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Per5|stent homology

Input. Topological space X filtered by set Q of subspaces: X, C X for g € Q

= Q is a partially ordered set: X, C Xy < q=<¢
{X4}qeq has persistent homology {H; = H(Xy: k) }qeq-

Q-module over the poset Q:
family H = {Hg}4cq of vector spaces over the field k with
homomorphism Hy — Hy whenever ¢ < ¢’ in @ such that
Hq — Hg» equals the composite Hy — Hy — Hg whenever g < ¢’ < q”

points in R™: Q ={0,...,m} or R 1-parameter (“ordinary”) persistence
brain arteries: Q = {0 ..... ,m} or R 1-parameter (“ordinary”) persistence
wing veins: Q = Z? or R? 2 discrete or continuous parameters
probability distributions: Q = R? 2 continuous parameters

Q =7" < H =7"-graded k[xi, ..., x,]-module
Q =R" & H = R"-graded k[R ]-module
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: X, C X for g € Q

= Q is a partially ordered set: X, C Xy & g =<¢

Def. {X;}qeq has persistent homology {Hq = H(Xy; k) }geq-

Q-module over the poset Q:
family H = {Hg}4cq of vector spaces over the field k with
homomorphism Hy — Hy whenever ¢ < ¢’ in @ such that
Hq — Hg equals the composite Hy — Hyy — Hg whenever g < ¢’ < q”

points in R": @ = {0,...,m} or R 1-parameter (“ordinary”) persistence
brain arteries: Q = {0,...,m} or R 1-parameter (“ordinary”) persistence
wing veins: Q = Z? or R? 2 discrete or continuous parameters
probability distributions: Q = R2 2 continuous parameters

Q =7" < H=7Z"-graded k[xi, ..., Xp]-module

Q =R" & H = R"-graded k[R ]-module
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: X, C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

Def. {X;}qeq has persistent homology {Hy = H(Xy; k) }qeq. This is a

Def. @-module over the poset Q:
e family H = {Hg}qcq of vector spaces over the field k with
® homomorphism H, — Hy whenever ¢ < ¢’ in @ such that

Hy — Hg equals the composite Hy — Hq — Hg whenever g < ¢’ < ¢q”

points in R”: Q = {0,...,m} or R 1-parameter ( “ordinary”) persistence
brain arteries: Q = {0,..., m} or R 1-parameter (“ordinary”) persistence
wing veins: Q = Z? or R? 2 discrete or continuous parameters
probability distributions: Q = R? 2 continuous parameters

Q =7Z" & H = Z"-graded k[xq,. .., Xn]-module

Q =R" & H = R"-graded k[R/ ]-module
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: X, C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

Def. {X;}qeq has persistent homology {H, = H(Xy; k) }4eq- Thisis a
Def. @-module over the poset Q:
* family H = {Hg}qcq of vector spaces over the field k with

* homomorphism H; — Hy whenever g < ¢’ in Q such that
® Hq — Hg equals the composite Hy — Hy — Hgr whenever g < ¢’ < q”
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: X, C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

Def. {X;}qeq has persistent homology {H, = H(Xy; k) }4eq- Thisis a
Def. @-module over the poset Q:
* family H = {Hg}qcq of vector spaces over the field k with

* homomorphism H; — Hy whenever g < ¢’ in Q such that
® Hq — Hg equals the composite Hy — Hy — Hgr whenever g < ¢’ < q”

Examples
® points in R™ Q ={0,...,m} or R 1-parameter ( “ordinary”) persistence
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Example: expanding balls

dim(Ho) = 26
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Example: expanding balls

dim(Ho) = 21
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Example: expanding balls

dim(Ho) = 12
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Example expanding balls

Ve

dim(Ho) = 6
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Example expanding balls
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Example expanding balls

dlm(Ho) =1 dlm(H]_) =3
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Example expanding balls

dlm(Ho) =1 dlm(H]_) =0
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: X, C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

Def. {X;}qeq has persistent homology {H, = H(Xy; k) }4eq- Thisis a
Def. @-module over the poset Q:
* family H = {Hg}qcq of vector spaces over the field k with

* homomorphism H; — Hy whenever g < ¢’ in Q such that
® Hq — Hg equals the composite Hy — Hy — Hgr whenever g < ¢’ < q”

Examples
® points in R™ Q ={0,...,m} or R 1-parameter ( “ordinary”) persistence



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Persistent homology

Input. Topological space X filtered by set Q of subspaces: X, C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

Def. {X;}qeq has persistent homology {H, = H(Xy; k) }4eq- Thisis a

Def. @-module over the poset Q:
* family H = {Hg}qcq of vector spaces over the field k with
* homomorphism H; — Hy whenever g < ¢’ in Q such that
® Hq — Hg equals the composite Hy — Hy — Hgr whenever g < ¢’ < q”

=EIES
® points in R™ Q ={0,...,m} or R 1-parameter ( “ordinary”) persistence
° brain arteries: @ = {0,...,m} or R 1-parameter (“ordinary") persistence
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Brain arteries

[Bullitt and Aylward, 2002]
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Brain arteries
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Brain arteries

Goal: summary and statistical analysis [Bullitt and Aylward, 2002]
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Example: fl”lng brains [Bendich-Marron-M —Pieloch-Skwerer 2014]
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Method

Sweep filtration
Filter brain arteries by sweeping across with a plane:

Record:
birth time of each new component

death of each component (when it joins to an older component)
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Method
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Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:

Record:

birth time of each new component

death of each component (when it joins to an older component)
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Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:

Record:
birth time of each new component

death of each component (when it

joins to an older component)
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Record:
® birth time of each new component

* death of each component (when it joins to an older component)
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Method

Sweep filtration
Filter brain arteries by sweeping across with a plane:

Record:
® birth time of each new component

* death of each component (when it joins to an older component)
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Method

Sweep filtration
Filter brain arteries by sweeping across with a plane:

Record:
® birth time of each new component

* death of each component (when it joins to an older component)
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Method

Sweep filtration
Filter brain arteries by sweeping across with a plane:

Record:
® birth time of each new component

* death of each component (when it joins to an older component)



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Method

Sweep filtration
Filter brain arteries by sweeping across with a plane:

Record:
® birth time of each new component

* death of each component (when it joins to an older component)
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Bar codes

Data structure: 3D tree ~» bar code / lace array / persistence diagram:

Diagrams, no inf or short (< 0.1) lengths, Case 34, Age = 23, Sex = M, Hand = R
T T T T

120

80

607 ‘ ’L. i
7 J‘M‘HM | L

1

4

5

E

3

L L
4 20 40 60 80 100 120

multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)

one for each class with birth time t and death time t'.

L
140
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Bar codes

Data structure: 3D tree ~» bar code / lace array / persistence diagram:

Diagrams, no inf or short (< 0.1) lengths, Case 34, Age = 23, Sex = M, Hand = R
T T T

140 B
120 B
100

El

3

80—

4

v’
4w ,
| !

L L L L
4 20 40 60 80 100 120 140

* multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)
® one for each class with birth time t and death time t’.

5
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Bar codes

Data structure: 3D tree ~» bar code / lace array / persistence diagram:

Diagrams, no inf or short (< 0.1) lengths, Case 71, Age = 32, Sex = F, Hand = R
T T T

140 B
120 B

100

‘ ‘ ‘I“
)
e h [

J
B0 J “\h“’l 1
| \h‘
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401

L L L
4 20 40 60 80 100 120 140

* multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)
® one for each class with birth time t and death time t’.

E
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Bar codes

Data structure: 3D tree ~» bar code / lace array / persistence diagram:

140

120

100

80

80

40

20

* multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)
® one for each class with birth time t and death time t’.

Diagrams, no inf or short (< 0.1) lengths, Case 25, Age = 49, Sex = M, Hand = R
T T T
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Bar codes

Data structure: 3D tree ~» bar code / lace array / persistence diagram:

Diagrams, no inf or short (< 0.1) lengths, Case 76, Age = 58, Sex = M, Hand = R
T T T T T T

140 o
120 4
100
Ed
60 =

401 4

201 B

| L L L L
[ 20 40 60 80 100 120 140

* multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)
® one for each class with birth time t and death time t’.
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Bar codes

Data structure: 3D tree ~» bar code / lace array / persistence diagram:

140

120

100

80

80

40

20

* multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)

4

Diagrams, no inf or short (< 0.1) lengths, Case 73, Age = 64,
T T

20

40

60

L
80

L
100

Sex =F, Hand =R
T

L
120

® one for each class with birth time t and death time t'.

