

Extracting bar lengths from multiparameter persistent homology

Ezra Miller

Duke University, Department of Mathematics
and Department of Statistical Science
ezra@math.duke.edu

Conference on Geometry and Statistics

Center of Mathematical Sciences and Applications
Cambridge, MA

19 November 2025

Outline

1. Persistent homology
2. Ordinary persistence: one parameter
3. Multiple parameters: fruit fly wings
4. Statistical analysis
5. Interval decomposition
6. Lifetime filtration
7. Tameness
8. Interleaving, matching, and bottleneck distances
9. Future directions

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has persistent homology $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$.

Def. Q -module over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter ("ordinary") persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter ("ordinary") persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has persistent homology $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$.

Def. Q -module over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$.

Def. Q -module over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter ("ordinary") persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter ("ordinary") persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

Def. Q -module over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

Def. Q -module over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter ("ordinary") persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter ("ordinary") persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

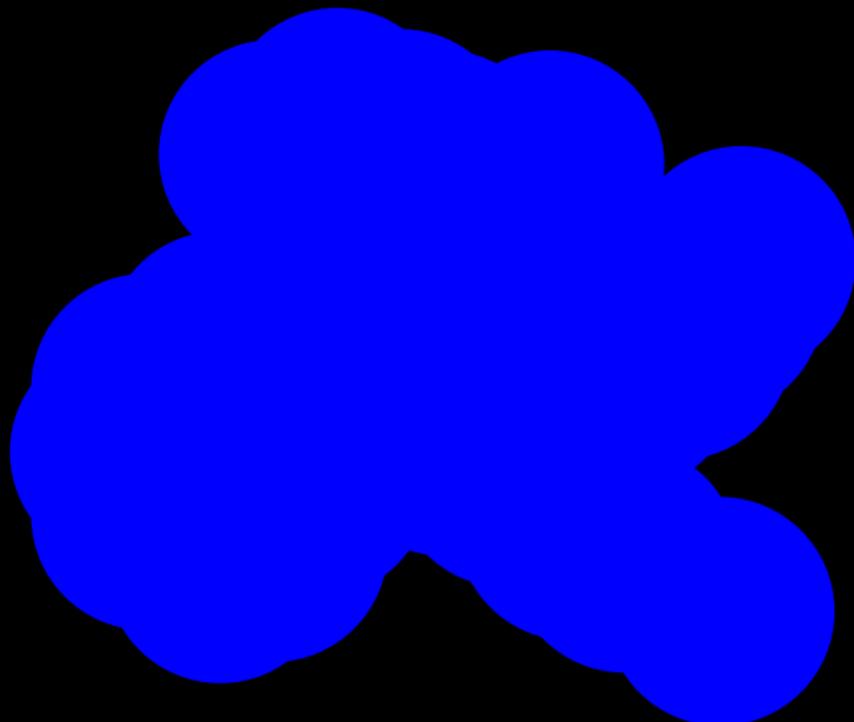
Def. **Q -module** over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

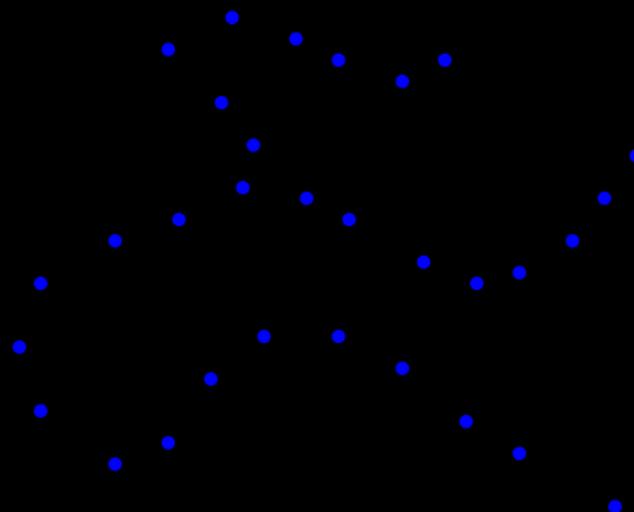
Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

