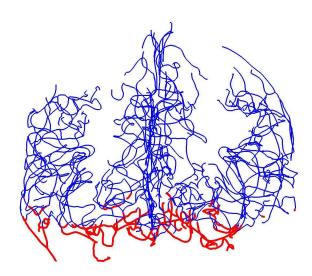
Examples:

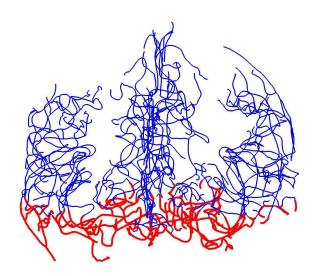
- 1. Given a function $f: X \to \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which H_iX_t changes.
- 2. Any simplicial complex: build it simplex by simplex in some order.

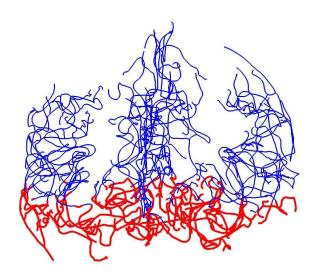


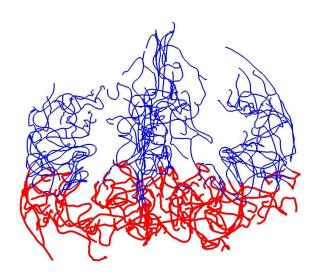


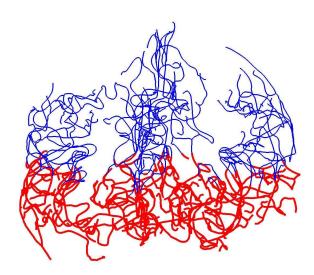


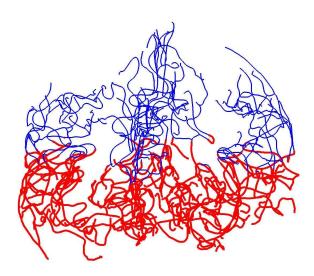


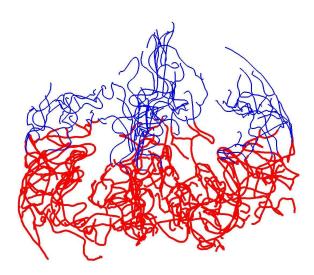


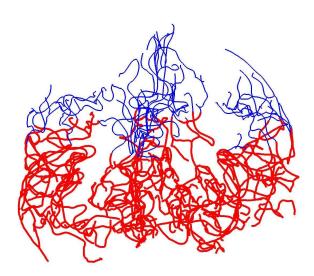


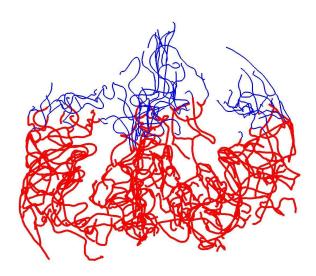


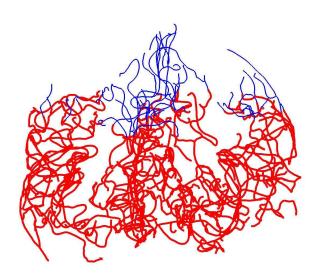


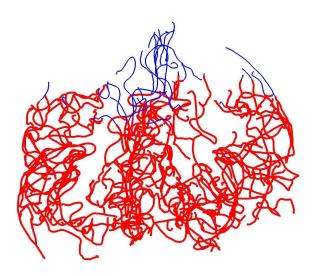


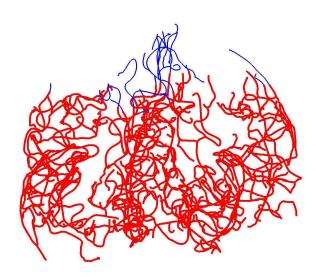


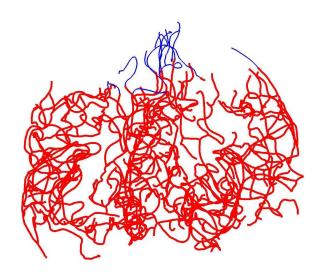


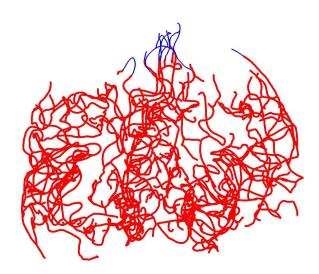


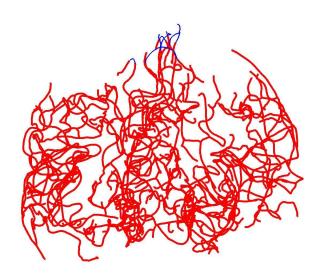


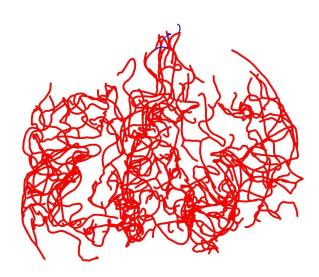


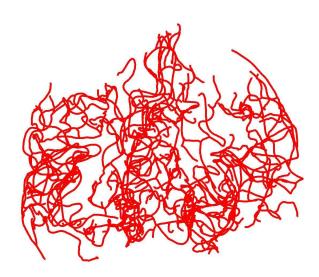












Build X step by step

measure evolving topology.

Def. Let X_{\bullet} be a filtered space, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology H_iX_{\bullet} is $H_iX_1 \to H_iX_2 \to \cdots \to H_iX_m$, a sequence of vector space homomorphisms.

Examples:

- 1. Given a function $f: X \to \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which H_iX_t changes.