L
140
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Bar codes

Data structure: 3D tree ~» bar code / lace array / persistence diagram:

Diagrams, no inf or short (< 0.1) lengths, Case 104, Age = 73, Sex =F, Hand = R
T T T

140 B

0
)

100

80 ‘HJ\ u‘,

F K 4
60 ‘"W

a0 I |

201

L L L L
4 20 40 60 80 100 120 140

* multiset of (vertical) line segments [t, t'] (plotted at x-coordinate t)
® one for each class with birth time t and death time t’.
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Persistent homology

Input. Topological space X filtered by set Q of subspaces: X, C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

Def. {X;}qeq has persistent homology {H, = H(Xy; k) }4eq- Thisis a

Def. @-module over the poset Q:
* family H = {Hg}qcq of vector spaces over the field k with
* homomorphism H; — Hy whenever g < ¢’ in Q such that
® Hq — Hg equals the composite Hy — Hy — Hgr whenever g < ¢’ < q”

=EIES
® points in R™ Q ={0,...,m} or R 1-parameter ( “ordinary”) persistence
° brain arteries: @ = {0,...,m} or R 1-parameter (“ordinary") persistence
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Topological space X filtered by set Q of subspaces: X; C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

X has persistent homolo H, = H(X This is a
{ q5qeQ p 3% q qeQ-

Q-module over the poset Q:
family H = {Hg}4cq of vector spaces over the field k with
homomorphism Hy; — Hy whenever ¢ < ¢’ in Q such that
Hy — Hg» equals the composite Hy — Hgr — Hg whenever ¢ < ¢’ < q”

points in R™: Q = {0,...,m} or R 1-parameter ( “ordinary”) persistence
brain arteries: @ = {0,...,m} or R 1-parameter (“ordinary”) persistence

wing veins: Q = Z? or R? 2 discrete or continuous parameters

stances Future directions
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Fruit fly wings

Normal fly wings [images from David Houle's lab]:
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Fruit fly wings

Normal fly wings [images from David Houle's lab]:

>
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Fruit fly wings

photographic image
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Fruit fly wings

spline
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Wing vein persistence fw/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® Ist parameter: distance from vertex set
® 2nd parameter: distance from edge set

W, . is but = H,.=H(W,.)
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Example. Encode fruit fly wing with 2-parameter persistence
o 1Ist parameter: distance from vertex set given as points in R?
® 2nd parameter: distance from edge set

W, . is but = H,.=H(W,.)
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Example. Encode fruit fly wing with 2-parameter persistence
o 1Ist parameter: distance from vertex set given as points in R?
® 2nd parameter: distance from edge set

W, . is but = H,.=H(W,.)
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Example. Encode fruit fly wing with 2-parameter persistence
o 1Ist parameter: distance from vertex set given as points in R?
® 2nd parameter: distance from edge set

W, . is but = H,.=H(W,.)
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Wing vein persistence fw/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
o 1Ist parameter: distance from vertex set given as points in R?
® 2nd parameter: distance from edge set given as Bézier curves

W, . is but = H,.=H(W,.)
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Wing vein persistence fw/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
o 1Ist parameter: distance from vertex set given as points in R?
® 2nd parameter: distance from edge set given as Bézier curves

W, . is but = H,.=H(W,.)
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Wing vein persistence fw/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
o 1Ist parameter: distance from vertex set given as points in R?
® 2nd parameter: distance from edge set given as Bézier curves

W, . is but = H,.=H(W,.)
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Wing vein persistence fw/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set given as Bézier curves

W, . is but = H,.=H(W,.)
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Wing vein persistence fw/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)

W, . is but = H,.=H(W,.)
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Wing vein persistence fw/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)

Sublevel set W, , is near edges but far from vertices = H, . = H;(W, )
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Wing vein persistence fw/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)

N

Sublevel set W, , is near edges but far from vertices = H, . = H;(W, )
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Wing vein persistence fw/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)

N

Sublevel set W, . is near edges but far from vertices = H, . = H;(W,.)
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Wing vein persistence fw/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)

7
N\

Sublevel set W, . is near edges but far from vertices = H, . = Hi(W, )

Multiscale summary
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Persistent homology Ordinary persistence Multiple parameters ~Statistical analysis Intervals

Wing vein persistence fw/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
e 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)

7
N\

Sublevel set W, . is near edges but far from vertices = H, . = Hi(W, )

Multiscale summary

T t T

i Hr—s,s = Hr,s s Hr+€,s s
T 1) T

Z2-module: -+ H . — H.: — Hi .. —
T t T

— Hr,5’575 - Hr,sfﬁ - Hr+s,sfo' -

T t
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W|ng Vein perSiStence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)

N\

Sublevel set W, . is near edges but far from vertices = H, . = H;(W,.)

A piece of fly wing vein The (r,s)-plane R?
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W|ng Vein perSiStence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)

N\

Sublevel set W, . is near edges but far from vertices = H, . = Hi(W,.)

A piece of fly wing vein The (r,s)-plane R?
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® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)
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Sublevel set W, . is near edges but far from vertices = H, . = Hi(W,.)

A piece of fly wing vein The (r,s)-plane R?
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W|ng Vein perSiStence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)
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Sublevel set W, . is near edges but far from vertices = H, . = Hi(W,.)

A piece of fly wing vein The (r,s)-plane R?
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W|ng Vein perSiStence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)

N\

Sublevel set W, . is near edges but far from vertices = H, . = Hi(W,.)

..

A piece of fly wing vein The (r,s)-plane R?
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W|ng Vein perSiStence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)
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Sublevel set W, . is near edges but far from vertices = H, . = Hi(W,.)

A piece of fly wing vein The (r,s)-plane R?
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Wing vein persistence fw/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)

N\

Sublevel set W, . is near edges but far from vertices = H, . = Hi(W,.)

A piece of fly wing vein The (r,s)-plane R?
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W|ng Vein perSiStence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)

N\

Sublevel set W, . is near edges but far from vertices = H, . = H;(W,.)

A piece of fly wing vein The (r,s)-plane R?
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W|ng Vein perSiStence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)

Sublevel set W, . is near edges but far from vertices = H, . = H;(W,.)

A piece of fly wing vein The (r,s)-plane R?
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W|ng Vein perSiStence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence
® 1st parameter: distance from vertex set (require distance > —r)
® 2nd parameter: distance from edge set (require distance < s)

N\

Sublevel set W, . is near edges but far from vertices = H, . = Hi(W,.)

A piece of fly wing vein The (r,s)-plane R?
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Topological space X filtered by set Q of subspaces: X; C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

X has persistent homolo H, = H(X This is a
{ q5qeQ p 3% q qeQ-

Q-module over the poset Q:
family H = {Hg}4cq of vector spaces over the field k with
homomorphism Hy; — Hy whenever ¢ < ¢’ in Q such that
Hy — Hg» equals the composite Hy — Hgr — Hg whenever ¢ < ¢’ < q”

points in R™: Q = {0,...,m} or R 1-parameter ( “ordinary”) persistence
brain arteries: @ = {0,...,m} or R 1-parameter (“ordinary”) persistence

wing veins: Q = Z? or R? 2 discrete or continuous parameters

stances Future directions
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Topological space X filtered by set Q of subspaces: X; C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

X has persistent homolo H, = H(X This is a
{ q5qeQ p 3% q qeQ-

Q-module over the poset Q:
family H = {Hg}4cq of vector spaces over the field k with
homomorphism Hy; — Hy whenever ¢ < ¢’ in Q such that
Hy — Hg» equals the composite Hy — Hgr — Hg whenever ¢ < ¢’ < q”

points in R™: Q = {0,...,m} or R 1-parameter ( “ordinary”) persistence
brain arteries: @ = {0,...,m} or R 1-parameter (“ordinary”) persistence
wing veins: Q = Z? or R? 2 discrete or continuous parameters

probability distributions: @ = R? 2 continuous parameters
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Example: topology of probability distributions

Given probability measure 4 on a space M and kernel function of bandwidth r
e.g. » K, = Gaussian (normal distribution) of variance r on R?
o K, = uniform measure on ball of radius r on RY

Convolution with kernel K, yields bandwidth = K, * li.

B, (n) ~ B.(p) if w, is uniform on an n-sample from p
1= F(x)dx = B,(u) has density K, * F(x) = [,, K.(y — x)du(y)

v with density function F has support at

v.={xeM|F(x)>1/s}.

The of u to and is B, (i),«. € M.
AMEN and } € M nested as r and s increase.
B.(1),.. ~ homology H.(B,(1),..)
1 has INIES H,-(B (1),.), an invariant of y

algebra, geometry, combinatorics of H.*(v) < statistics of v
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Example: topology of probability distributions

Given probability measure 4 on a space M and kernel function of bandwidth r
e.g. » K, = Gaussian (normal distribution) of variance r on R?
o K, = uniform measure on ball of radius r on RY

Def. Convolution with kernel K, yields bandwidth r expansion B, (1) = K, * pu.

B, (n) ~ B.(p) if w, is uniform on an n-sample from p
1= F(x)dx = B,(u) has density K, * F(x) = [,, K.(y — x)du(y)

v with density function F has support at

v.={xeM|F(x)>1/s}.

The of u to and is B, (i),«. € M.
{B.(11),- | and } € M nested as r and s increase.
B.(1),.. ~ homology H.(B,(1),..)
w has H/*(p) = H;(B.(1t),2.), an invariant of 1

algebra, geometry, combinatorics of H.*(v) < statistics of v
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Example: topology of probability distributions

Given probability measure 4 on a space M and kernel function of bandwidth r
e.g. » K, = Gaussian (normal distribution) of variance r on R4
o K, = uniform measure on ball of radius r on R?