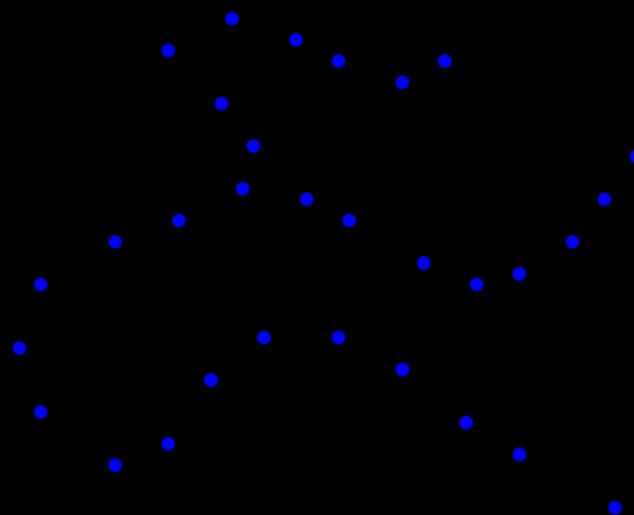
Example: expanding balls



Example: expanding balls

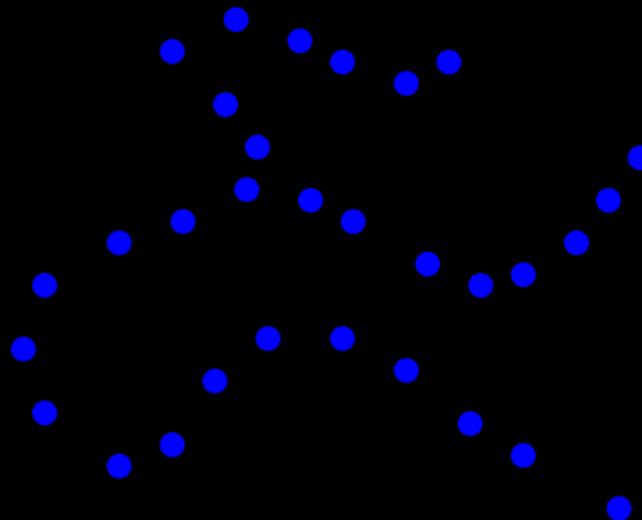


Example: expanding balls



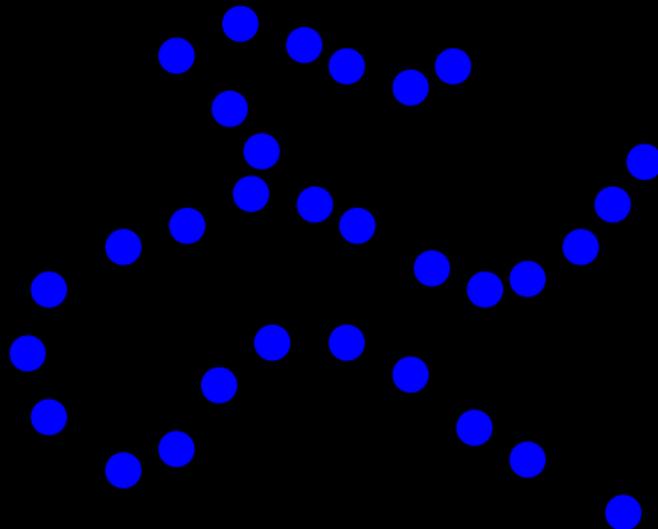
$$\dim(H_0) = 31$$

Example: expanding balls



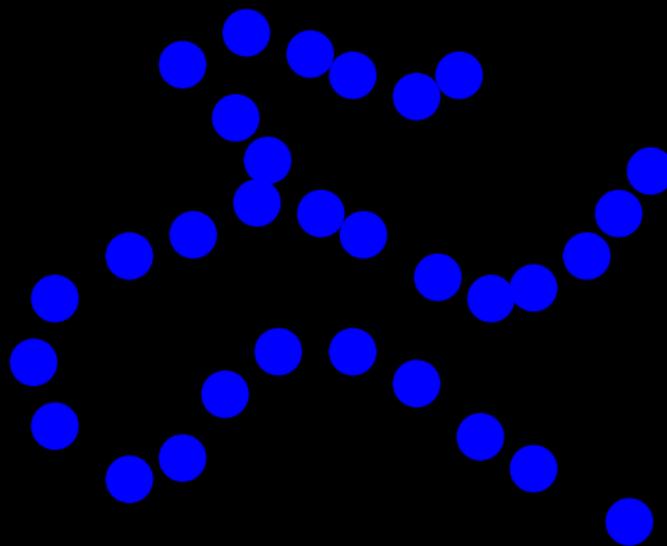
$$\dim(H_0) = 31$$

Example: expanding balls



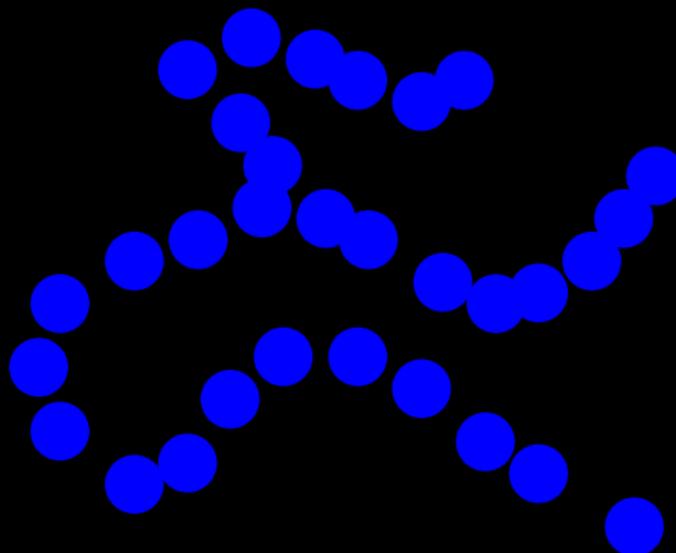
$$\dim(H_0) = 31$$

Example: expanding balls



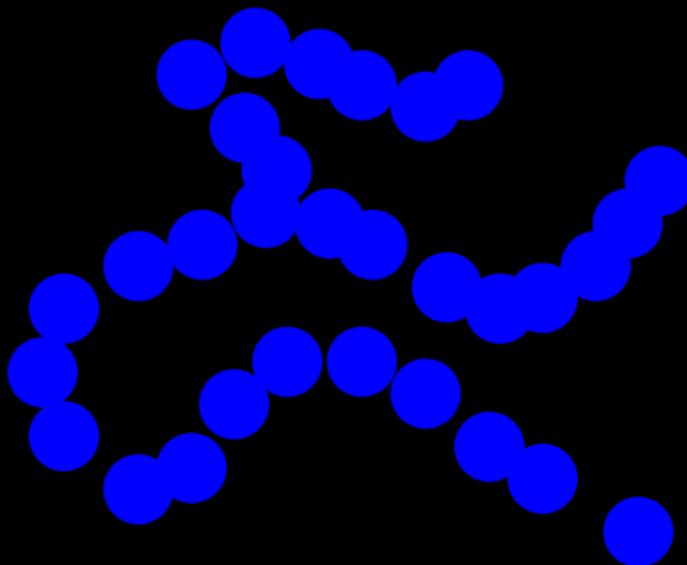
$$\dim(H_0) = 26$$

Example: expanding balls



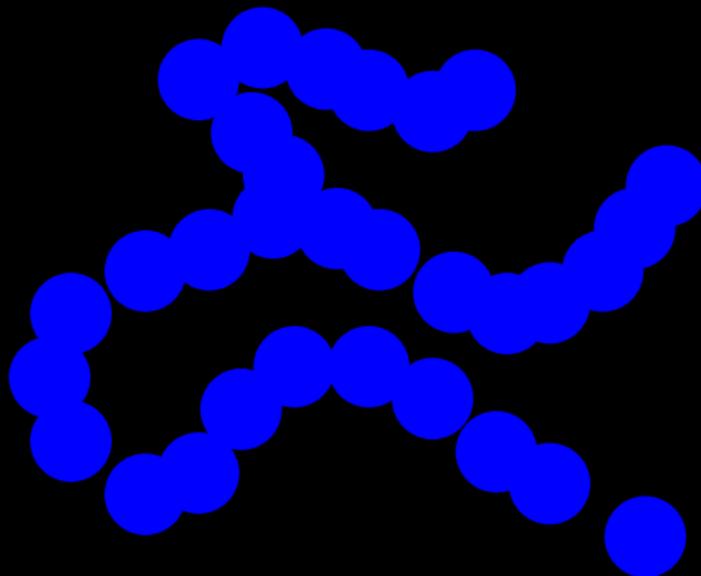
$$\dim(H_0) = 21$$

Example: expanding balls



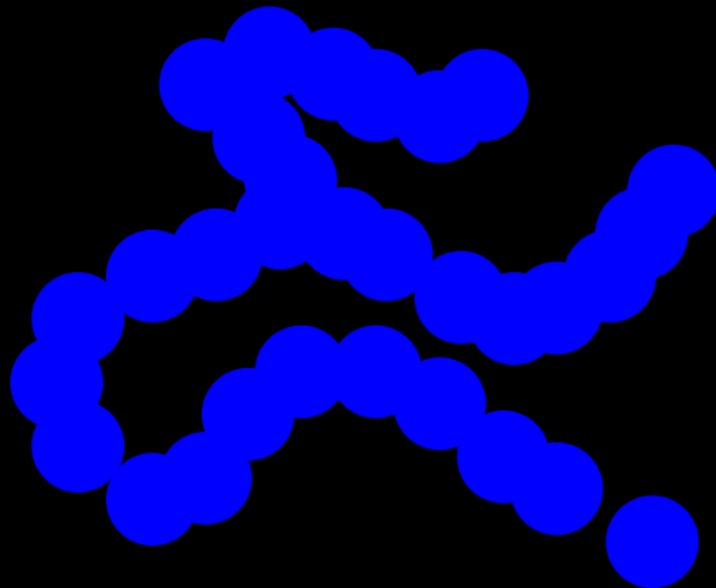
$$\dim(H_0) = 12$$

Example: expanding balls



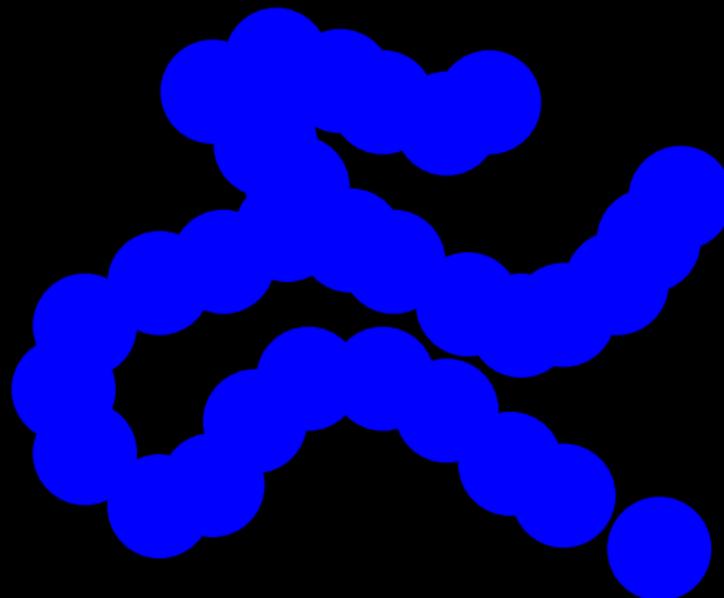
$$\dim(H_0) = 6$$

Example: expanding balls



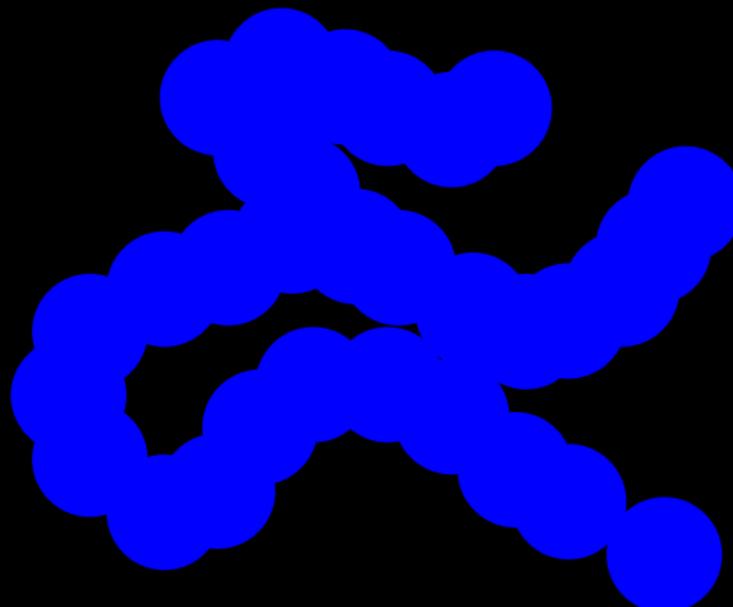
$$\dim(H_0) = 2$$

Example: expanding balls



$$\dim(H_0) = 2$$

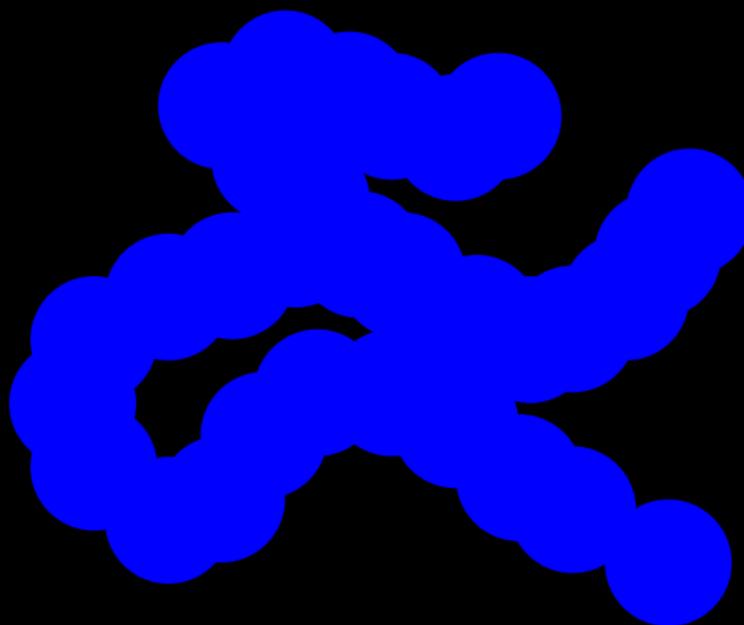
Example: expanding balls



$$\dim(H_0) = 1$$

$$\dim(H_1) = 2$$

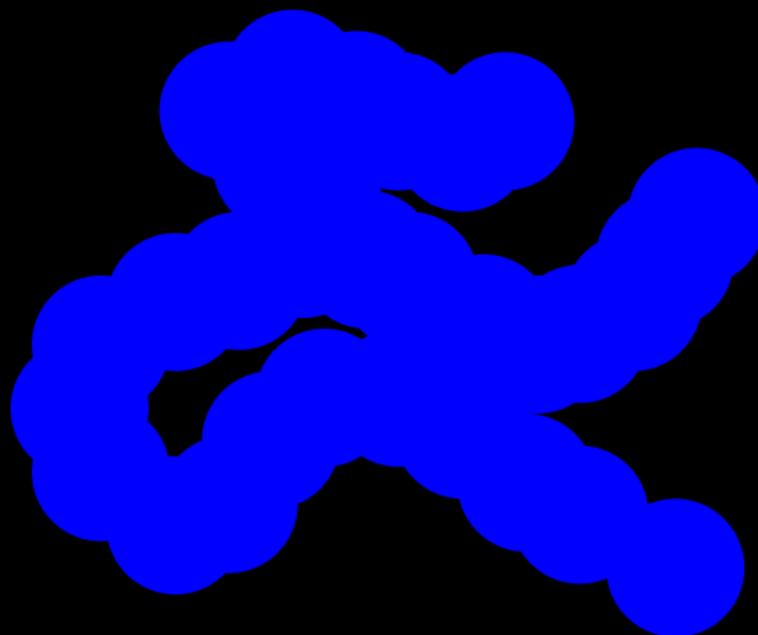
Example: expanding balls



$$\dim(H_0) = 1$$

$$\dim(H_1) = 1$$

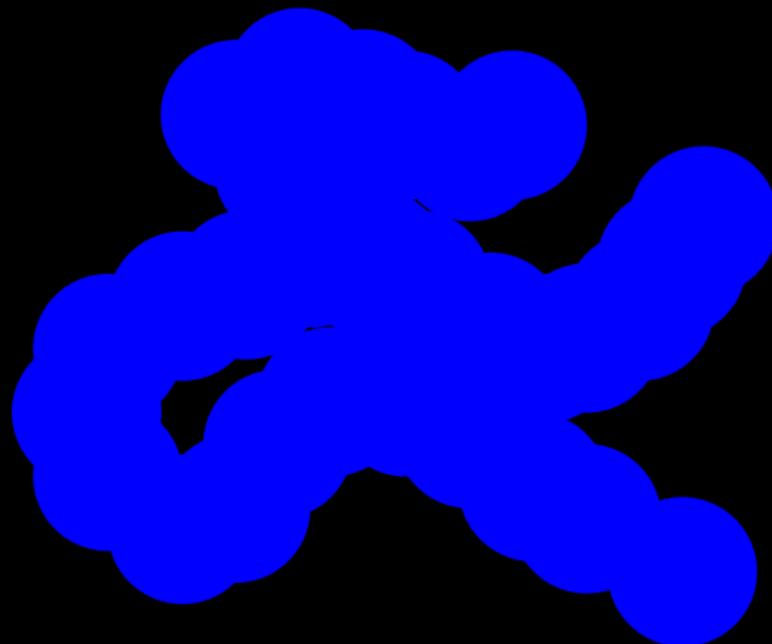
Example: expanding balls



$$\dim(H_0) = 1$$

$$\dim(H_1) = 1$$

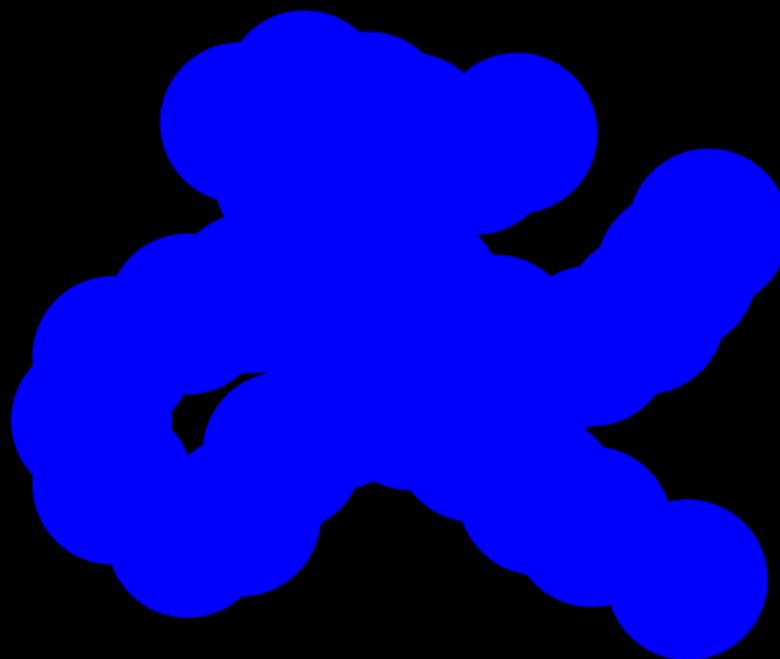
Example: expanding balls



$$\dim(H_0) = 1$$

$$\dim(H_1) = 3$$

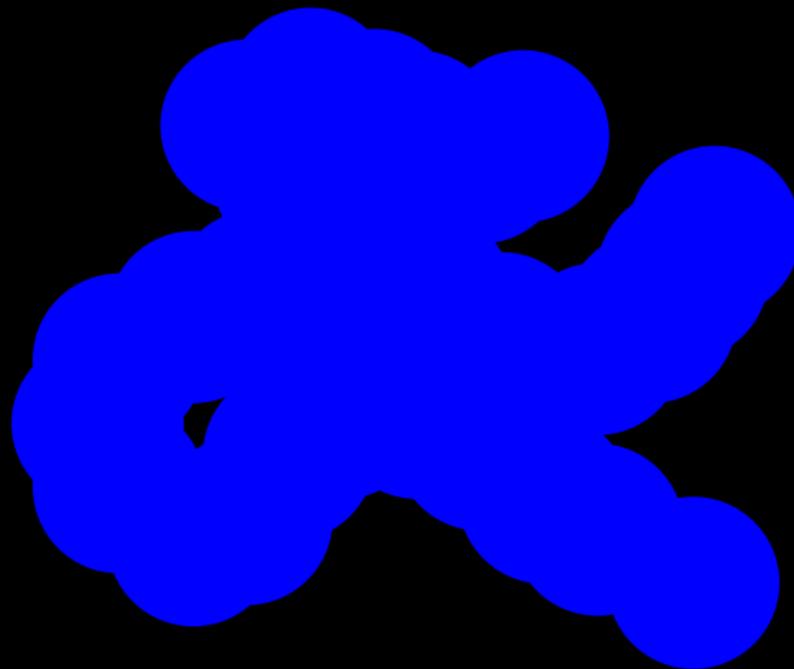
Example: expanding balls



$$\dim(H_0) = 1$$

$$\dim(H_1) = 1$$

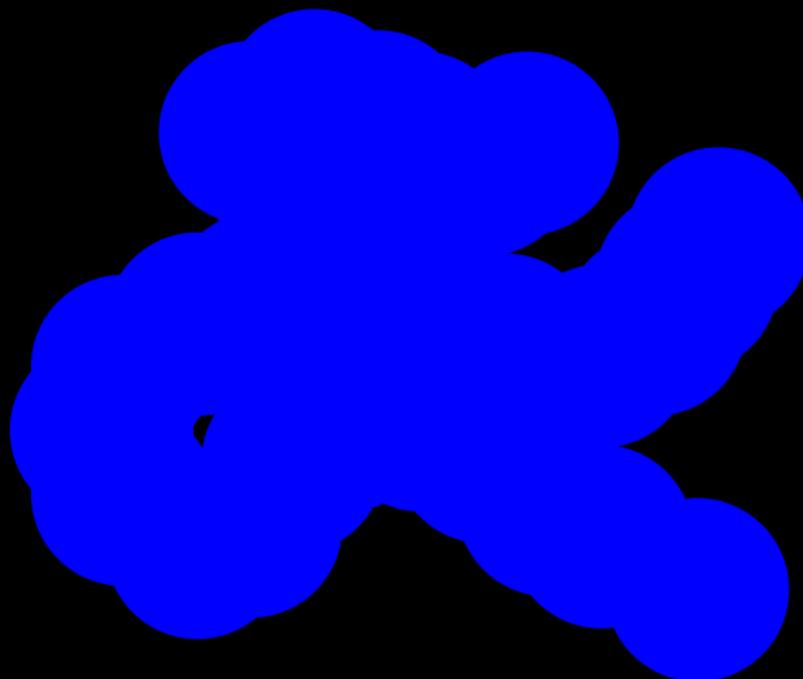
Example: expanding balls



$$\dim(H_0) = 1$$

$$\dim(H_1) = 1$$

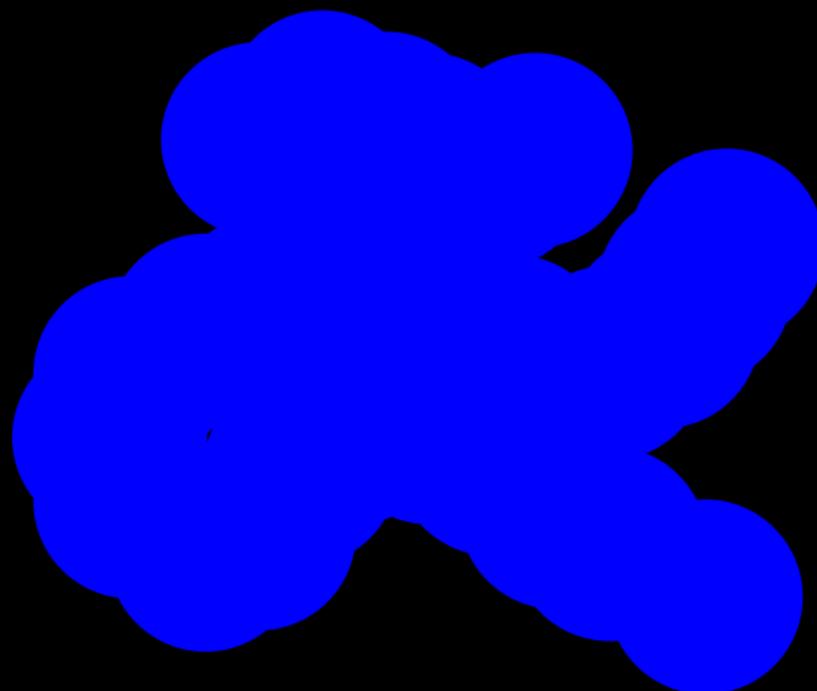
Example: expanding balls



$$\dim(H_0) = 1$$

$$\dim(H_1) = 1$$

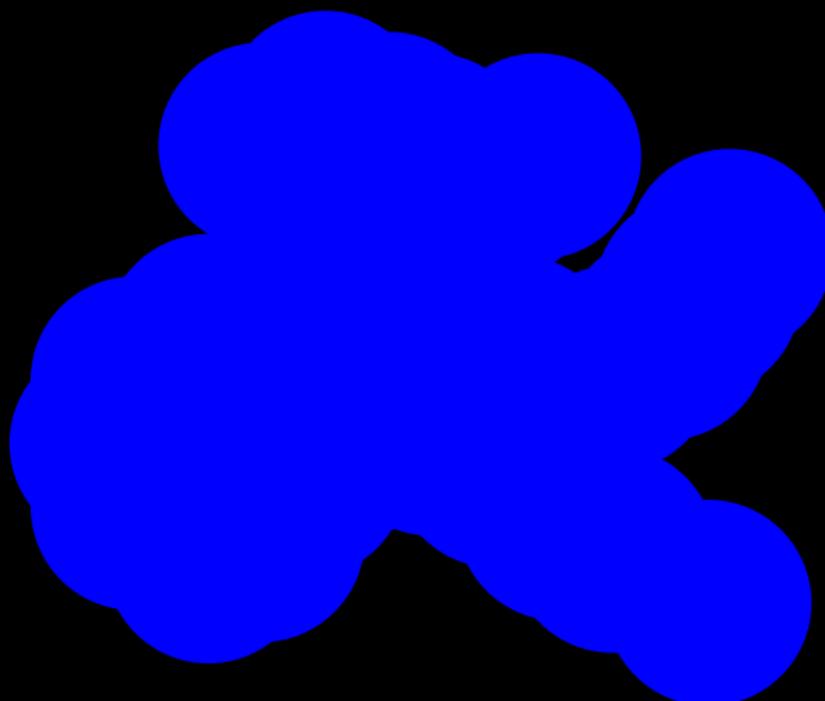
Example: expanding balls



$$\dim(H_0) = 1$$

$$\dim(H_1) = 1$$

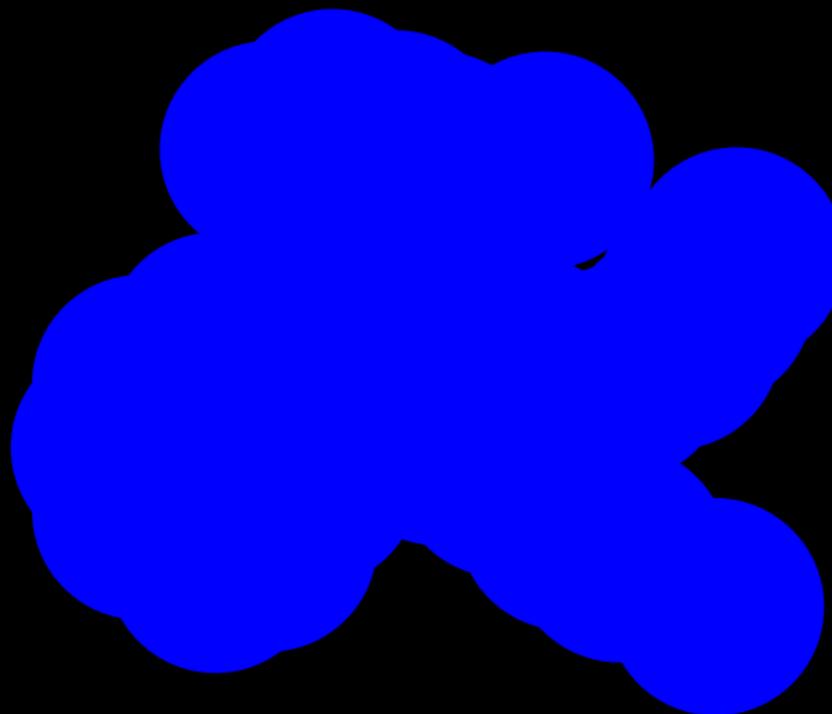
Example: expanding balls



$$\dim(H_0) = 1$$

$$\dim(H_1) = 0$$

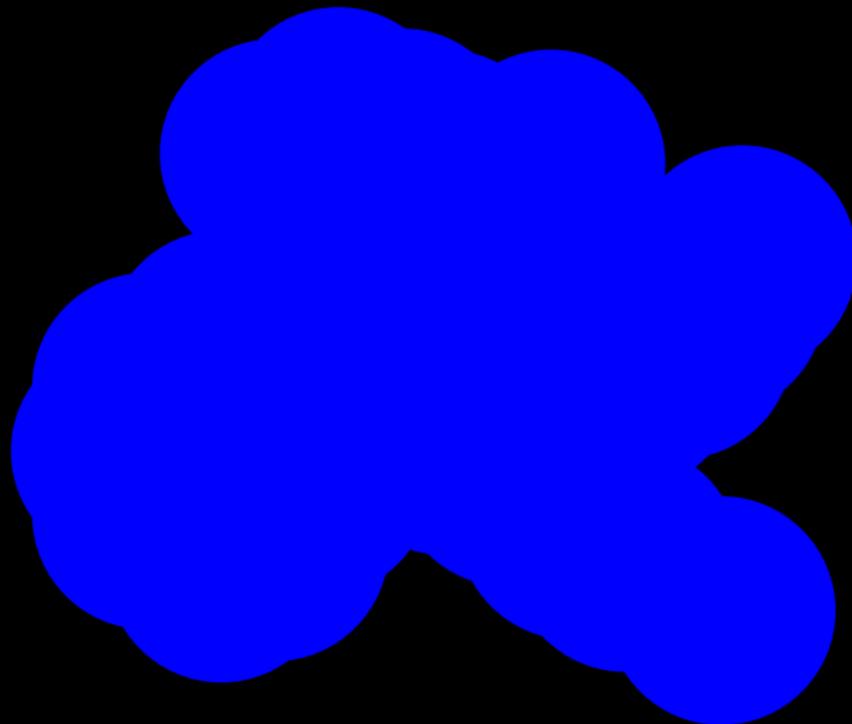
Example: expanding balls



$$\dim(H_0) = 1$$

$$\dim(H_1) = 1$$

Example: expanding balls



$$\dim(H_0) = 1$$

$$\dim(H_1) = 0$$

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

Def. Q -module over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

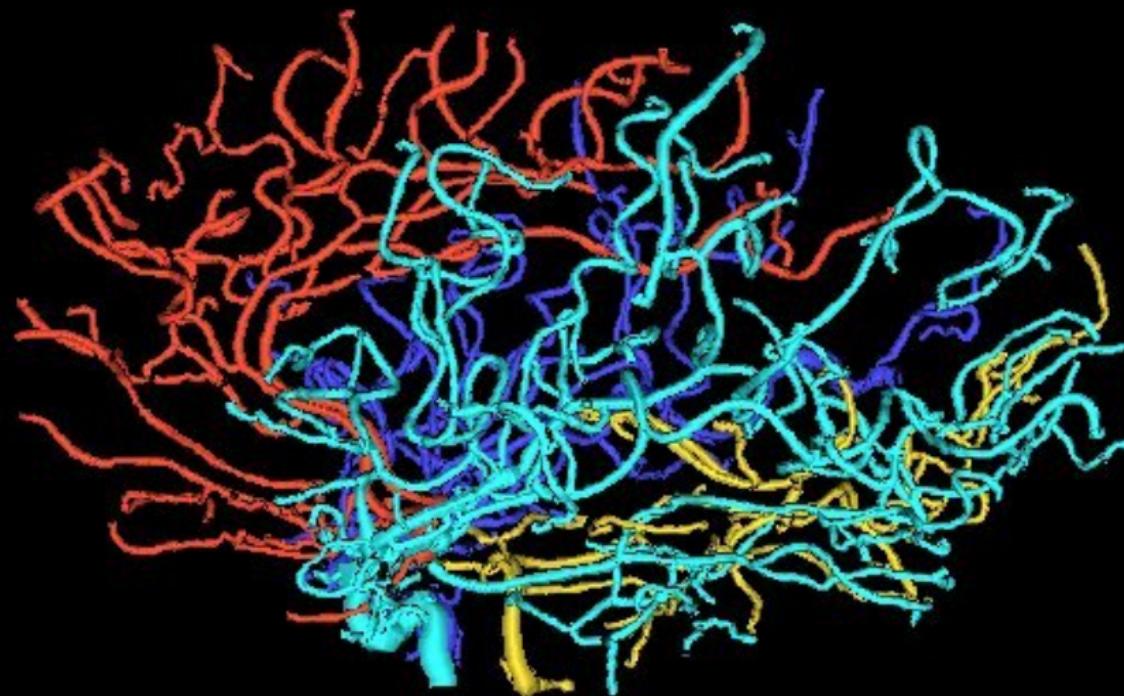
Def. Q -module over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

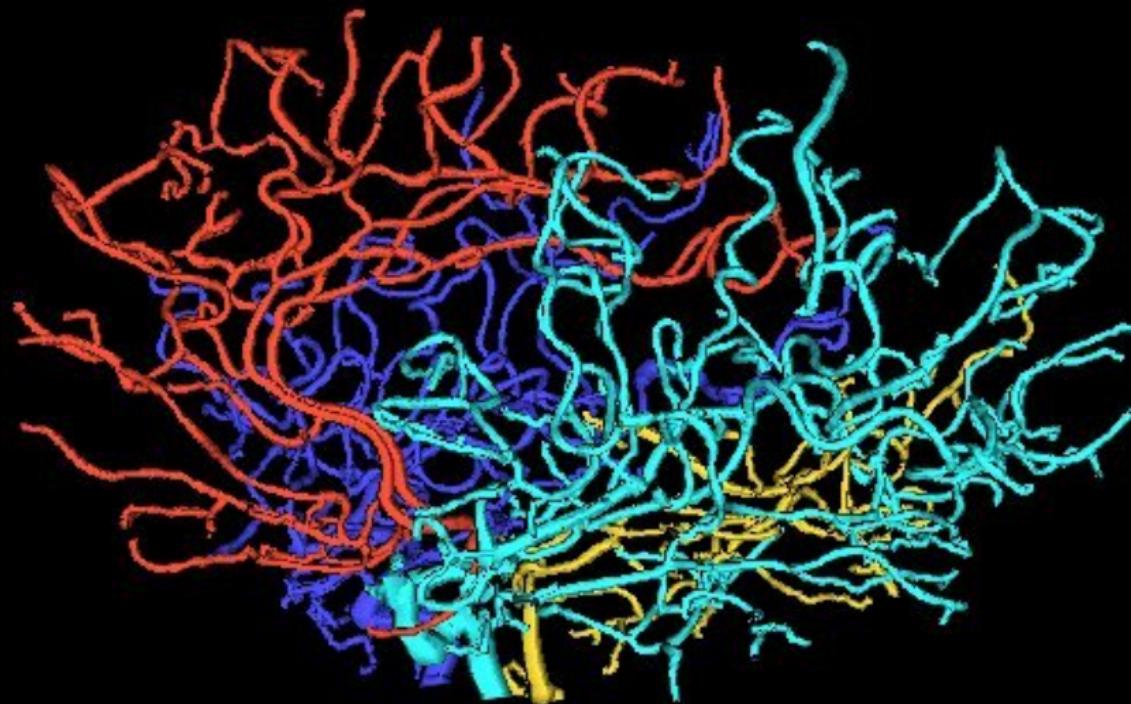
- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Brain arteries



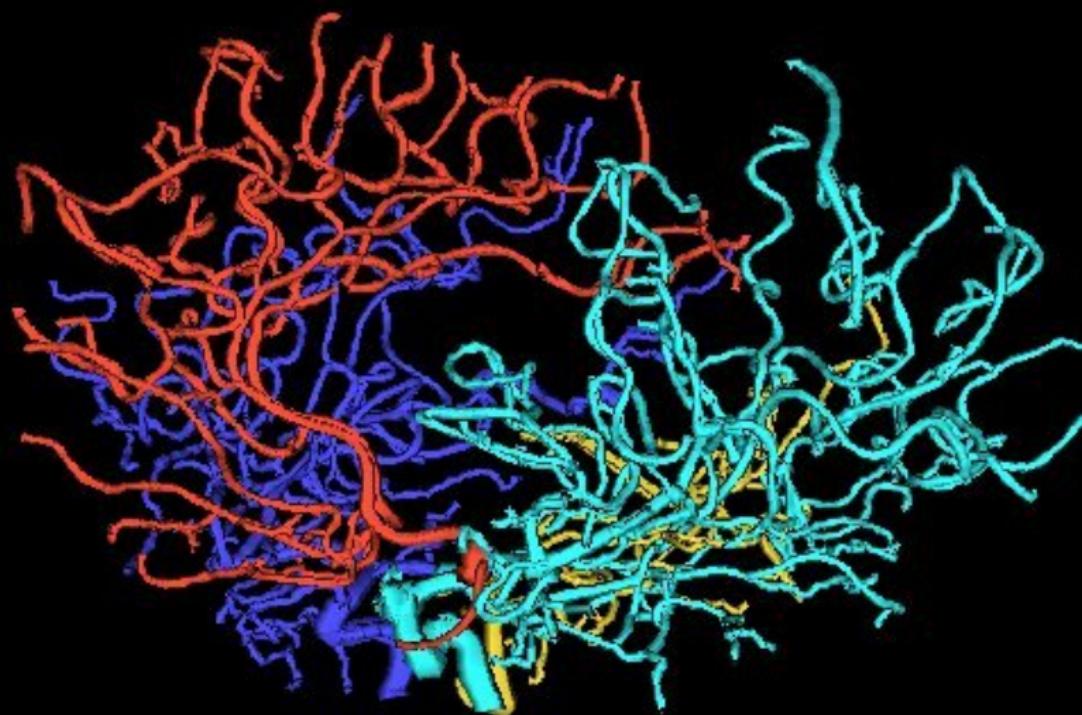
[Bullitt and Aylward, 2002]

Brain arteries



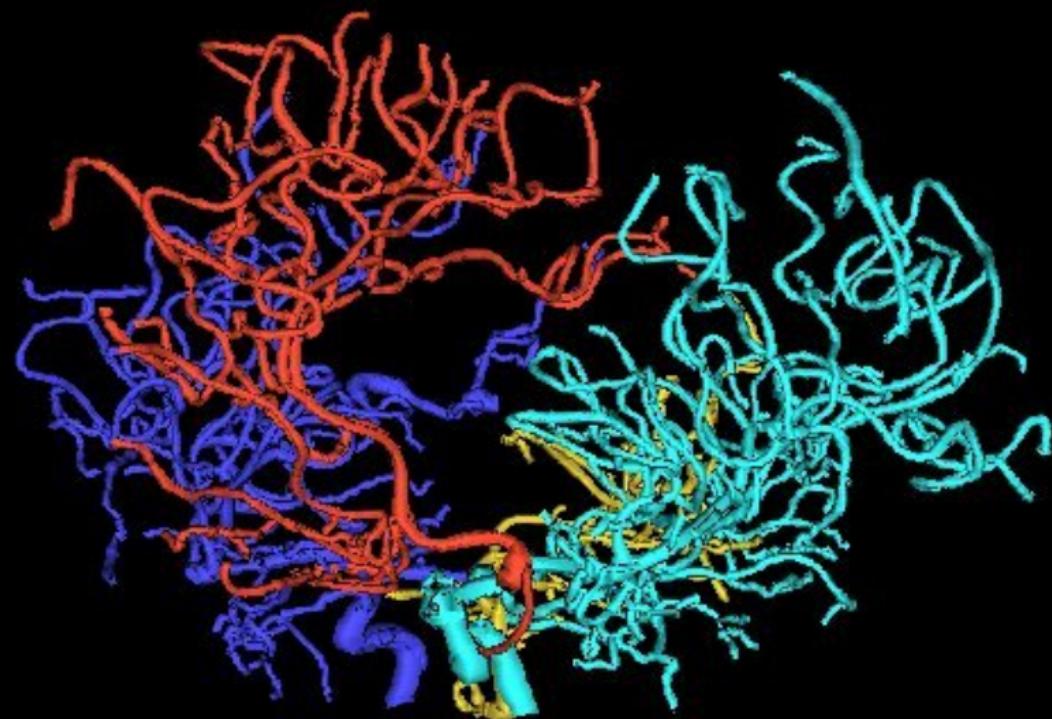
[Bullitt and Aylward, 2002]

Brain arteries



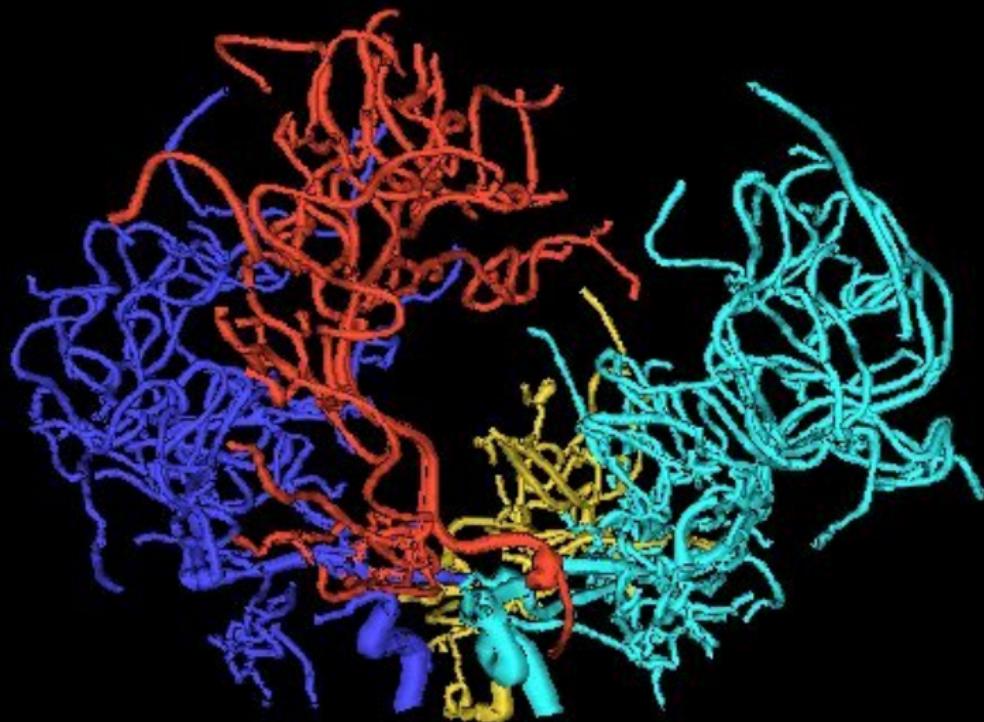
[Bullitt and Aylward, 2002]

Brain arteries



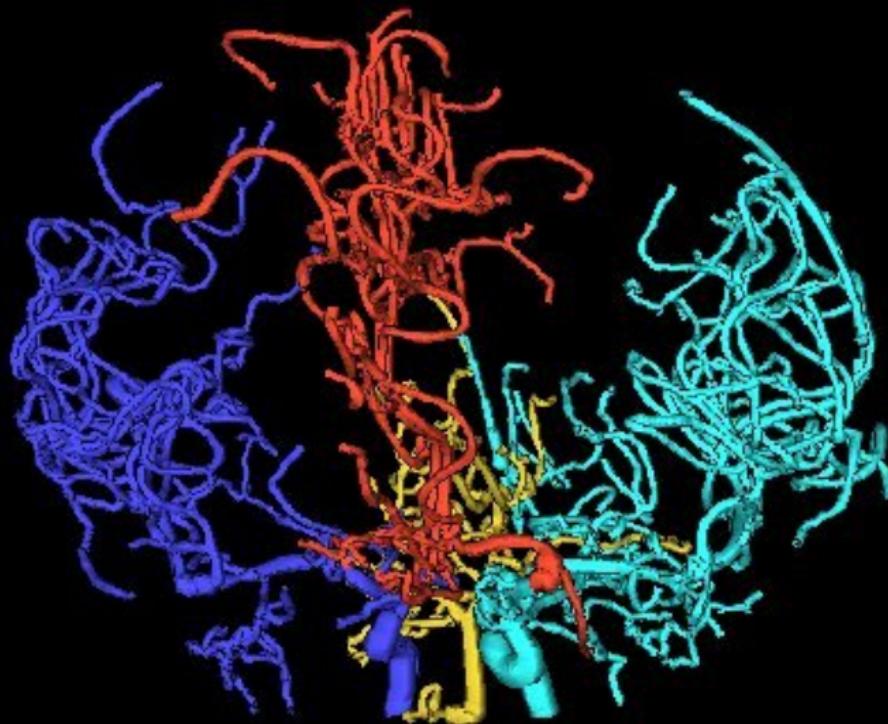
[Bullitt and Aylward, 2002]

Brain arteries



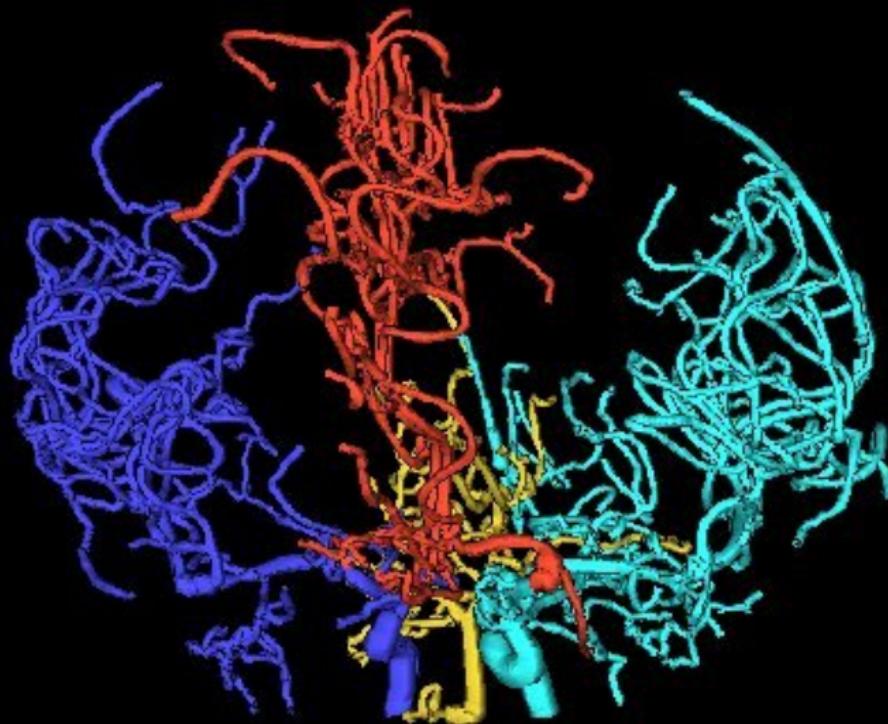
[Bullitt and Aylward, 2002]

Brain arteries



[Bullitt and Aylward, 2002]

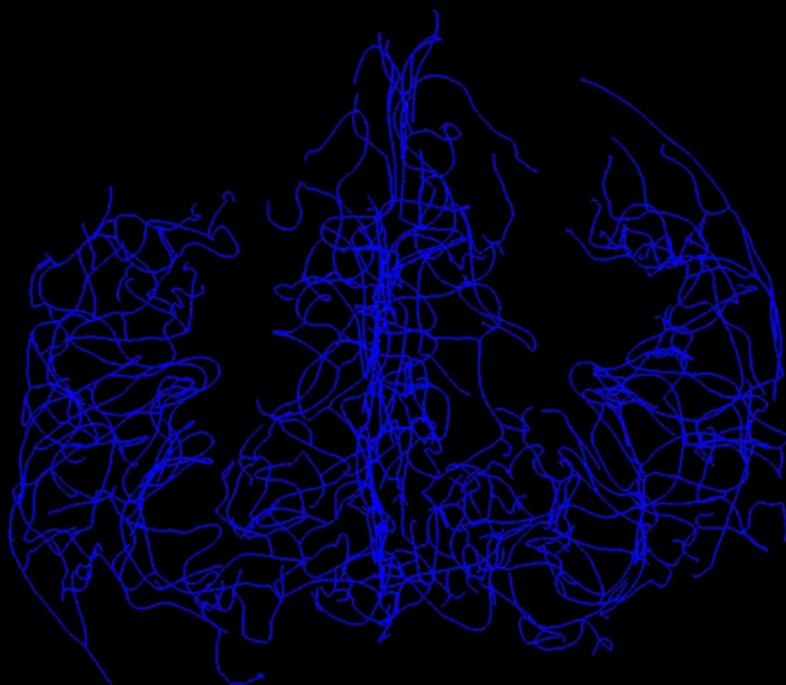
Brain arteries



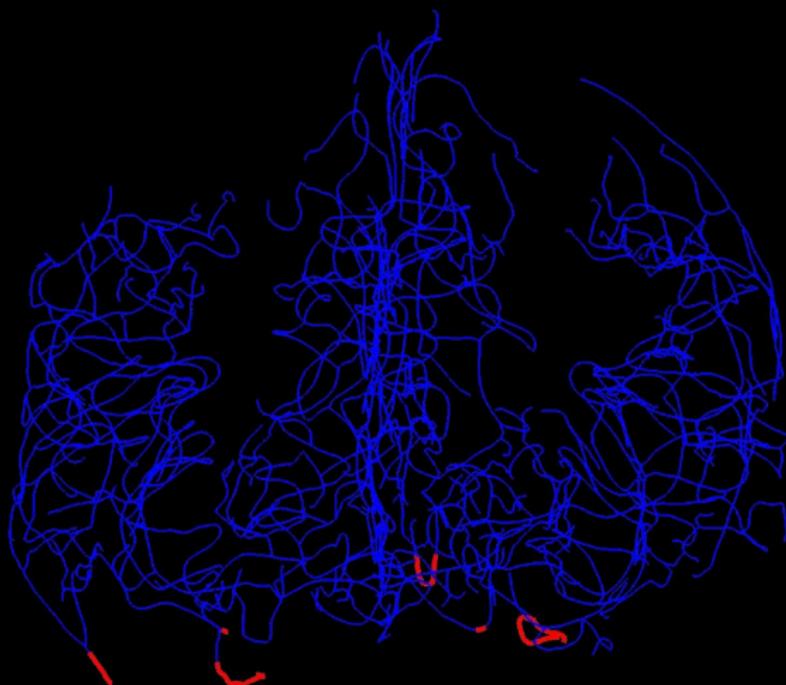
Goal: summary and statistical analysis

[Bullitt and Aylward, 2002]

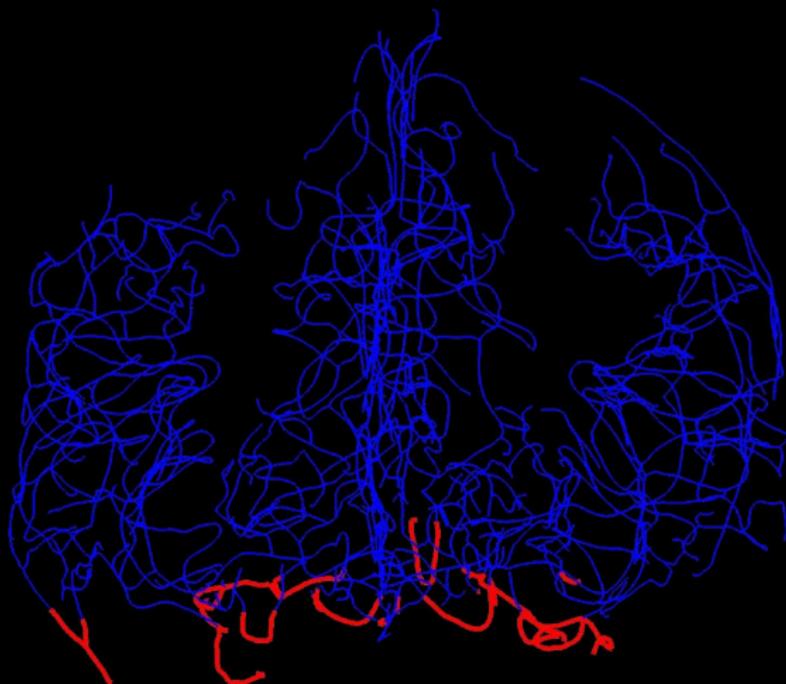
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



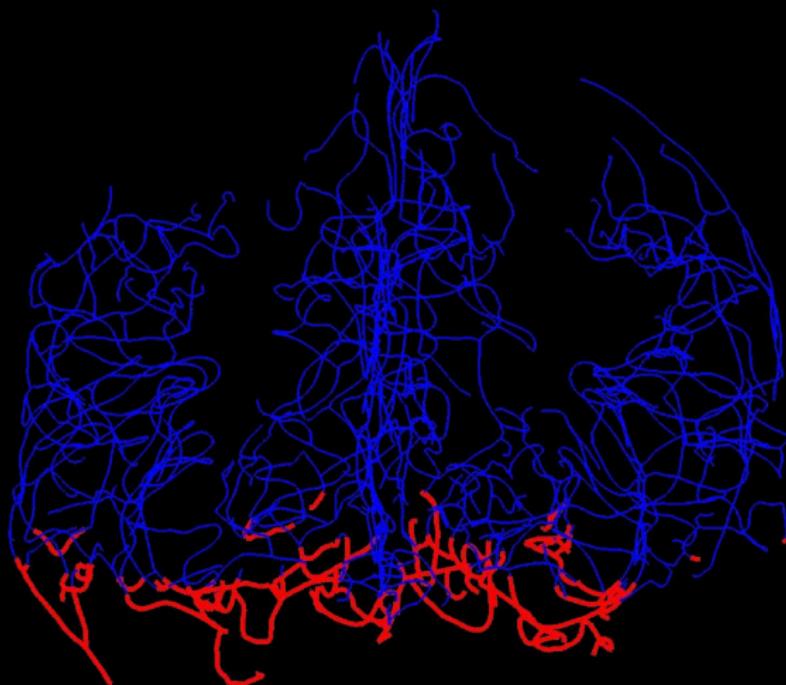
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



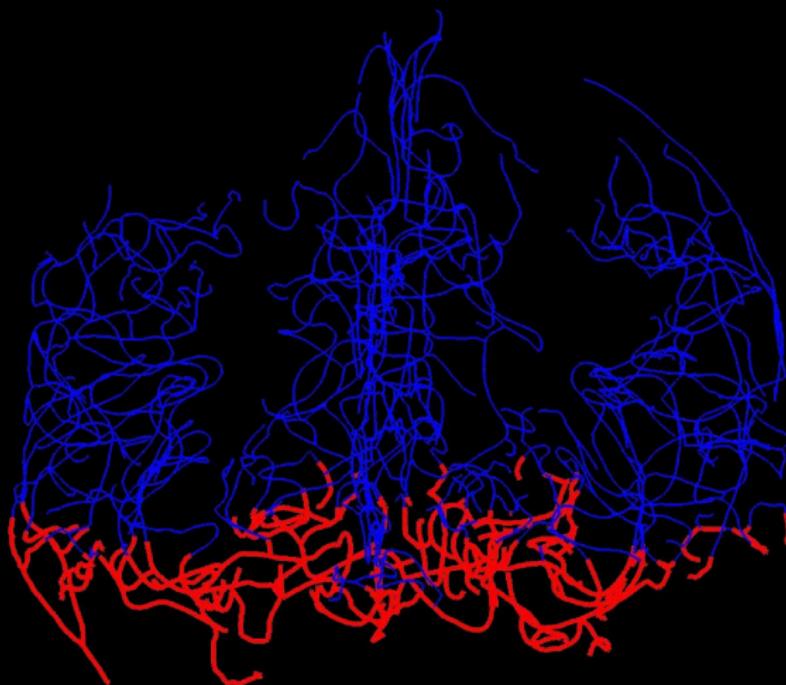
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



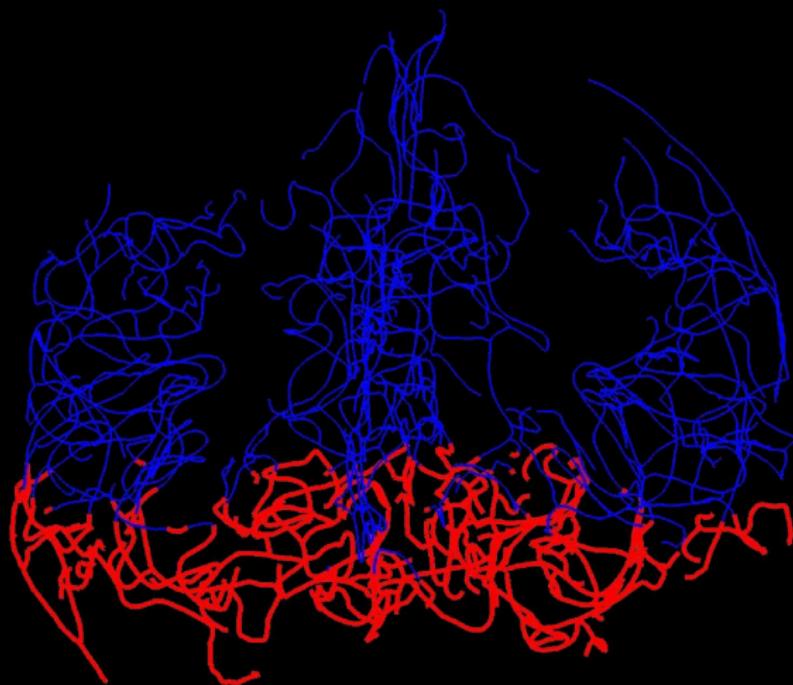
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



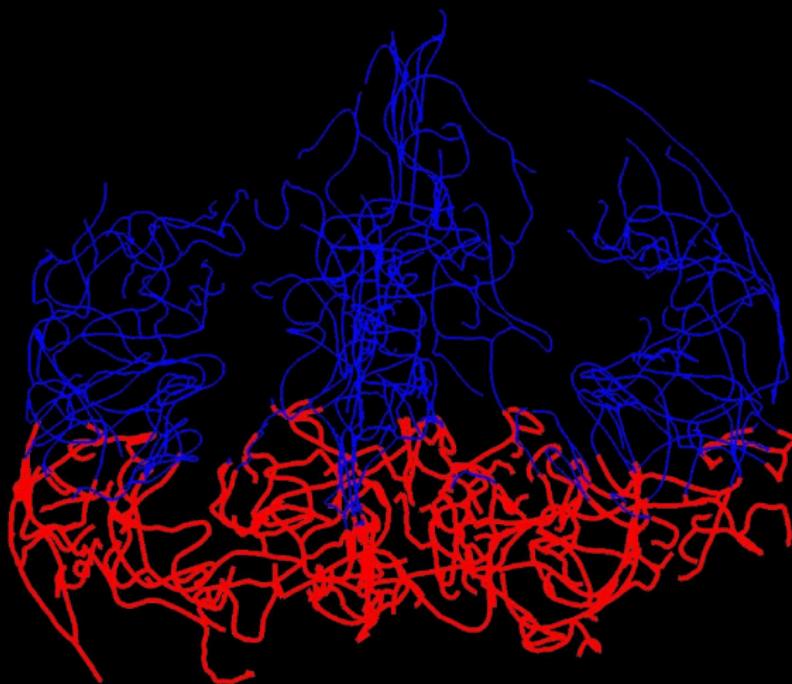
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



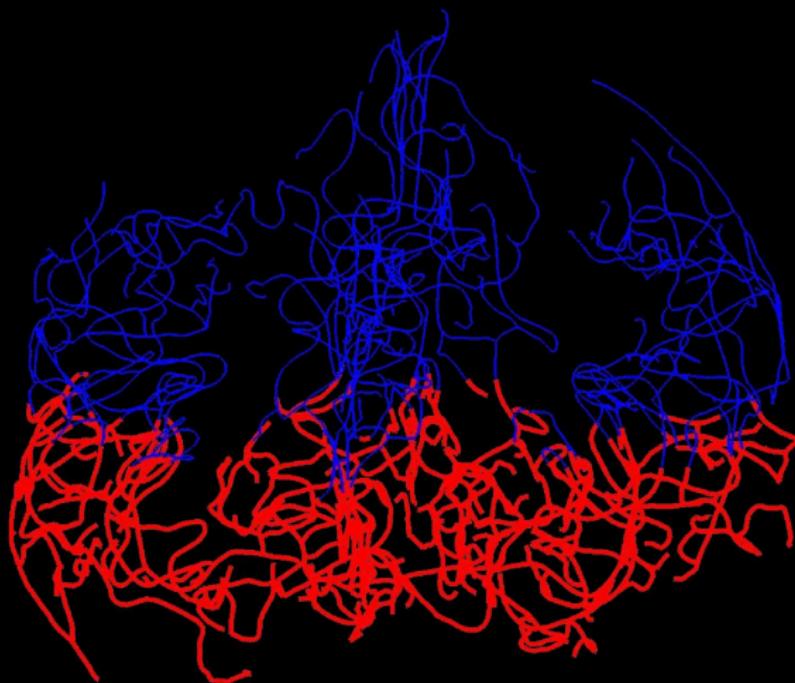
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