- 2. Any simplicial complex: build it simplex by simplex in some order.

Build X step by step

measure evolving topology.

Def. Let X_{\bullet} be a filtered space, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology H_iX_{\bullet} is $H_iX_1 \to H_iX_2 \to \cdots \to H_iX_m$, a sequence of vector space homomorphisms.

Examples:

- 1. Given a function $f: X \to \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which H_iX_t changes.
- 2. Any simplicial complex: build it simplex by simplex in some order.

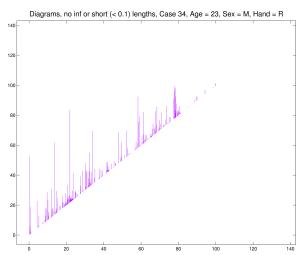
Build X step by step

measure evolving topology.

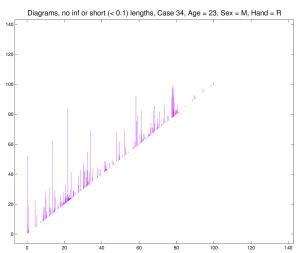
Def. Let X_{\bullet} be a filtered space, meaning $\emptyset = X_0 \subset X_1 \subset \cdots \subset X_m = X$. The persistent homology H_iX_{\bullet} is $H_iX_1 \to H_iX_2 \to \cdots \to H_iX_m$, a sequence of vector space homomorphisms.

Examples:

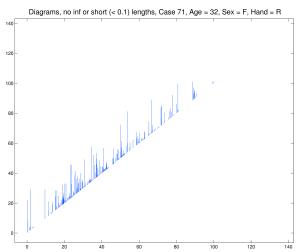
- 1. Given a function $f: X \to \mathbb{R}$, let $X_k = f^{-1}((-\infty, t_k])$. Good choice of $t_0, \ldots, t_m \in \mathbb{R}$: the values of t across which H_iX_t changes.
- 2. Any simplicial complex: build it simplex by simplex in some order.



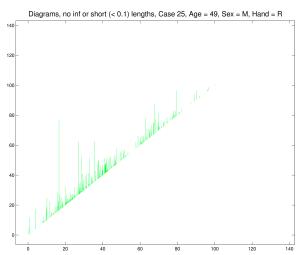
- multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.