Def. Convolution with kernel K, yields bandwidth r expansion B, (1) = K, * pu.

Example. o B,(pn) ~ B, (1) if py is uniform on an n-sample from p
1= F(x)dx = B,(p) has density K, x F(x) = [, K-(y — x)dpu(y)

v with density function F has support at

v :{XEM\F(X)EI/ }

The of u to and is B, (i),«. € M.
{B.(11),- | and } € M nested as r and s increase.
B.(1),.. ~ homology H.(B,(1),..)
i has Hi* (1) = Hi(B,(11),4.), an invariant of y

algebra, geometry, combinatorics of H.*(v) < statistics of v
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Topology of probability distributions

images from Confidence sets for persistence diagrams,
by Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh,
Annals of Statistics 42 (2014), no. 6, 2301-2339.
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Example: topology of probability distributions

Given probability measure 4 on a space M and kernel function of bandwidth r
e.g. » K, = Gaussian (normal distribution) of variance r on R4
o K, = uniform measure on ball of radius r on R?

Def. Convolution with kernel K, yields bandwidth r expansion B, (1) = K, * pu.

Example. o B,(pn) ~ B, (1) if py is uniform on an n-sample from p
1= F(x)dx = B,(p) has density K, x F(x) = [, K-(y — x)dpu(y)

v with density function F has support at

v :{XEM\F(X)EI/ }

The of u to and is B, (i),«. € M.
{B.(11),- | and } € M nested as r and s increase.
B.(1),.. ~ homology H.(B,(1),..)
i has Hi* (1) = Hi(B,(11),4.), an invariant of y

algebra, geometry, combinatorics of H.*(v) < statistics of v



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Example: topology of probability distributions

Given probability measure 4 on a space M and kernel function of bandwidth r
e.g. » K, = Gaussian (normal distribution) of variance r on R4
o K, = uniform measure on ball of radius r on R?

Def. Convolution with kernel K, yields bandwidth r expansion B, (1) = K, * pu.

Example. o B,(n) ~ B, (1) if py is uniform on an n- sample from M
o u= F(x)dx = B,(u) has density K, * F(x fM y —x)du(y)

v with density function F has support at
v :{XQM\F(X)EI/ }

The of u to and is B, (i),«. € M.
{B.(1),. | and } € M nested as r and s increase.
B, (). ~ homology H..(B,(1),.)
i has Hi* (1) = Hi(B,(11),4.), an invariant of y

algebra, geometry, combinatorics of H.?(v) < statistics of v
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Example: topology of probability distributions

Given probability measure 1 on a space M and kernel function of bandwidth r
e.g. » K, = Gaussian (normal distribution) of variance r on R4
o K, = uniform measure on ball of radius r on R?

Def. Convolution with kernel K, yields bandwidth r expansion B, (1) = K, * pu.

Example. o B,(n) ~ B, (1) if py is uniform on an n- sample from M
o 1= F(x)dx = B,(u) has density K, x F(x) = [,, K.(y — x)du(y)

Def. v with density function F has support at sensitivity s:
={xeM|F(x)>1/s}.

The of u to and is B, (i),«. € M.
{B.(1),. | and } € M nested as r and s increase.
B, (). ~ homology H..(B,(1),.)
w has H:*(p) = Hi(B.(u),+.), an invariant of u

algebra, geometry, combinatorics of H.?(v) < statistics of v
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Example: topology of probability distributions

Given probability measure 1 on a space M and kernel function of bandwidth r
e.g. » K, = Gaussian (normal distribution) of variance r on R4
o K, = uniform measure on ball of radius r on R?

Def. Convolution with kernel K, yields bandwidth r expansion B, (1) = K, * pu.

Example. o B,(n) ~ B, (1) if py is uniform on an n- sample from M
o 1= F(x)dx = B,(u) has density K, x F(x) = [,, K.(y — x)du(y)

Def. v with density function F has support at sensitivity s:
={xeM|F(x)>1/s}.

Def. The expansion of u to bandwidth r and sensitivity s is B,(u),+. € M.

{B, (1), | and } € M nested as r and s increase.
B, (). ~ homology H..(B,(1),.)
w has H“(u) = H;(B,(1),4.), an invariant of u

algebra, geometry, combinatorics of H.?(v) < statistics of v
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Topology of probability distributions

[surface images from Confidence sets for persistence diagrams,
by Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh,
Annals of Statistics 42 (2014), no. 6, 2301-2339.]
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Topology of probability distributions

[surface images from Confidence sets for persistence diagrams,
by Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh,
Annals of Statistics 42 (2014), no. 6, 2301-2339.]
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Example: topology of probability distributions

Given probability measure 1 on a space M and kernel function of bandwidth r
e.g. ® K, = Gaussian (normal distribution) of variance r on R4
o K, = uniform measure on ball of radius r on R?

Def. Convolution with kernel K, yields bandwidth r expansion B, (1) = K, * pu.

Example. o B.(un) ~ B/(1) if iy is uniform on an n—sample from H
o 1= F(x)dx = B,(u) has density K, x F(x fM y —x)du(y)

Def. v with density function F has support at sensitiwty s:
v.={x€M|F(x)>1/s}.

Def. The expansion of i to bandwidth r and sensitivity s is B, (). € M.

CAMEN and } € M nested as r and s increase.
B, (). ~ homology H..(B,(1),.)
u has H!*(p) = Hi(B.(),+.), an invariant of

algebra, geometry, combinatorics of H.?(v) < statistics of v
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Example: topology of probability distributions

Given probability measure 1 on a space M and kernel function of bandwidth r
e.g. ® K, = Gaussian (normal distribution) of variance r on R4
o K, = uniform measure on ball of radius r on R?

Def. Convolution with kernel K, yields bandwidth r expansion B, (1) = K, * pu.

Example. o B,(pn) ~ B, (1) if pn is uniform on an n—sample from H
o 1= F(x)dx = B,(u) has density K, x F(x fM y — x)du(y)

Def. v with density function F has support at sensitiwty s:
v.={x€M|F(x)>1/s}.
Def. The expansion of i to bandwidth r and sensitivity s is B, (). € M.
Prop. {B.(u),e. | reR-gand s 2. ;} C M nested as r and s increase.
B/ (1),+. ~ homology H.(B,(1),«.)
4 has HE () = Hh (B(1),-.). an invariant of 4

algebra, geometry, combinatorics of H.?(v) < statistics of v



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

Example: topology of probability distributions

Given probability measure 1 on a space M and kernel function of bandwidth r
e.g. ® K, = Gaussian (normal distribution) of variance r on R4
o K, = uniform measure on ball of radius r on R?

Def. Convolution with kernel K, yields bandwidth r expansion B, (1) = K, * pu.

Example. o B,(pn) ~ B, (1) if pn is uniform on an n—sample from H
o = F(x)dx = B,(u) has density K, * F(x fM y —x)du(y)

Def. v with density function F has support at sensitiwty s:
v.={x€M|F(x)>1/s}.

Def. The expansion of i to bandwidth r and sensitivity s is B, (). € M.

Prop. {B.(u),e. | reR-gand s 2. ;} C M nested as r and s increase.

Persistent homology: B,(u),s. ~ homology H.(B,(11),+.)

Def. pu has i™ bipersistent homology H/*(u) = H;(B.(1t),+.), an invariant of 1

algebra, geometry, combinatorics of H.?(v) < statistics of v
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Example: topology of probability distributions

Given probability measure 1 on a space M and kernel function of bandwidth r
e.g. ® K, = Gaussian (normal distribution) of variance r on R4
o K, = uniform measure on ball of radius r on R?

Def. Convolution with kernel K, yields bandwidth r expansion B, (1) = K, * pu.

Example. o B,(pn) ~ B, () if pp is uniform on an n—sample from H
o = F(x)dx = B,(u) has density K, * F(x fM y —x)du(y)

Def. v with density function F has support at sensitiwty s:
v.={x€M|F(x)>1/s}.

Def. The expansion of i to bandwidth r and sensitivity s is B, (). € M.

Prop. {B.(u),e. | reR-gand s 2. ;} C M nested as r and s increase.

Persistent homology: B,(u),s. ~ homology H.(B,(11),+.)