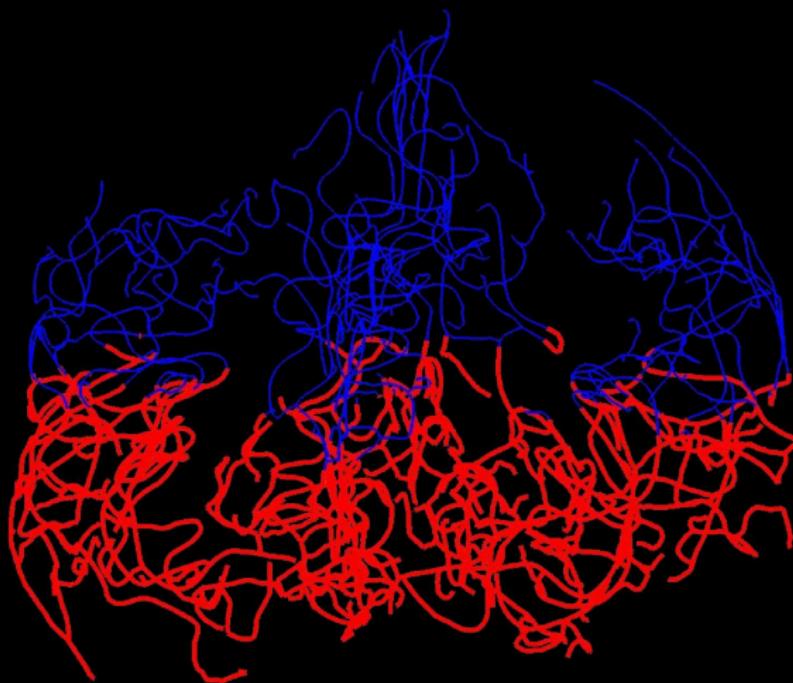
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



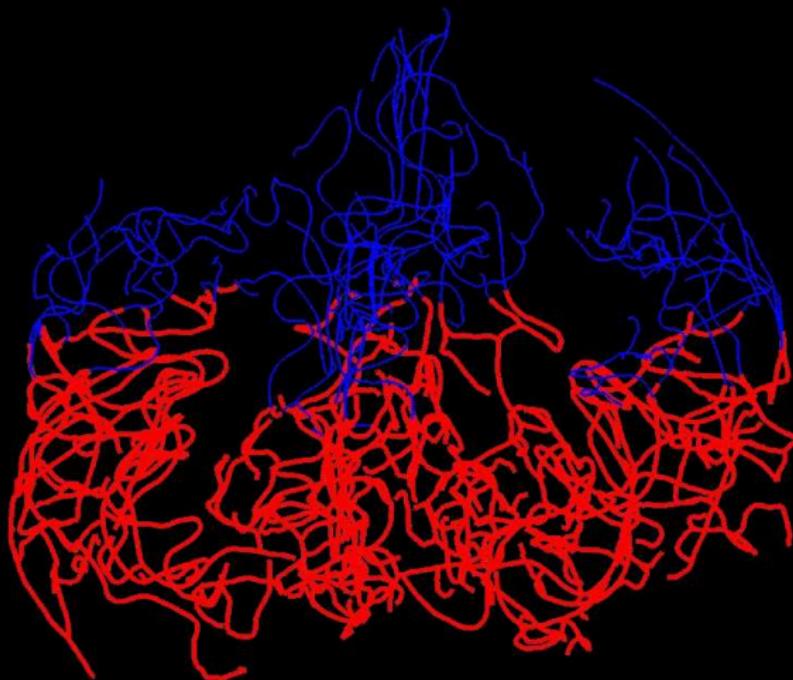
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



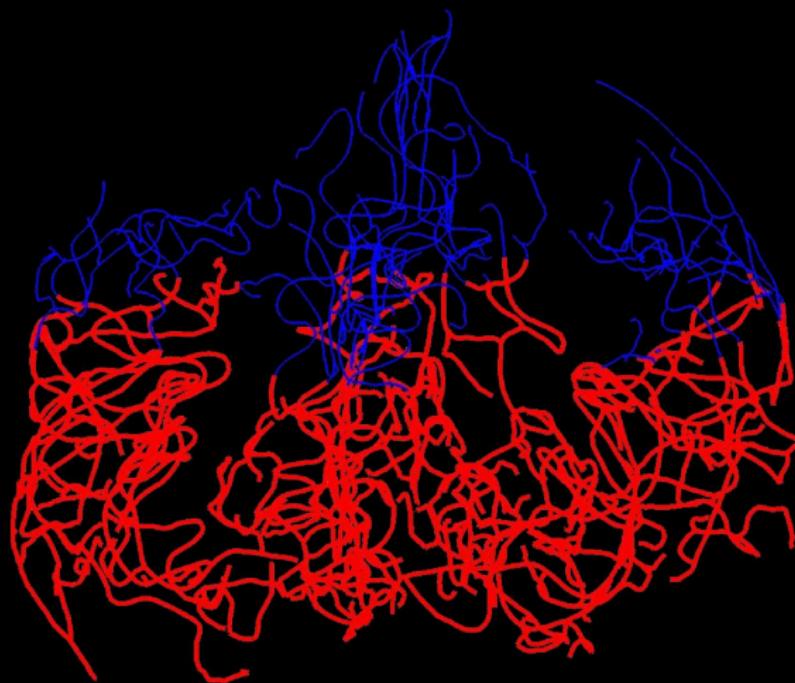
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



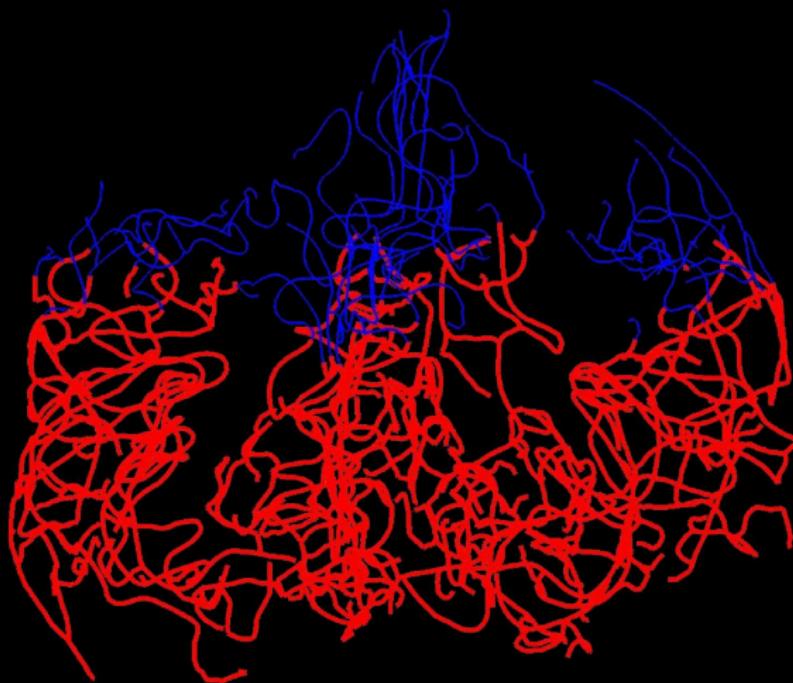
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



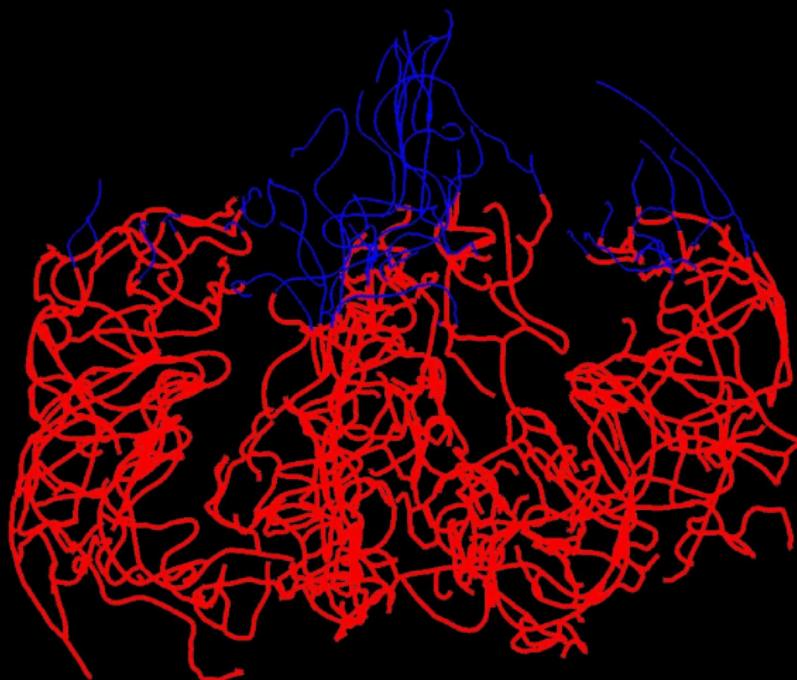
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



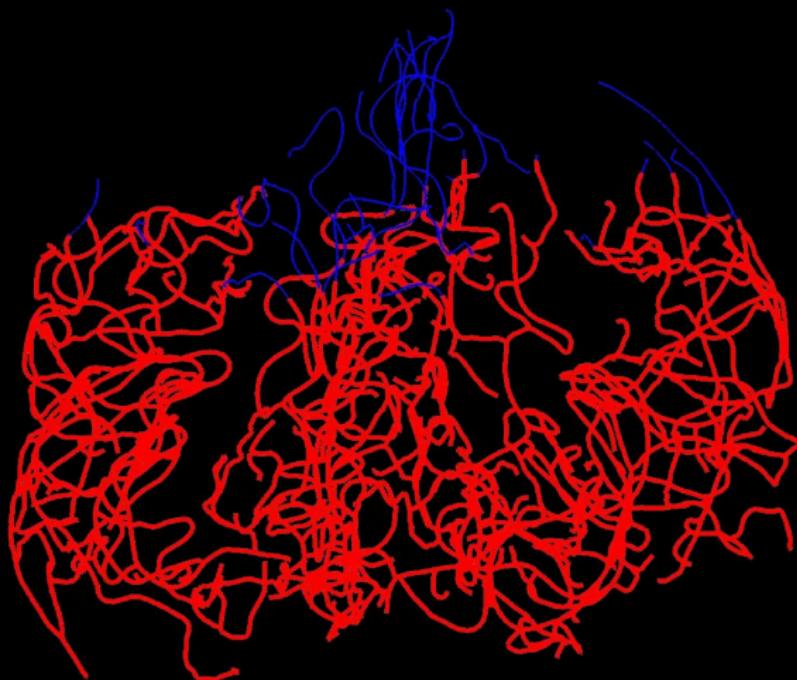
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



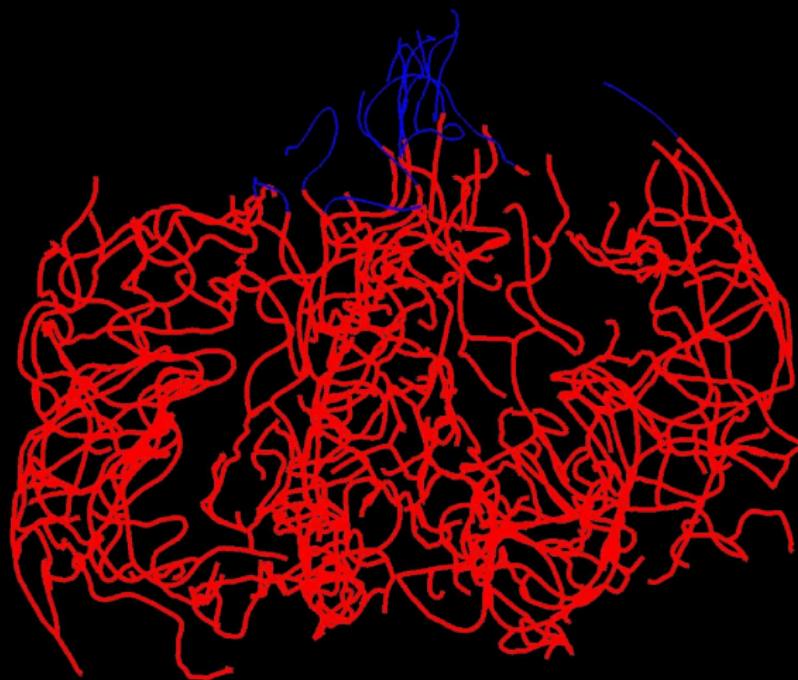
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



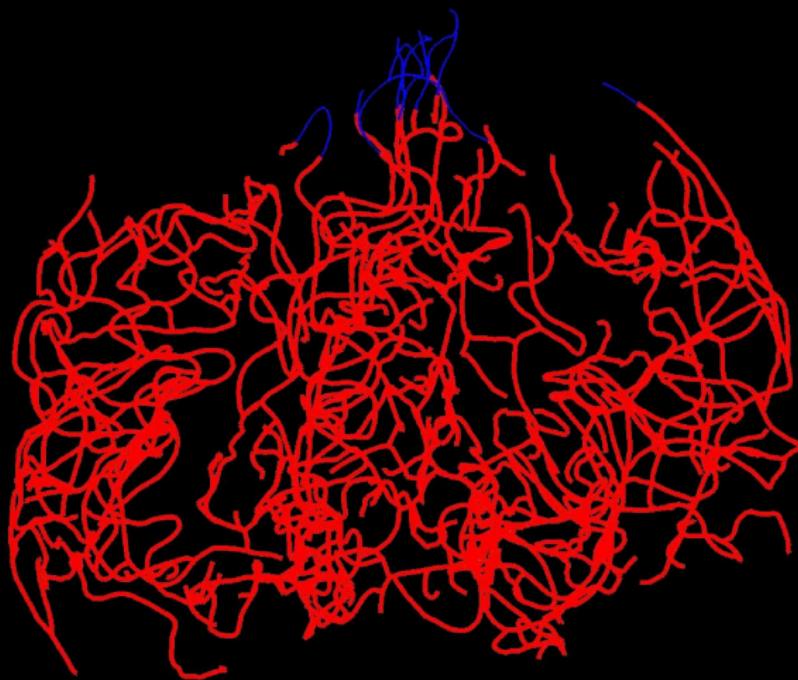
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



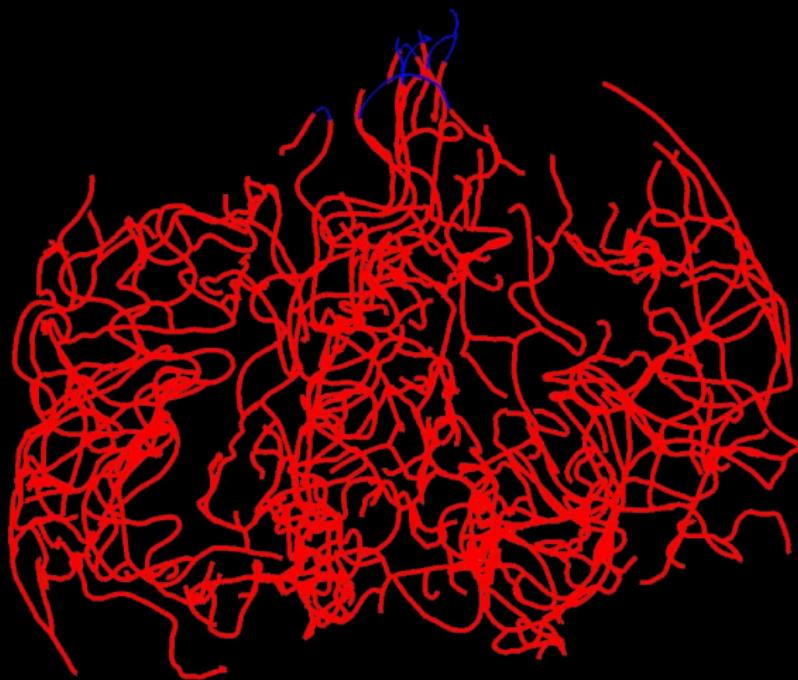
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



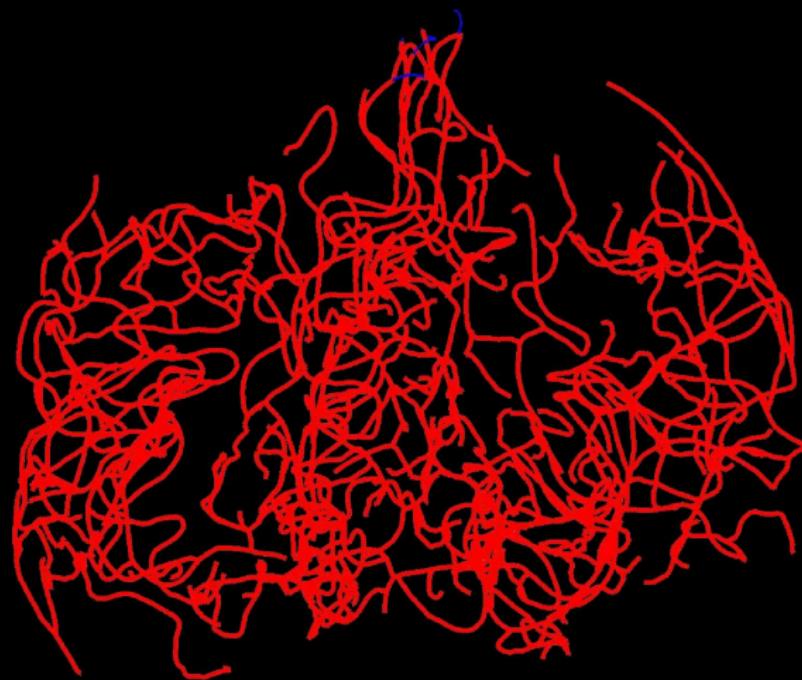
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



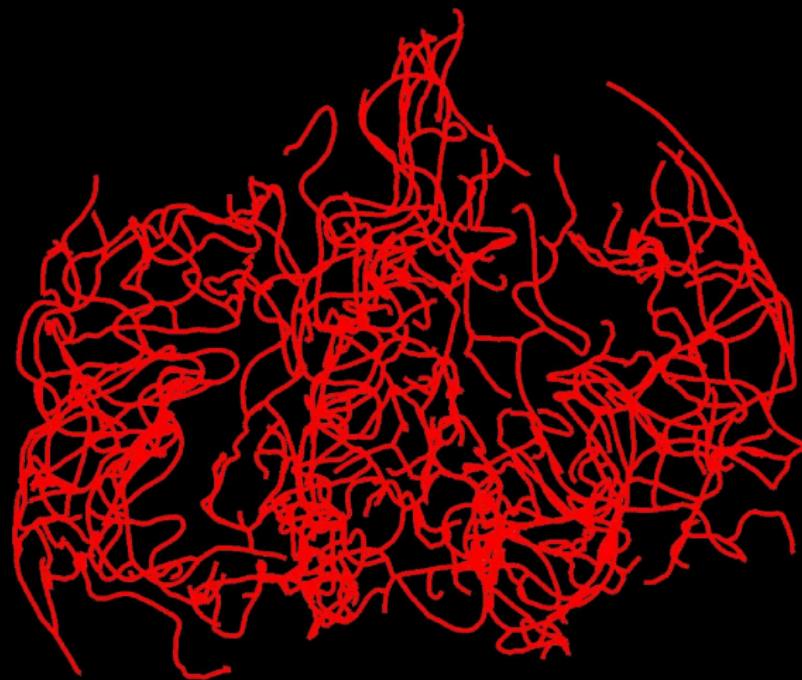
Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



Example: filling brains [Bendich–Marron–M.–Pieloch–Skwerer 2014]



Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:

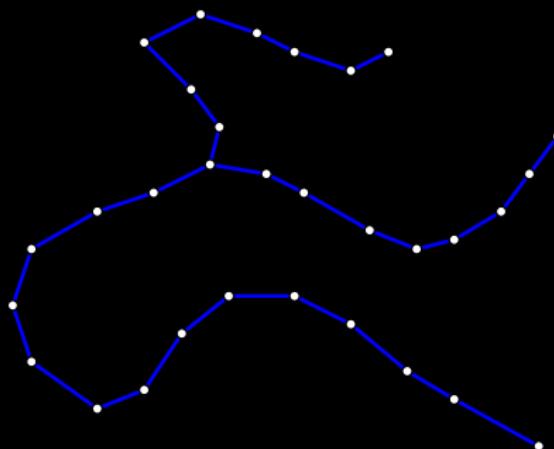
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



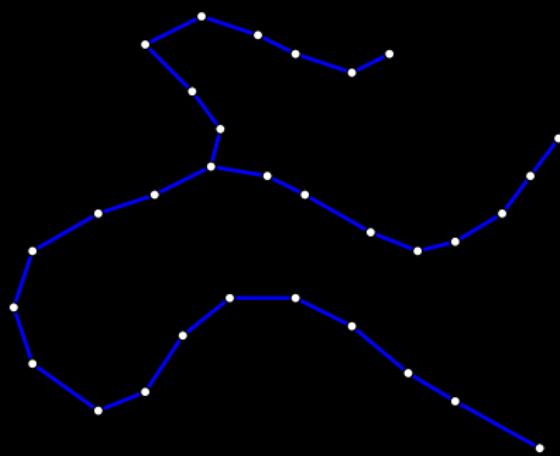
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



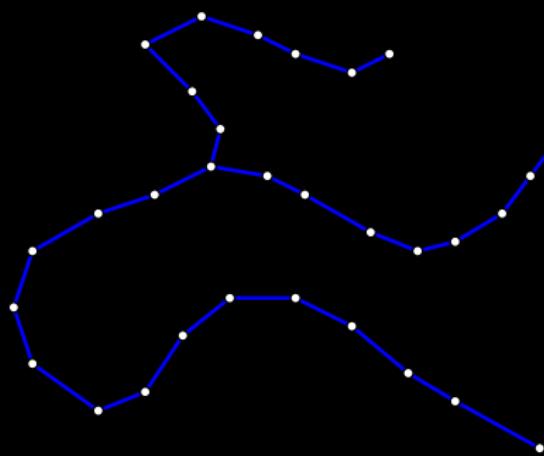
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



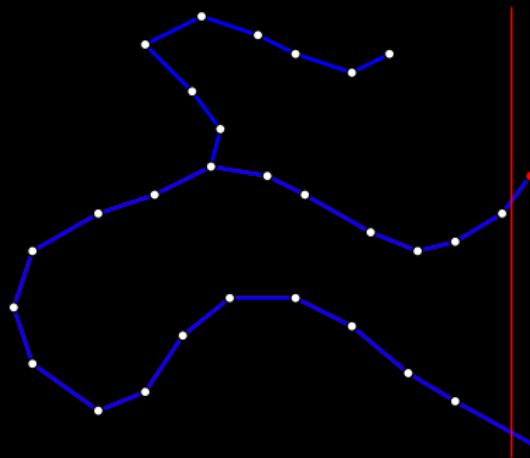
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



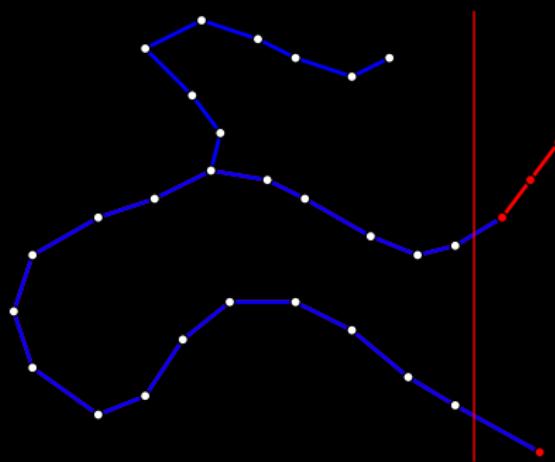
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



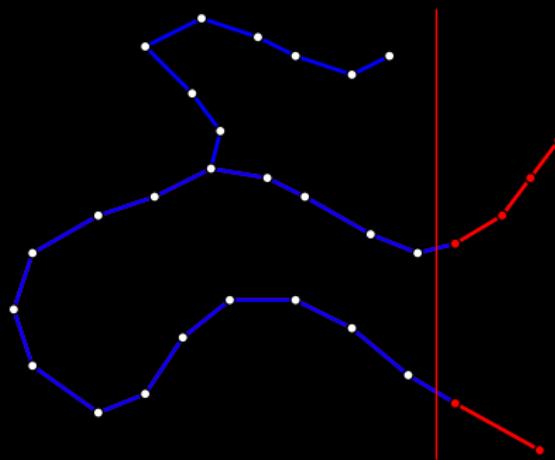
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



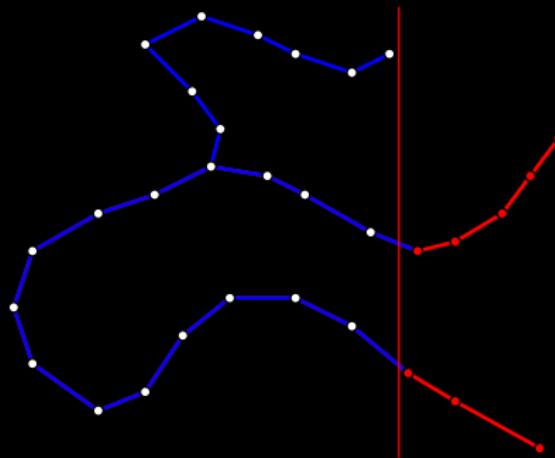
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



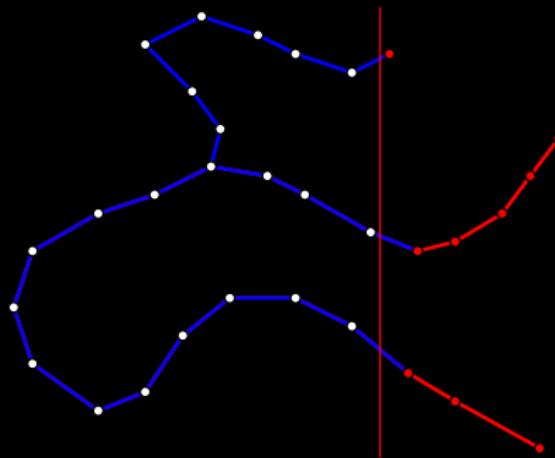
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



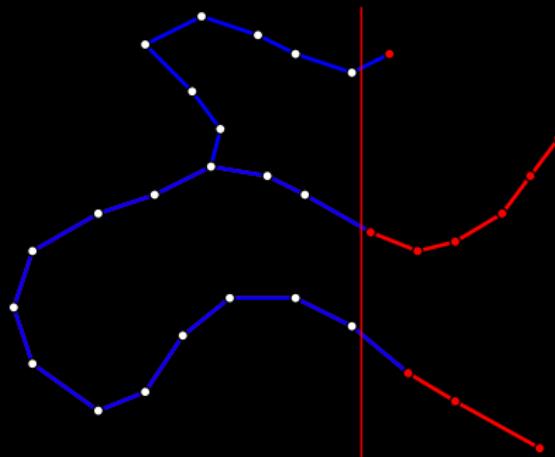
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



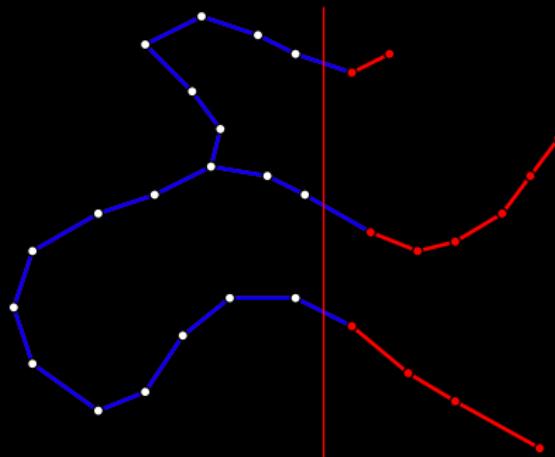
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



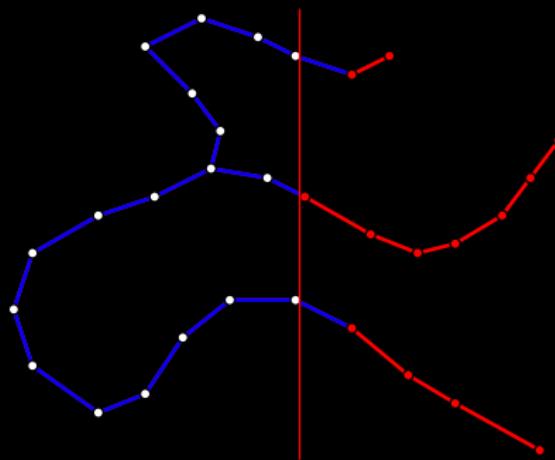
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



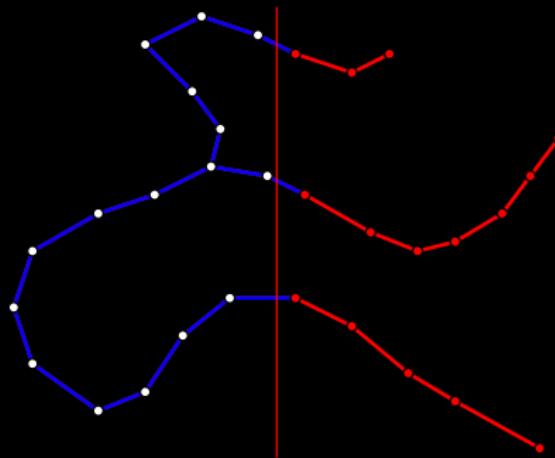
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



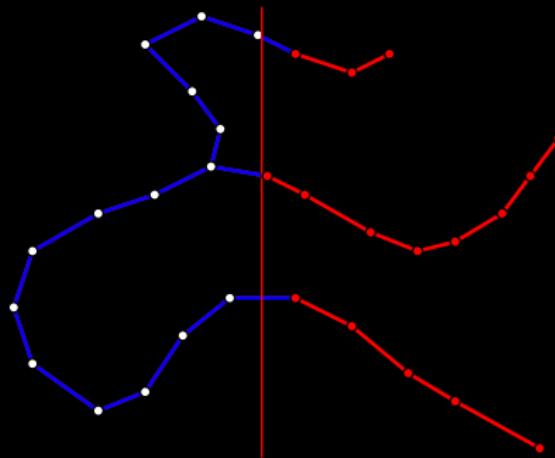
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



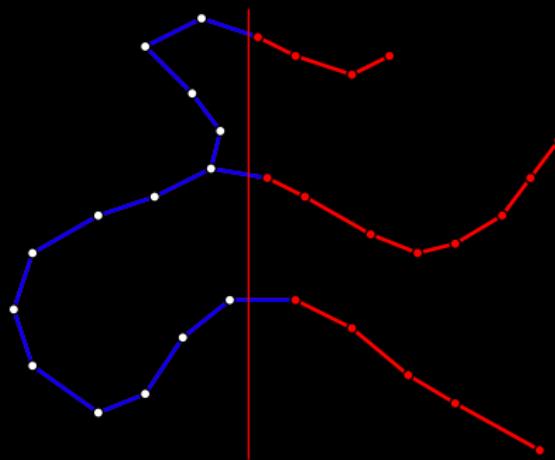
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



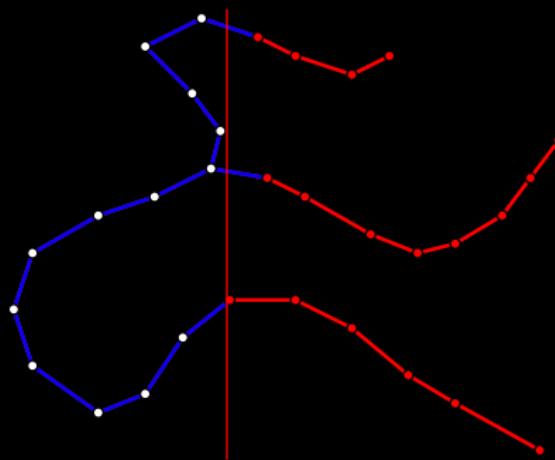
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