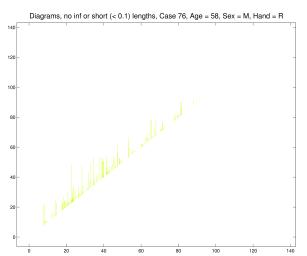
- multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.



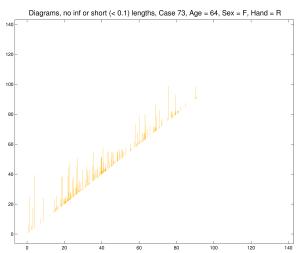
- multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.



- multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.



- multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.



- multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.

- multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)
- one for each class with birth time t and death time t'.

Goal: statistical analysis taking into account

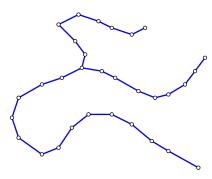
- 3D structure, in particular
- "bendiness", or "tortuosity"

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

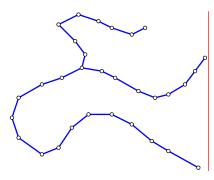
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



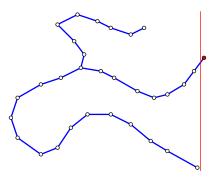
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



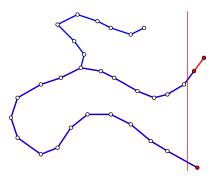
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



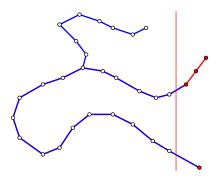
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



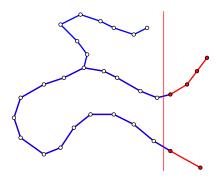
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



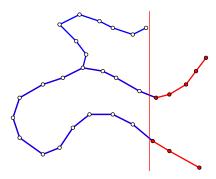
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



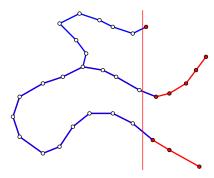
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



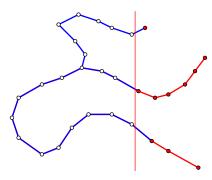
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



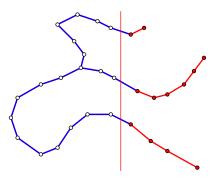
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



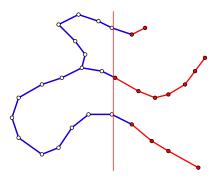
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



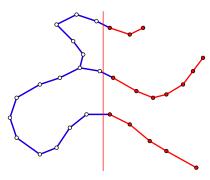
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



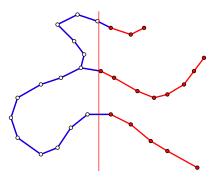
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



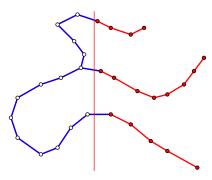
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



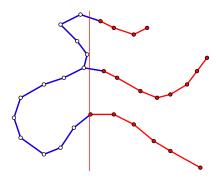
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



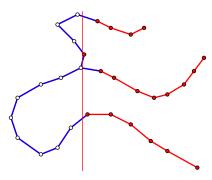
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



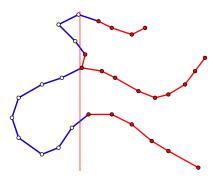
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



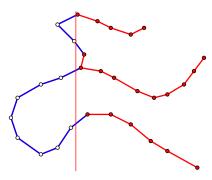
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



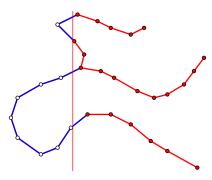
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



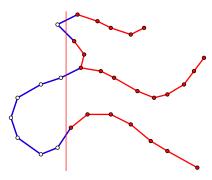
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



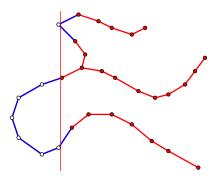
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



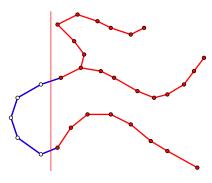
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



