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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q .

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q ≺ q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q ≺ q′ ≺ q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module
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Example: expanding balls
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Example: expanding balls

dim(H0) = 26
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Example: expanding balls

dim(H0) = 21
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Example: expanding balls

dim(H0) = 12
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Example: expanding balls

dim(H0) = 6
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Example: expanding balls

dim(H0) = 2
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Example: expanding balls

dim(H0) = 2
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Example: expanding balls

dim(H0) = 1 dim(H1) = 2
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Example: expanding balls

dim(H0) = 1 dim(H1) = 3
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Example: expanding balls

dim(H0) = 1 dim(H1) = 0
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Example: expanding balls

dim(H0) = 1 dim(H1) = 0
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Brain arteries

[Bullitt and Aylward, 2002]
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Brain arteries

Goal: summary and statistical analysis [Bullitt and Aylward, 2002]
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Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]
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Method

Sweep filtration
Filter brain arteries by sweeping across with a plane:

Record:

• birth time of each new component

• death of each component (when it joins to an older component)
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Bar codes

Data structure: 3D tree  bar code / lace array / persistence diagram:

• multiset of (vertical) line segments [t, t ′] (plotted at x-coordinate t)
• one for each class with birth time t and death time t ′.
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q . This is a

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q ≺ q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q ≺ q′ ≺ q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module
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Fruit fly wings

Normal fly wings [images from David Houle’s lab]:

2’



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Fruit fly wings

Normal fly wings [images from David Houle’s lab]:

Topologically abnormal veins:
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Fruit fly wings

photographic image
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Fruit fly wings

spline
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Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
• 1st parameter: distance from vertex set
• 2nd parameter: distance from edge set

Sublevel set Wr ,s is near edges but far from vertices ⇒ Hr ,s = Hi (Wr ,s)

A piece of fly wing vein The (r , s)-plane R
2
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q . This is a

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q ≺ q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q ≺ q′ ≺ q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence
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• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module

1’’’



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q . This is a

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q ≺ q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q ≺ q′ ≺ q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module

1’’’



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Example: topology of probability distributions

Given probability measure µ on a space M and kernel function of bandwidth r

e.g. • Kr = Gaussian (normal distribution) of variance r on R
d

• Kr = uniform measure on ball of radius r on R
d

Def. Convolution with kernel Kr yields bandwidth r expansion Br (µ) = Kr ∗ µ.
Example. • Br (µn) ∼ Br (µ) if µn is uniform on an n-sample from µ

• µ = F (x)dx ⇒ Br (µ) has density Kr ∗ F (x) =
∫

M
Kr (y − x)dµ(y)

Def. ν with density function F has support at sensitivity s:

νs =
{

x ∈ M | F (x) ≥ 1/s
}

.

Def. The expansion of µ to bandwidth r and sensitivity s is Br (µ)rd s ⊆ M.

Prop.
{

Br (µ)rd s | r ∈ R≥0 and s ∈ R≥1

}

⊆ M nested as r and s increase.

Persistent homology: Br (µ)rd s  homology H∗(Br (µ)rd s)

Def. µ has i th bipersistent homology H rs
i (µ) = Hi

(

Br (µ)rd s
)

, an invariant of µ

algebra, geometry, combinatorics of H rs
∗ (ν) ↔ statistics of ν

9
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: Xq ⊆ X for q ∈ Q

⇒ Q is a partially ordered set: Xq ⊆ Xq′ ⇔ q � q′

Def. {Xq}q∈Q has persistent homology {Hq = H(Xq; k)}q∈Q . This is a

Def. Q-module over the poset Q:

• family H = {Hq}q∈Q of vector spaces over the field k with

• homomorphism Hq → Hq′ whenever q ≺ q′ in Q such that

• Hq → Hq′′ equals the composite Hq → Hq′ → Hq′′ whenever q ≺ q′ ≺ q′′

Examples
• points in R

n: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• brain arteries: Q = {0, . . . ,m} or R 1-parameter (“ordinary”) persistence

• wing veins: Q = Z
2 or R2 2 discrete or continuous parameters

• probability distributions: Q = R
2 2 continuous parameters

• Q = Z
n ⇔ H = Z

n-graded k[x1, . . . , xn]-module

• Q = R
n ⇔ H = R

n-graded k[Rn
+]-module

1’’’’
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Statistical analysis [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Reduce to linear methods. 3D tree  bar code  vector in R
100:

• top 100 bar lengths, in decreasing order, log scale
• correlate first principal component score vs. age

Conclusions
Longest bars in older brains tend to be shorter and later.