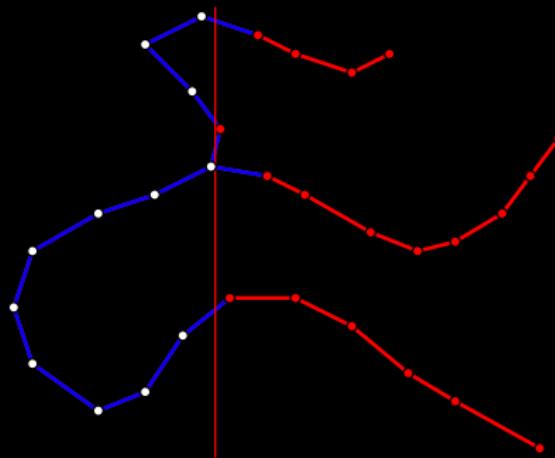
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



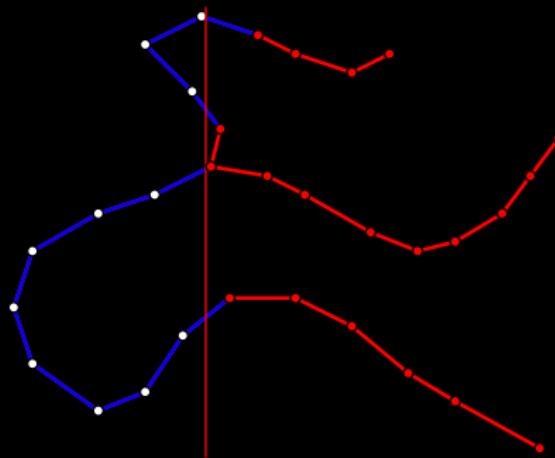
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



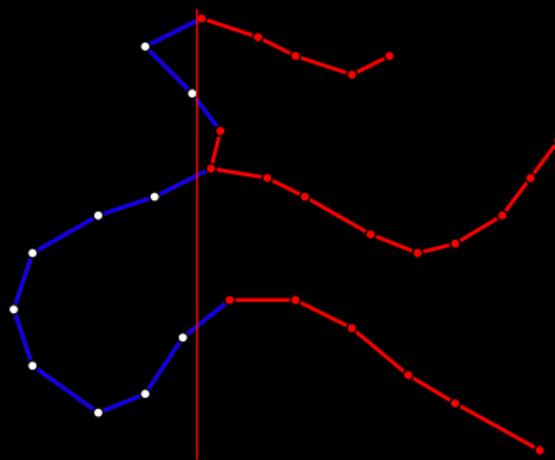
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



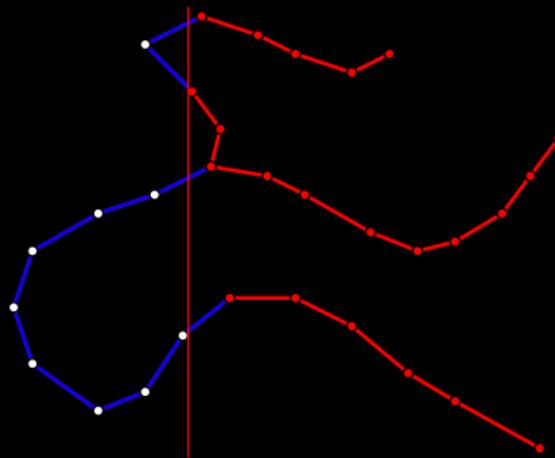
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



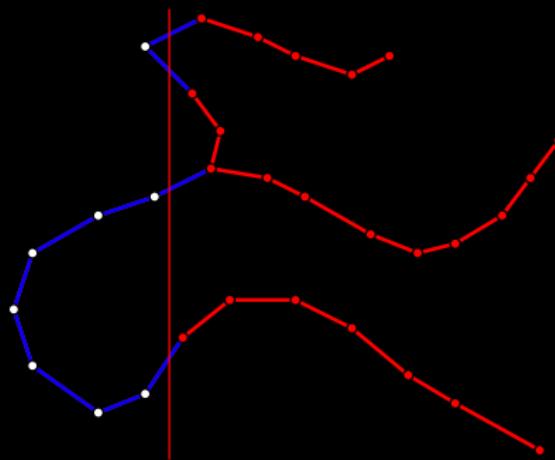
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



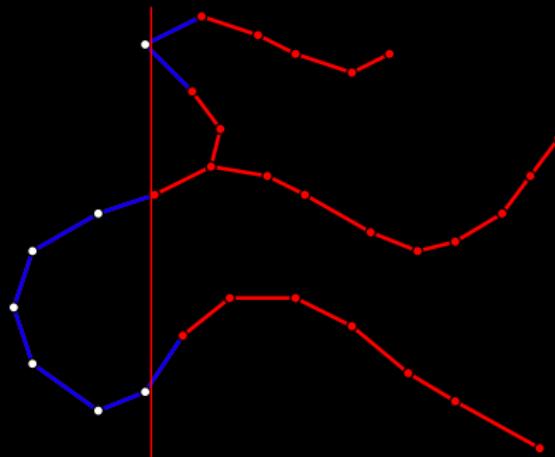
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



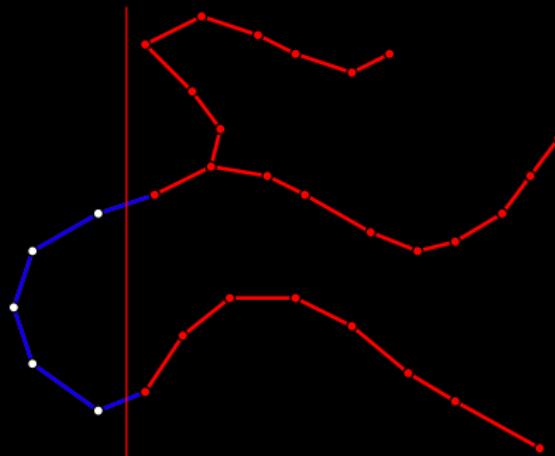
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



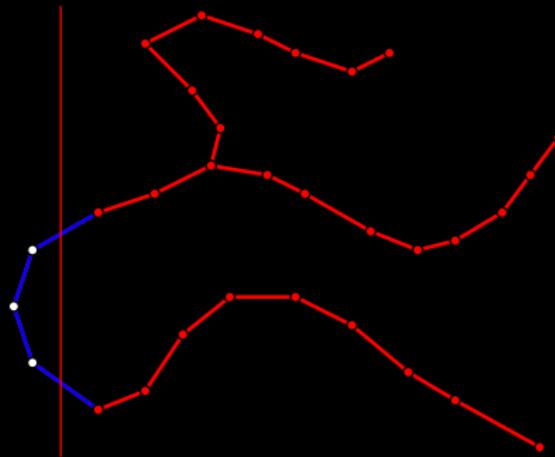
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



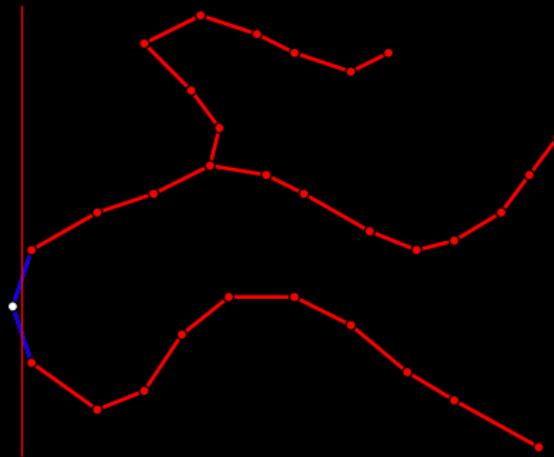
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



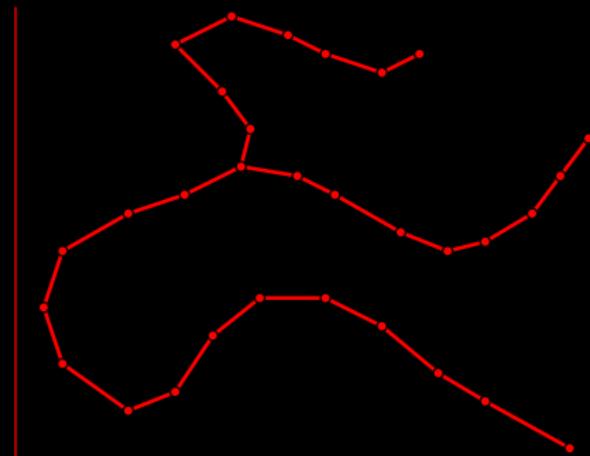
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



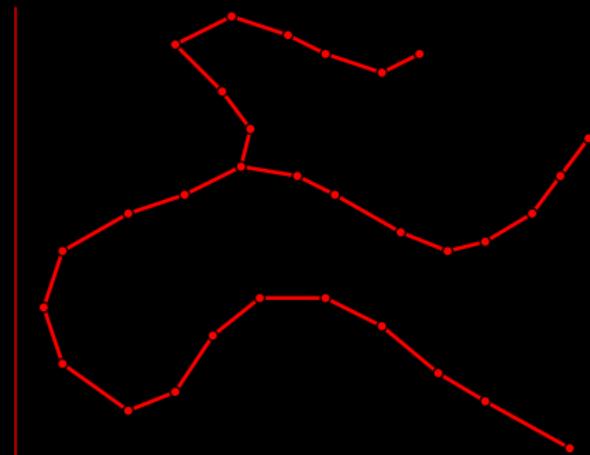
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:

Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:

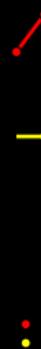
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:

Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:

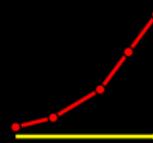
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:

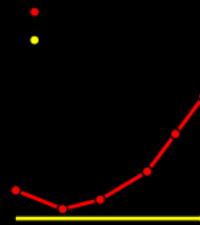
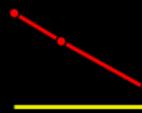
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



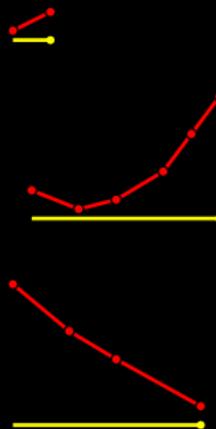
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



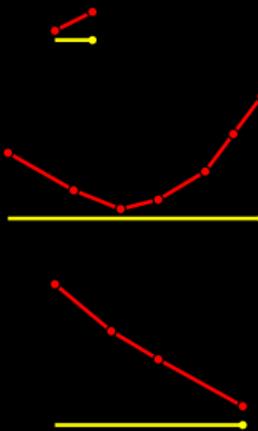
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



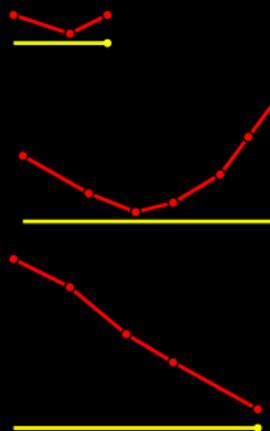
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



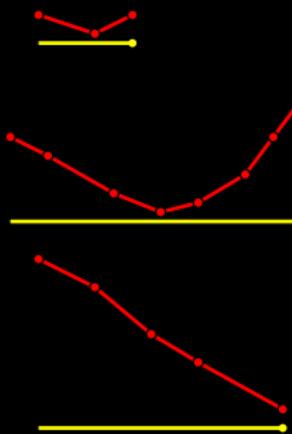
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



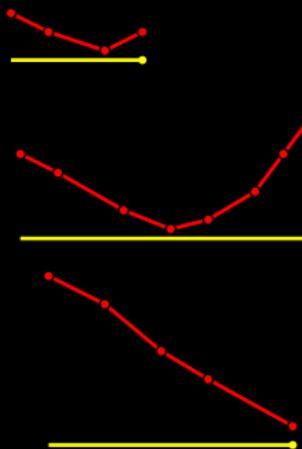
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



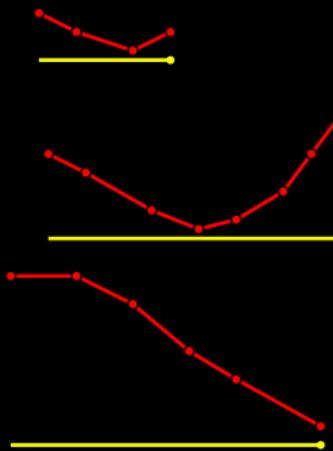
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



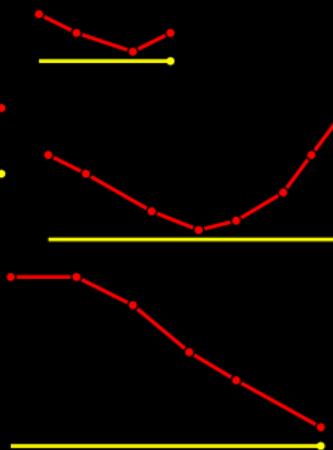
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



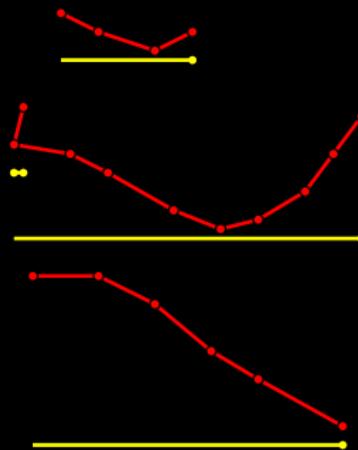
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



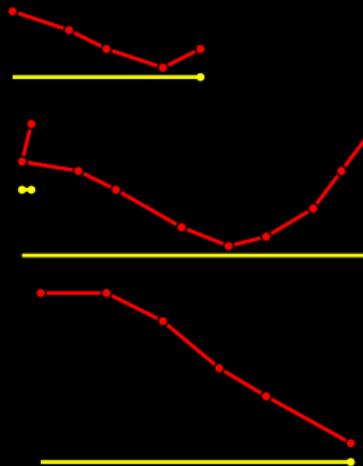
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



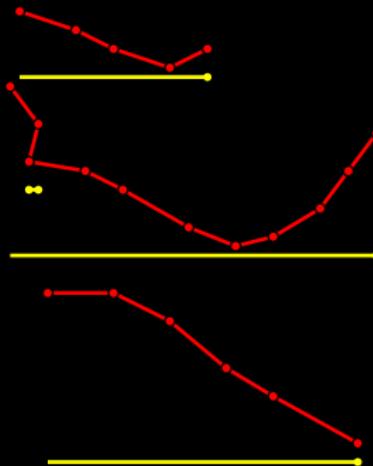
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



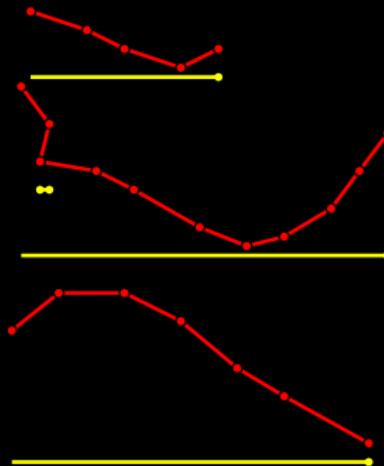
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



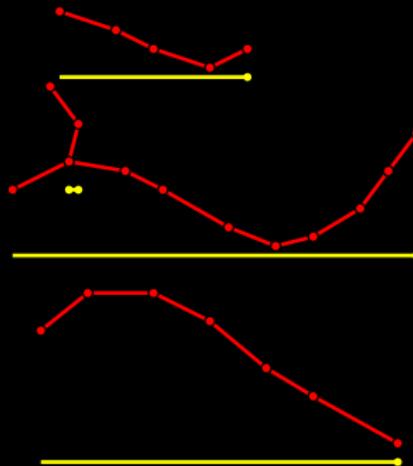
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



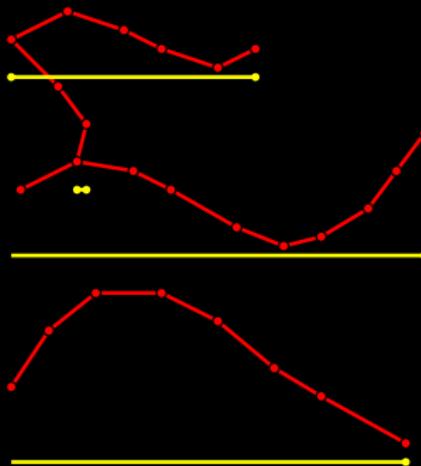
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



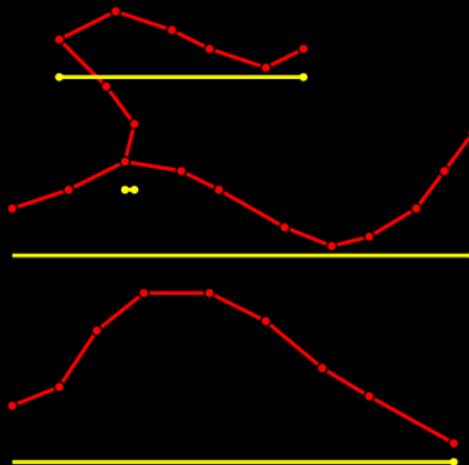
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



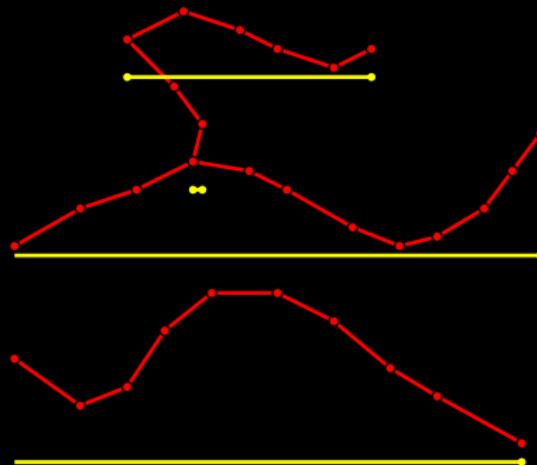
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



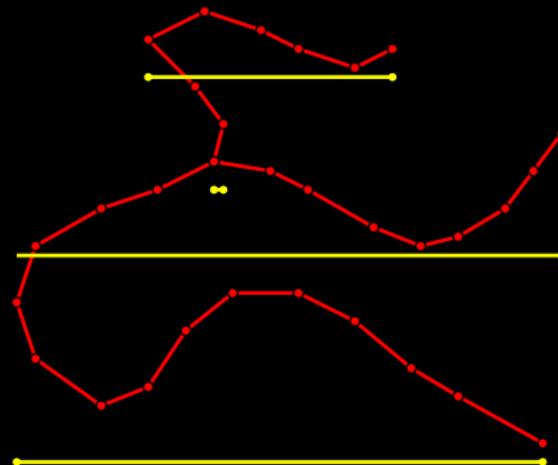
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:



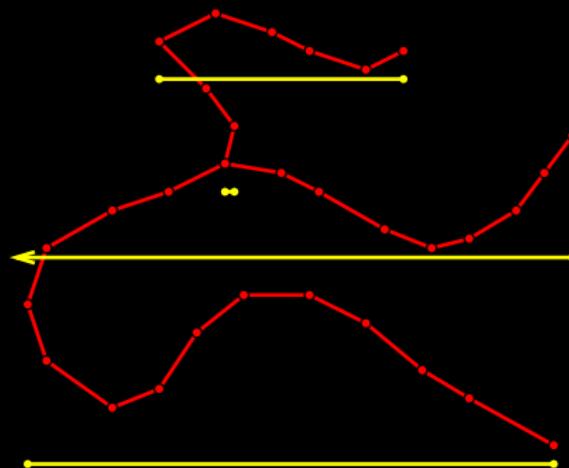
Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Method

Sweep filtration

Filter brain arteries by sweeping across with a plane:

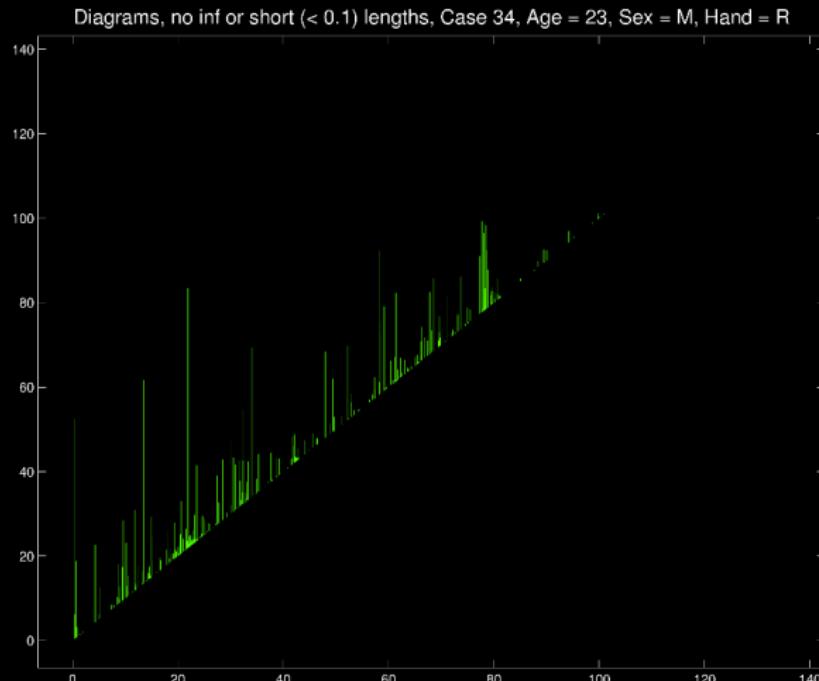


Record:

- birth time of each new component
- death of each component (when it joins to an older component)

Bar codes

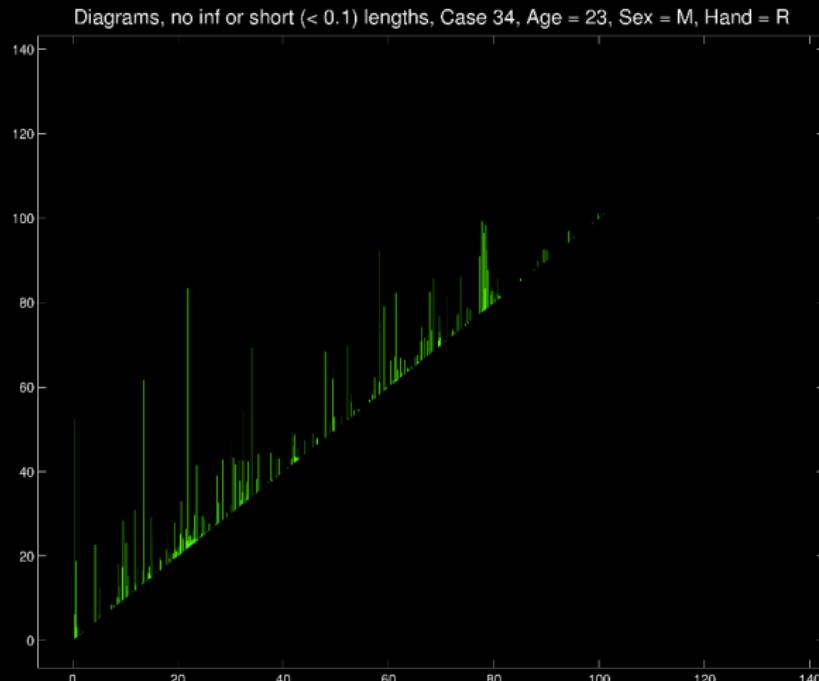
Data structure: 3D tree \rightsquigarrow bar code / lace array / persistence diagram:



- multiset of (vertical) line segments $[t, t']$ (plotted at x -coordinate t)
- one for each class with birth time t and death time t' .

Bar codes

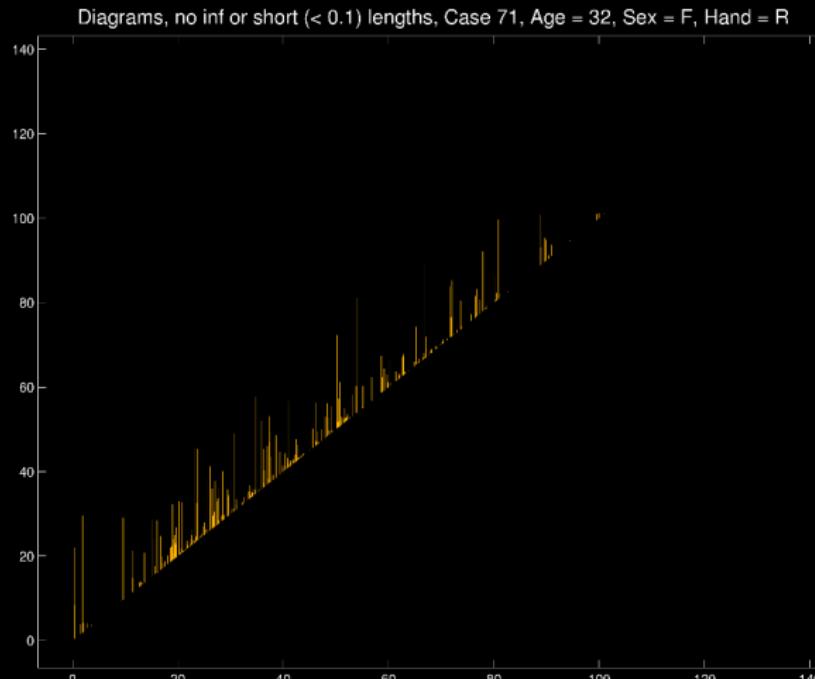
Data structure: 3D tree \rightsquigarrow bar code / lace array / persistence diagram:



- multiset of (vertical) line segments $[t, t']$ (plotted at x -coordinate t)
- one for each class with birth time t and death time t' .

Bar codes

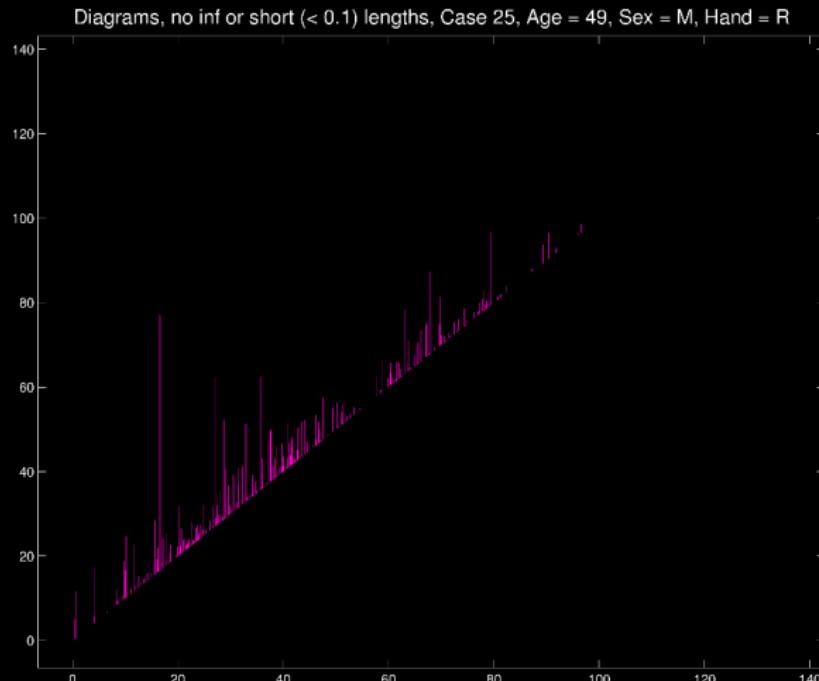
Data structure: 3D tree \rightsquigarrow bar code / lace array / persistence diagram:



- multiset of (vertical) line segments $[t, t']$ (plotted at x -coordinate t)
- one for each class with birth time t and death time t' .

Bar codes

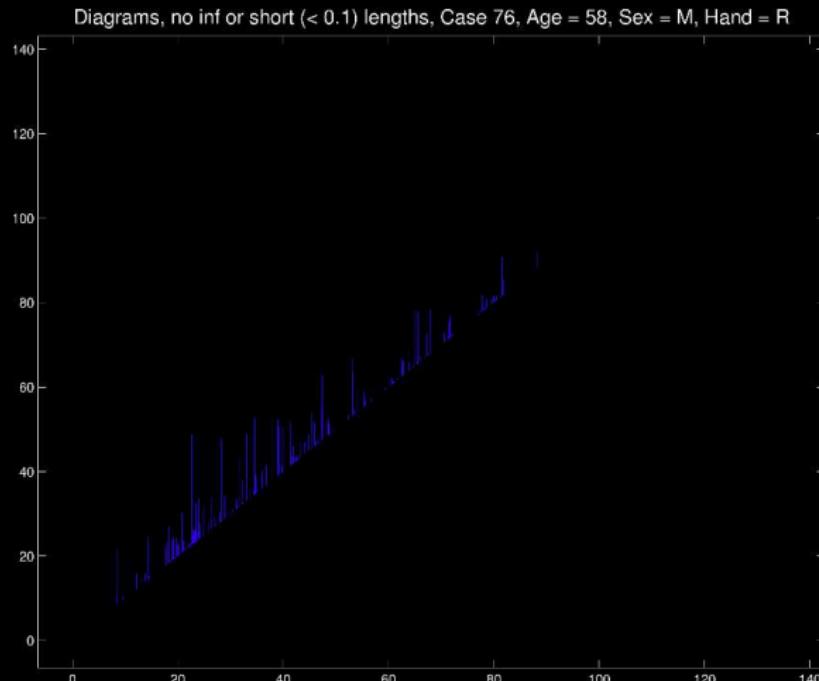
Data structure: 3D tree \rightsquigarrow bar code / lace array / persistence diagram:



- multiset of (vertical) line segments $[t, t']$ (plotted at x -coordinate t)
- one for each class with birth time t and death time t' .

Bar codes

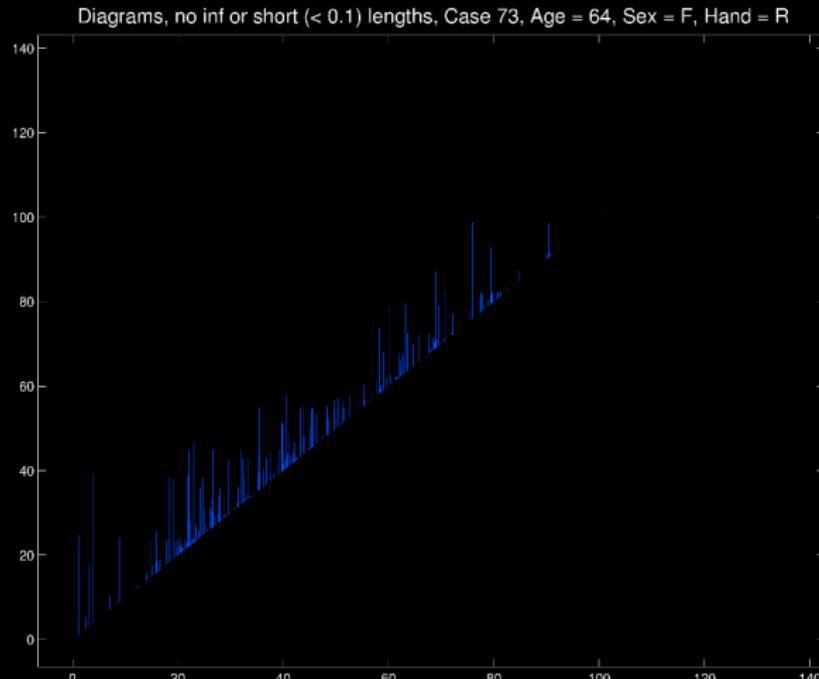
Data structure: 3D tree \rightsquigarrow bar code / lace array / persistence diagram:



- multiset of (vertical) line segments $[t, t']$ (plotted at x -coordinate t)
- one for each class with birth time t and death time t' .

Bar codes

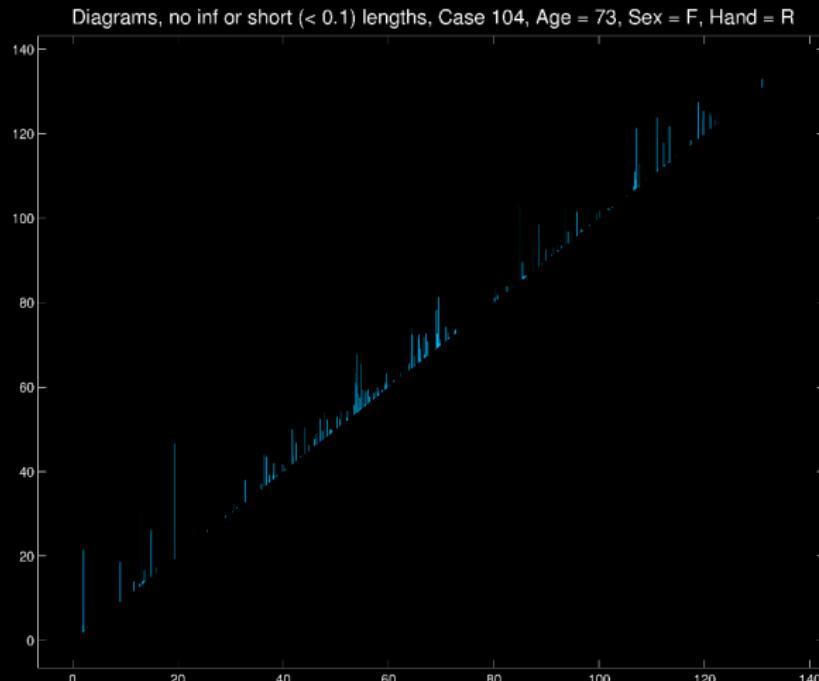
Data structure: 3D tree \rightsquigarrow bar code / lace array / persistence diagram:



- multiset of (vertical) line segments $[t, t']$ (plotted at x -coordinate t)
- one for each class with birth time t and death time t' .