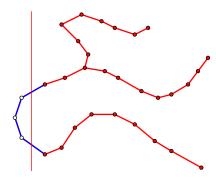
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



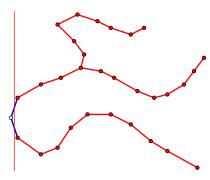
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



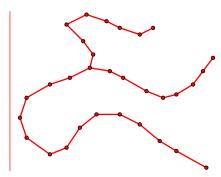
Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"



Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

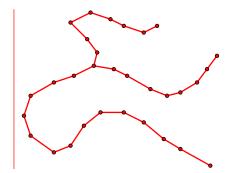


Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:

- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:

- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:

- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:

- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:

- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:

- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:

- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:

- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:

- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:

- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:

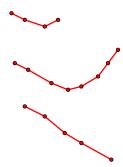
- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



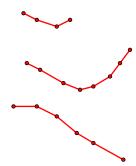
- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



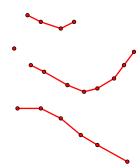
- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



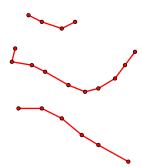
- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



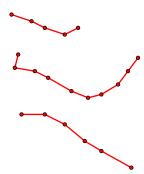
- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



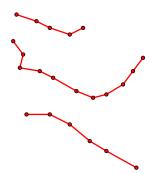
- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



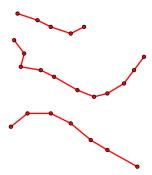
- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



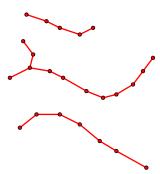
- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



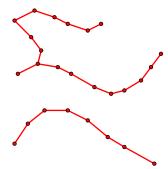
- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



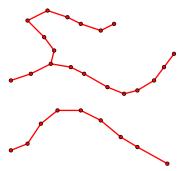
- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



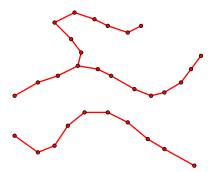
- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



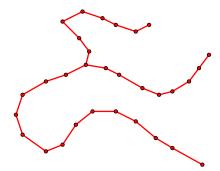
- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



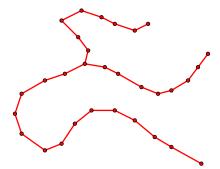
- birth time of each new component
- death of each component (when it joins to an older component)

Sweep filtration

Goal: statistical analysis taking into account

- 3D structure, in particular
- "bendiness", or "tortuosity"

Filter by sweeping across with a plane:



Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Easily computable (if dim *X* is low; ambient space dim irrelevant).

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

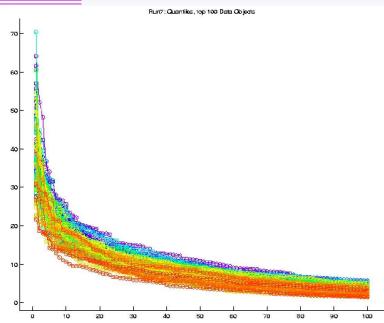
Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014] Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Top 100 bars



Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014] Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

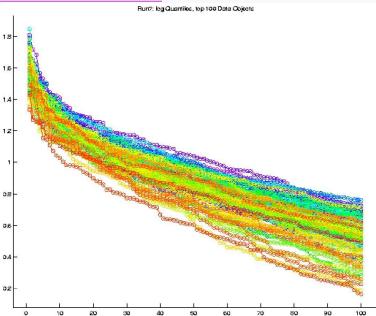
Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014] Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Top 100 bars: log scale



Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014] Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014] Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

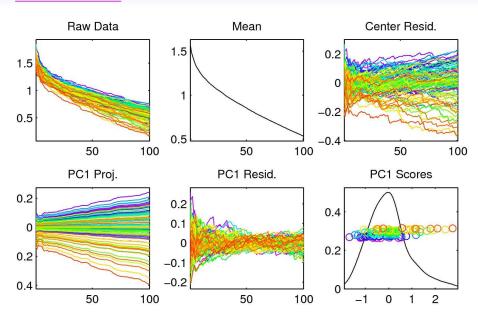
Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014] Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