Def. pu has i™ bipersistent homology H/*(u) = H;(B.(1t),+.), an invariant of 1

algebra, geometry, combinatorics of H.°(v) < statistics of v
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Topological space X filtered by set Q of subspaces: X; C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

X has persistent homolo H, = H(X This is a
{ q5qeQ p 3% q qeQ-

Q-module over the poset Q:
family H = {Hg}4cq of vector spaces over the field k with
homomorphism Hy; — Hy whenever ¢ < ¢’ in Q such that
Hy — Hg» equals the composite Hy — Hgr — Hg whenever ¢ < ¢’ < q”

points in R™: Q = {0,...,m} or R 1-parameter ( “ordinary”) persistence
brain arteries: @ = {0,...,m} or R 1-parameter (“ordinary”) persistence
wing veins: Q = Z? or R? 2 discrete or continuous parameters

probability distributions: @ = R? 2 continuous parameters
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Topological space X filtered by set Q of subspaces: X; C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

X has persistent homolo H, = H(X This is a
{ q5qeQ p 3% q qeQ-

Q-module over the poset Q:
family H = {Hg}4cq of vector spaces over the field k with
homomorphism Hy; — Hy whenever ¢ < ¢’ in Q such that
Hy — Hg» equals the composite Hy — Hgr — Hg whenever ¢ < ¢’ < q”

points in R™: Q = {0,...,m} or R 1-parameter ( “ordinary”) persistence
brain arteries: @ = {0,...,m} or R 1-parameter (“ordinary”) persistence
wing veins: Q = Z? or R? 2 discrete or continuous parameters
probability distributions: @ = R? 2 continuous parameters

Q =7Z" < H =7Z"-graded k[xi, ..., x,]-module
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Topological space X filtered by set Q of subspaces: X; C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

X has persistent homolo H, = H(X This is a
{ q5qeQ p 3% q qeQ-

Q-module over the poset Q:
family H = {Hg}4cq of vector spaces over the field k with
homomorphism Hy; — Hy whenever ¢ < ¢’ in Q such that
Hy — Hg» equals the composite Hy — Hgr — Hg whenever ¢ < ¢’ < q”

points in R™: Q = {0,...,m} or R 1-parameter ( “ordinary”) persistence
brain arteries: @ = {0,...,m} or R 1-parameter (“ordinary”) persistence
wing veins: Q = Z? or R? 2 discrete or continuous parameters
probability distributions: @ = R? 2 continuous parameters

Q =7Z" & H = 7Z"-graded k[xi, . .., x,]-module (standard commutative alg.)
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Topological space X filtered by set Q of subspaces: X; C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

X has persistent homolo H, = H(X This is a
{ q5qeQ p 3% q qeQ-

Q-module over the poset Q:
family H = {Hg}4cq of vector spaces over the field k with
homomorphism Hy; — Hy whenever ¢ < ¢’ in Q such that
Hy — Hg» equals the composite Hy — Hgr — Hg whenever ¢ < ¢’ < q”

points in R™: Q = {0,...,m} or R 1-parameter ( “ordinary”) persistence

brain arteries: @ = {0,...,m} or R 1-parameter (“ordinary”) persistence
wing veins: Q = Z? or R? 2 discrete or continuous parameters
probability distributions: @ = R? 2 continuous parameters

Q =7Z" & H = 7Z"-graded k[xi, . .., x,]-module (standard commutative alg.)
Q =R" & H = R"-graded k[R} ]-module
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Topological space X filtered by set Q of subspaces: X; C X for g € Q
= Q is a partially ordered set: X, C Xy & g =<¢

X has persistent homolo H, = H(X This is a
{ q5qeQ p 3% q qeQ-

Q-module over the poset Q:
family H = {Hg}4cq of vector spaces over the field k with
homomorphism Hy; — Hy whenever ¢ < ¢’ in Q such that
Hy — Hg» equals the composite Hy — Hgr — Hg whenever ¢ < ¢’ < q”

points in R™: Q = {0,...,m} or R 1-parameter ( “ordinary”) persistence

brain arteries: @ = {0,...,m} or R 1-parameter (“ordinary”) persistence
wing veins: Q = Z? or R? 2 discrete or continuous parameters
probability distributions: @ = R? 2 continuous parameters

Q =7Z" & H = 7Z"-graded k[xi, . .., x,]-module (standard commutative alg.)
Q =R" & H = R"-graded k[R ]-module (real-exponent polynomials)
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Statistical analysis [Bendich-Marron—M ~Pieloch-Skwerer 2014]

Reduce to linear methods. 3D tree ~» bar code ~ vector in R1:
® top 100 bar lengths, in decreasing order, log scale
correlate first principal component score vs. age

Longest bars in older brains tend to be shorter and later.
Pearson correlation 0.52663
p-value 3.0127 x 1078 strongly significant

Results essentially unchanged after
rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)
rescaling to account for known correlation of age vs. total vessel length L
[Bullitt, et al. 2010] (divide by L, VL, or \ﬂ)
repeating the analysis with residuals from regression between feature vector
and total length.

Persistent homology can topologically detect statistically significant
geometric motifs
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Statistical analysis [Bendich-Marron—M ~Pieloch-Skwerer 2014]

Reduce to linear methods. 3D tree ~» bar code ~ vector in R1:
® top 100 bar lengths, in decreasing order, log scale
correlate first principal component score vs. age

Longest bars in older brains tend to be shorter and later.
Pearson correlation 0.52663
p-value 3.0127 x 1078 strongly significant

Results essentially unchanged after
rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)
rescaling to account for known correlation of age vs. total vessel length L
[Bullitt, et al. 2010] (divide by L, VL, or \ﬂ)
repeating the analysis with residuals from regression between feature vector
and total length.

Persistent homology can topologically detect statistically significant
geometric motifs
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Statistical analysis [Bendich-Marron—M ~Pieloch-Skwerer 2014]

Reduce to linear methods. 3D tree ~» bar code ~ vector in R1:
® top 100 bar lengths, in decreasing order, log scale
correlate first principal component score vs. age

Longest bars in older brains tend to be shorter and later.
Pearson correlation 0.52663
p-value 3.0127 x 10~8 strongly significant

Results essentially unchanged after
rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)
rescaling to account for known correlation of age vs. total vessel length L
(divide by L, VL, or \ﬂ)
repeating the analysis with residuals from regression between feature vector
and total length.

Persistent homology can topologically detect statistically significant
geometric motifs
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Statistical analysis [Bendich-Marron—M ~Pieloch-Skwerer 2014]

Reduce to linear methods. 3D tree ~» bar code ~ vector in R1:
® top 100 bar lengths, in decreasing order, log scale
correlate first principal component score vs. age

Longest bars in older brains tend to be shorter and later.
Pearson correlation 0.52663
p-value 3.0127 x 10~8 strongly significant

Results essentially unchanged after
rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)
rescaling to account for known correlation of age vs. total vessel length L
(divide by L, VL, or \ﬂ)
repeating the analysis with residuals from regression between feature vector
and total length.

Persistent homology can topologically detect statistically significant
geometric motifs
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Statistical analysis [Bendich-Marron-M.-Pieloch-Skwerer 2014]

Reduce to linear methods. 3D tree ~» bar code ~ vector in R1:
® top 100 bar lengths, in decreasing order, log scale
® correlate first principal component score vs. age

Longest bars in older brains tend to be shorter and later.
Pearson correlation 0.52663
p-value 3.0127 x 10~8 strongly significant

Results essentially unchanged after
rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)
rescaling to account for known correlation of age vs. total vessel length L
(divide by L, V'L, or v/L)
repeating the analysis with residuals from regression between feature vector
and total length.

Persistent homology can topologically detect statistically significant
geometric motifs
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Statistical analysis [Bendich-Marron-M.-Pieloch-Skwerer 2014]

Reduce to linear methods. 3D tree ~» bar code ~ vector in R1:
® top 100 bar lengths, in decreasing order, log scale
® correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.
Pearson correlation 0.52663
p-value 3.0127 x 10~8 strongly significant

Results essentially unchanged after
rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)
rescaling to account for known correlation of age vs. total vessel length L
(divide by L, V'L, or v/L)
repeating the analysis with residuals from regression between feature vector
and total length.

Persistent homology can topologically detect statistically significant
geometric motifs
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Statistical analysis [Bendich-Marron-M.-Pieloch-Skwerer 2014]

Reduce to linear methods. 3D tree ~» bar code ~ vector in R1:
® top 100 bar lengths, in decreasing order, log scale
® correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.
Pearson correlation 0.52663
p-value 3.0127 x 10~8 strongly significant

Results essentially unchanged after
rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)
rescaling to account for known correlation of age vs. total vessel length L
(divide by L, V'L, or v/L)
repeating the analysis with residuals from regression between feature vector
and total length

Persistent homology can topologically detect statistically significant
geometric motifs
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Statistical analysis [Bendich-Marron-M.-Pieloch-Skwerer 2014]

Reduce to linear methods. 3D tree ~» bar code ~ vector in R1:
® top 100 bar lengths, in decreasing order, log scale
® correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.
® Pearson correlation 0.52663
® p-value 3.0127 x 10~2 strongly significant

Results essentially unchanged after
rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)
rescaling to account for known correlation of age vs. total vessel length L
(divide by L, V'L, or v/L)
repeating the analysis with residuals from regression between feature vector
and total length

Persistent homology can topologically detect statistically significant
geometric motifs
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Statistical analysis [Bendich-Marron-M.-Pieloch-Skwerer 2014]

Reduce to linear methods. 3D tree ~» bar code ~ vector in R1:
® top 100 bar lengths, in decreasing order, log scale
® correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.
® Pearson correlation 0.52663
® p-value 3.0127 x 1078 strongly significant