Bar codes

Data structure: 3D tree \rightsquigarrow bar code / lace array / persistence diagram:



- multiset of (vertical) line segments $[t, t']$ (plotted at x -coordinate t)
- one for each class with birth time t and death time t' .

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

Def. Q -module over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

Def. Q -module over the poset Q :

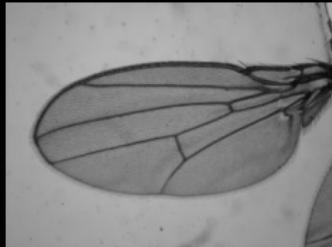
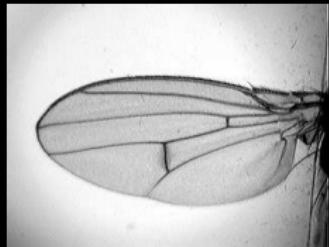
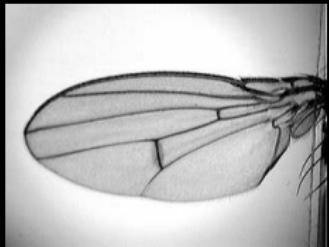
- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

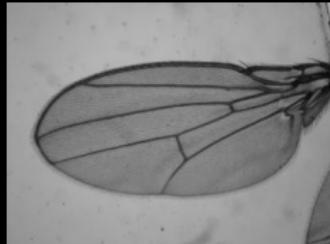
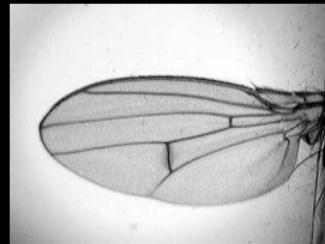
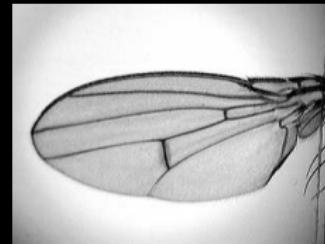
Fruit fly wings

Normal fly wings [images from David Houle's lab]:

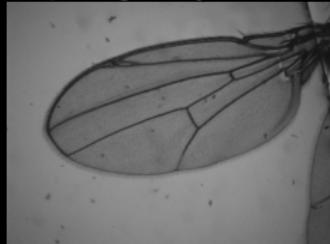
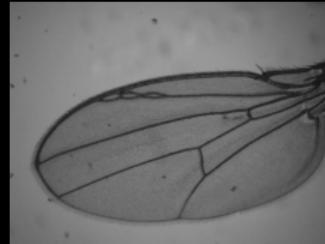
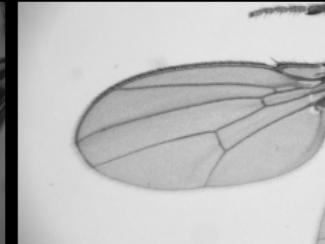
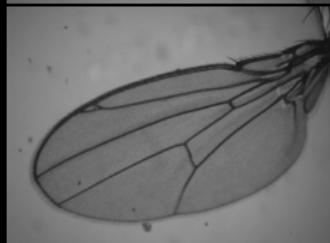
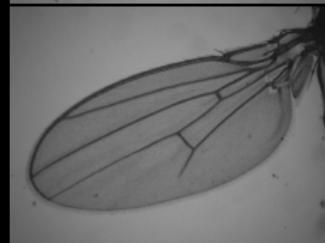
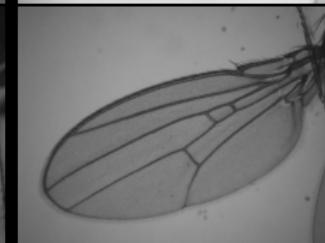


Fruit fly wings

Normal fly wings [images from David Houle's lab]:

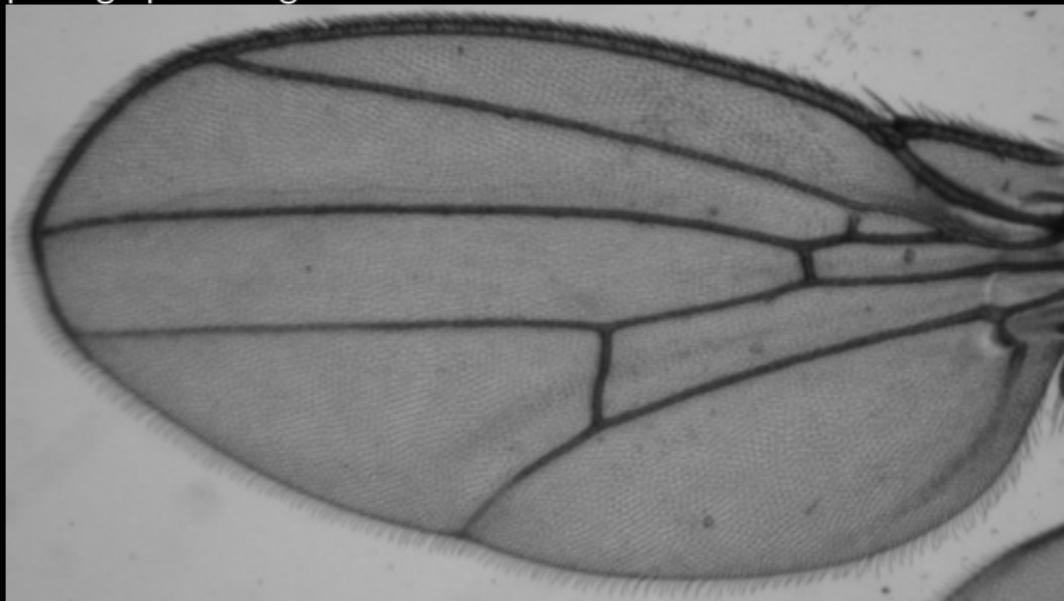


Topologically abnormal veins:



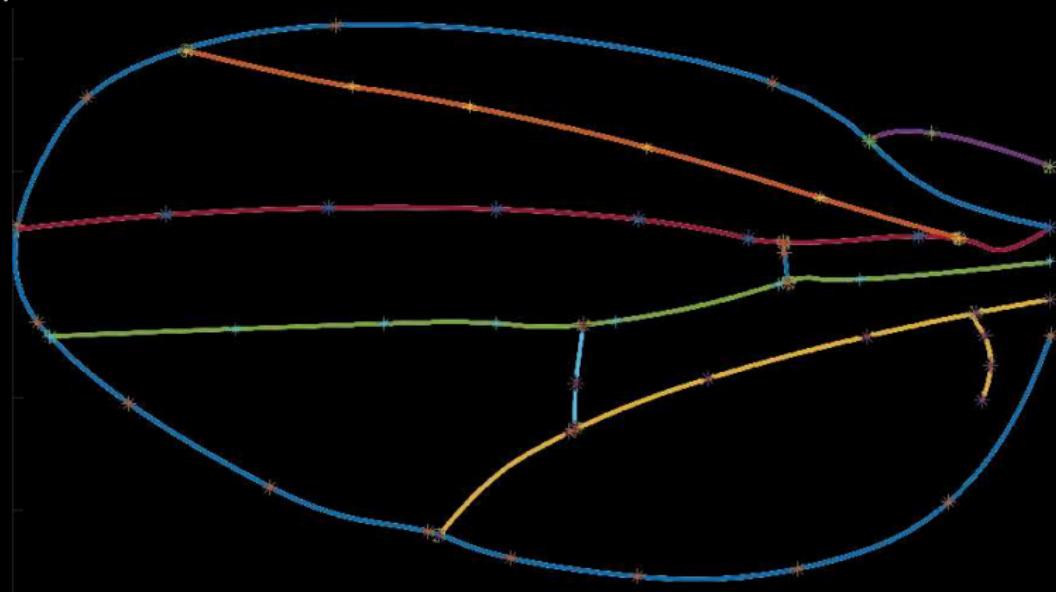
Fruit fly wings

photographic image



Fruit fly wings

spline



Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set
- 2nd parameter: distance from edge set

Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

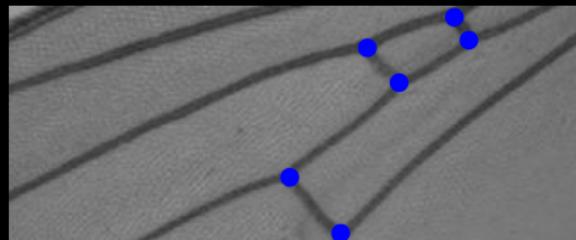
- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set

Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set

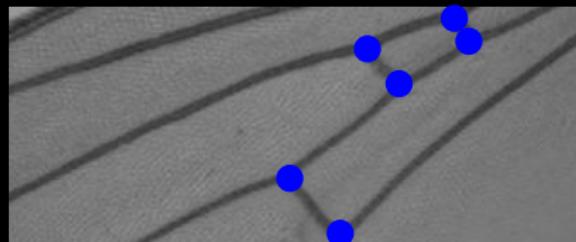


Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set

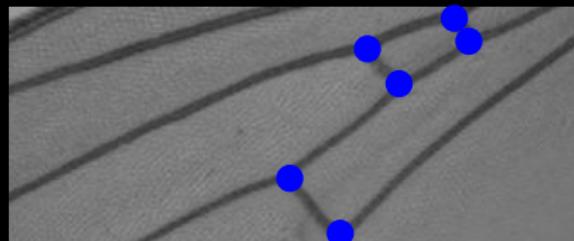


Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set given as Bézier curves

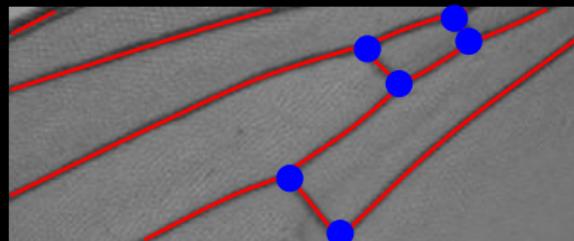


Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set given as Bézier curves

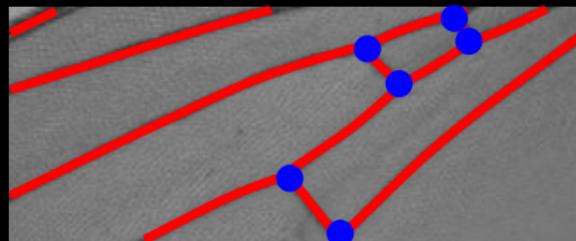


Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set given as points in \mathbb{R}^2
- 2nd parameter: distance from edge set given as Bézier curves

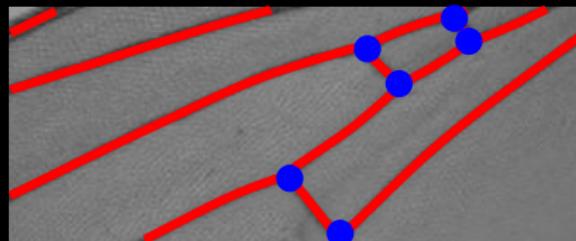


Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require $\text{distance} \geq -r$)
- 2nd parameter: distance from edge set given as Bézier curves

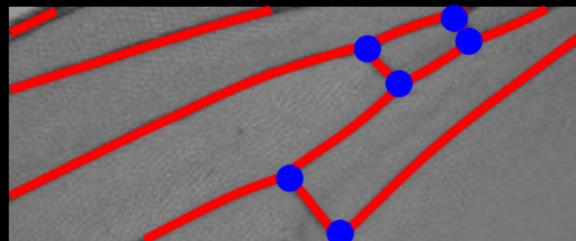


Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

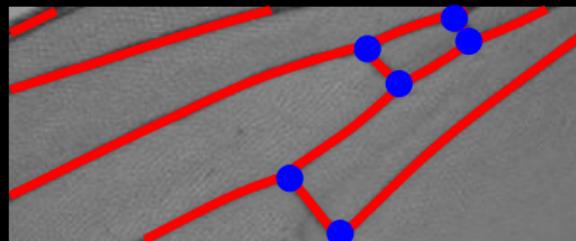


Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

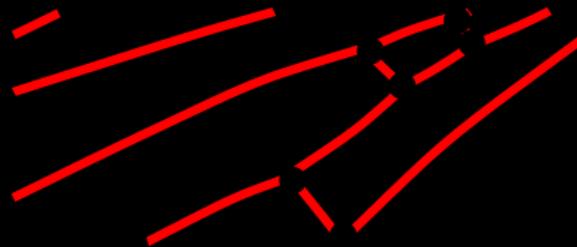


Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

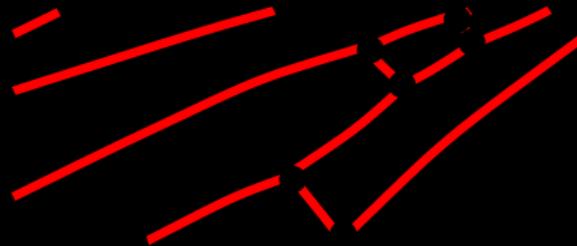


Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

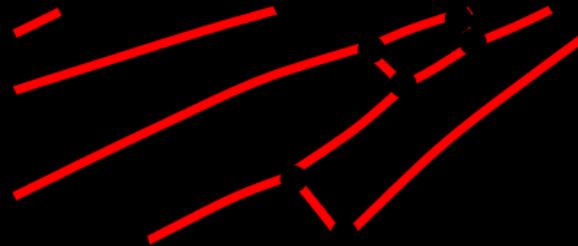


Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)



Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Multiscale summary

Wing vein persistence

[w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

Multiscale summary

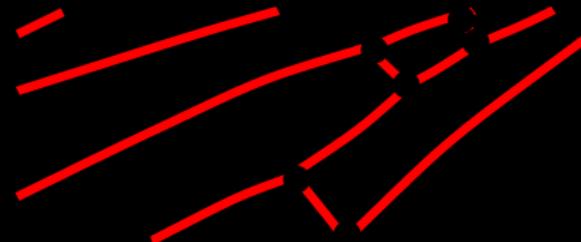
$$\begin{array}{ccccccc}
 & \uparrow & \uparrow & \uparrow & & & \\
 \rightarrow & H_{r-\varepsilon, s+\delta} & \rightarrow & H_{r, s+\delta} & \rightarrow & H_{r+\varepsilon, s+\delta} & \rightarrow \\
 & \uparrow & \uparrow & \uparrow & & & \\
 \mathbb{Z}^2\text{-module:} & \rightarrow & H_{r-\varepsilon, s} & \rightarrow & H_{r, s} & \rightarrow & H_{r+\varepsilon, s} \rightarrow \\
 & \uparrow & \uparrow & \uparrow & & & \\
 & \rightarrow & H_{r-\varepsilon, s-\delta} & \rightarrow & H_{r, s-\delta} & \rightarrow & H_{r+\varepsilon, s-\delta} \rightarrow \\
 & \uparrow & \uparrow & \uparrow & & &
 \end{array}$$

Wing vein persistence

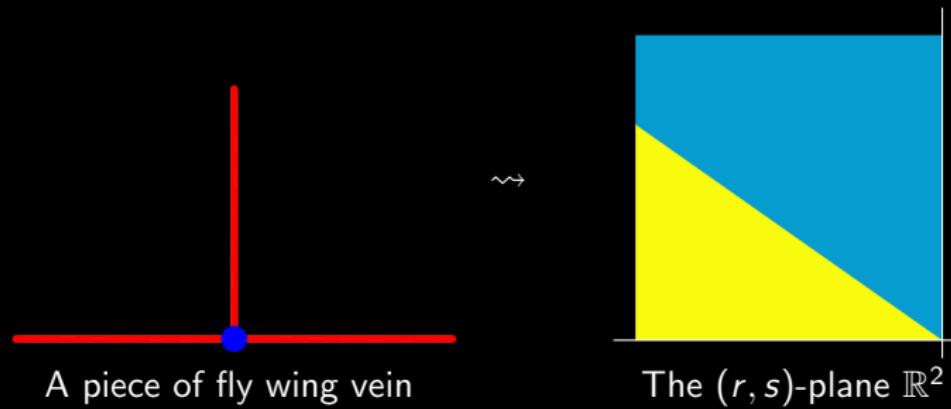
[w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)



Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

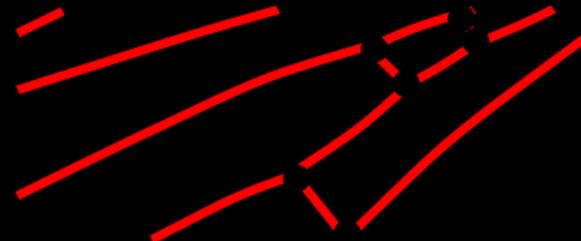


Wing vein persistence

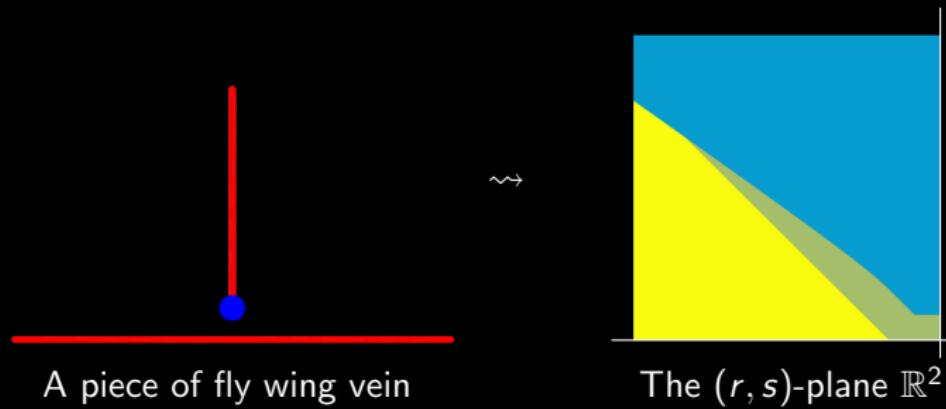
[w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)



Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

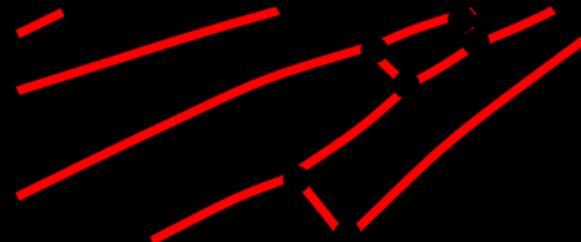


Wing vein persistence

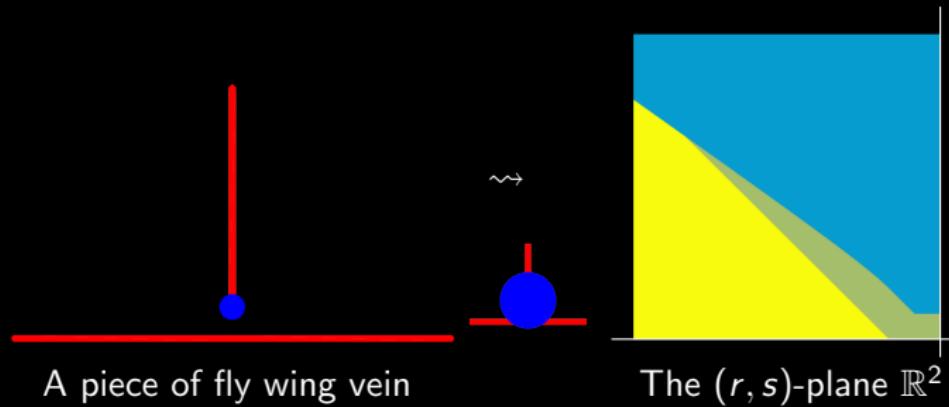
[w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)



Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

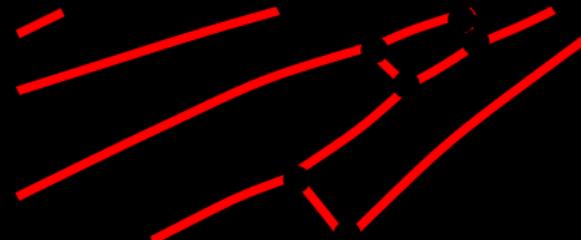


Wing vein persistence

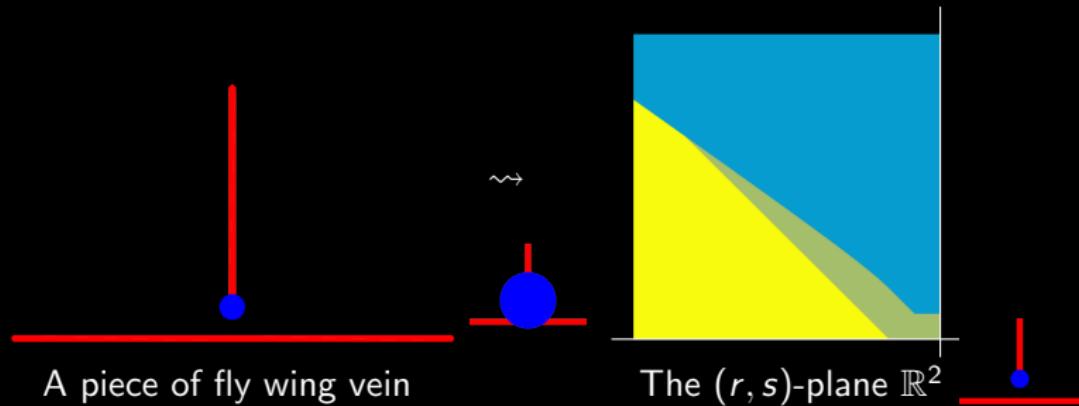
[w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)



Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

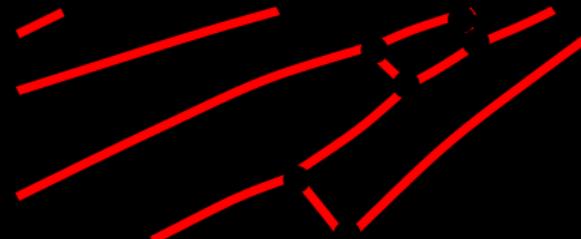


Wing vein persistence

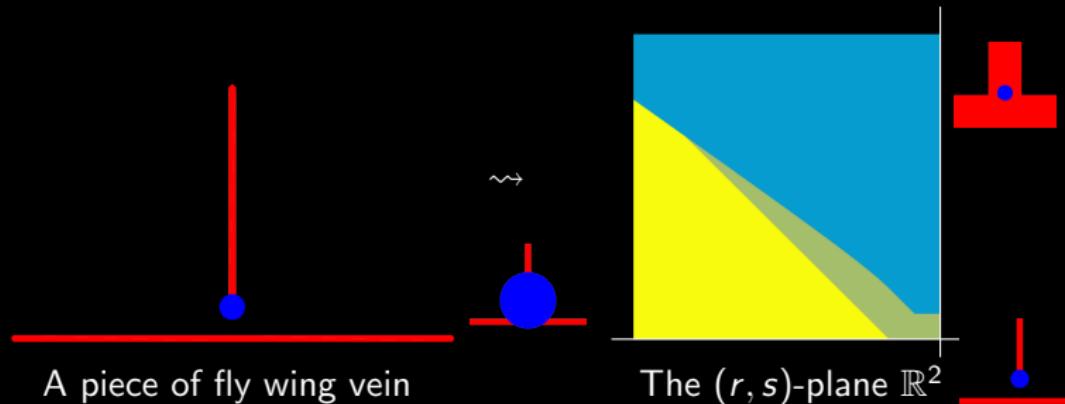
[w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)



Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

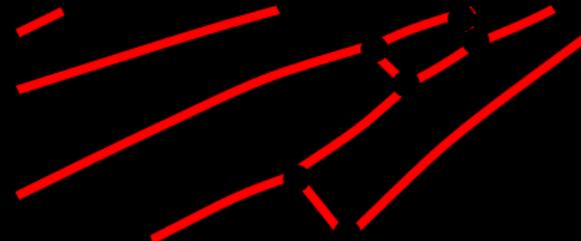


Wing vein persistence

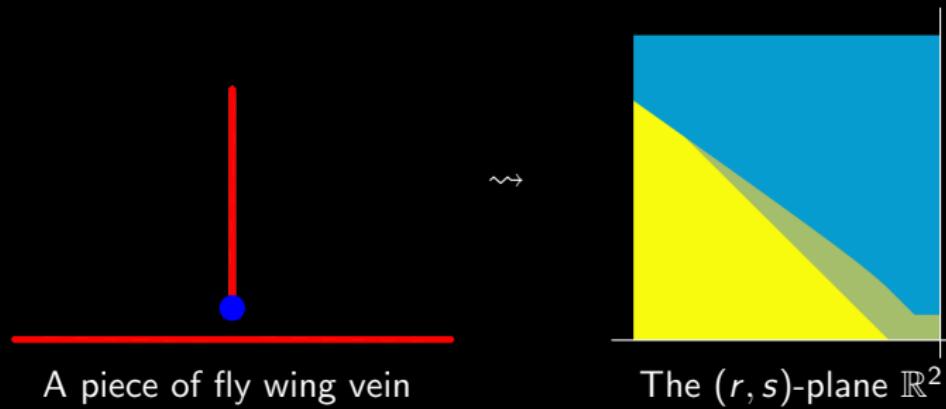
[w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)



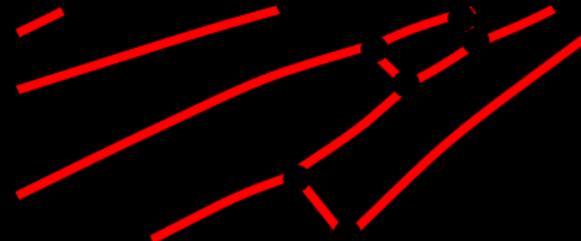
Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$



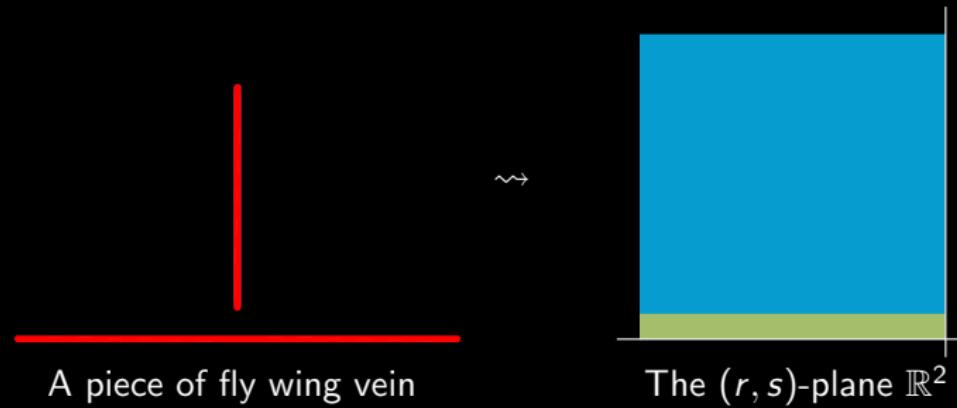
Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)



Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

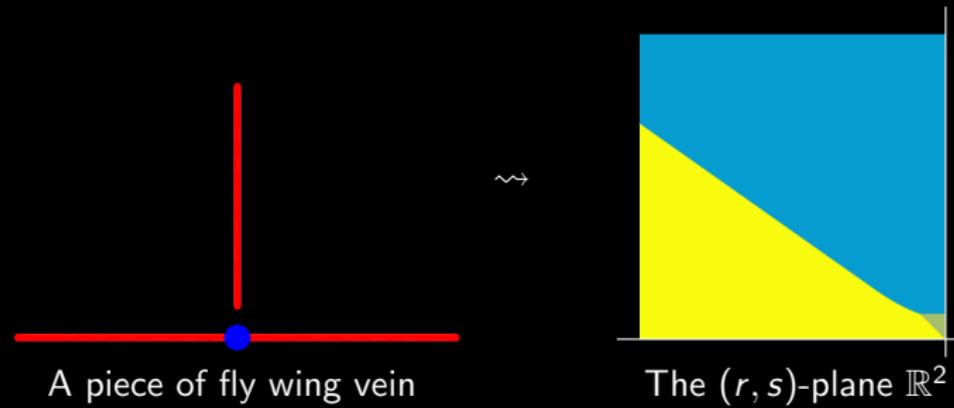


Wing vein persistence [w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)

Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$



A piece of fly wing vein

The (r, s) -plane \mathbb{R}^2

Wing vein persistence

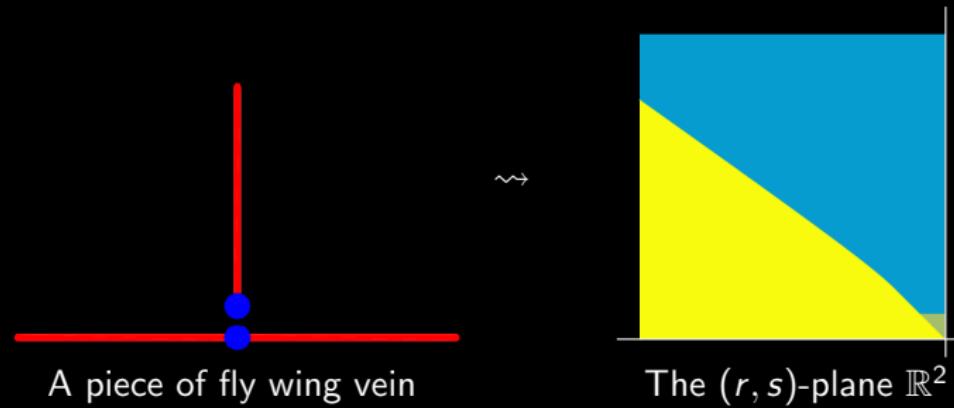
[w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)



Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$

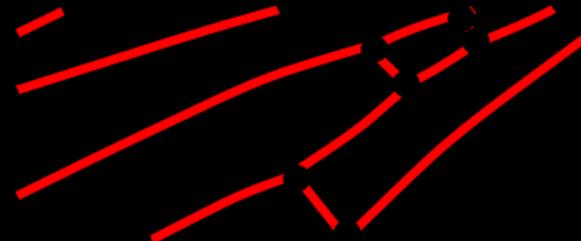


Wing vein persistence

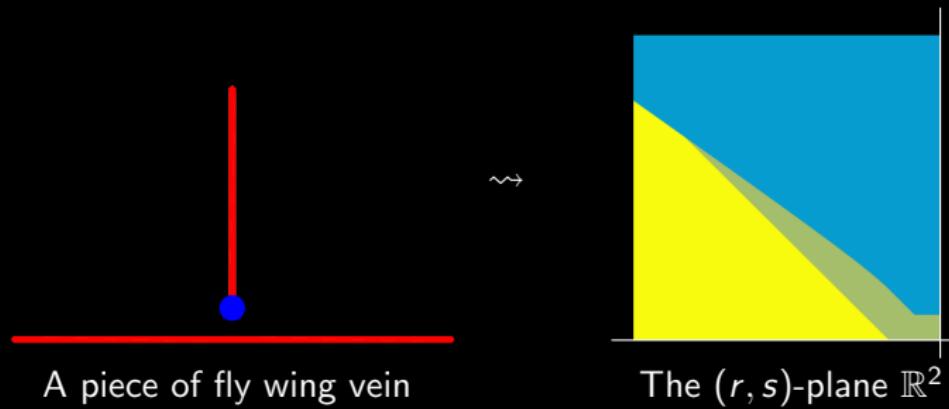
[w/Houle, et al., ongoing]

Example. Encode fruit fly wing with 2-parameter persistence

- 1st parameter: distance from vertex set (require distance $\geq -r$)
- 2nd parameter: distance from edge set (require distance $\leq s$)



Sublevel set $W_{r,s}$ is near edges but far from vertices $\Rightarrow H_{r,s} = H_i(W_{r,s})$



Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

Def. Q -module over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

Def. **Q -module** over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Example: topology of probability distributions

Given probability measure μ on a space M and kernel function of bandwidth r
 e.g. • K_r = Gaussian (normal distribution) of variance r on \mathbb{R}^d
 • K_r = uniform measure on ball of radius r on \mathbb{R}^d

Def. Convolution with kernel K_r yields bandwidth r expansion $B_r(\mu) = K_r * \mu$.