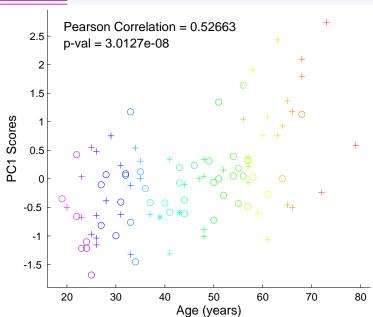
Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Age vs. PC1



Age vs. PC1



Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014] Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014] Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014] Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014] Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014] Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions [Bendich, Marron, M.—, Pieloch, Skwerer 2014] Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p-value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2005] (divide by L, \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Reflections on persistent homology

Where did the best correlation occur?

- How did we choose top 100 bar lengths?
- What choices yield the best correlation? Why?

Persistent homology mantra: most significant features

- are "biggest"
- live "far from the diagonal" in bar codes.

For brain artery trees.

- While biggest features are important,
- they hinder strength of correlation.

Lessons.

- Importance ⇒ significance for geometric features.
- Persistent homology can detect significant features lying between important and noise.

Reflections on persistent homology

Where did the best correlation occur?

- How did we choose top 100 bar lengths?
- What choices yield the best correlation? Why?

Persistent homology mantra: most significant features

- are "biggest"
- live "far from the diagonal" in bar codes.

For brain artery trees.

- While biggest features are important,
- they hinder strength of correlation.

Lessons.

- Importance ⇒ significance for geometric features.
- Persistent homology can detect significant features lying between important and noise.

Reflections on persistent homology

Where did the best correlation occur?

- How did we choose top 100 bar lengths?
- What choices yield the best correlation? Why?

Persistent homology mantra: most significant features

- are "biggest"
- live "far from the diagonal" in bar codes.

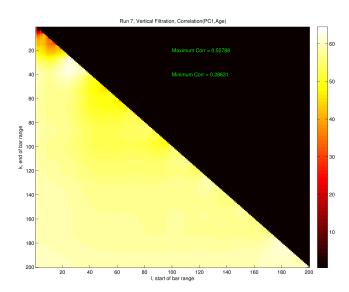
For brain artery trees.

- While biggest features are important,
- · they hinder strength of correlation.

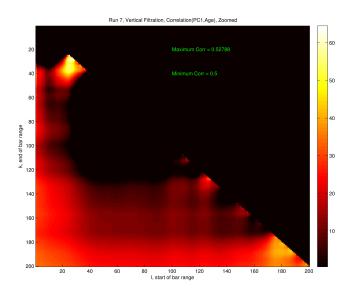
Lessons.

- Importance ⇒ significance for geometric features.
- Persistent homology can detect significant features lying between important and noise.

Top 100 bars



Top 100 bars



Reflections on persistent homology

Where did the best correlation occur?

- How did we choose top 100 bar lengths?
- What choices yield the best correlation? Why?

Persistent homology mantra: most significant features

- are "biggest"
- live "far from the diagonal" in bar codes.

For brain artery trees.

- While biggest features are important,
- they hinder strength of correlation.

Lessons.

- Importance ⇒ significance for geometric features.
- Persistent homology can detect significant features lying between important and noise.

Reflections on persistent homology

Where did the best correlation occur?

- How did we choose top 100 bar lengths?
- What choices yield the best correlation? Why?

Persistent homology mantra: most significant features

- are "biggest"
- live "far from the diagonal" in bar codes.

For brain artery trees.

- While biggest features are important,
- they hinder strength of correlation.

Lessons.

- Importance ⇒ significance for geometric features.
- Persistent homology can detect significant features lying between important and noise.

Next steps

Pathology.

- Can persistence (on brain artery trees, or lungs, ...) detect or measure pathology?
- Compare "tortuosity" [Bullitt, et al.].
- Filter by (radius of) curvature to highlight high-frequencey bends.

Additional analyses.