• Pearson correlation 0.52663
• p-value 3.0127× 10−8 strongly significant

Remarks. Results essentially unchanged after
• rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)

• rescaling to account for known correlation of age vs. total vessel length L

[Bullitt, et al. 2010] (divide by L,
√
L, or 3

√
L)

• repeating the analysis with residuals from regression between feature vector
and total length.

Moral. Persistent homology can topologically detect statistically significant
geometric motifs
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Interval decomposition

Thm [Crawley-Boevey 2015]. R-module M ⇒ M ∼=
⊕

I∈I

k{I} with I a set of intervals

Consequence over R: M  bar code / lace array / persistence diagram
• reinvented a number of times
• earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]

• explicitly drawn bars
• Möbius inversion formulas

Def. An interval I in a poset Q is a convex connected subset: a, b ∈ I ⇒
• q ∈ I whenever a � q � b and
• there is a (zigzag) chain in I of comparable elements from a to b.

For any subset S ⊆ Q, let k{S} =
⊕

s∈S ks be its indicator module.

Examples. In R
2, intervals can look like

Def. Q-module has interval decomposition M ∼=
⊕

I∈I

k{I} with I a set of intervals
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Old bar codes

[. . . ]

[Abeasis–Del Fra 1980, Abeasis–Del Fra–Kraft 1981]
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Old bar codes

[Knutson–M.–Shimozono 2005]
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• Möbius inversion formulas

Def. An interval I in a poset Q is a convex connected subset: a, b ∈ I ⇒
• q ∈ I whenever a � q � b and
• there is a (zigzag) chain in I of comparable elements from a to b.

For any subset S ⊆ Q, let k{S} =
⊕

s∈S ks be its indicator module.

Examples. In R
2, intervals can look like

or or but not

Def. Q-module has interval decomposition M ∼=
⊕

I∈I

k{I} with I a set of intervals
(but M need not have such a decomposition!)

14’



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Interval decomposition

Thm [Crawley-Boevey 2015]. R-module M ⇒ M ∼=
⊕

I∈I

k{I} with I a set of intervals

Consequence over R: M  bar code / lace array / persistence diagram
• reinvented a number of times
• earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]

• explicitly drawn bars
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Arbitrary posets

Thm [Botnan–Crawley-Boevey 2020], cf. [Gabriel–Rŏıter 1992]. Over arbitrary poset Q,
M has indecomposable decomposition: M ∼=

⊕

α∈A

Mα with Mα indecomposable.

Essentially unique: multiset {Mα}α∈A of isomorphism classes is invariant.

Thm [Buchet–Escolar 2020], [Moore 2022]. General indecomposable Z
n-modules are big,

far from being interval modules (vector space dimensions ≫ 1).

Thm [Bauer–Scoccola 2022]. Zn-indecomposables are dense in interleaving distance.
The set of modules ∼= (ε-trivial ⊕ indecomposable) is interleaving-open.

Positivity. M =
⊕

α∈A Mα expresses M positively in term of the Mα. Choose:

1. retain positivity or
2. retain description in terms of intervals.

Question. Can both be achieved?

Proposal. Pipeline:
data  filtered topological spaces  algebraic objects

 

“nice” algebraic objects  invariants  statistics
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Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules k{S}:
• find a “maximally persistent” element x ∈ M
• L = lifetime of x ⇒ lifetime submodule k{L} ⊆ M
• k{L} ∼= k{U ∩ D} for upset U and downset D
• replace M with M/k{L}
• iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration
• F

•
: M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0

• with all griM = Mi/Mi−1 lifetime modules, so the associated graded module
is interval-decomposable:

grM =

ℓ
⊕

i=1

Mi/Mi−1

Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations  interleaving-stable
lifetime displacement ∆L: tame M and N admit lifetime filtrations verifying

∆L(M,N) ≤ dI(M,N).
17



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules k{S}:
• find a “maximally persistent” element x ∈ M
• L = lifetime of x ⇒ lifetime submodule k{L} ⊆ M
• k{L} ∼= k{U ∩ D} for upset U and downset D
• replace M with M/k{L}
• iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration
• F