Example. • $B_r(\mu_n) \sim B_r(\mu)$ if μ_n is uniform on an n -sample from μ
 • $\mu = F(x)dx \Rightarrow B_r(\mu)$ has density $K_r * F(x) = \int_M K_r(y - x)d\mu(y)$

Def. ν with density function F has support at sensitivity s :

$$\nu_s = \{x \in M \mid F(x) \geq 1/s\}.$$

Def. The expansion of μ to bandwidth r and sensitivity s is $B_r(\mu)_{r^d s} \subseteq M$.

Prop. $\{B_r(\mu)_{r^d s} \mid r \in \mathbb{R}_{\geq 0} \text{ and } s \in \mathbb{R}_{\geq 1}\} \subseteq M$ nested as r and s increase.

Persistent homology: $B_r(\mu)_{r^d s} \rightsquigarrow \text{homology } H_*(B_r(\mu)_{r^d s})$

Def. μ has i^{th} bipersistent homology $H_i^{rs}(\mu) = H_i(B_r(\mu)_{r^d s})$, an invariant of μ
 algebra, geometry, combinatorics of $H_*^{rs}(\nu) \leftrightarrow$ statistics of ν

Example: topology of probability distributions

Given probability measure μ on a space M and kernel function of bandwidth r
 e.g. • K_r = Gaussian (normal distribution) of variance r on \mathbb{R}^d
 • K_r = uniform measure on ball of radius r on \mathbb{R}^d

Def. Convolution with kernel K_r yields bandwidth r expansion $B_r(\mu) = K_r * \mu$.

Example. • $B_r(\mu_n) \sim B_r(\mu)$ if μ_n is uniform on an n -sample from μ
 • $\mu = F(x)dx \Rightarrow B_r(\mu)$ has density $K_r * F(x) = \int_M K_r(y - x)d\mu(y)$

Def. ν with density function F has support at sensitivity s :

$$\nu_s = \{x \in M \mid F(x) \geq 1/s\}.$$

Def. The expansion of μ to bandwidth r and sensitivity s is $B_r(\mu)_{r^d s} \subseteq M$.

Prop. $\{B_r(\mu)_{r^d s} \mid r \in \mathbb{R}_{\geq 0} \text{ and } s \in \mathbb{R}_{\geq 1}\} \subseteq M$ nested as r and s increase.

Persistent homology: $B_r(\mu)_{r^d s} \rightsquigarrow \text{homology } H_*(B_r(\mu)_{r^d s})$

Def. μ has i^{th} bipersistent homology $H_i^{rs}(\mu) = H_i(B_r(\mu)_{r^d s})$, an invariant of μ
 algebra, geometry, combinatorics of $H_*^{rs}(\nu) \leftrightarrow$ statistics of ν

Example: topology of probability distributions

Given probability measure μ on a space M and kernel function of bandwidth r
 e.g. • K_r = Gaussian (normal distribution) of variance r on \mathbb{R}^d
 • K_r = uniform measure on ball of radius r on \mathbb{R}^d

Def. Convolution with kernel K_r yields bandwidth r expansion $B_r(\mu) = K_r * \mu$.

Example. • $B_r(\mu_n) \sim B_r(\mu)$ if μ_n is uniform on an n -sample from μ
 • $\mu = F(x)dx \Rightarrow B_r(\mu)$ has density $K_r * F(x) = \int_M K_r(y - x)d\mu(y)$

Def. ν with density function F has support at sensitivity s :

$$\nu_s = \{x \in M \mid F(x) \geq 1/s\}.$$

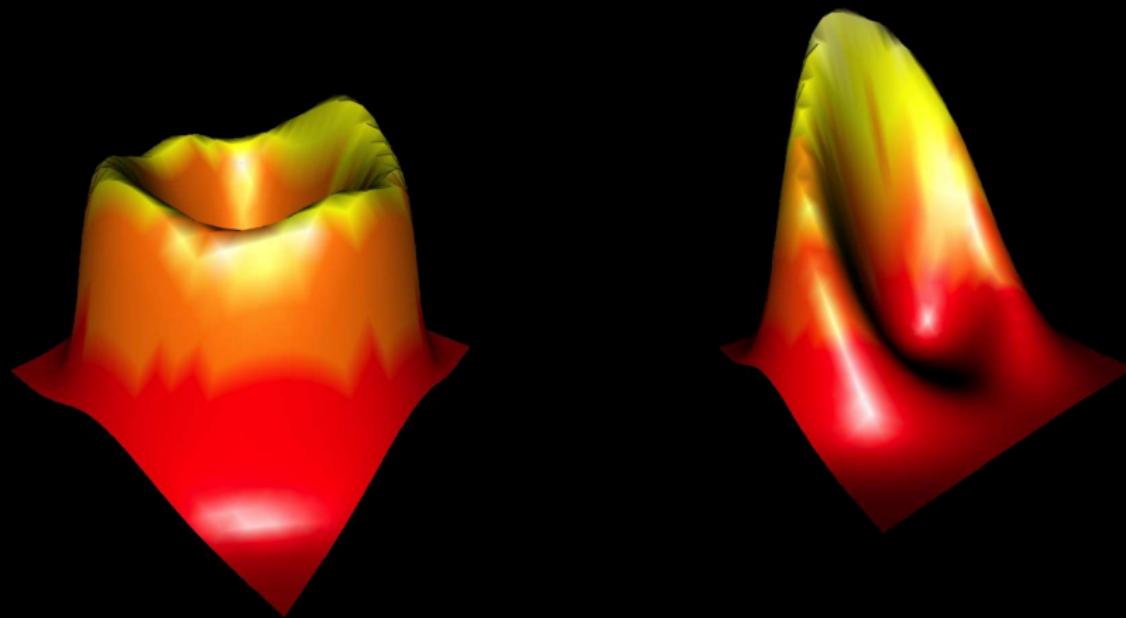
Def. The expansion of μ to bandwidth r and sensitivity s is $B_r(\mu)_{r^d s} \subseteq M$.

Prop. $\{B_r(\mu)_{r^d s} \mid r \in \mathbb{R}_{\geq 0} \text{ and } s \in \mathbb{R}_{\geq 1}\} \subseteq M$ nested as r and s increase.

Persistent homology: $B_r(\mu)_{r^d s} \rightsquigarrow \text{homology } H_*(B_r(\mu)_{r^d s})$

Def. μ has i^{th} bipersistent homology $H_i^{rs}(\mu) = H_i(B_r(\mu)_{r^d s})$, an invariant of μ
 algebra, geometry, combinatorics of $H_*^{rs}(\nu) \leftrightarrow$ statistics of ν

Topology of probability distributions



images from *Confidence sets for persistence diagrams*,
by Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh,
Annals of Statistics **42** (2014), no. 6, 2301–2339.

Example: topology of probability distributions

Given probability measure μ on a space M and kernel function of bandwidth r
 e.g. • K_r = Gaussian (normal distribution) of variance r on \mathbb{R}^d
 • K_r = uniform measure on ball of radius r on \mathbb{R}^d

Def. Convolution with kernel K_r yields bandwidth r expansion $B_r(\mu) = K_r * \mu$.

Example. • $B_r(\mu_n) \sim B_r(\mu)$ if μ_n is uniform on an n -sample from μ
 • $\mu = F(x)dx \Rightarrow B_r(\mu)$ has density $K_r * F(x) = \int_M K_r(y - x)d\mu(y)$

Def. ν with density function F has support at sensitivity s :

$$\nu_s = \{x \in M \mid F(x) \geq 1/s\}.$$

Def. The expansion of μ to bandwidth r and sensitivity s is $B_r(\mu)_{r^d s} \subseteq M$.

Prop. $\{B_r(\mu)_{r^d s} \mid r \in \mathbb{R}_{\geq 0} \text{ and } s \in \mathbb{R}_{\geq 1}\} \subseteq M$ nested as r and s increase.

Persistent homology: $B_r(\mu)_{r^d s} \rightsquigarrow \text{homology } H_*(B_r(\mu)_{r^d s})$

Def. μ has i^{th} bipersistent homology $H_i^{rs}(\mu) = H_i(B_r(\mu)_{r^d s})$, an invariant of μ
 algebra, geometry, combinatorics of $H_*^{rs}(\nu) \leftrightarrow$ statistics of ν

Example: topology of probability distributions

Given probability measure μ on a space M and kernel function of bandwidth r

e.g. • K_r = Gaussian (normal distribution) of variance r on \mathbb{R}^d
 • K_r = uniform measure on ball of radius r on \mathbb{R}^d

Def. Convolution with kernel K_r yields bandwidth r expansion $B_r(\mu) = K_r * \mu$.

Example. • $B_r(\mu_n) \sim B_r(\mu)$ if μ_n is uniform on an n -sample from μ
 • $\mu = F(x)dx \Rightarrow B_r(\mu)$ has density $K_r * F(x) = \int_M K_r(y - x)d\mu(y)$

Def. ν with density function F has support at sensitivity s :

$$\nu_s = \{x \in M \mid F(x) \geq 1/s\}.$$

Def. The expansion of μ to bandwidth r and sensitivity s is $B_r(\mu)_{r^d s} \subseteq M$.

Prop. $\{B_r(\mu)_{r^d s} \mid r \in \mathbb{R}_{\geq 0} \text{ and } s \in \mathbb{R}_{\geq 1}\} \subseteq M$ nested as r and s increase.

Persistent homology: $B_r(\mu)_{r^d s} \rightsquigarrow \text{homology } H_*(B_r(\mu)_{r^d s})$

Def. μ has i^{th} bipersistent homology $H_i^{rs}(\mu) = H_i(B_r(\mu)_{r^d s})$, an invariant of μ

algebra, geometry, combinatorics of $H_*^{rs}(\nu) \leftrightarrow$ statistics of ν

Example: topology of probability distributions

Given probability measure μ on a space M and kernel function of bandwidth r

e.g. • K_r = Gaussian (normal distribution) of variance r on \mathbb{R}^d
 • K_r = uniform measure on ball of radius r on \mathbb{R}^d

Def. Convolution with kernel K_r yields bandwidth r expansion $B_r(\mu) = K_r * \mu$.

Example. • $B_r(\mu_n) \sim B_r(\mu)$ if μ_n is uniform on an n -sample from μ
 • $\mu = F(x)dx \Rightarrow B_r(\mu)$ has density $K_r * F(x) = \int_M K_r(y - x)d\mu(y)$

Def. ν with density function F has support at sensitivity s :

$$\nu_s = \{x \in M \mid F(x) \geq 1/s\}.$$

Def. The expansion of μ to bandwidth r and sensitivity s is $B_r(\mu)_{r^d s} \subseteq M$.

Prop. $\{B_r(\mu)_{r^d s} \mid r \in \mathbb{R}_{\geq 0} \text{ and } s \in \mathbb{R}_{\geq 1}\} \subseteq M$ nested as r and s increase.

Persistent homology: $B_r(\mu)_{r^d s} \rightsquigarrow \text{homology } H_*(B_r(\mu)_{r^d s})$

Def. μ has i^{th} bipersistent homology $H_i^{rs}(\mu) = H_i(B_r(\mu)_{r^d s})$, an invariant of μ

algebra, geometry, combinatorics of $H_*^{rs}(\nu) \leftrightarrow$ statistics of ν

Example: topology of probability distributions

Given probability measure μ on a space M and kernel function of bandwidth r
 e.g. • K_r = Gaussian (normal distribution) of variance r on \mathbb{R}^d
 • K_r = uniform measure on ball of radius r on \mathbb{R}^d

Def. Convolution with kernel K_r yields bandwidth r expansion $B_r(\mu) = K_r * \mu$.

Example. • $B_r(\mu_n) \sim B_r(\mu)$ if μ_n is uniform on an n -sample from μ
 • $\mu = F(x)dx \Rightarrow B_r(\mu)$ has density $K_r * F(x) = \int_M K_r(y - x)d\mu(y)$

Def. ν with density function F has support at sensitivity s :

$$\nu_s = \{x \in M \mid F(x) \geq 1/s\}.$$

Def. The expansion of μ to bandwidth r and sensitivity s is $B_r(\mu)_{r^d s} \subseteq M$.

Prop. $\{B_r(\mu)_{r^d s} \mid r \in \mathbb{R}_{\geq 0} \text{ and } s \in \mathbb{R}_{\geq 1}\} \subseteq M$ nested as r and s increase.

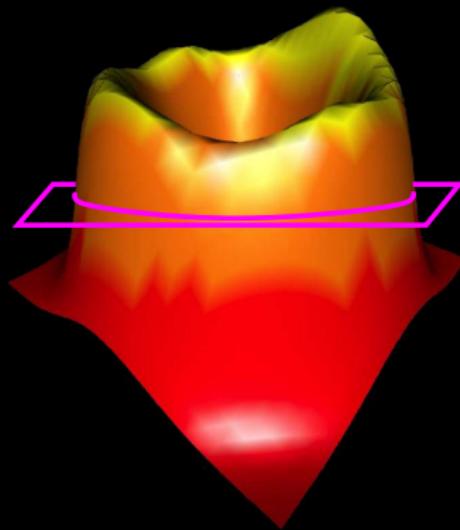
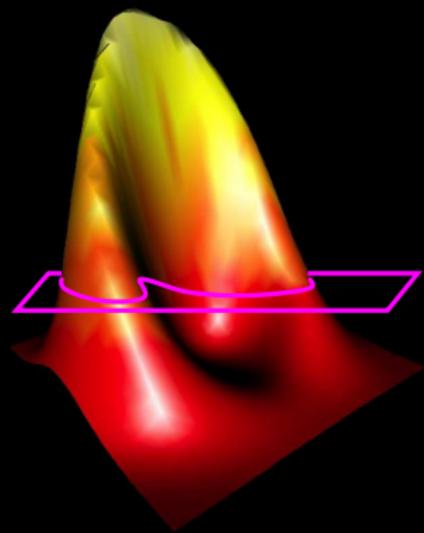
Persistent homology: $B_r(\mu)_{r^d s} \rightsquigarrow \text{homology } H_*(B_r(\mu)_{r^d s})$

Def. μ has i^{th} bipersistent homology $H_i^{rs}(\mu) = H_i(B_r(\mu)_{r^d s})$, an invariant of μ
 algebra, geometry, combinatorics of $H_*^{rs}(\nu) \leftrightarrow$ statistics of ν

Topology of probability distributions

[surface images from *Confidence sets for persistence diagrams*,
by Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh,
Annals of Statistics 42 (2014), no. 6, 2301–2339.]

Topology of probability distributions



[surface images from *Confidence sets for persistence diagrams*,
by Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, Singh,
Annals of Statistics 42 (2014), no. 6, 2301–2339.]

Example: topology of probability distributions

Given probability measure μ on a space M and kernel function of bandwidth r
 e.g. • K_r = Gaussian (normal distribution) of variance r on \mathbb{R}^d
 • K_r = uniform measure on ball of radius r on \mathbb{R}^d

Def. Convolution with kernel K_r yields bandwidth r expansion $B_r(\mu) = K_r * \mu$.

Example. • $B_r(\mu_n) \sim B_r(\mu)$ if μ_n is uniform on an n -sample from μ
 • $\mu = F(x)dx \Rightarrow B_r(\mu)$ has density $K_r * F(x) = \int_M K_r(y - x)d\mu(y)$

Def. ν with density function F has support at sensitivity s :

$$\nu_s = \{x \in M \mid F(x) \geq 1/s\}.$$

Def. The expansion of μ to bandwidth r and sensitivity s is $B_r(\mu)_{rs} \subseteq M$.

Prop. $\{B_r(\mu)_{rs} \mid r \in \mathbb{R}_{\geq 0} \text{ and } s \in \mathbb{R}_{\geq 1}\} \subseteq M$ nested as r and s increase.

Persistent homology: $B_r(\mu)_{rs} \rightsquigarrow \text{homology } H_*(B_r(\mu)_{rs})$

Def. μ has i^{th} bipersistent homology $H_i^{rs}(\mu) = H_i(B_r(\mu)_{rs})$, an invariant of μ
 algebra, geometry, combinatorics of $H_*^{rs}(\nu) \leftrightarrow$ statistics of ν

Example: topology of probability distributions

Given probability measure μ on a space M and kernel function of bandwidth r

e.g. • K_r = Gaussian (normal distribution) of variance r on \mathbb{R}^d
 • K_r = uniform measure on ball of radius r on \mathbb{R}^d

Def. Convolution with kernel K_r yields bandwidth r expansion $B_r(\mu) = K_r * \mu$.

Example. • $B_r(\mu_n) \sim B_r(\mu)$ if μ_n is uniform on an n -sample from μ
 • $\mu = F(x)dx \Rightarrow B_r(\mu)$ has density $K_r * F(x) = \int_M K_r(y - x)d\mu(y)$

Def. ν with density function F has support at sensitivity s :

$$\nu_s = \{x \in M \mid F(x) \geq 1/s\}.$$

Def. The expansion of μ to bandwidth r and sensitivity s is $B_r(\mu)_{rs} \subseteq M$.

Prop. $\{B_r(\mu)_{rs} \mid r \in \mathbb{R}_{\geq 0} \text{ and } s \in \mathbb{R}_{\geq 1}\} \subseteq M$ nested as r and s increase.

Persistent homology: $B_r(\mu)_{rs} \rightsquigarrow \text{homology } H_*(B_r(\mu)_{rs})$

Def. μ has i^{th} bipersistent homology $H_i^{rs}(\mu) = H_i(B_r(\mu)_{rs})$, an invariant of μ

algebra, geometry, combinatorics of $H_*^{rs}(\nu) \leftrightarrow$ statistics of ν

Example: topology of probability distributions

Given probability measure μ on a space M and kernel function of bandwidth r
 e.g. • K_r = Gaussian (normal distribution) of variance r on \mathbb{R}^d
 • K_r = uniform measure on ball of radius r on \mathbb{R}^d

Def. Convolution with kernel K_r yields bandwidth r expansion $B_r(\mu) = K_r * \mu$.

Example. • $B_r(\mu_n) \sim B_r(\mu)$ if μ_n is uniform on an n -sample from μ
 • $\mu = F(x)dx \Rightarrow B_r(\mu)$ has density $K_r * F(x) = \int_M K_r(y - x)d\mu(y)$

Def. ν with density function F has support at sensitivity s :

$$\nu_s = \{x \in M \mid F(x) \geq 1/s\}.$$

Def. The expansion of μ to bandwidth r and sensitivity s is $B_r(\mu)_{rs} \subseteq M$.

Prop. $\{B_r(\mu)_{rs} \mid r \in \mathbb{R}_{\geq 0} \text{ and } s \in \mathbb{R}_{\geq 1}\} \subseteq M$ nested as r and s increase.

Persistent homology: $B_r(\mu)_{rs} \rightsquigarrow \text{homology } H_*(B_r(\mu)_{rs})$

Def. μ has i^{th} bipersistent homology $H_i^{rs}(\mu) = H_i(B_r(\mu)_{rs})$, an invariant of μ
 algebra, geometry, combinatorics of $H_*^{rs}(\nu) \leftrightarrow$ statistics of ν

Example: topology of probability distributions

Given probability measure μ on a space M and kernel function of bandwidth r
 e.g. • K_r = Gaussian (normal distribution) of variance r on \mathbb{R}^d
 • K_r = uniform measure on ball of radius r on \mathbb{R}^d

Def. Convolution with kernel K_r yields bandwidth r expansion $B_r(\mu) = K_r * \mu$.

Example. • $B_r(\mu_n) \sim B_r(\mu)$ if μ_n is uniform on an n -sample from μ
 • $\mu = F(x)dx \Rightarrow B_r(\mu)$ has density $K_r * F(x) = \int_M K_r(y - x)d\mu(y)$

Def. ν with density function F has support at sensitivity s :

$$\nu_s = \{x \in M \mid F(x) \geq 1/s\}.$$

Def. The expansion of μ to bandwidth r and sensitivity s is $B_r(\mu)_{rs} \subseteq M$.

Prop. $\{B_r(\mu)_{rs} \mid r \in \mathbb{R}_{\geq 0} \text{ and } s \in \mathbb{R}_{\geq 1}\} \subseteq M$ nested as r and s increase.

Persistent homology: $B_r(\mu)_{rs} \rightsquigarrow \text{homology } H_*(B_r(\mu)_{rs})$

Def. μ has i^{th} bipersistent homology $H_i^{rs}(\mu) = H_i(B_r(\mu)_{rs})$, an invariant of μ
 algebra, geometry, combinatorics of $H_*^{rs}(\nu) \leftrightarrow$ statistics of ν

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

Def. **Q -module** over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

Def. **Q -module** over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

Def. **Q -module** over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module (standard commutative alg.)
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

Def. **Q -module** over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module (standard commutative alg.)
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module

Persistent homology

Input. Topological space X filtered by set Q of subspaces: $X_q \subseteq X$ for $q \in Q$
 $\Rightarrow Q$ is a partially ordered set: $X_q \subseteq X_{q'} \Leftrightarrow q \preceq q'$

Def. $\{X_q\}_{q \in Q}$ has **persistent homology** $\{H_q = H(X_q; \mathbb{k})\}_{q \in Q}$. This is a

Def. **Q -module** over the poset Q :

- family $H = \{H_q\}_{q \in Q}$ of vector spaces over the field \mathbb{k} with
- homomorphism $H_q \rightarrow H_{q'}$ whenever $q \prec q'$ in Q such that
- $H_q \rightarrow H_{q''}$ equals the composite $H_q \rightarrow H_{q'} \rightarrow H_{q''}$ whenever $q \prec q' \prec q''$

Examples

- points in \mathbb{R}^n : $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- brain arteries: $Q = \{0, \dots, m\}$ or \mathbb{R} 1-parameter (“ordinary”) persistence
- wing veins: $Q = \mathbb{Z}^2$ or \mathbb{R}^2 2 discrete or continuous parameters
- probability distributions: $Q = \mathbb{R}^2$ 2 continuous parameters
- $Q = \mathbb{Z}^n \Leftrightarrow H = \mathbb{Z}^n$ -graded $\mathbb{k}[x_1, \dots, x_n]$ -module (standard commutative alg.)
- $Q = \mathbb{R}^n \Leftrightarrow H = \mathbb{R}^n$ -graded $\mathbb{k}[\mathbb{R}_+^n]$ -module (real-exponent polynomials)

Statistical analysis [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p -value 3.0127×10^{-8} strongly significant

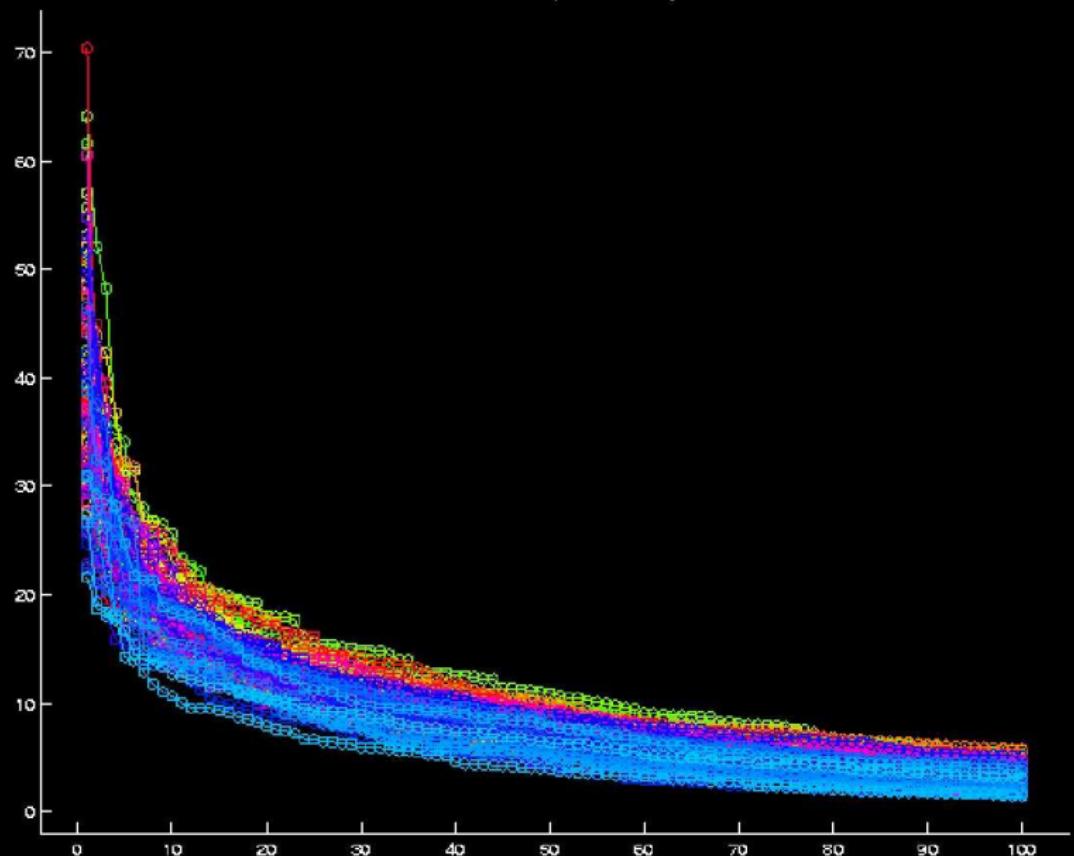
Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2010] (divide by L , \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs

Top 100 bars

Run7: Quantiles, top 100 Data Objects



Statistical analysis [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p -value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2010] (divide by L , \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs

Statistical analysis [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p -value 3.0127×10^{-8} strongly significant

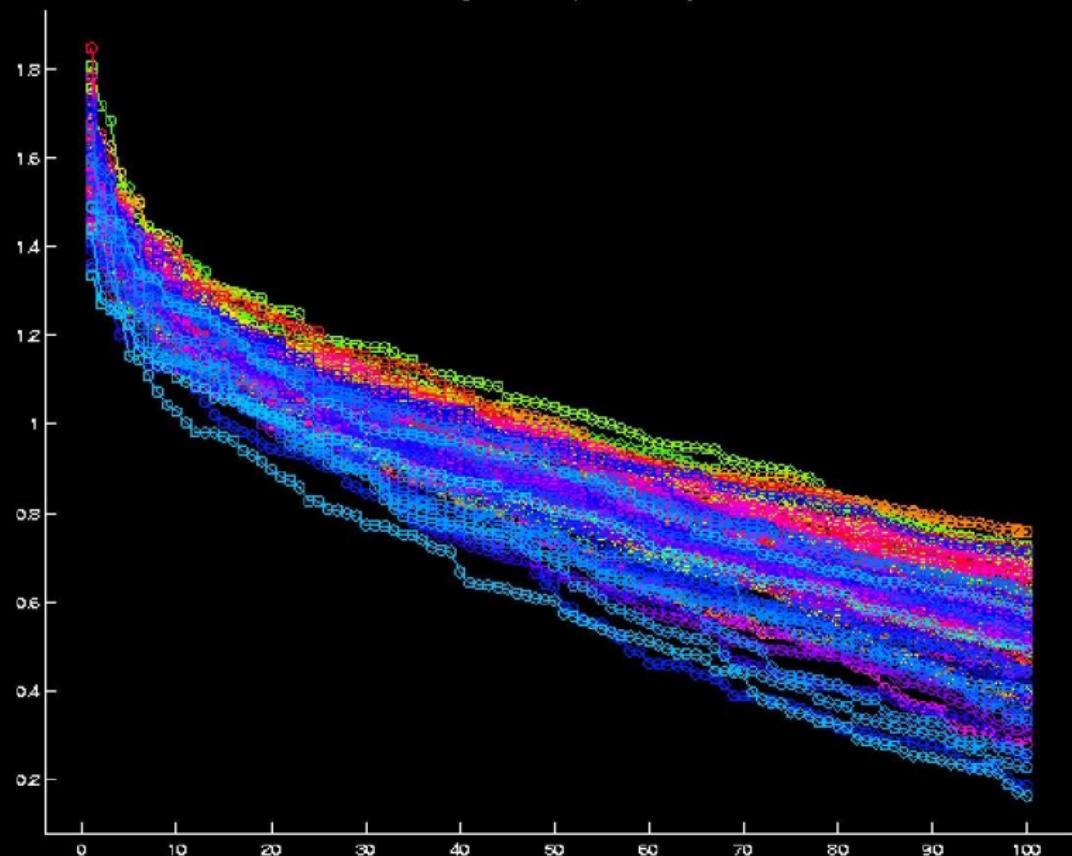
Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2010] (divide by L , \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs

Top 100 bars: log scale

Run7: log Quantiles, top 100 Data Objects



Statistical analysis [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p -value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2010] (divide by L , \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs

Statistical analysis [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p -value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2010] (divide by L , \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs

Statistical analysis [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.

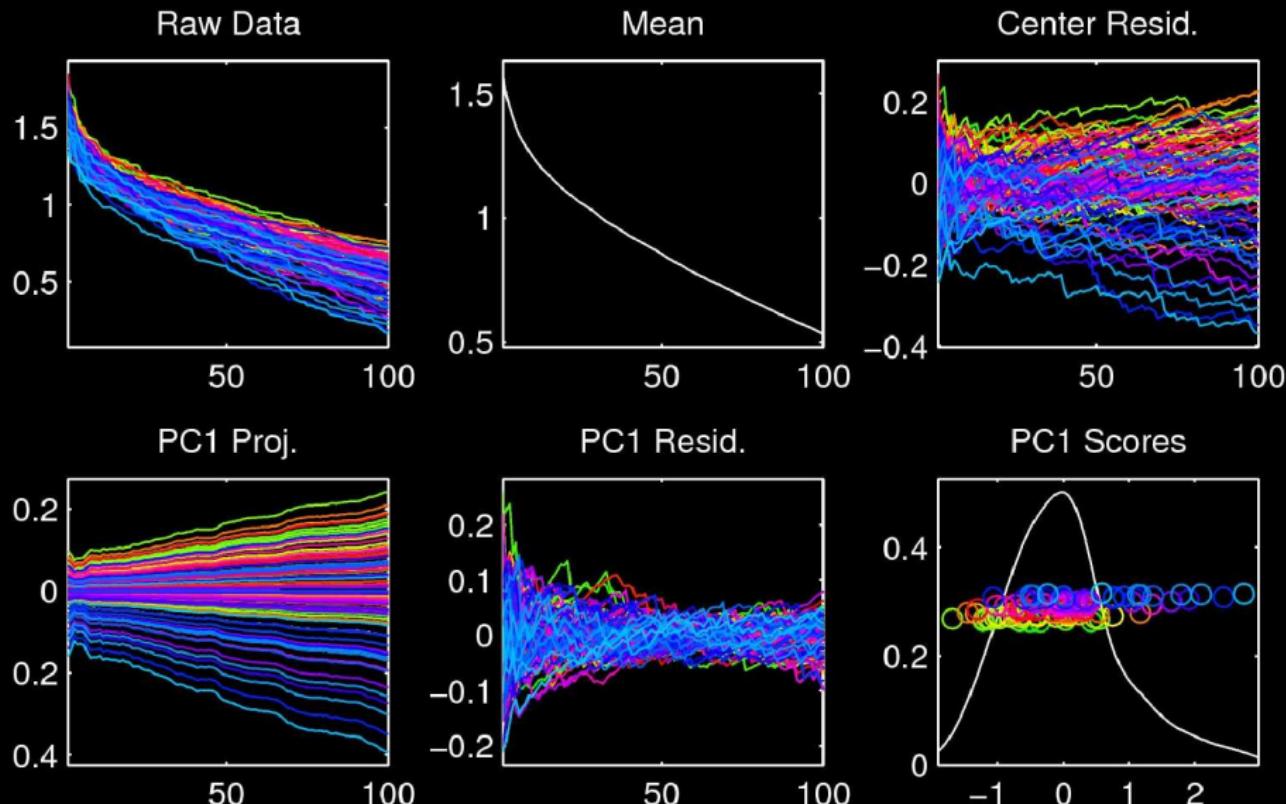
- Pearson correlation 0.52663
- p -value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

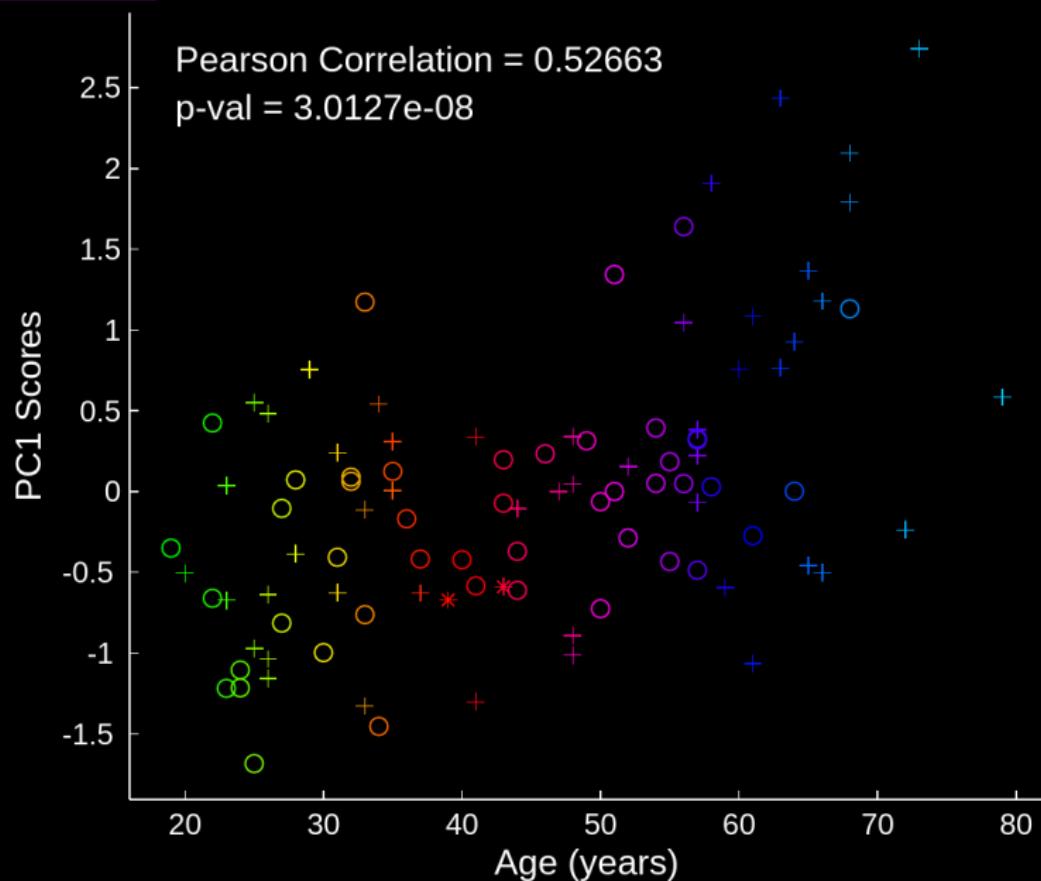
- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2010] (divide by L , \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length.