- Explain residual strength of persistent homology age correlation by independent geometric measures; interpret anatomically.
- · Check for overfitting: subsample.
- Other persistence methods, such as landscapes [Bubenik 2012].

Additional datasets.

- fruit fly wings (with Houle, Bendich, Cruz)
- lung vasculature (with McLean et al., Bendich, Marron)
- fMRI (with Lazar et al.)

Next steps

Pathology.

- Can persistence (on brain artery trees, or lungs, ...) detect or measure pathology?
- Compare "tortuosity" [Bullitt, et al.].
- Filter by (radius of) curvature to highlight high-frequencey bends.

Additional analyses.

- Explain residual strength of persistent homology age correlation by independent geometric measures; interpret anatomically.
- Check for overfitting: subsample.
- Other persistence methods, such as landscapes [Bubenik 2012].

Additional datasets.

- fruit fly wings (with Houle, Bendich, Cruz)
- lung vasculature (with McLean et al., Bendich, Marron)
- fMRI (with Lazar et al.)

Next steps

Pathology.

- Can persistence (on brain artery trees, or lungs, ...) detect or measure pathology?
- Compare "tortuosity" [Bullitt, et al.].
- Filter by (radius of) curvature to highlight high-frequencey bends.

Additional analyses.

- Explain residual strength of persistent homology age correlation by independent geometric measures; interpret anatomically.
- Check for overfitting: subsample.
- Other persistence methods, such as landscapes [Bubenik 2012].

Additional datasets.

- fruit fly wings (with Houle, Bendich, Cruz)
- lung vasculature (with McLean et al., Bendich, Marron)
- fMRI (with Lazar et al.)

Next steps

Pathology.

- Can persistence (on brain artery trees, or lungs, ...) detect or measure pathology?
- Compare "tortuosity" [Bullitt, et al.].
- Filter by (radius of) curvature to highlight high-frequencey bends.

Additional analyses.

- Explain residual strength of persistent homology age correlation by independent geometric measures; interpret anatomically.
- · Check for overfitting: subsample.
- Other persistence methods, such as landscapes [Bubenik 2012].

Additional datasets.

- fruit fly wings (with Houle, Bendich, Cruz)
- lung vasculature (with McLean et al., Bendich, Marron)
- fMRI (with Lazar et al.)

Next steps

Pathology.

- Can persistence (on brain artery trees, or lungs, ...) detect or measure pathology?
- Compare "tortuosity" [Bullitt, et al.].
- Filter by (radius of) curvature to highlight high-frequencey bends.

Additional analyses.

- Explain residual strength of persistent homology age correlation by independent geometric measures; interpret anatomically.
- Check for overfitting: subsample.
- Other persistence methods, such as landscapes [Bubenik 2012].

Additional datasets.

- fruit fly wings (with Houle, Bendich, Cruz)
- lung vasculature (with McLean et al., Bendich, Marron)
- fMRI (with Lazar et al.)

Next steps

Pathology.

- Can persistence (on brain artery trees, or lungs, ...) detect or measure pathology?
- Compare "tortuosity" [Bullitt, et al.].
- Filter by (radius of) curvature to highlight high-frequencey bends.

Additional analyses.

- Explain residual strength of persistent homology age correlation by independent geometric measures; interpret anatomically.
- Check for overfitting: subsample.
- Other persistence methods, such as landscapes [Bubenik 2012].

Additional datasets.

- fruit fly wings (with Houle, Bendich, Cruz)
- lung vasculature (with McLean et al., Bendich, Marron)
- fMRI (with Lazar et al.)

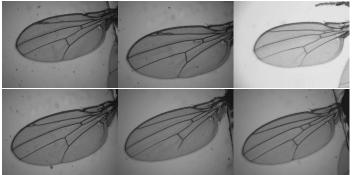
Fruit fly wings

Normal fly wings [photos from David Houle's lab]:

Fruit fly wings

Normal fly wings [photos from David Houle's lab]:

Topologically abnormal veins:



Biological background

What generates topological novelty?