Remarks. Results essentially unchanged after
® rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)
rescaling to account for known correlation of age vs. total vessel length L
(divide by L, V'L, or V1)
repeating the analysis with residuals from regression between feature vector
and total length

Persistent homology can topologically detect statistically significant
geometric motifs
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Statistical analysis [Bendich-Marron-M.-Pieloch-Skwerer 2014]

Reduce to linear methods. 3D tree ~» bar code ~+ vector in R1%:
® top 100 bar lengths, in decreasing order, log scale
® correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.
® Pearson correlation 0.52663
* p-value 3.0127 x 1028 strongly significant

Remarks. Results essentially unchanged after
* rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)

® rescaling to account for known correlation of age vs. total vessel length L
[Bullitt, et al. 2010] (divide by L, v/L, or v/L)
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Statistical analysis [Bendich-Marron-M.-Pieloch-Skwerer 2014]

Reduce to linear methods. 3D tree ~» bar code ~+ vector in R1%:
® top 100 bar lengths, in decreasing order, log scale
® correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.
® Pearson correlation 0.52663
* p-value 3.0127 x 1078 strongly significant

Remarks. Results essentially unchanged after
* rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)
® rescaling to account for known correlation of age vs. total vessel length L
[Bullitt, et al. 2010] (divide by L, v/L, or v/L)
® repeating the analysis with residuals from regression between feature vector
and total length
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Statistical analysis [Bendich-Marron-M.-Pieloch-Skwerer 2014]

Reduce to linear methods. 3D tree ~» bar code ~+ vector in R1%:
® top 100 bar lengths, in decreasing order, log scale
® correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.
® Pearson correlation 0.52663
* p-value 3.0127 x 1078 strongly significant

Remarks. Results essentially unchanged after
* rescaling to account for natural variation in overall brain size (force standard
deviation of the set of bar lengths to equal 1)
® rescaling to account for known correlation of age vs. total vessel length L
[Bullitt, et al. 2010] (divide by L, v/L, or v/L)
® repeating the analysis with residuals from regression between feature vector
and total length

Moral. Persistent homology can topologically detect statistically significant
geometric motifs
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Interval decomposition

Thm [Crawiey-Boevey 2015]. R-module M = M = (D k{I} with T a set of intervals

IeT
over R: M ~ bar code / lace array / persistence diagram
reinvented a number of times
earliest: algebraic geometry of representation theory [Abeasis-Del Fra 1980
explicitly drawn bars
Mobius inversion formulas

An interval I in a poset @ is a convex connected subset: a,b € [ =
q € I whenever a < g < b and
there is a (zigzag) chain in I of comparable elements from a to b.
For any subset S C Q, let k{S} = €. < ks be its indicator module.

In R?, intervals can look like

ses

Q-module has interval decomposition M = (B k{I} with T a set of intervals
ez
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Thm [Crawley-Boevey 2015]. R-module M = M = (D k{I} with T a set of intervals
IeT
Consequence over R: M ~~ bar code / lace array / persistence diagram
® reinvented a number of times
® earliest: algebraic geometry of representation theory [Abeasis-Del Fra 1980]
® explicitly drawn bars
® Mobius inversion formulas
An interval I in a poset @ is a convex connected subset: a,b € [ =
q € I whenever a < g < b and
there is a (zigzag) chain in I of comparable elements from a to b.
For any subset S C Q, let k{S} = s ks be its indicator module.

In R2, intervals can look like

Q-module has interval decomposition M = (5 k{/} with 7 a set of intervals

IeT
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Old bar codes

Tt is convenient to represent A% as a “diagram of boxes”, each row starting at i and
ending at j stands for one indecomposable factor of type E; .
E.g. the following diagram represents A* for 4 isomorphic to

E(1.6)®E(1, 3)®E(3,6)®E(3.4)®E(3.4)®E(S,6)®E(S, BE

[T [T1
I
11

2.4. Conversely any indexed set 2=(Ag ;) <i<;<m Of natural numbers determines
an orbit in L(V, V), ..., V,) provided dimV;=4:= Y A, (=# boxes in the i
rsiss

column of 4). We will shortly call such an indexed set a diagram, define

1
Let us introduce now the set of non-negative integers n = {1}, . cocm

associated to 4 and defined by

[

(2.3) rii= Y ep,

pPEr<s<q
nf, is the number of the segments of the diagram of |4 | which contain the
integers r, 5. It follows that we have

A __ A A 4 A
(2'4) €pqg = Mpg = Mp_1,g— Mpgi1 +"p~l‘q+l
where we set nj,=0if r<Oors>m+ L

[Abeasis—Del Fra 1980, Abeasis—Del Fra—Kraft 1981] 5
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Old bar codes

Example 1.5. Consider the rank array r = (ry), its lace array s = (s;;), and
its rectangle array R = (R;;), which we depict as follows.

3210][i/) 3210]i/) 21 00i/]
2] 0 0] o
r= 32] 1 s= 01| 1
421 2 101] 2
3210] 3 1110] 3

The relation (1.2) says that an entry of r is the sum of the entries in s that
are weakly southeast of the corresponding location. The height of R;; is
obtained by subtracting the entry r;; from the one above it, while the width
of R;; is obtained by subtracting the entry r;; from the one to its left.

It follows from the definition of R;; that

(1.3) Zhelght(R,k) =Tij-1 —Tin = Tij-1 for all i
k>j

(1.4) ZWidth(Rfj) =Tit1j —Toj = Tit1 for all j.

e<i

(This will be applied in Proposition 8.12.) The relation (1.2) can be inverted
to obtain

(1.5) Sij =T = Fie1,j = Tijj+1 + Tzl 41

[Knutson—-M.-Shimozono 2005]
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Thm [Crawley-Boevey 2015]. R-module M = M = (D k{I} with T a set of intervals
IeT
Consequence over R: M ~~ bar code / lace array / persistence diagram
® reinvented a number of times
® earliest: algebraic geometry of representation theory [Abeasis-Del Fra 1980]
® explicitly drawn bars
® Mobius inversion formulas
An interval I in a poset @ is a convex connected subset: a,b € [ =
q € I whenever a < g < b and
there is a (zigzag) chain in I of comparable elements from a to b.
For any subset S C Q, let k{S} = s ks be its indicator module.

In R2, intervals can look like

Q-module has interval decomposition M = (5 k{/} with 7 a set of intervals

IeT
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Interval decomposition

Thm [Crawley-Boevey 2015]. R-module M = M = (D k{I} with T a set of intervals
1€
Consequence over R: M ~~ bar code / lace array / persistence diagram
® reinvented a number of times
® earliest: algebraic geometry of representation theory [Abeasis-Del Fra 1980]
¢ explicitly drawn bars
® Mobius inversion formulas

Def. An interval I in a poset @ is a convex connected subset: a, b € I =
¢ g € I whenever a < g =< b and
® there is a (zigzag) chain in I of comparable elements from a to b.
For any subset S C Q, let k{S} = @,s ks be its indicator module.

interval decomposition
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Interval decomposition

Thm [Crawley-Boevey 2015]. R-module M = M = (D k{I} with T a set of intervals
1€
Consequence over R: M ~~ bar code / lace array / persistence diagram
® reinvented a number of times
® earliest: algebraic geometry of representation theory [Abeasis-Del Fra 1980]
¢ explicitly drawn bars
® Mobius inversion formulas

Def. An interval I in a poset @ is a convex connected subset: a, b € I =
¢ g € I whenever a < g =< b and
® there is a (zigzag) chain in I of comparable elements from a to b.
For any subset S C Q, let k{S} = @,s ks be its indicator module.

Examples. In R?, intervals can look like

interval decomposition
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Interval decomposition

Thm [Crawley-Boevey 2015]. R-module M = M = (D k{I} with T a set of intervals
1€
Consequence over R: M ~~ bar code / lace array / persistence diagram
® reinvented a number of times
® earliest: algebraic geometry of representation theory [Abeasis-Del Fra 1980]
¢ explicitly drawn bars
® Mobius inversion formulas

Def. An interval I in a poset @ is a convex connected subset: a, b € I =
¢ g € I whenever a < g =< b and
® there is a (zigzag) chain in I of comparable elements from a to b.
For any subset S C Q, let k{S} = @,s ks be its indicator module.

Examples. In R?, intervals can look like

or or L but not \

interval decomposition
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Interval decomposition

Thm [Crawley-Boevey 2015]. R-module M = M = (D k{I} with T a set of intervals

1€
Consequence over R: M ~~ bar code / lace array / persistence diagram
® reinvented a number of times
® earliest: algebraic geometry of representation theory [Abeasis-Del Fra 1980]
® explicitly drawn bars
® Mobius inversion formulas

Def. An interval I in a poset @ is a convex connected subset: a, b € I =
¢ g € I whenever a < g =< b and
® there is a (zigzag) chain in I of comparable elements from a to b.
For any subset S C Q, let k{S} = @,s ks be its indicator module.