Moral. Persistent homology can topologically detect statistically significant geometric motifs

Age vs. PC1



Age vs. PC1



Statistical analysis [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p -value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2010] (divide by L , \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length

Moral. Persistent homology can topologically detect statistically significant geometric motifs

Statistical analysis [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p -value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2010] (divide by L , \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length

Moral. Persistent homology can topologically detect statistically significant geometric motifs

Statistical analysis [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p -value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2010] (divide by L , \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length

Moral. Persistent homology can topologically detect statistically significant geometric motifs

Statistical analysis [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p -value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2010] (divide by L , \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length

Moral. Persistent homology can topologically detect statistically significant geometric motifs

Statistical analysis [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p -value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2010] (divide by L , \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length

Moral. Persistent homology can topologically detect statistically significant geometric motifs

Statistical analysis [Bendich–Marron–M.–Pieloch–Skwerer 2014]

Reduce to linear methods. 3D tree \rightsquigarrow bar code \rightsquigarrow vector in \mathbb{R}^{100} :

- top 100 bar lengths, in decreasing order, log scale
- correlate first principal component score vs. age

Conclusions

Longest bars in older brains tend to be shorter and later.

- Pearson correlation 0.52663
- p -value 3.0127×10^{-8} strongly significant

Remarks. Results essentially unchanged after

- rescaling to account for natural variation in overall brain size (force standard deviation of the set of bar lengths to equal 1)
- rescaling to account for known correlation of age vs. total vessel length L [Bullitt, et al. 2010] (divide by L , \sqrt{L} , or $\sqrt[3]{L}$)
- repeating the analysis with residuals from regression between feature vector and total length

Moral. Persistent homology can topologically detect statistically significant geometric motifs

Interval decomposition

Thm [Crawley-Boevey 2015]. \mathbb{R} -module $M \Rightarrow M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
 - explicitly drawn bars
 - Möbius inversion formulas

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b .

For any subset $S \subseteq Q$, let $\mathbb{k}\{S\} = \bigoplus_{s \in S} \mathbb{k}_s$ be its indicator module.

Examples. In \mathbb{R}^2 , intervals can look like

Def. Q -module has interval decomposition $M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Interval decomposition

Thm [Crawley-Boevey 2015]. \mathbb{R} -module $M \Rightarrow M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
 - explicitly drawn bars
 - Möbius inversion formulas

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b .

For any subset $S \subseteq Q$, let $\mathbb{k}\{S\} = \bigoplus_{s \in S} \mathbb{k}_s$ be its indicator module.

Examples. In \mathbb{R}^2 , intervals can look like

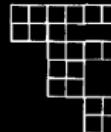
Def. Q -module has interval decomposition $M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Old bar codes

It is convenient to represent λ^A as a “*diagram of boxes*”, each row starting at i and ending at j stands for one indecomposable factor of type $E_{(i,j)}$.

E.g. the following diagram represents λ^A for A isomorphic to

$$E_{(1,6)} \oplus E_{(1,3)} \oplus E_{(3,6)} \oplus E_{(3,4)} \oplus E_{(3,4)} \oplus E_{(5,6)} \oplus E_{(5,5)}:$$



2.4. Conversely any indexed set $\lambda = (\lambda_{(i,j)})_{1 \leq i \leq j \leq m}$ of natural numbers determines an orbit in $L(V_1, V_2, \dots, V_m)$ provided $\dim V_i = \hat{\lambda}_i := \sum_{r \leq i \leq s} \lambda_{(r,s)}$ ($=$ # boxes in the i^{th} column of λ). We will shortly call such an indexed set a *diagram*, define [...]

Let us introduce now the set of non-negative integers $n^A = \{n_{rs}^A\}_{1 \leq r \leq s \leq m}$ associated to A and defined by

$$(2.3) \quad n_{rs}^A := \sum_{p \leq r \leq s \leq q} e_{pq}^A.$$

n_{rs}^A is the number of the segments of the diagram of $|A|$ which contain the integers r, s . It follows that we have

$$(2.4) \quad e_{pq}^A = n_{pq}^A - n_{p-1,q}^A - n_{p,q+1}^A + n_{p-1,q+1}^A$$

where we set $n_{rs}^A = 0$ if $r < 0$ or $s > m + 1$.

[Abeasis–Del Fra 1980, Abeasis–Del Fra–Kraft 1981]

Old bar codes

Example 1.5. Consider the rank array $\mathbf{r} = (r_{ij})$, its lace array $\mathbf{s} = (s_{ij})$, and its rectangle array $\mathbf{R} = (R_{ij})$, which we depict as follows.

$$\mathbf{r} = \begin{array}{c|c} 3 & 2 & 1 & 0 \\ \hline 2 & 0 \\ 3 & 2 \\ 4 & 2 & 1 \\ 3 & 2 & 1 & 0 \end{array} \quad \mathbf{s} = \begin{array}{c|c} 3 & 2 & 1 & 0 \\ \hline 0 & 0 \\ 0 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array} \quad \mathbf{R} = \begin{array}{c|c} 2 & 1 & 0 \\ \hline \square & \square & \square \\ \square & \square & \square \end{array} \quad \begin{array}{c|c} i/j \\ \hline 0 \\ 1 \\ 2 \\ 3 \end{array} \quad \begin{array}{c|c} i/j \\ \hline 0 \\ 1 \\ 2 \\ 3 \end{array} \quad \begin{array}{c|c} i/j \\ \hline 1 \\ 2 \\ 3 \end{array}$$

The relation (1.2) says that an entry of \mathbf{r} is the sum of the entries in \mathbf{s} that are weakly southeast of the corresponding location. The height of R_{ij} is obtained by subtracting the entry r_{ij} from the one above it, while the width of R_{ij} is obtained by subtracting the entry r_{ij} from the one to its left.

It follows from the definition of R_{ij} that

$$(1.3) \quad \sum_{k \geq j} \text{height}(R_{ik}) = r_{i,j-1} - r_{i,n} \leq r_{i,j-1} \quad \text{for all } i$$

$$(1.4) \quad \sum_{\ell \leq i} \text{width}(R_{\ell j}) = r_{i+1,j} - r_{0,j} \leq r_{i+1,j} \quad \text{for all } j.$$

(This will be applied in Proposition 8.12.) The relation (1.2) can be inverted to obtain

$$(1.5) \quad s_{ij} = r_{ij} - r_{i-1,j} - r_{i,j+1} + r_{i-1,j+1}$$

[Knutson–M.–Shimozono 2005]

Interval decomposition

Thm [Crawley-Boevey 2015]. \mathbb{R} -module $M \Rightarrow M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
 - explicitly drawn bars
 - Möbius inversion formulas

Def. An interval I in a poset Q is a convex connected subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b .

For any subset $S \subseteq Q$, let $\mathbb{k}\{S\} = \bigoplus_{s \in S} \mathbb{k}_s$ be its indicator module.

Examples. In \mathbb{R}^2 , intervals can look like

Def. Q -module has interval decomposition $M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Interval decomposition

Thm [Crawley-Boevey 2015]. \mathbb{R} -module $M \Rightarrow M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
 - explicitly drawn bars
 - Möbius inversion formulas

Def. An **interval** I in a poset Q is a **convex connected** subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b .

For any subset $S \subseteq Q$, let $\mathbb{k}\{S\} = \bigoplus_{s \in S} \mathbb{k}_s$ be its **indicator module**.

Examples. In \mathbb{R}^2 , intervals can look like

Def. Q -module has interval decomposition $M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Interval decomposition

Thm [Crawley-Boevey 2015]. \mathbb{R} -module $M \Rightarrow M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
 - explicitly drawn bars
 - Möbius inversion formulas

Def. An **interval** I in a poset Q is a **convex connected** subset: $a, b \in I \Rightarrow$

- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b .

For any subset $S \subseteq Q$, let $\mathbb{k}\{S\} = \bigoplus_{s \in S} \mathbb{k}_s$ be its **indicator module**.

Examples. In \mathbb{R}^2 , intervals can look like

Def. Q -module has interval decomposition $M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Interval decomposition

Thm [Crawley-Boevey 2015]. \mathbb{R} -module $M \Rightarrow M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

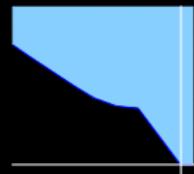
- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
 - explicitly drawn bars
 - Möbius inversion formulas

Def. An **interval** I in a poset Q is a **convex connected** subset: $a, b \in I \Rightarrow$

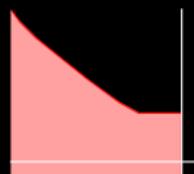
- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b .

For any subset $S \subseteq Q$, let $\mathbb{k}\{S\} = \bigoplus_{s \in S} \mathbb{k}_s$ be its **indicator module**.

Examples. In \mathbb{R}^2 , intervals can look like

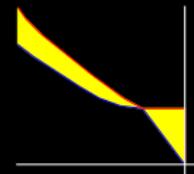


or



or

but not



Def. Q -module has interval decomposition $M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Interval decomposition

Thm [Crawley-Boevey 2015]. \mathbb{R} -module $M \Rightarrow M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

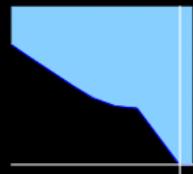
- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
 - explicitly drawn bars
 - Möbius inversion formulas

Def. An **interval** I in a poset Q is a **convex connected** subset: $a, b \in I \Rightarrow$

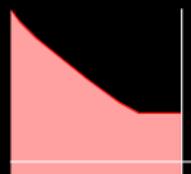
- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b .

For any subset $S \subseteq Q$, let $\mathbb{k}\{S\} = \bigoplus_{s \in S} \mathbb{k}_s$ be its **indicator module**.

Examples. In \mathbb{R}^2 , intervals can look like

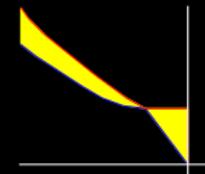


or



or

but not



Def. Q -module has **interval decomposition** $M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Interval decomposition

Thm [Crawley-Boevey 2015]. \mathbb{R} -module $M \Rightarrow M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals

Consequence over \mathbb{R} : $M \rightsquigarrow$ bar code / lace array / persistence diagram

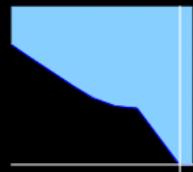
- reinvented a number of times
- earliest: algebraic geometry of representation theory [Abeasis–Del Fra 1980]
 - explicitly drawn bars
 - Möbius inversion formulas

Def. An **interval** I in a poset Q is a **convex connected** subset: $a, b \in I \Rightarrow$

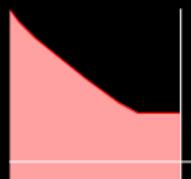
- $q \in I$ whenever $a \preceq q \preceq b$ and
- there is a (zigzag) chain in I of comparable elements from a to b .

For any subset $S \subseteq Q$, let $\mathbb{k}\{S\} = \bigoplus_{s \in S} \mathbb{k}_s$ be its **indicator module**.

Examples. In \mathbb{R}^2 , intervals can look like

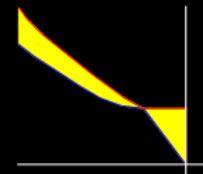


or



or

but not



Def. Q -module has **interval decomposition** $M \cong \bigoplus_{I \in \mathcal{I}} \mathbb{k}\{I\}$ with \mathcal{I} a set of intervals (but M need not have such a decomposition!)

Arbitrary posets

Thm [Botnan–Crawley–Boevey 2020], cf. [Gabriel–Röter 1992]. Over arbitrary poset Q , M has indecomposable decomposition: $M \cong \bigoplus_{\alpha \in A} M_\alpha$ with M_α indecomposable.

Essentially unique: multiset $\{M_\alpha\}_{\alpha \in A}$ of isomorphism classes is invariant.

Thm [Buchet–Escalar 2020], [Moore 2022]. General indecomposable \mathbb{Z}^n -modules are big, far from being interval modules (vector space dimensions $\gg 1$).

Thm [Bauer–Scoccola 2022]. \mathbb{Z}^n -indecomposables are dense in interleaving distance. The set of modules $\cong (\varepsilon\text{-trivial} \oplus \text{indecomposable})$ is interleaving-open.

Positivity. $M = \bigoplus_{\alpha \in A} M_\alpha$ expresses M positively in term of the M_α . Choose:

1. retain positivity or
2. retain description in terms of intervals.

Question. Can both be achieved?

Proposal. Pipeline:

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

⋮

“nice” algebraic objects \rightsquigarrow invariants \rightsquigarrow statistics

Arbitrary posets

Thm [Botnan–Crawley–Boevey 2020], cf. [Gabriel–Ro ter 1992]. Over arbitrary poset Q , M has indecomposable decomposition: $M \cong \bigoplus_{\alpha \in A} M_\alpha$ with M_α indecomposable.

Essentially unique: multiset $\{M_\alpha\}_{\alpha \in A}$ of isomorphism classes is invariant.

Thm [Buchet–Escolar 2020], [Moore 2022]. General indecomposable \mathbb{Z}^n -modules are big, far from being interval modules (vector space dimensions $\gg 1$).

Thm [Bauer–Scoccola 2022]. \mathbb{Z}^n -indecomposables are dense in interleaving distance. The set of modules $\cong (\varepsilon\text{-trivial} \oplus \text{indecomposable})$ is interleaving-open.

Positivity. $M = \bigoplus_{\alpha \in A} M_\alpha$ expresses M positively in term of the M_α . Choose:

1. retain positivity or
2. retain description in terms of intervals.

Question. Can both be achieved?

Proposal. Pipeline:

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

}

“nice” algebraic objects \rightsquigarrow invariants \rightsquigarrow statistics

Arbitrary posets

Thm [Botnan–Crawley–Boevey 2020], cf. [Gabriel–Röter 1992]. Over arbitrary poset Q , M has indecomposable decomposition: $M \cong \bigoplus_{\alpha \in A} M_\alpha$ with M_α indecomposable.

Essentially unique: multiset $\{M_\alpha\}_{\alpha \in A}$ of isomorphism classes is invariant.

Thm [Buchet–Escalar 2020], [Moore 2022]. General indecomposable \mathbb{Z}^n -modules are big, far from being interval modules (vector space dimensions $\gg 1$).

Thm [Bauer–Scoccola 2022]. \mathbb{Z}^n -indecomposables are dense in interleaving distance. The set of modules $\cong (\varepsilon\text{-trivial} \oplus \text{indecomposable})$ is interleaving-open.

Positivity. $M = \bigoplus_{\alpha \in A} M_\alpha$ expresses M positively in term of the M_α . Choose:

1. retain positivity or
2. retain description in terms of intervals.

Question. Can both be achieved?

Proposal. Pipeline:

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

⋮

“nice” algebraic objects \rightsquigarrow invariants \rightsquigarrow statistics

Arbitrary posets

Thm [Botnan–Crawley–Boevey 2020], cf. [Gabriel–Ro ter 1992]. Over arbitrary poset Q , M has indecomposable decomposition: $M \cong \bigoplus_{\alpha \in A} M_\alpha$ with M_α indecomposable.

Essentially unique: multiset $\{M_\alpha\}_{\alpha \in A}$ of isomorphism classes is invariant.

Thm [Buchet–Escalar 2020], [Moore 2022]. General indecomposable \mathbb{Z}^n -modules are big, far from being interval modules (vector space dimensions $\gg 1$).

Thm [Bauer–Scoccola 2022]. \mathbb{Z}^n -indecomposables are dense in interleaving distance. The set of modules $\cong (\varepsilon\text{-trivial} \oplus \text{indecomposable})$ is interleaving-open.

Positivity. $M = \bigoplus_{\alpha \in A} M_\alpha$ expresses M positively in term of the M_α . Choose:

1. retain positivity or
2. retain description in terms of intervals.

Question. Can both be achieved?

Proposal. Pipeline:

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

“nice” algebraic objects \rightsquigarrow invariants \rightsquigarrow statistics

Arbitrary posets

Thm [Botnan–Crawley–Boevey 2020], cf. [Gabriel–Ro  ter 1992]. Over arbitrary poset Q , M has indecomposable decomposition: $M \cong \bigoplus_{\alpha \in A} M_\alpha$ with M_α indecomposable.

Essentially unique: multiset $\{M_\alpha\}_{\alpha \in A}$ of isomorphism classes is invariant.

Thm [Buchet–Escalar 2020], [Moore 2022]. General indecomposable \mathbb{Z}^n -modules are big, far from being interval modules (vector space dimensions $\gg 1$).

Thm [Bauer–Scoccola 2022]. \mathbb{Z}^n -indecomposables are dense in interleaving distance. The set of modules $\cong (\varepsilon\text{-trivial} \oplus \text{indecomposable})$ is interleaving-open.

Positivity. $M = \bigoplus_{\alpha \in A} M_\alpha$ expresses M positively in term of the M_α . Choose:

1. retain positivity or
2. retain description in terms of intervals.

Question. Can both be achieved?

Proposal. Pipeline:

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

}

“nice” algebraic objects \rightsquigarrow invariants \rightsquigarrow statistics

Arbitrary posets

Thm [Botnan–Crawley–Boevey 2020], cf. [Gabriel–Ro  ter 1992]. Over arbitrary poset Q , M has indecomposable decomposition: $M \cong \bigoplus_{\alpha \in A} M_\alpha$ with M_α indecomposable.

Essentially unique: multiset $\{M_\alpha\}_{\alpha \in A}$ of isomorphism classes is invariant.

Thm [Buchet–Escalar 2020], [Moore 2022]. General indecomposable \mathbb{Z}^n -modules are big, far from being interval modules (vector space dimensions $\gg 1$).

Thm [Bauer–Scoccola 2022]. \mathbb{Z}^n -indecomposables are dense in interleaving distance. The set of modules $\cong (\varepsilon\text{-trivial} \oplus \text{indecomposable})$ is interleaving-open.

Positivity. $M = \bigoplus_{\alpha \in A} M_\alpha$ expresses M positively in term of the M_α . Choose:

1. retain positivity or
2. retain description in terms of intervals.

Question. Can both be achieved?

Proposal. Pipeline:

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

\Downarrow old: decompose

“nice” algebraic objects \rightsquigarrow invariants \rightsquigarrow statistics

Arbitrary posets

Thm [Botnan–Crawley–Boevey 2020], cf. [Gabriel–Ro ter 1992]. Over arbitrary poset Q , M has indecomposable decomposition: $M \cong \bigoplus_{\alpha \in A} M_\alpha$ with M_α indecomposable.

Essentially unique: multiset $\{M_\alpha\}_{\alpha \in A}$ of isomorphism classes is invariant.

Thm [Buchet–Escalar 2020], [Moore 2022]. General indecomposable \mathbb{Z}^n -modules are big, far from being interval modules (vector space dimensions $\gg 1$).

Thm [Bauer–Scoccola 2022]. \mathbb{Z}^n -indecomposables are dense in interleaving distance. The set of modules $\cong (\varepsilon\text{-trivial} \oplus \text{indecomposable})$ is interleaving-open.

Positivity. $M = \bigoplus_{\alpha \in A} M_\alpha$ expresses M positively in term of the M_α . Choose:

1. retain positivity or
2. retain description in terms of intervals.

Question. Can both be achieved?

Proposal. Pipeline:

data \rightsquigarrow filtered topological spaces \rightsquigarrow algebraic objects

\Downarrow new: filter

“nice” algebraic objects \rightsquigarrow invariants \rightsquigarrow statistics

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules $\mathbb{k}\{S\}$:

- find a “maximally persistent” element $x \in M$
- $L = \text{lifetime of } x \Rightarrow \text{lifetime submodule } \mathbb{k}\{L\} \subseteq M$
- $\mathbb{k}\{L\} \cong \mathbb{k}\{U \cap D\}$ for upset U and downset D
- replace M with $M/\mathbb{k}\{L\}$
- iterate: view M as “stack of lifetimes”

Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q -module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_\bullet : M = M_\ell \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all $\text{gr}_i M = M_i/M_{i-1}$ lifetime modules, so the associated graded module is interval-decomposable:

$$\text{gr } M = \bigoplus_{i=1}^{\ell} M_i/M_{i-1}$$

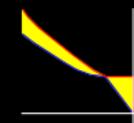
Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations \rightsquigarrow interleaving-stable lifetime displacement $\Delta_{\mathcal{L}}$: tame M and N admit lifetime filtrations verifying

$$\Delta_{\mathcal{L}}(M, N) \leq \mathbf{d}_{\mathcal{I}}(M, N).$$

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules $\mathbb{k}\{S\}$:

- find a “maximally persistent” element $x \in M$
- $L = \text{lifetime of } x \Rightarrow \text{lifetime submodule } \mathbb{k}\{L\} \subseteq M$
- $\mathbb{k}\{L\} \cong \mathbb{k}\{U \cap D\}$ for upset U and downset D
- replace M with $M/\mathbb{k}\{L\}$
- iterate: view M as “stack of lifetimes”



Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q -module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_\bullet : M = M_\ell \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all $\text{gr}_i M = M_i/M_{i-1}$ lifetime modules, so the associated graded module is interval-decomposable:

$$\text{gr } M = \bigoplus_{i=1}^{\ell} M_i/M_{i-1}$$

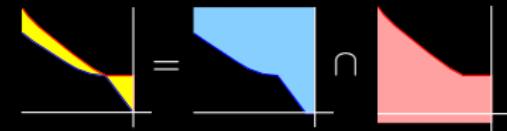
Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations \rightsquigarrow interleaving-stable lifetime displacement $\Delta_{\mathcal{L}}$: tame M and N admit lifetime filtrations verifying

$$\Delta_{\mathcal{L}}(M, N) \leq \mathbf{d}_{\mathcal{I}}(M, N).$$

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules $\mathbb{k}\{S\}$:

- find a “maximally persistent” element $x \in M$
- $L = \text{lifetime of } x \Rightarrow \text{lifetime submodule } \mathbb{k}\{L\} \subseteq M$
- $\mathbb{k}\{L\} \cong \mathbb{k}\{U \cap D\}$ for upset U and downset D
- replace M with $M/\mathbb{k}\{L\}$
- iterate: view M as “stack of lifetimes”



Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q -module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_\bullet : M = M_\ell \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all $\text{gr}_i M = M_i/M_{i-1}$ lifetime modules, so the associated graded module is interval-decomposable:

$$\text{gr } M = \bigoplus_{i=1}^{\ell} M_i/M_{i-1}$$

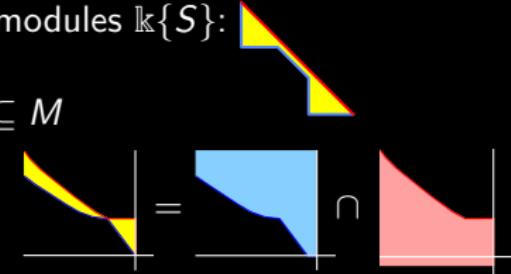
Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations \rightsquigarrow interleaving-stable lifetime displacement $\Delta_{\mathcal{L}}$: tame M and N admit lifetime filtrations verifying

$$\Delta_{\mathcal{L}}(M, N) \leq \mathbf{d}_{\mathcal{I}}(M, N).$$

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules $\mathbb{k}\{S\}$:

- find a “maximally persistent” element $x \in M$
- $L = \text{lifetime of } x \Rightarrow \text{lifetime submodule } \mathbb{k}\{L\} \subseteq M$
- $\mathbb{k}\{L\} \cong \mathbb{k}\{U \cap D\}$ for **upset** U and **downset** D
- replace M with $M/\mathbb{k}\{L\}$
- iterate: view M as “stack of lifetimes”



Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q -module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_\bullet : M = M_\ell \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all $\text{gr}_i M = M_i/M_{i-1}$ lifetime modules, so the associated graded module is interval-decomposable:

$$\text{gr } M = \bigoplus_{i=1}^{\ell} M_i/M_{i-1}$$

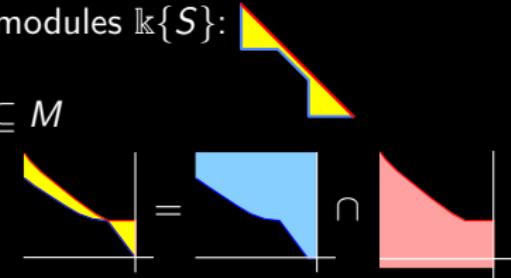
Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations \rightsquigarrow interleaving-stable lifetime displacement $\Delta_{\mathcal{L}}$: tame M and N admit lifetime filtrations verifying

$$\Delta_{\mathcal{L}}(M, N) \leq \mathbf{d}_{\mathcal{I}}(M, N).$$

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules $\mathbb{k}\{S\}$:

- find a “maximally persistent” element $x \in M$
- $L = \text{lifetime of } x \Rightarrow \text{lifetime submodule } \mathbb{k}\{L\} \subseteq M$
- $\mathbb{k}\{L\} \cong \mathbb{k}\{U \cap D\}$ for upset U and downset D
- replace M with $M/\mathbb{k}\{L\}$
- iterate: view M as “stack of lifetimes”



Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q -module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_\bullet : M = M_\ell \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all $\text{gr}_i M = M_i/M_{i-1}$ lifetime modules, so the associated graded module is interval-decomposable:

$$\text{gr } M = \bigoplus_{i=1}^{\ell} M_i/M_{i-1}$$

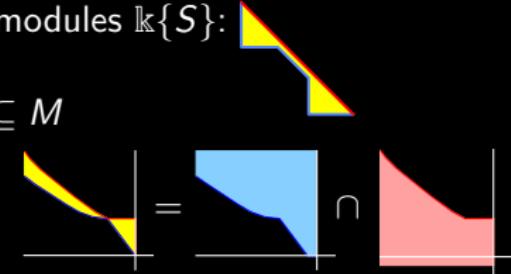
Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations \rightsquigarrow interleaving-stable lifetime displacement $\Delta_{\mathcal{L}}$: tame M and N admit lifetime filtrations verifying

$$\Delta_{\mathcal{L}}(M, N) \leq \mathbf{d}_{\mathcal{I}}(M, N).$$

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules $\mathbb{k}\{S\}$:

- find a “maximally persistent” element $x \in M$
- $L = \text{lifetime of } x \Rightarrow \text{lifetime submodule } \mathbb{k}\{L\} \subseteq M$
- $\mathbb{k}\{L\} \cong \mathbb{k}\{U \cap D\}$ for upset U and downset D
- replace M with $M/\mathbb{k}\{L\}$
- iterate: view M as “stack of lifetimes”



Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q -module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_\bullet : M = M_\ell \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all $\text{gr}_i M = M_i/M_{i-1}$ lifetime modules, so the associated graded module is interval-decomposable:

$$\text{gr } M = \bigoplus_{i=1}^{\ell} M_i/M_{i-1}$$

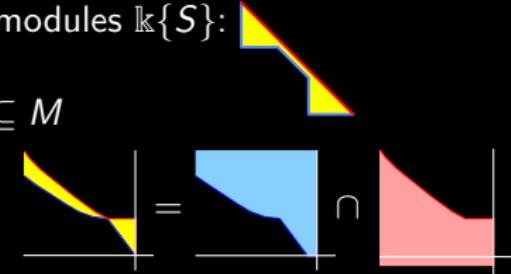
Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations \rightsquigarrow interleaving-stable lifetime displacement $\Delta_{\mathcal{L}}$: tame M and N admit lifetime filtrations verifying

$$\Delta_{\mathcal{L}}(M, N) \leq \mathbf{d}_{\mathcal{I}}(M, N).$$

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules $\mathbb{k}\{S\}$:

- find a “maximally persistent” element $x \in M$
- $L = \text{lifetime of } x \Rightarrow \text{lifetime submodule } \mathbb{k}\{L\} \subseteq M$
- $\mathbb{k}\{L\} \cong \mathbb{k}\{U \cap D\}$ for upset U and downset D
- replace M with $M/\mathbb{k}\{L\}$
- iterate: view M as “stack of lifetimes”



Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q -module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_\bullet : M = M_\ell \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all $\text{gr}_i M = M_i/M_{i-1}$ lifetime modules, so the associated graded module is interval-decomposable:

$$\text{gr } M = \bigoplus_{i=1}^{\ell} M_i/M_{i-1}$$

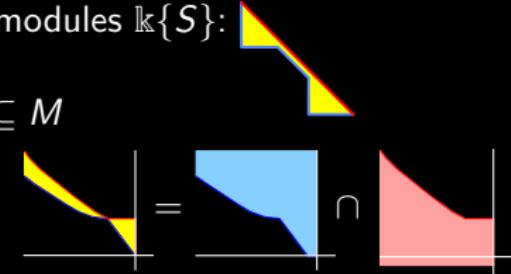
Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations \rightsquigarrow interleaving-stable lifetime displacement $\Delta_{\mathcal{L}}$: tame M and N admit lifetime filtrations verifying

$$\Delta_{\mathcal{L}}(M, N) \leq \mathbf{d}_{\mathcal{I}}(M, N).$$

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules $\mathbb{k}\{S\}$:

- find a “maximally persistent” element $x \in M$
- $L = \text{lifetime of } x \Rightarrow \text{lifetime submodule } \mathbb{k}\{L\} \subseteq M$
- $\mathbb{k}\{L\} \cong \mathbb{k}\{U \cap D\}$ for upset U and downset D
- replace M with $M/\mathbb{k}\{L\}$
- iterate: view M as “stack of lifetimes”



Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q -module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_\bullet : M = M_\ell \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all $\text{gr}_i M = M_i/M_{i-1}$ lifetime modules, so the associated graded module is interval-decomposable:

$$\text{gr } M = \bigoplus_{i=1}^{\ell} M_i/M_{i-1}$$

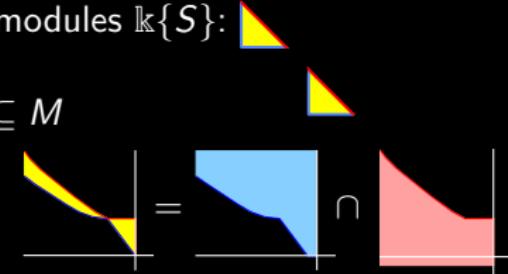
Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations \rightsquigarrow interleaving-stable lifetime displacement $\Delta_{\mathcal{L}}$: tame M and N admit lifetime filtrations verifying

$$\Delta_{\mathcal{L}}(M, N) \leq \mathbf{d}_{\mathcal{I}}(M, N).$$

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules $\mathbb{k}\{S\}$:

- find a “maximally persistent” element $x \in M$
- $L = \text{lifetime of } x \Rightarrow \text{lifetime submodule } \mathbb{k}\{L\} \subseteq M$
- $\mathbb{k}\{L\} \cong \mathbb{k}\{U \cap D\}$ for upset U and downset D
- replace M with $M/\mathbb{k}\{L\}$
- iterate: view M as “stack of lifetimes”



Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q -module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_\bullet : M = M_\ell \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all $\text{gr}_i M = M_i/M_{i-1}$ lifetime modules, so the associated graded module is interval-decomposable:

$$\text{gr } M = \bigoplus_{i=1}^{\ell} M_i/M_{i-1}$$

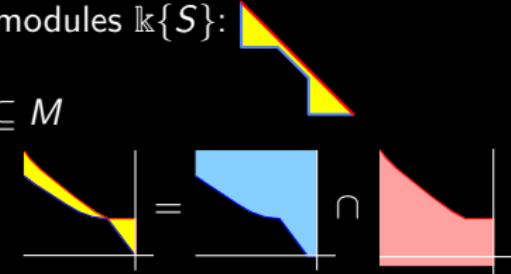
Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations \rightsquigarrow interleaving-stable lifetime displacement $\Delta_{\mathcal{L}}$: tame M and N admit lifetime filtrations verifying

$$\Delta_{\mathcal{L}}(M, N) \leq \mathbf{d}_{\mathcal{I}}(M, N).$$

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules $\mathbb{k}\{S\}$:

- find a “maximally persistent” element $x \in M$
- $L = \text{lifetime of } x \Rightarrow \text{lifetime submodule } \mathbb{k}\{L\} \subseteq M$
- $\mathbb{k}\{L\} \cong \mathbb{k}\{U \cap D\}$ for upset U and downset D
- replace M with $M/\mathbb{k}\{L\}$
- iterate: view M as “stack of lifetimes”



Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q -module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_\bullet : M = M_\ell \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all $\text{gr}_i M = M_i/M_{i-1}$ lifetime modules, so the associated graded module is interval-decomposable:

$$\text{gr } M = \bigoplus_{i=1}^{\ell} M_i/M_{i-1}$$

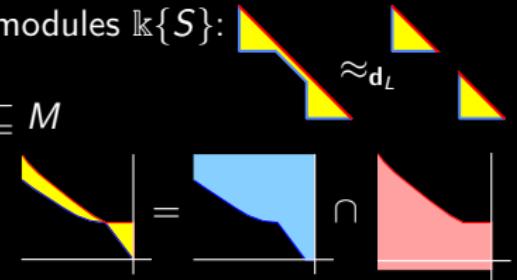
Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations \rightsquigarrow interleaving-stable lifetime displacement $\Delta_{\mathcal{L}}$: tame M and N admit lifetime filtrations verifying

$$\Delta_{\mathcal{L}}(M, N) \leq \mathbf{d}_{\mathcal{I}}(M, N).$$

Lifetime filtration

Idea [Cunha–M.–Zhang 2024–2025]. Filter with indicator modules $\mathbb{k}\{S\}$:

- find a “maximally persistent” element $x \in M$
- $L = \text{lifetime of } x \Rightarrow \text{lifetime submodule } \mathbb{k}\{L\} \subseteq M$
- $\mathbb{k}\{L\} \cong \mathbb{k}\{U \cap D\}$ for upset U and downset D
- replace M with $M/\mathbb{k}\{L\}$
- iterate: view M as “stack of lifetimes”



Motivation. What could “top 100 bar lengths” mean in multipersistence?