[Houle, et al.]: selecting for certain continuous wing vein deformations yields

- skew toward more oddly shaped wings, but also
- much higher rate of topological novelty

Hypothesis

Topological novelty arises at the extreme of selection for continuous shape characteristics

Test the hypothesis

- "plot" wings in "form space"
- determine whether topological variants lie "in the direction of" continuous shape selected for...
- ... at the extreme in that direction

- predict which genes are involved given observed phenotype
- biologically determine which genes are involved, and correlate

Biological background

What generates topological novelty?

[Houle, et al.]: selecting for certain continuous wing vein deformations yields

- · skew toward more oddly shaped wings, but also
- much higher rate of topological novelty

Hypothesis

Topological novelty arises at the extreme of selection for continuous shape characteristics

Test the hypothesis

- "plot" wings in "form space"
- determine whether topological variants lie "in the direction of" continuous shape selected for...
- ... at the extreme in that direction

- predict which genes are involved given observed phenotype
- biologically determine which genes are involved, and correlate

Biological background

What generates topological novelty?

[Houle, et al.]: selecting for certain continuous wing vein deformations yields

- · skew toward more oddly shaped wings, but also
- · much higher rate of topological novelty

Hypothesis

Topological novelty arises at the extreme of selection for continuous shape characteristics

Test the hypothesis

- "plot" wings in "form space"
- determine whether topological variants lie "in the direction of" continuous shape selected for...
- ... at the extreme in that direction

- predict which genes are involved given observed phenotype
- biologically determine which genes are involved, and correlate

Biological background

What generates topological novelty?

[Houle, et al.]: selecting for certain continuous wing vein deformations yields

- skew toward more oddly shaped wings, but also
- much higher rate of topological novelty

Hypothesis

Topological novelty arises at the extreme of selection for continuous shape characteristics

Test the hypothesis

- "plot" wings in "form space"
- determine whether topological variants lie "in the direction of" continuous shape selected for...
- ... at the extreme in that direction

- predict which genes are involved given observed phenotype
- biologically determine which genes are involved, and correlate

Biological background

What generates topological novelty?

[Houle, et al.]: selecting for certain continuous wing vein deformations yields

- skew toward more oddly shaped wings, but also
- much higher rate of topological novelty

Hypothesis

Topological novelty arises at the extreme of selection for continuous shape characteristics

Test the hypothesis

- "plot" wings in "form space"
- determine whether topological variants lie "in the direction of" continuous shape selected for...
- ... at the extreme in that direction

- predict which genes are involved given observed phenotype
- biologically determine which genes are involved, and correlate

Stratified persistence

Goal. Statistical analysis encompassing topological vein variation, giving appropriate weight to new singular points in addition to varying shape

- compare phenotypic distance to genotypic distance; needs
- metric specifying distance between topologically distinct wings

Obstacles

- shape spaces need constant numbers of landmarks
- stability of persistent homology [Cohen-Steiner–Edelsbrunner–Harer 2007] ⇒ dense sampling understates short new features

Plan. Encode wing as 2-parameter persistence diagram

- 1st parameter: usual distance (expanding balls)
- 2nd parameter: immunity (intersection homology [Bendich, Harer 2011]): disallow interaction of larger strata with smaller ones

- algorithm(!)
- with low complexity(!)

Stratified persistence

Goal. Statistical analysis encompassing topological vein variation, giving appropriate weight to new singular points in addition to varying shape

- compare phenotypic distance to genotypic distance; needs
- metric specifying distance between topologically distinct wings

Obstacles

- shape spaces need constant numbers of landmarks
- stability of persistent homology [Cohen-Steiner–Edelsbrunner–Harer 2007] ⇒ dense sampling understates short new features

Plan. Encode wing as 2-parameter persistence diagram

- 1st parameter: usual distance (expanding balls)
 - 2nd parameter: immunity (intersection homology [Bendich, Harer 2011]): disallow interaction of larger strata with smaller ones

- algorithm(!)
- with low complexity(!)