Examples. In R?, intervals can look like

or or L but not \

Def. @-module has interval decomposition M =2 P k{I} with T a set of intervals
rez
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Interval decomposition

Thm [Crawley-Boevey 2015]. R-module M = M = (Hk{I} with T a set of intervals

1€
Consequence over R: M ~~ bar code / lace array / persistence diagram
® reinvented a number of times
® earliest: algebraic geometry of representation theory [Abeasis-Del Fra 1980]
® explicitly drawn bars
® Mobius inversion formulas

Def. An interval I in a poset @ is a convex connected subset: a, b € I =
¢ g € I whenever a < g =< b and
® there is a (zigzag) chain in I of comparable elements from a to b.
For any subset S C Q, let k{S} = @,s ks be its indicator module.

Examples. In R?, intervals can look like
or or L but not \

Def. @-module has interval decomposition M =2 P k{I} with T a set of intervals
(but M need not have such a decomposition!)  7€Z
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Arbitrary posets

Thm [Botnan—Crawley Boevey 2020], cf. [Gabriel-Roiter 1992]. Over arbitrary poset Q,

M has indecomposable decomposition: M = €5 M,, with M,, indecomposable.
acA
Essentially unique: multiset { M, }oca of isomorphism classes is invariant.

General indecomposable Z"-modules are big,
far from being interval modules (vector space dimensions >> 1).

Z"-indecomposables are dense in interleaving distance.
The set of modules = (e-trivial @ indecomposable) is interleaving-open.

= @ueA M, expresses M positively in term of the M,. Choose:
retain positivity or
retain description in terms of intervals.

Can both be achieved?

Pipeline:

data ~~ filtered topological spaces ~~ algebraic objects

H

“nice” algebraic objects ~+ invariants ~~ statistics
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Arbitrary posets

Thm [Botnan—Crawley-Boevey 2020], cf. [Gabriel-Roiter 1992]. Over arbitrary poset Q,

M has indecomposable decomposition: M = €5 M,, with M,, indecomposable.
acA
Essentially unique: multiset { M, }oca of isomorphism classes is invariant.

Thm [Buchet—Escolar 2020], [Moore 2022]. General indecomposable Z"-modules are big,
far from being interval modules (vector space dimensions > 1).

Z"-indecomposables are dense in interleaving distance.
The set of modules = (e-trivial @ indecomposable) is interleaving-open.

M = EB”CA M, expresses M positively in term of the M,. Choose:
retain positivity or
retain description in terms of intervals.

Can both be achieved?
Pipeline:
data ~~ filtered topological spaces ~~ algebraic objects

$

“nice” algebraic objects ~+ invariants ~~ statistics
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Arbitrary posets

Thm [Botnan—Crawley-Boevey 2020], cf. [Gabriel-Roiter 1992]. Over arbitrary poset Q,

M has indecomposable decomposition: M = @ M, with M, indecomposable.
acA

Essentially unique: multiset {M, }oca of isomorphism classes is invariant.

Thm [Buchet—Escolar 2020], [Moore 2022]. General indecomposable Z"-modules are big,

far from being interval modules (vector space dimensions > 1).

Thm [Baver-Scoccola 2022]. Z-indecomposables are dense in interleaving distance.
The set of modules 2 (e-trivial @& indecomposable) is interleaving-open.
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Arbitrary posets

Thm [Botnan—Crawley-Boevey 2020], cf. [Gabriel-Roiter 1992]. Over arbitrary poset Q,

M has indecomposable decomposition: M = @ M, with M, indecomposable.
acA

Essentially unique: multiset {M, }oca of isomorphism classes is invariant.

Thm [Buchet—Escolar 2020], [Moore 2022]. General indecomposable Z"-modules are big,

far from being interval modules (vector space dimensions > 1).

Thm [Baver-Scoccola 2022]. Z-indecomposables are dense in interleaving distance.
The set of modules 2 (e-trivial @& indecomposable) is interleaving-open.

Positivity. M =@ ,ca
1. retain positivity or
2. retain description in terms of intervals.

Question. Can both be achieved?

M, expresses M positively in term of the M,. Choose:
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Arbitrary posets

Thm [Botnan—Crawley-Boevey 2020], cf. [Gabriel-Roiter 1992]. Over arbitrary poset Q,

M has indecomposable decomposition: M = @ M, with M, indecomposable.
acA
Essentially unique: multiset {M, }oca of isomorphism classes is invariant.

Thm [Buchet—Escolar 2020], [Moore 2022]. General indecomposable Z"-modules are big,
far from being interval modules (vector space dimensions > 1).

Thm [Baver-Scoccola 2022]. Z-indecomposables are dense in interleaving distance.
The set of modules 2 (e-trivial @& indecomposable) is interleaving-open.

Positivity. M =@ ,ca
1. retain positivity or
2. retain description in terms of intervals.

Question. Can both be achieved?

Proposal. Pipeline:
data ~ filtered topological spaces ~~ algebraic objects

$

“nice” algebraic objects ~+ invariants ~~ statistics

M, expresses M positively in term of the M,. Choose:
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Arbitrary posets

Thm [Botnan—Crawley-Boevey 2020], cf. [Gabriel-Roiter 1992]. Over arbitrary poset Q,

M has indecomposable decomposition: M = @ M, with M, indecomposable.
acA
Essentially unique: multiset {M, }oca of isomorphism classes is invariant.

Thm [Buchet—Escolar 2020], [Moore 2022]. General indecomposable Z"-modules are big,
far from being interval modules (vector space dimensions > 1).

Thm [Baver-Scoccola 2022]. Z-indecomposables are dense in interleaving distance.
The set of modules 2 (e-trivial @& indecomposable) is interleaving-open.

Positivity. M =@ ,ca
1. retain positivity or
2. retain description in terms of intervals.

Question. Can both be achieved?

Proposal. Pipeline:
data ~ filtered topological spaces ~~ algebraic objects

M, expresses M positively in term of the M,. Choose:

$ old: decompose

“nice” algebraic objects ~+ invariants ~~ statistics
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Arbitrary posets

Thm [Botnan—Crawley-Boevey 2020], cf. [Gabriel-Roiter 1992]. Over arbitrary poset Q,

M has indecomposable decomposition: M = @ M, with M, indecomposable.
acA
Essentially unique: multiset {M, }oca of isomorphism classes is invariant.

Thm [Buchet—Escolar 2020], [Moore 2022]. General indecomposable Z"-modules are big,
far from being interval modules (vector space dimensions > 1).

Thm [Baver-Scoccola 2022]. Z-indecomposables are dense in interleaving distance.
The set of modules 2 (e-trivial @& indecomposable) is interleaving-open.

Positivity. M =@ ,ca
1. retain positivity or
2. retain description in terms of intervals.

Question. Can both be achieved?

Proposal. Pipeline:
data ~ filtered topological spaces ~~ algebraic objects

M, expresses M positively in term of the M,. Choose:

$ new: filter

“nice” algebraic objects ~+ invariants ~~ statistics
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Lifetime filtration

ldea [cunha-M.~Zhang 2024-2025]. Filter with indicator modules k{S}:
¢ find a "maximally persistent” element x € M
® L = lifetime of x = lifetime submodule k{L} C M
o k{L} =k{UN D} for upset U and downset D
replace M with M/k{L}
iterate: view M as “stack of lifetimes”

What could “top 100 bar lengths” mean in multipersistence?
Q-module M for arbitrary poset @

(noncanonical) filtration
Fo-M=M,D2My_12---2M DMy=0
with all gr;M = M;/M;_; lifetime modules, so the associated graded module

is interval-decomposable: ¢
gI’M = @ M,'/M,‘,l
i=1

Lifetime filtrations ~~ interleaving-stable
lifetime displacement A,: tame M and N admit lifetime filtrations verifying

Az (M, N) < dz(M, N).
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Lifetime filtration

ldea [cunha-M.~Zhang 2024-2025]. Filter with indicator modules k{S}:
¢ find a "maximally persistent” element x € M
® L = lifetime of x = lifetime submodule k{L} C M

o k{L} =k{UN D} for upset U and downset D
replace M with M/k{L}
iterate: view M as “stack of lifetimes”
What could “top 100 bar lengths” mean in multipersistence?
Q-module M for arbitrary poset @

(noncanonical) filtration
Fo-M=MDMy_12---2M 2OMy=0
with all gr;M = M;/M;_; lifetime modules, so the associated graded module

is interval-decomposable: ¢
gI‘M = @ M,'/M,‘,l
i=1

Lifetime filtrations ~~ interleaving-stable
lifetime displacement A,: tame M and N admit lifetime filtrations verifying

Az (M, N) < dz(M, N).
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Lifetime filtration

ldea [cunha-M.~Zhang 2024-2025]. Filter with indicator modules k{S}:

® find a “maximally persistent” element x € M

® L = lifetime of x = lifetime submodule k{L} C M

o k{L} =k{UN D} for upset U and downset D

replace M with M/k{L} \J = N
iterate: view M as “stack of lifetimes”

What could “top 100 bar lengths” mean in multipersistence?
@-module M for arbitrary poset @

(noncanonical) filtration
Fo-M=My,2DMy_12:--2M 2OMy=0
with all gr;M = M;/M,;_; lifetime modules, so the associated graded module

is interval-decomposable: ¢
oM = P M/ My
i=1

Lifetime filtrations ~~ interleaving-stable

lifetime displacement A,: tame M and N admit lifetime filtrations verifying

Ap(M,N) < dz(M,N).
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Lifetime filtration

ldea [cunha-M.~Zhang 2024-2025]. Filter with indicator modules k{S}:
® find a “maximally persistent” element x € M
® L = lifetime of x = lifetime submodule k{L} C M

o k{L} =k{UN D} for upset U and downset D
replace M with M/k{L} \J = N
iterate: view M as “stack of lifetimes” !