•
: M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0

• with all griM = Mi/Mi−1 lifetime modules, so the associated graded module
is interval-decomposable:

grM =

ℓ
⊕

i=1

Mi/Mi−1

Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations  interleaving-stable
lifetime displacement ∆L: tame M and N admit lifetime filtrations verifying

∆L(M,N) ≤ dI(M,N).
17



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules k{S}:
• find a “maximally persistent” element x ∈ M
• L = lifetime of x ⇒ lifetime submodule k{L} ⊆ M
• k{L} ∼= k{U ∩ D} for upset U and downset D

= ∩• replace M with M/k{L}
• iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration
• F

•
: M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0

• with all griM = Mi/Mi−1 lifetime modules, so the associated graded module
is interval-decomposable:

grM =

ℓ
⊕

i=1

Mi/Mi−1

Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations  interleaving-stable
lifetime displacement ∆L: tame M and N admit lifetime filtrations verifying

∆L(M,N) ≤ dI(M,N).
17



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules k{S}:
• find a “maximally persistent” element x ∈ M
• L = lifetime of x ⇒ lifetime submodule k{L} ⊆ M
• k{L} ∼= k{U ∩ D} for upset U and downset D

= ∩• replace M with M/k{L}
• iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration
• F

•
: M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0

• with all griM = Mi/Mi−1 lifetime modules, so the associated graded module
is interval-decomposable:

grM =

ℓ
⊕

i=1

Mi/Mi−1

Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations  interleaving-stable
lifetime displacement ∆L: tame M and N admit lifetime filtrations verifying

∆L(M,N) ≤ dI(M,N).
17



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules k{S}:
• find a “maximally persistent” element x ∈ M
• L = lifetime of x ⇒ lifetime submodule k{L} ⊆ M
• k{L} ∼= k{U ∩ D} for upset U and downset D

= ∩• replace M with M/k{L}
• iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration
• F

•
: M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0

• with all griM = Mi/Mi−1 lifetime modules, so the associated graded module
is interval-decomposable:

grM =

ℓ
⊕

i=1

Mi/Mi−1

Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations  interleaving-stable
lifetime displacement ∆L: tame M and N admit lifetime filtrations verifying

∆L(M,N) ≤ dI(M,N).
17



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules k{S}:
• find a “maximally persistent” element x ∈ M
• L = lifetime of x ⇒ lifetime submodule k{L} ⊆ M
• k{L} ∼= k{U ∩ D} for upset U and downset D

= ∩• replace M with M/k{L}
• iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration
• F

•
: M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0

• with all griM = Mi/Mi−1 lifetime modules, so the associated graded module
is interval-decomposable:

grM =

ℓ
⊕

i=1

Mi/Mi−1

Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations  interleaving-stable
lifetime displacement ∆L: tame M and N admit lifetime filtrations verifying

∆L(M,N) ≤ dI(M,N).
17



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules k{S}:
• find a “maximally persistent” element x ∈ M
• L = lifetime of x ⇒ lifetime submodule k{L} ⊆ M
• k{L} ∼= k{U ∩ D} for upset U and downset D

= ∩• replace M with M/k{L}
• iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration
• F

•
: M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0

• with all griM = Mi/Mi−1 lifetime modules, so the associated graded module
is interval-decomposable:

grM =

ℓ
⊕

i=1

Mi/Mi−1

Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations  interleaving-stable
lifetime displacement ∆L: tame M and N admit lifetime filtrations verifying

∆L(M,N) ≤ dI(M,N).
17



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules k{S}:
• find a “maximally persistent” element x ∈ M
• L = lifetime of x ⇒ lifetime submodule k{L} ⊆ M
• k{L} ∼= k{U ∩ D} for upset U and downset D

= ∩• replace M with M/k{L}
• iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration
• F

•
: M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0

• with all griM = Mi/Mi−1 lifetime modules, so the associated graded module
is interval-decomposable:

grM =

ℓ
⊕

i=1

Mi/Mi−1

Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations  interleaving-stable
lifetime displacement ∆L: tame M and N admit lifetime filtrations verifying

∆L(M,N) ≤ dI(M,N).
17



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules k{S}:
• find a “maximally persistent” element x ∈ M
• L = lifetime of x ⇒ lifetime submodule k{L} ⊆ M
• k{L} ∼= k{U ∩ D} for upset U and downset D

= ∩• replace M with M/k{L}
• iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration
• F