Stratified persistence

Goal. Statistical analysis encompassing topological vein variation, giving appropriate weight to new singular points in addition to varying shape

- compare phenotypic distance to genotypic distance; needs
- metric specifying distance between topologically distinct wings

Obstacles

- shape spaces need constant numbers of landmarks
- stability of persistent homology [Cohen-Steiner–Edelsbrunner–Harer 2007] ⇒ dense sampling understates short new features

Plan. Encode wing as 2-parameter persistence diagram

- 1st parameter: usual distance (expanding balls)
- 2nd parameter: immunity (intersection homology [Bendich, Harer 2011]): disallow interaction of larger strata with smaller ones

- algorithm(!)
- with low complexity(!)

Stratified persistence

Goal. Statistical analysis encompassing topological vein variation, giving appropriate weight to new singular points in addition to varying shape

- compare phenotypic distance to genotypic distance; needs
- metric specifying distance between topologically distinct wings

Obstacles

- shape spaces need constant numbers of landmarks
- stability of persistent homology [Cohen-Steiner–Edelsbrunner–Harer 2007] ⇒ dense sampling understates short new features

Plan. Encode wing as 2-parameter persistence diagram

- 1st parameter: usual distance (expanding balls)
- 2nd parameter: immunity (intersection homology [Bendich, Harer 2011]): disallow interaction of larger strata with smaller ones

- algorithm(!)
- with low complexity(!)

Stratified persistence

Goal. Statistical analysis encompassing topological vein variation, giving appropriate weight to new singular points in addition to varying shape

- compare phenotypic distance to genotypic distance; needs
- metric specifying distance between topologically distinct wings

Obstacles

- shape spaces need constant numbers of landmarks
- stability of persistent homology [Cohen-Steiner–Edelsbrunner–Harer 2007] ⇒ dense sampling understates short new features

Plan. Encode wing as 2-parameter persistence diagram

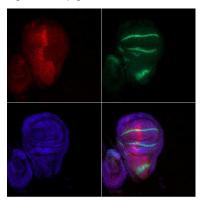
- 1st parameter: usual distance (expanding balls)
- 2nd parameter: immunity (intersection homology [Bendich, Harer 2011]): disallow interaction of larger strata with smaller ones

- algorithm(!)
- with low complexity(!)

Developmental dream

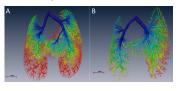
Capture morphological or expression time series at cellular resolution to apply (stratified or ordinary) persistence in higher dimension.

 take development into account: time series for expression levels or vein formation → 3D (or higher-dim) geometric structures



- compare genotypic and phenotypic distance
- reconstruct phylogeny from morphological measurements

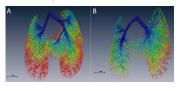
Lung vasculature. (with McLean et al., Bendich, Marron)



Options for application of (stratified) persistent homology:

- expand blood vessel tree to fill 3D lung
- filter blood vessel tree by height
 vessel diameter
 curvature

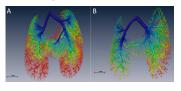
Lung vasculature. (with McLean et al., Bendich, Marron)



Options for application of (stratified) persistent homology:

- expand blood vessel tree to fill 3D lung
- filter blood vessel tree by height vessel diameter curvature

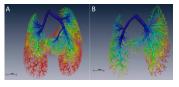
Lung vasculature. (with McLean et al., Bendich, Marron)



Options for application of (stratified) persistent homology:

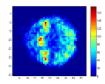
- expand blood vessel tree to fill 3D lung
- filter blood vessel tree by height
 vessel diameter
 curvature

Lung vasculature. (with McLean et al., Bendich, Marron)

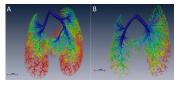


Options for application of (stratified) persistent homology:

- expand blood vessel tree to fill 3D lung
- filter blood vessel tree by height
 vessel diameter
 curvature

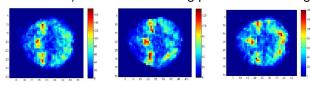


Lung vasculature. (with McLean et al., Bendich, Marron)



Options for application of (stratified) persistent homology:

- expand blood vessel tree to fill 3D lung
- filter blood vessel tree by height
 vessel diameter
 curvature



Thank You