What could “top 100 bar lengths” mean in multipersistence?

@-module M for arbitrary poset @

(noncanonical) filtration
Fo-M=My,2DMy_12:--2M 2OMy=0
with all gr;M = M;/M,;_; lifetime modules, so the associated graded module

is interval-decomposable: ¢
oM = P M/ My
i=1

Lifetime filtrations ~~ interleaving-stable
lifetime displacement A,: tame M and N admit lifetime filtrations verifying

Ap(M,N) < dz(M,N).
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Lifetime filtration

ldea [cunha-M.~Zhang 2024-2025]. Filter with indicator modules k{S}:

find a “maximally persistent” element x € M
L = lifetime of x = lifetime submodule k{L} C M

k{L} 2k{UnN D} for upset U and downset D
replace M with M/k{L} \J = N
iterate: view M as “stack of lifetimes” ,

What could “top 100 bar lengths” mean in multipersistence?

@-module M for arbitrary poset @

(noncanonical) filtration
F'M*M{DMglj DMleQ:O
with all gr;M = M;/M;_; lifetime modules so the associated graded module

is interval- decomposable
grM = @ M;/M;_1

Lifetime ﬁltratlons ~> interleaving-stable

lifetime displacement A,: tame M and N admit lifetime filtrations verifying

Ar(M,N) < dz(M, N).
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Lifetime filtration

ldea [cunha-M.~Zhang 2024-2025]. Filter with indicator modules k{S}:
® find a “maximally persistent” element x € M
L = lifetime of x = lifetime submodule k{L} C M

k{L} 2k{UnN D} for upset U and downset D \
replace M with M/k{L} J = N
iterate: view M as “stack of lifetimes” ,

Motivation. What could “top 100 bar lengths” mean in multipersistence?

@-module M for arbitrary poset @

(noncanonical) filtration
Fo-M=M;,DMy_12---2M 2 My=0
with all gr;M = M;/M;_; lifetime modules, so the associated graded module

is interval-decomposable: ¢
grM = D M;/ My
i=1

Lifetime filtrations ~~ interleaving-stable
lifetime displacement A,: tame M and N admit lifetime filtrations verifying

A (M, N) < dz(M, N).
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Lifetime filtration

ldea [cunha-M.~Zhang 2024-2025]. Filter with indicator modules k{S}:
¢ find a “maximally persistent” element x € M
L = lifetime of x = lifetime submodule k{L} C M

k{L} 2k{UnN D} for upset U and \
replace M with M/k{L} = N
iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

[nput. @-module M for arbitrary poset Q

Output. (noncanonical) filtration
*Fe-M=M2DOMg_12---2M 2OMy=0
e with all gr;M = M;/M;_ lifetime modules, so the associated graded module

is interval-decomposable: ¢
grM = @ M;/Mi_y
i=1
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Lifetime filtration

ldea [cunha-M.~Zhang 2024-2025]. Filter with indicator modules k{S}:
¢ find a “maximally persistent” element x € M
L = lifetime of x = lifetime submodule k{L} C M

k{L} 2k{UnN D} for upset U and \
replace M with M/k{L} = N
iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

[nput. @-module M for arbitrary poset Q

Output. (noncanonical) filtration
*Fe-M=M2DOMg_12---2M 2OMy=0
e with all gr;M = M;/M;_ lifetime modules, so the associated graded module

is interval-decomposable: ¢
grM = @ M;/Mi_y
i=1

Thm [Cunha—M ~Zhang 2024-2025]. Lifetime filtrations ~~ interleaving-stable
lifetime displacement A,: tame M and N admit lifetime filtrations verifying

Ap(M,N) < dz(M,N).
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Lifetime filtration

|dea [Cunha-M ~Zhang 2024-2025]. Filter with indicator modules k{S}:
¢ find a “maximally persistent” element x € M k
L = lifetime of x = lifetime submodule k{L} C M

k{L} 2k{UnN D} for upset U and \
replace M with M/k{L} = N
iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

[nput. @-module M for arbitrary poset Q

Output. (noncanonical) filtration
*Fe-M=M2DOMg_12---2M 2OMy=0
e with all gr;M = M;/M;_ lifetime modules, so the associated graded module

is interval-decomposable: ¢
grM = @ M;/Mi_y
i=1

Thm [Cunha—M ~Zhang 2024-2025]. Lifetime filtrations ~~ interleaving-stable
lifetime displacement A,: tame M and N admit lifetime filtrations verifying

Ap(M,N) < dz(M,N).
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Lifetime filtration

ldea [cunha-M.~Zhang 2024-2025]. Filter with indicator modules k{S}:
¢ find a “maximally persistent” element x € M
L = lifetime of x = lifetime submodule k{L} C M

k{L} 2k{UnN D} for upset U and \
replace M with M/k{L} = N
iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

[nput. @-module M for arbitrary poset Q

Output. (noncanonical) filtration
*Fe-M=M2DOMg_12---2M 2OMy=0
e with all gr;M = M;/M;_ lifetime modules, so the associated graded module

is interval-decomposable: ¢
grM = @ M;/Mi_y
i=1

Thm [Cunha—M ~Zhang 2024-2025]. Lifetime filtrations ~~ interleaving-stable
lifetime displacement A,: tame M and N admit lifetime filtrations verifying

Ap(M,N) < dz(M,N).
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Lifetime filtration
ldea [cunha-M.~Zhang 2024-2025]. Filter with indicator modules k{S}: k
¢ find a “maximally persistent” element x € M ~d,

L = lifetime of x = lifetime submodule k{L} C M

k{L} 2k{UnN D} for upset U and
replace M with M/k{L}
iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

[nput. @-module M for arbitrary poset Q

Output. (noncanonical) filtration
*Fe-M=M2DOMg_12---2M 2OMy=0
e with all gr;M = M;/M;_ lifetime modules, so the associated graded module

is interval-decomposable: ¢
grM = @ M;/Mi_y
i=1

Thm [Cunha—M ~Zhang 2024-2025]. Lifetime filtrations ~~ interleaving-stable
lifetime displacement A,: tame M and N admit lifetime filtrations verifying

Ap(M,N) < dz(M,N).
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Tameness

How to write down multipersistence modules in general? Need finiteness....

Def v-2017, see arxiv:matnat/2008.00063]. A module M over an arbitrary poset Q
admits a constant subdivision if @ is partitioned into

® constant regions A, each with vector space My = M, for all a € A, having

. all comparable pairs a < b with

and induce the
same composite M, — M, — M, — Mg.

M is tame if it admits a finite constant subdivision and dimy M, < oo for all g.

ko @ k[R?] admits constant regions {0} and R? \ {0}
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Tameness

How to write down multipersistence modules in general? Need finiteness....

Def M- 2017, see arxiv:mathaT/2008.00063]. A module M over an arbitrary poset @
admits a constant subdivision if @ is partitioned into

® constant regions A, each with vector space My = M, for all a € A, having

® no monodromy: all comparable pairs a < b with a € A and b € B induce the
same composite My — M, — M,, — M.

tame
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Tameness

How to write down multipersistence modules in general? Need finiteness....

Def v-2017, see arxiv:matnat/2008.00063]. A module M over an arbitrary poset Q
admits a constant subdivision if @ is partitioned into

® constant regions A, each with vector space My = M, for all a € A, having

® no monodromy: all comparable pairs a < b with a € Aand b € 5 induce the
same composite My — M, — M,, — M.

M is tame if it admits a finite constant subdivision and dimy M, < oo for all q.

ko @ k[R?] admits constant regions {0} and R? \. {0}
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Tameness

How to write down multipersistence modules in general? Need finiteness....

Def v-2017, see arxiv:matnat/2008.00063]. A module M over an arbitrary poset Q
admits a constant subdivision if @ is partitioned into

® constant regions A, each with vector space My = M, for all a € A, having

® no monodromy: all comparable pairs a < b with a € Aand b € 5 induce the
same composite My — M, — M,, — M.

M is tame if it admits a finite constant subdivision and dimy M, < oo for all g.

ko @ k[R?] admits constant regions {0} and R? \. {0}
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Tameness

How to write down multipersistence modules in general? Need finiteness....

Def v-2017, see arxiv:matnat/2008.00063]. A module M over an arbitrary poset Q
admits a constant subdivision if @ is partitioned into

® constant regions A, each with vector space My = M, for all a € A, having

® no monodromy: all comparable pairs a < b with a € A and b € B induce the
same composite My — M, — M,, — M.