•
: M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0

• with all griM = Mi/Mi−1 lifetime modules, so the associated graded module
is interval-decomposable:

grM =

ℓ
⊕

i=1

Mi/Mi−1

Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations  interleaving-stable
lifetime displacement ∆L: tame M and N admit lifetime filtrations verifying

∆L(M,N) ≤ dI(M,N).
17



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules k{S}:
• find a “maximally persistent” element x ∈ M
• L = lifetime of x ⇒ lifetime submodule k{L} ⊆ M
• k{L} ∼= k{U ∩ D} for upset U and downset D

= ∩• replace M with M/k{L}
• iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration
• F

•
: M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0

• with all griM = Mi/Mi−1 lifetime modules, so the associated graded module
is interval-decomposable:

grM =

ℓ
⊕

i=1

Mi/Mi−1

Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations  interleaving-stable
lifetime displacement ∆L: tame M and N admit lifetime filtrations verifying

∆L(M,N) ≤ dI(M,N).
17



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules k{S}:
• find a “maximally persistent” element x ∈ M
• L = lifetime of x ⇒ lifetime submodule k{L} ⊆ M

≈dL

• k{L} ∼= k{U ∩ D} for upset U and downset D

= ∩• replace M with M/k{L}
• iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q-module M for arbitrary poset Q

Output. (noncanonical) filtration
• F

•
: M = Mℓ ⊇ Mℓ−1 ⊇ · · · ⊇ M1 ⊇ M0 = 0

• with all griM = Mi/Mi−1 lifetime modules, so the associated graded module
is interval-decomposable:

grM =

ℓ
⊕

i=1

Mi/Mi−1

Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations  interleaving-stable
lifetime displacement ∆L: tame M and N admit lifetime filtrations verifying

∆L(M,N) ≤ dI(M,N).
17



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Tameness

How to write down multipersistence modules in general? Need finiteness....

Def [M.– 2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q
admits a constant subdivision if Q is partitioned into

• constant regions A, each with vector space MA−→∼ Ma for all a ∈ A, having

• no monodromy: all comparable pairs a � b with a ∈ A and b ∈ B induce the
same composite MA → Ma → Mb → MB .

M is tame if it admits a finite constant subdivision and dimk Mq < ∞ for all q.

Example. k0 ⊕ k[R2] admits constant regions {0} and R
2
r {0}
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Distances

Def [Lesnick 2015]. Lifetime modules K , L are ε-interleaved if “K fits ε-almost in L”
and vice versa. Similar for any modules M and N. The interleaving distance is

dI(M,N) = inf{ε | M and N are ε-interleaved}
Def.

⊕

α∈A

Mα and
⊕

α∈A

Nα are ε-matched if Mα and Nα are ε-interleaved ∀α ∈ A.

Def. Let D : Q-mods → families of finitely decomposed Q-modules with ordered
summands, so each element of D(N) is a direct sum L = L1 ⊕ · · · ⊕ Lℓ.
Assume K = K1 ⊕ · · · ⊕ Kk . The bottleneck distance determined by D is

dD(K ,N) = inf{ε | K is ε-matched with some L ∈ D(N)}.
Examples. various distances from different choices of D:
1. bottleneck distance dB from D(N) = {indecomposable decompositions of N}

if K = K1 ⊕ · · · ⊕ Kk is a direct sum of indecomposables
2. lifetime matching distance dL from D(N) = {grF

•
N for lifetime filtration F

•
}

if K = K1 ⊕ · · · ⊕ Kk is lifetime decomposed

Def [Cunha–M.–Zhang 2024–2025]. The lifetime displacement from M to N is

∆L(M,N) = sup
K∈D(M)

dL(K ,N).

19
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Looking forward

Question. What could “top 100 bar lengths” mean in multipersistence?

• Locate “maximally persistent” elements

• What is meant by “maximally persistent”?
• length, width, area, volume
• “size” is crucial when parameters have incomparable scientific meanings
• primary distances: separate classes according to birth and death types
• note: primary decomposition is really another filtration!

Compare Bjerkevik’s pruning distance stability/Lipschitz conjecture [Bjerkevik 2023]

• Must an indecomposable possess a big individual element?

• Is every indecomposable close to interval decomposing? If not, how likely is it?

• How likely is M to break into interpretable small pieces by perturbation?

Implementation
• Locate maximally persistent elements algorithmically

• Certify lower bounds for approximating ∆L

20
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