Input. Q -module M for arbitrary poset Q

Output. (noncanonical) filtration

- $F_\bullet : M = M_\ell \supseteq M_{\ell-1} \supseteq \cdots \supseteq M_1 \supseteq M_0 = 0$
- with all $\text{gr}_i M = M_i/M_{i-1}$ lifetime modules, so the associated graded module is interval-decomposable:

$$\text{gr } M = \bigoplus_{i=1}^{\ell} M_i/M_{i-1}$$

Thm [Cunha–M.–Zhang 2024–2025]. Lifetime filtrations \rightsquigarrow interleaving-stable lifetime displacement $\Delta_{\mathcal{L}}$: tame M and N admit lifetime filtrations verifying

$$\Delta_{\mathcal{L}}(M, N) \leq \mathbf{d}_{\mathcal{I}}(M, N).$$

Tameness

How to write down multipersistence modules in general? Need finiteness....

Def [M.- 2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q admits a **constant subdivision** if Q is partitioned into

- **constant regions A** , each with vector space $M_A \xrightarrow{\sim} M_{\mathbf{a}}$ for all $\mathbf{a} \in A$, having
- **no monodromy**: all comparable pairs $\mathbf{a} \preceq \mathbf{b}$ with $\mathbf{a} \in A$ and $\mathbf{b} \in B$ induce the same composite $M_A \rightarrow M_{\mathbf{a}} \rightarrow M_{\mathbf{b}} \rightarrow M_B$.

M is tame if it admits a finite constant subdivision and $\dim_{\mathbb{k}} M_q < \infty$ for all q .

Example. $\mathbb{k}_0 \oplus \mathbb{k}[\mathbb{R}^2]$ admits constant regions $\{\mathbf{0}\}$ and $\mathbb{R}^2 \setminus \{\mathbf{0}\}$

Tameness

How to write down multipersistence modules in general? Need finiteness....

Def [M.- 2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q admits a **constant subdivision** if Q is partitioned into

- **constant regions A** , each with vector space $M_A \xrightarrow{\sim} M_{\mathbf{a}}$ for all $\mathbf{a} \in A$, having
- **no monodromy**: all comparable pairs $\mathbf{a} \preceq \mathbf{b}$ with $\mathbf{a} \in A$ and $\mathbf{b} \in B$ induce the same composite $M_A \rightarrow M_{\mathbf{a}} \rightarrow M_{\mathbf{b}} \rightarrow M_B$.

M is tame if it admits a finite constant subdivision and $\dim_{\mathbb{k}} M_q < \infty$ for all q .

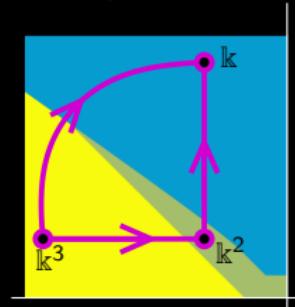
Example. $\mathbb{k}_0 \oplus \mathbb{k}[\mathbb{R}^2]$ admits constant regions $\{\mathbf{0}\}$ and $\mathbb{R}^2 \setminus \{\mathbf{0}\}$

Tameness

How to write down multipersistence modules in general? Need finiteness....

Def [M.- 2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q admits a **constant subdivision** if Q is partitioned into

- **constant regions A** , each with vector space $M_A \xrightarrow{\sim} M_{\mathbf{a}}$ for all $\mathbf{a} \in A$, having
- **no monodromy**: all comparable pairs $\mathbf{a} \preceq \mathbf{b}$ with $\mathbf{a} \in A$ and $\mathbf{b} \in B$ induce the same composite $M_A \rightarrow M_{\mathbf{a}} \rightarrow M_{\mathbf{b}} \rightarrow M_B$.



M is tame if it admits a finite constant subdivision and $\dim_{\mathbb{k}} M_q < \infty$ for all q .

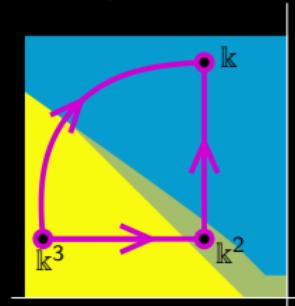
Example. $\mathbb{k}_0 \oplus \mathbb{k}[\mathbb{R}^2]$ admits constant regions $\{\mathbf{0}\}$ and $\mathbb{R}^2 \setminus \{\mathbf{0}\}$

Tameness

How to write down multipersistence modules in general? Need finiteness....

Def [M.- 2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q admits a **constant subdivision** if Q is partitioned into

- **constant regions A** , each with vector space $M_A \xrightarrow{\sim} M_{\mathbf{a}}$ for all $\mathbf{a} \in A$, having
- **no monodromy**: all comparable pairs $\mathbf{a} \preceq \mathbf{b}$ with $\mathbf{a} \in A$ and $\mathbf{b} \in B$ induce the same composite $M_A \rightarrow M_{\mathbf{a}} \rightarrow M_{\mathbf{b}} \rightarrow M_B$.



M is **tame** if it admits a finite constant subdivision and $\dim_{\mathbb{k}} M_q < \infty$ for all q .

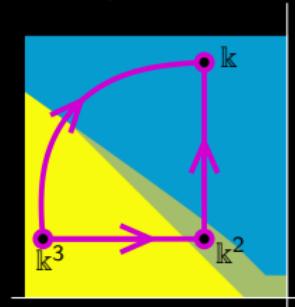
Example. $\mathbb{k}_0 \oplus \mathbb{k}[\mathbb{R}^2]$ admits constant regions $\{\mathbf{0}\}$ and $\mathbb{R}^2 \setminus \{\mathbf{0}\}$

Tameness

How to write down multipersistence modules in general? Need finiteness....

Def [M.- 2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q admits a **constant subdivision** if Q is partitioned into

- **constant regions A** , each with vector space $M_A \xrightarrow{\sim} M_{\mathbf{a}}$ for all $\mathbf{a} \in A$, having
- **no monodromy**: all comparable pairs $\mathbf{a} \preceq \mathbf{b}$ with $\mathbf{a} \in A$ and $\mathbf{b} \in B$ induce the same composite $M_A \rightarrow M_{\mathbf{a}} \rightarrow M_{\mathbf{b}} \rightarrow M_B$.



M is **tame** if it admits a finite constant subdivision and $\dim_{\mathbb{k}} M_q < \infty$ for all q .

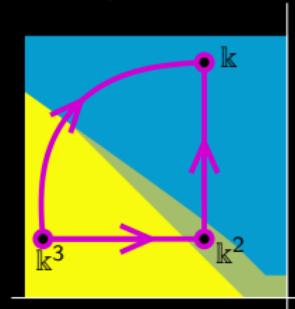
Example. $\mathbb{k}_0 \oplus \mathbb{k}[\mathbb{R}^2]$ admits constant regions $\{\mathbf{0}\}$ and $\mathbb{R}^2 \setminus \{\mathbf{0}\}$

Tameness

How to write down multipersistence modules in general? Need finiteness....

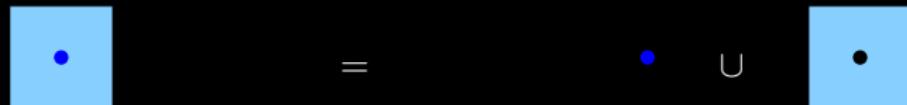
Def [M.- 2017, see arXiv:math.AT/2008.00063]. A module M over an arbitrary poset Q admits a **constant subdivision** if Q is partitioned into

- **constant regions A** , each with vector space $M_A \xrightarrow{\sim} M_{\mathbf{a}}$ for all $\mathbf{a} \in A$, having
- **no monodromy**: all comparable pairs $\mathbf{a} \preceq \mathbf{b}$ with $\mathbf{a} \in A$ and $\mathbf{b} \in B$ induce the same composite $M_A \rightarrow M_{\mathbf{a}} \rightarrow M_{\mathbf{b}} \rightarrow M_B$.



M is **tame** if it admits a finite constant subdivision and $\dim_{\mathbb{k}} M_q < \infty$ for all q .

Example. $\mathbb{k}_0 \oplus \mathbb{k}[\mathbb{R}^2]$ admits constant regions $\{\mathbf{0}\}$ and $\mathbb{R}^2 \setminus \{\mathbf{0}\}$



Distances

Def [Lesnick 2015]. Lifetime modules K, L are ε -interleaved if “ K fits ε -almost in L ” and vice versa. Similar for any modules M and N . The interleaving distance is

$$\mathbf{d}_I(M, N) = \inf\{\varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved}\}$$

Def. $\bigoplus_{\alpha \in A} M_\alpha$ and $\bigoplus_{\alpha \in A} N_\alpha$ are ε -matched if M_α and N_α are ε -interleaved $\forall \alpha \in A$.

Def. Let $\mathcal{D} : Q\text{-mods} \rightarrow$ families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(N)$ is a direct sum $L = L_1 \oplus \cdots \oplus L_\ell$. Assume $K = K_1 \oplus \cdots \oplus K_k$. The bottleneck distance determined by \mathcal{D} is

$$\mathbf{d}_{\mathcal{D}}(K, N) = \inf\{\varepsilon \mid K \text{ is } \varepsilon\text{-matched with some } L \in \mathcal{D}(N)\}.$$

Examples. various distances from different choices of \mathcal{D} :

1. bottleneck distance \mathbf{d}_B from $\mathcal{D}(N) = \{\text{indecomposable decompositions of } N\}$
if $K = K_1 \oplus \cdots \oplus K_k$ is a direct sum of indecomposables
2. lifetime matching distance $\mathbf{d}_{\mathcal{L}}$ from $\mathcal{D}(N) = \{\text{gr } F_\bullet N \text{ for lifetime filtration } F_\bullet\}$
if $K = K_1 \oplus \cdots \oplus K_k$ is lifetime decomposed

Def [Cunha–M.–Zhang 2024–2025]. The lifetime displacement from M to N is

$$\Delta_{\mathcal{L}}(M, N) = \sup_{K \in \mathcal{D}(M)} \mathbf{d}_{\mathcal{L}}(K, N).$$

Distances

Def [Lesnick 2015]. Lifetime modules K, L are ε -interleaved if “ K fits ε -almost in L ” and vice versa. Similar for any modules M and N . The interleaving distance is

$$\mathbf{d}_{\mathcal{I}}(M, N) = \inf\{\varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved}\}$$

Def. $\bigoplus_{\alpha \in A} M_\alpha$ and $\bigoplus_{\alpha \in A} N_\alpha$ are ε -matched if M_α and N_α are ε -interleaved $\forall \alpha \in A$.

Def. Let $\mathcal{D} : Q\text{-mods} \rightarrow$ families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(N)$ is a direct sum $L = L_1 \oplus \cdots \oplus L_\ell$. Assume $K = K_1 \oplus \cdots \oplus K_k$. The bottleneck distance determined by \mathcal{D} is

$$\mathbf{d}_{\mathcal{D}}(K, N) = \inf\{\varepsilon \mid K \text{ is } \varepsilon\text{-matched with some } L \in \mathcal{D}(N)\}.$$

Examples. various distances from different choices of \mathcal{D} :

1. bottleneck distance $\mathbf{d}_{\mathcal{B}}$ from $\mathcal{D}(N) = \{\text{indecomposable decompositions of } N\}$
if $K = K_1 \oplus \cdots \oplus K_k$ is a direct sum of indecomposables
2. lifetime matching distance $\mathbf{d}_{\mathcal{L}}$ from $\mathcal{D}(N) = \{\text{gr } F_\bullet N \text{ for lifetime filtration } F_\bullet\}$
if $K = K_1 \oplus \cdots \oplus K_k$ is lifetime decomposed

Def [Cunha–M.–Zhang 2024–2025]. The lifetime displacement from M to N is

$$\Delta_{\mathcal{L}}(M, N) = \sup_{K \in \mathcal{D}(M)} \mathbf{d}_{\mathcal{L}}(K, N).$$

Distances

Def [Lesnick 2015]. Lifetime modules K, L are ε -interleaved if “ K fits ε -almost in L ” and vice versa. Similar for any modules M and N . The interleaving distance is

$$\mathbf{d}_{\mathcal{I}}(M, N) = \inf\{\varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved}\}$$

Def. $\bigoplus_{\alpha \in A} M_\alpha$ and $\bigoplus_{\alpha \in A} N_\alpha$ are ε -matched if M_α and N_α are ε -interleaved $\forall \alpha \in A$.

Def. Let $\mathcal{D} : Q\text{-mods} \rightarrow$ families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(N)$ is a direct sum $L = L_1 \oplus \cdots \oplus L_\ell$. Assume $K = K_1 \oplus \cdots \oplus K_k$. The bottleneck distance determined by \mathcal{D} is

$$\mathbf{d}_{\mathcal{D}}(K, N) = \inf\{\varepsilon \mid K \text{ is } \varepsilon\text{-matched with some } L \in \mathcal{D}(N)\}.$$

Examples. various distances from different choices of \mathcal{D} :

1. bottleneck distance $\mathbf{d}_{\mathcal{B}}$ from $\mathcal{D}(N) = \{\text{indecomposable decompositions of } N\}$
if $K = K_1 \oplus \cdots \oplus K_k$ is a direct sum of indecomposables
2. lifetime matching distance $\mathbf{d}_{\mathcal{L}}$ from $\mathcal{D}(N) = \{\text{gr } F_\bullet N \text{ for lifetime filtration } F_\bullet\}$
if $K = K_1 \oplus \cdots \oplus K_k$ is lifetime decomposed

Def [Cunha–M.–Zhang 2024–2025]. The lifetime displacement from M to N is

$$\Delta_{\mathcal{L}}(M, N) = \sup_{K \in \mathcal{D}(M)} \mathbf{d}_{\mathcal{L}}(K, N).$$

Distances

Def [Lesnick 2015]. Lifetime modules K, L are ε -interleaved if “ K fits ε -almost in L ” and vice versa. Similar for any modules M and N . The interleaving distance is

$$\mathbf{d}_{\mathcal{I}}(M, N) = \inf\{\varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved}\}$$

Def. $\bigoplus_{\alpha \in A} M_\alpha$ and $\bigoplus_{\alpha \in A} N_\alpha$ are ε -matched if M_α and N_α are ε -interleaved $\forall \alpha \in A$.

Def. Let $\mathcal{D} : Q\text{-mods} \rightarrow$ families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(N)$ is a direct sum $L = L_1 \oplus \cdots \oplus L_\ell$.

Assume $K = K_1 \oplus \cdots \oplus K_k$. The bottleneck distance determined by \mathcal{D} is

$$\mathbf{d}_{\mathcal{D}}(K, N) = \inf\{\varepsilon \mid K \text{ is } \varepsilon\text{-matched with some } L \in \mathcal{D}(N)\}.$$

Examples. various distances from different choices of \mathcal{D} :

1. bottleneck distance $\mathbf{d}_{\mathcal{B}}$ from $\mathcal{D}(N) = \{\text{indecomposable decompositions of } N\}$
if $K = K_1 \oplus \cdots \oplus K_k$ is a direct sum of indecomposables
2. lifetime matching distance $\mathbf{d}_{\mathcal{L}}$ from $\mathcal{D}(N) = \{\text{gr } F_\bullet N \text{ for lifetime filtration } F_\bullet\}$
if $K = K_1 \oplus \cdots \oplus K_k$ is lifetime decomposed

Def [Cunha–M.–Zhang 2024–2025]. The lifetime displacement from M to N is

$$\Delta_{\mathcal{L}}(M, N) = \sup_{K \in \mathcal{D}(M)} \mathbf{d}_{\mathcal{L}}(K, N).$$

Distances

Def [Lesnick 2015]. Lifetime modules K, L are ε -interleaved if “ K fits ε -almost in L ” and vice versa. Similar for any modules M and N . The interleaving distance is

$$\mathbf{d}_{\mathcal{I}}(M, N) = \inf\{\varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved}\}$$

Def. $\bigoplus_{\alpha \in A} M_\alpha$ and $\bigoplus_{\alpha \in A} N_\alpha$ are ε -matched if M_α and N_α are ε -interleaved $\forall \alpha \in A$.

Def. Let $\mathcal{D} : Q\text{-mods} \rightarrow$ families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(N)$ is a direct sum $L = L_1 \oplus \cdots \oplus L_\ell$.

Assume $K = K_1 \oplus \cdots \oplus K_k$. The bottleneck distance determined by \mathcal{D} is

$$\mathbf{d}_{\mathcal{D}}(K, N) = \inf\{\varepsilon \mid K \text{ is } \varepsilon\text{-matched with some } L \in \mathcal{D}(N)\}.$$

Examples. various distances from different choices of \mathcal{D} :

1. bottleneck distance $\mathbf{d}_{\mathcal{B}}$ from $\mathcal{D}(N) = \{\text{indecomposable decompositions of } N\}$ if $K = K_1 \oplus \cdots \oplus K_k$ is a direct sum of indecomposables
2. lifetime matching distance $\mathbf{d}_{\mathcal{L}}$ from $\mathcal{D}(N) = \{\text{gr } F_\bullet N \text{ for lifetime filtration } F_\bullet\}$ if $K = K_1 \oplus \cdots \oplus K_k$ is lifetime decomposed

Def [Cunha–M.–Zhang 2024–2025]. The lifetime displacement from M to N is

$$\Delta_{\mathcal{L}}(M, N) = \sup_{K \in \mathcal{D}(M)} \mathbf{d}_{\mathcal{L}}(K, N).$$

Distances

Def [Lesnick 2015]. Lifetime modules K, L are ε -interleaved if “ K fits ε -almost in L ” and vice versa. Similar for any modules M and N . The interleaving distance is

$$\mathbf{d}_{\mathcal{I}}(M, N) = \inf\{\varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved}\}$$

Def. $\bigoplus_{\alpha \in A} M_\alpha$ and $\bigoplus_{\alpha \in A} N_\alpha$ are ε -matched if M_α and N_α are ε -interleaved $\forall \alpha \in A$.

Def. Let $\mathcal{D} : Q\text{-mods} \rightarrow$ families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(N)$ is a direct sum $L = L_1 \oplus \cdots \oplus L_\ell$.

Assume $K = K_1 \oplus \cdots \oplus K_k$. The bottleneck distance determined by \mathcal{D} is

$$\mathbf{d}_{\mathcal{D}}(K, N) = \inf\{\varepsilon \mid K \text{ is } \varepsilon\text{-matched with some } L \in \mathcal{D}(N)\}.$$

Examples. various distances from different choices of \mathcal{D} :

1. bottleneck distance $\mathbf{d}_{\mathcal{B}}$ from $\mathcal{D}(N) = \{\text{indecomposable decompositions of } N\}$ if $K = K_1 \oplus \cdots \oplus K_k$ is a direct sum of indecomposables
2. lifetime matching distance $\mathbf{d}_{\mathcal{L}}$ from $\mathcal{D}(N) = \{\text{gr } F_\bullet N \text{ for lifetime filtration } F_\bullet\}$ if $K = K_1 \oplus \cdots \oplus K_k$ is lifetime decomposed

Def [Cunha–M.–Zhang 2024–2025]. The lifetime displacement from M to N is

$$\Delta_{\mathcal{L}}(M, N) = \sup_{K \in \mathcal{D}(M)} \mathbf{d}_{\mathcal{L}}(K, N).$$

Distances

Def [Lesnick 2015]. Lifetime modules K, L are ε -interleaved if “ K fits ε -almost in L ” and vice versa. Similar for any modules M and N . The interleaving distance is

$$\mathbf{d}_{\mathcal{I}}(M, N) = \inf\{\varepsilon \mid M \text{ and } N \text{ are } \varepsilon\text{-interleaved}\}$$

Def. $\bigoplus_{\alpha \in A} M_\alpha$ and $\bigoplus_{\alpha \in A} N_\alpha$ are ε -matched if M_α and N_α are ε -interleaved $\forall \alpha \in A$.

Def. Let $\mathcal{D} : Q\text{-mods} \rightarrow$ families of finitely decomposed Q -modules with ordered summands, so each element of $\mathcal{D}(N)$ is a direct sum $L = L_1 \oplus \cdots \oplus L_\ell$.

Assume $K = K_1 \oplus \cdots \oplus K_k$. The bottleneck distance determined by \mathcal{D} is

$$\mathbf{d}_{\mathcal{D}}(K, N) = \inf\{\varepsilon \mid K \text{ is } \varepsilon\text{-matched with some } L \in \mathcal{D}(N)\}.$$

Examples. various distances from different choices of \mathcal{D} :

1. bottleneck distance $\mathbf{d}_{\mathcal{B}}$ from $\mathcal{D}(N) = \{\text{indecomposable decompositions of } N\}$ if $K = K_1 \oplus \cdots \oplus K_k$ is a direct sum of indecomposables
2. lifetime matching distance $\mathbf{d}_{\mathcal{L}}$ from $\mathcal{D}(N) = \{\text{gr } F_\bullet N \text{ for lifetime filtration } F_\bullet\}$ if $K = K_1 \oplus \cdots \oplus K_k$ is lifetime decomposed

Def [Cunha–M.–Zhang 2024–2025]. The lifetime displacement from M to N is

$$\Delta_{\mathcal{L}}(M, N) = \sup_{K \in \mathcal{D}(M)} \mathbf{d}_{\mathcal{L}}(K, N).$$

Looking forward

Question. What could “top 100 bar lengths” mean in multipersistence?

- Locate “maximally persistent” elements
- What is meant by “maximally persistent”?
 - length, width, area, volume
 - “size” is crucial when parameters have incomparable scientific meanings
 - primary distances: separate classes according to birth and death types
 - note: primary decomposition is really another filtration!

Compare Bjerkevik’s pruning distance stability/Lipschitz conjecture [Bjerkevik 2023]

- Must an indecomposable possess a big individual element?
- Is every indecomposable close to interval decomposing? If not, how likely is it?
- How likely is M to break into interpretable small pieces by perturbation?

Implementation

- Locate maximally persistent elements algorithmically
- Certify lower bounds for approximating $\Delta_{\mathcal{L}}$

Looking forward

Question. What could “top 100 bar lengths” mean in multipersistence?

- Locate “maximally persistent” elements
- What is meant by “maximally persistent”?
 - length, width, area, volume
 - “size” is crucial when parameters have incomparable scientific meanings
 - primary distances: separate classes according to birth and death types
 - note: primary decomposition is really another filtration!

Compare Bjerkevik’s pruning distance stability/Lipschitz conjecture [Bjerkevik 2023]

- Must an indecomposable possess a big individual element?
- Is every indecomposable close to interval decomposing? If not, how likely is it?
- How likely is M to break into interpretable small pieces by perturbation?

Implementation

- Locate maximally persistent elements algorithmically
- Certify lower bounds for approximating $\Delta_{\mathcal{L}}$

Looking forward

Question. What could “top 100 bar lengths” mean in multipersistence?

- Locate “maximally persistent” elements
- What is meant by “maximally persistent”?
 - length, width, area, volume
 - “size” is crucial when parameters have incomparable scientific meanings
 - primary distances: separate classes according to birth and death types
 - note: primary decomposition is really another filtration!

Compare Bjerkevik’s pruning distance stability/Lipschitz conjecture [Bjerkevik 2023]

- Must an indecomposable possess a big individual element?
- Is every indecomposable close to interval decomposing? If not, how likely is it?
- How likely is M to break into interpretable small pieces by perturbation?

Implementation

- Locate maximally persistent elements algorithmically
- Certify lower bounds for approximating $\Delta_{\mathcal{L}}$

Looking forward

Question. What could “top 100 bar lengths” mean in multipersistence?

- Locate “maximally persistent” elements
- What is meant by “maximally persistent”?
 - length, width, area, volume
 - “size” is crucial when parameters have incomparable scientific meanings
 - primary distances: separate classes according to birth and death types
 - note: primary decomposition is really another filtration!

Compare Bjerkevik’s pruning distance stability/Lipschitz conjecture [Bjerkevik 2023]

- Must an indecomposable possess a big individual element?
- Is every indecomposable close to interval decomposing? If not, how likely is it?
- How likely is M to break into interpretable small pieces by perturbation?

Implementation

- Locate maximally persistent elements algorithmically
- Certify lower bounds for approximating $\Delta_{\mathcal{L}}$

Looking forward

Question. What could “top 100 bar lengths” mean in multipersistence?

- Locate “maximally persistent” elements
- What is meant by “maximally persistent”?
 - length, width, area, volume
 - “size” is crucial when parameters have incomparable scientific meanings
 - primary distances: separate classes according to birth and death types
 - note: primary decomposition is really another filtration!

Compare Bjerkevik’s pruning distance stability/Lipschitz conjecture [Bjerkevik 2023]

- Must an indecomposable possess a big individual element?
- Is every indecomposable close to interval decomposing? If not, how likely is it?
- How likely is M to break into interpretable small pieces by perturbation?

Implementation

- Locate maximally persistent elements algorithmically
- Certify lower bounds for approximating $\Delta_{\mathcal{L}}$

References

1. Silvana Abeasis and Alberto Del Fra, *Degenerations for the representations of an equioriented quiver of type A_m* , Boll. Un. Mat. Ital. Suppl. **2** (1980), 157–171.
2. Silvana Abeasis, Alberto Del Fra, and Hanspeter Kraft, *The geometry of representations of A_m* , Math. Ann. **256** (1981), no. 3, 401–418.
3. Stephen Aylward and Elizabeth Bullitt, *Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction*, IEEE Trans. on Medical Imaging **21**, no. 2 (2002), 61–75.
4. Ulrich Bauer and Luis Scoccola, *Generic multi-parameter persistence modules are nearly indecomposable*, preprint, 2022. arXiv:math.RT/2211.15306
5. Paul Bendich, Steve Marron, Ezra Miller, Alex Pieloch, and Sean Skwerer, *Persistent homology analysis of brain artery trees*, Ann. Appl. Stat. **10** (2016), #1, 198–218.
6. Håvard Bjerkevik, *Stabilizing decomposition of multiparameter persistence modules*, preprint, 2023. arXiv:math.RT/2305.15550
7. Magnus Botnan and William Crawley-Boevey, *Decomposition of persistence modules*, Proc. Amer. Math. Soc. **148** (2020), 4581–4596.
8. Mickaël Buchet, Emerson Escolar, *Every 1D persistence module is a restriction of some 2D indecomposable*, J. Appl. Comput. Top. **4** (2020), no. 3, 387–424.
9. Gunnar Carlsson and Afra Zomorodian, *The theory of multidimensional persistence*, Discrete and Comput. Geom. **42** (2009), 71–93.
10. William Crawley-Boevey, *Decomposition of pointwise finite-dimensional persistence modules*, J. Algebra Appl. **14** (2015), no. 5, 1550066, 8 pp.
11. Ricardo Prado Cunha, Ezra Miller, and Jiaxi (Jesse) Zhang, *Lifetime filtration of multiparameter persistence modules*, draft, 2025.
12. Allen Knutson, Ezra Miller, and Mark Shimozono, *Four positive formulae for type A quiver polynomials*, Invent. Math. **166** (2006), no. 2, 229–325.
13. Michael Lesnick, *The theory of the interleaving distance on multidimensional persistence modules*, Found. Comput. Math. **15** (2015), 613–650.
14. Ezra Miller, *Data structures for real multiparameter persistence modules*, 107 pages. arXiv:math.AT/1709.08155
15. Ezra Miller, *Homological algebra of modules over posets*, 42 pages, SIAM J. Appl. Algebra and Geom., 2025.
16. Ezra Miller and Bernd Sturmfels, *Combinatorial commutative algebra*, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005.

References

1. Silvana Abeasis and Alberto Del Fra, *Degenerations for the representations of an equioriented quiver of type A_m* , Boll. Un. Mat. Ital. Suppl. **2** (1980), 157–171.
2. Silvana Abeasis, Alberto Del Fra, and Hanspeter Kraft, *The geometry of representations of A_m* , Math. Ann. **256** (1981), no. 3, 401–418.
3. Stephen Aylward and Elizabeth Bullitt, *Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction*, IEEE Trans. on Medical Imaging **21**, no. 2 (2002), 61–75.
4. Ulrich Bauer and Luis Scoccola, *Generic multi-parameter persistence modules are nearly indecomposable*, preprint, 2022. arXiv:math.RT/2211.15306
5. Paul Bendich, Steve Marron, Ezra Miller, Alex Pieloch, and Sean Skwerer, *Persistent homology analysis of brain artery trees*, Ann. Appl. Stat. **10** (2016), #1, 198–218.
6. Håvard Bjerkevik, *Stabilizing decomposition of multiparameter persistence modules*, preprint, 2023. arXiv:math.RT/2305.15550
7. Magnus Botnan and William Crawley-Boevey, *Decomposition of persistence modules*, Proc. Amer. Math. Soc. **148** (2020), 4581–4596.
8. Mickaël Buchet, Emerson Escolar, *Every 1D persistence module is a restriction of some 2D indecomposable*, J. Appl. Comput. Top. **4** (2020), no. 3, 387–424.
9. Gunnar Carlsson and Afra Zomorodian, *The theory of multidimensional persistence*, Discrete and Comput. Geom. **42** (2009), 71–93.
10. William Crawley-Boevey, *Decomposition of pointwise finite-dimensional persistence modules*, J. Algebra Appl. **14** (2015), no. 5, 1550066, 8 pp.
11. Ricardo Prado Cunha, Ezra Miller, and Jiaxi (Jesse) Zhang, *Lifetime filtration of multiparameter persistence modules*, draft, 2025.
12. Allen Knutson, Ezra Miller, and Mark Shimozono, *Four positive formulae for type A quiver polynomials*, Invent. Math. **166** (2006), no. 2, 229–325.
13. Michael Lesnick, *The theory of the interleaving distance on multidimensional persistence modules*, Found. Comput. Math. **15** (2015), 613–650.
14. Ezra Miller, *Data structures for real multiparameter persistence modules*, 107 pages. arXiv:math.AT/1709.08155
15. Ezra Miller, *Homological algebra of modules over posets*, 42 pages, SIAM J. Appl. Algebra and Geom., 2025.
16. Ezra Miller and Bernd Sturmfels, *Combinatorial commutative algebra*, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005.

Thank You