M is tame if it admits a finite constant subdivision and dimy M, < oo for all g.

Example. ko @ k[R?] admits constant regions {0} and R? \ {0}
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Tameness

How to write down multipersistence modules in general? Need finiteness....

Def v-2017, see arxiv:matnat/2008.00063]. A module M over an arbitrary poset Q
admits a constant subdivision if @ is partitioned into

® constant regions A, each with vector space My = M, for all a € A, having

® no monodromy: all comparable pairs a < b with a € A and b € B induce the
same composite My — M, — M,, — M.

M is tame if it admits a finite constant subdivision and dimy M, < oo for all g.

Example. ko @ k[R?] admits constant regions {0} and R? \ {0}
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Distances

Def [Lesnick 2015]. Lifetime modules K, L are e-interleaved if “K fits e-almost in L"
and vice versa. Similar for any modules M and N. The interleaving distance is

dz(M,N) = inf{e | M and N are e-interleaved}
@/\/Ia and @Na are e-matched if M, and N, are s-interleaved Vo € A.

acA a€cA

Let D : Q-mods — families of finitely decomposed @Q-modules with ordered
summands, so each element of D(N) is a direct sum L=1L; & --- @ Ly.
Assume K = K1 @ - - - @ Ki. The bottleneck distance determined by D is

dp(K, N) = inf{e | K is e-matched with some L € D(N)}.

various distances from different choices of D:
bottleneck distance dg from D(N) = {indecomposable decompositions of N}
if K=K ®---&® K is a direct sum of indecomposables
lifetime matching distance dz from D(N) = {grF, N for lifetime filtration F,}
it K=K ®---® K is lifetime decomposed

[Cunha-M.~Zhang 2024-2025]. T he lifetime displacement from M to N is

A[)(Ma N): sup dll(K7N)
KeD(M)
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Distances

Def [Lesnick 2015]. Lifetime modules K, L are e-interleaved if “K fits e-almost in L"
and vice versa. Similar for any modules M and N. The interleaving distance is

dz(M,N) =inf{e | M and N are c-interleaved}
@/\/]a and EBNQ are e-matched if M, and N, are s-interleaved Vo € A.
aEA a€cA

Let D : Q-mods — families of finitely decomposed @Q-modules with ordered
summands, so each element of D(N) is a direct sum L =1L; & --- P L.
Assume K = K1 @ - - - @ Ki. The bottleneck distance determined by D is

dp(K, N) =inf{e | K is e-matched with some L € D(N)}.

various distances from different choices of D:
bottleneck distance dg from D(N) = {indecomposable decompositions of N}
if K=K @ P K is a direct sum of indecomposables
lifetime matching distance d. from D(N) = {grF, N for lifetime filtration F,}
if K=K ®---® Ky is lifetime decomposed
The lifetime displacement from M to N is

Ac(MN)= sup de(K,N).
KeD(M)
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Distances

Def [Lesnick 2015]. Lifetime modules K, L are e-interleaved if “K fits e-almost in L"
and vice versa. Similar for any modules M and N. The interleaving distance is

dz(M,N) =inf{e | M and N are c-interleaved}
Def. P M. and N, are e-matched if M, and N, are e-interleaved Vo € A.

aEA a€cA

Let D : Q-mods — families of finitely decomposed @Q-modules with ordered
summands, so each element of D(N) is a direct sum L =1L; & --- P L.
Assume K = K1 @ - - - @ Ki. The bottleneck distance determined by D is

dp(K, N) =inf{e | K is e-matched with some L € D(N)}.

various distances from different choices of D:
bottleneck distance dg from D(N) = {indecomposable decompositions of N}
if K=K @ P K is a direct sum of indecomposables
lifetime matching distance dz from D(N) = {grF, N for lifetime filtration F,}
if K=K ®---® Ky is lifetime decomposed
The lifetime displacement from M to N is

Ac(M,N)= sup dc(K,N).
KeD(M)
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Distances

Def [Lesnick 2015]. Lifetime modules K, L are e-interleaved if “K fits e-almost in L"
and vice versa. Similar for any modules M and N. The interleaving distance is

dz(M,N) = inf{e | M and N are e-interleaved}
Def. @M, and PN, are e-matched if M, and N, are e-interleaved Vo € A.

aEA a€EA
Def. Let D : Q-mods — families of finitely decomposed Q-modules with ordered
summands, so each element of D(N) is a direct sum L=L; @ --- @ Ly.
Assume K = K1 @ - - - @ K. The bottleneck distance determined by D is

dp(K, N) = inf{e | K is e-matched with some L € D(N)}.

bottleneck distance dg

lifetime matching distance d

lifetime displacement
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Distances

Def [Lesnick 2015]. Lifetime modules K, L are e-interleaved if “K fits e-almost in L"
and vice versa. Similar for any modules M and N. The interleaving distance is

dz(M,N) = inf{e | M and N are e-interleaved}
Def. @M, and PN, are e-matched if M, and N, are e-interleaved Vo € A.
aEA a€EA
Def. Let D : Q-mods — families of finitely decomposed Q-modules with ordered

summands, so each element of D(N) is a direct sum L=L; @ --- @ Ly.
Assume K = K1 @ - - - @ K. The bottleneck distance determined by D is

dp(K, N) = inf{e | K is e-matched with some L € D(N)}.

Examples. various distances from different choices of D:
1. bottleneck distance dg from D(N) = {indecomposable decompositions of N}
if K=K ®---&® K is a direct sum of indecomposables
lifetime matching distance d

lifetime displacement
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[Lesnick 2015]. Lifetime modules K, L are e-interleaved if “K fits e-almost in L"
and vice versa. Similar for any modules M and N. The interleaving distance is

dz(M,N) = inf{e | M and N are e-interleaved}
P M., and BN, are e-matched if M, and N, are e-interleaved Vo € A.
a€EA a€EA
Let D : Q-mods — families of finitely decomposed @-modules with ordered

summands, so each element of D(N) is a direct sum L=1L; & --- & L,.
Assume K = K1 @ - - - @ K. The bottleneck distance determined by D is

dp(K, N) = inf{e | K is e-matched with some L € D(N)}.

various distances from different choices of D:
bottleneck distance dg from D(N) = {indecomposable decompositions of N}
if K=K ®---&® K is a direct sum of indecomposables
lifetime matching distance d from D(N) = {grF, N for lifetime filtration F,}
if K=K @& D K is lifetime decomposed

lifetime displacement



Persistent homology Ordinary persistence Multiple parameters Statistical analysis Intervals Lifetime filtration Tameness Distances Future directions

[Lesnick 2015]. Lifetime modules K, L are e-interleaved if “K fits e-almost in L"
and vice versa. Similar for any modules M and N. The interleaving distance is

dz(M,N) = inf{e | M and N are e-interleaved}
P M., and BN, are e-matched if M, and N, are e-interleaved Vo € A.
a€EA a€EA
Let D : Q-mods — families of finitely decomposed @-modules with ordered

summands, so each element of D(N) is a direct sum L=1L; & --- & L,.
Assume K = K1 @ - - - @ K. The bottleneck distance determined by D is

dp(K, N) = inf{e | K is e-matched with some L € D(N)}.

various distances from different choices of D:
bottleneck distance dg from D(N) = {indecomposable decompositions of N}
if K=K ®---&® K is a direct sum of indecomposables
lifetime matching distance d from D(N) = {grF, N for lifetime filtration F,}
if K=K @& D K is lifetime decomposed

[Cunha—M.~Zhang 2024-2025]. T he lifetime displacement from M to N is

AL(Ma N): sup dl)(K7 N)
KeD(M)
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Looking forward

Question. What could “top 100 bar lengths” mean in multipersistence?
® Locate "maximally persistent” elements
What is meant by “maximally persistent”?

length, width, area, volume

“size” is crucial when parameters have incomparable scientific meanings
primary distances: separate classes according to birth and death types
note: primary decomposition is really another filtration!

Bjerkevik's pruning distance stability/Lipschitz conjecture
Must an indecomposable possess a big individual element?
Is every indecomposable close to interval decomposing? If not, how likely is it?
How likely is M to break into interpretable small pieces by perturbation?

Locate maximally persistent elements algorithmically

Certify lower bounds for approximating A,

20
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What could “top 100 bar lengths” mean in multipersistence?
Locate “maximally persistent” elements
What is meant by “maximally persistent”?

length, width, area, volume

“size” is crucial when parameters have incomparable scientific meanings
primary distances: separate classes according to birth and death types
note: primary decomposition is really another filtration!

Bjerkevik's pruning distance stability/Lipschitz conjecture [Bjerkevik 2023]
Must an indecomposable possess a big individual element?
Is every indecomposable close to interval decomposing? If not, how likely is it?

How likely is M to break into interpretable small pieces by perturbation?
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Must an indecomposable possess a big individual element?

Is every indecomposable close to interval decomposing? If not, how likely is it?
How likely is M to break into interpretable small pieces by perturbation?

Locate maximally persistent elements algorithmically
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