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2 RICHARD HAIN

These notes are an introduction to ideas concerning the Hodge theory
of the unipotent fundamental group of P1 − {0, 1,∞} and its relation
to multiple zeta numbers. They cover more material than the lectures.
Most of the major ideas in these notes come from the work of Chen,
Deligne, Goncharov, and Racinet.

1. Iterated Integrals and Chen’s π1 de Rham Theorem

The goal of this section is to state Chen’s analogue for the funda-
mental group of de Rham’s classical theorem and to prove it in some
special cases.

1.1. The Classical de Rham Theorem. Let F denote either R or
C. Denote the complex of smooth, F -valued differential k-forms on a
smooth manifold M by Ek

F (M). These fit together to form a complex

0 // E0
F (M)

d
// E1

F (M)
d

// E2
F (M)

d
// · · ·

The map d from k-forms to (k + 1)-forms is the exterior derivative.
This complex is called the de Rham complex of M . We shall denote
it by E•

F (M). The cohomology of this complex is called the de Rham
cohomology of M , and will be denoted by H•

DR(M ; F ).
Denote the standard k-simplex by ∆k. A smooth singular chain is a

linear combination of smooth singular k-simplices σ : ∆k → M . The
singular homology and cohomology of M can be computed using smooth
singular chains in place of the usual continuous ones.1 More precisely,
denote the complex of smooth singular chains on M with values in the
abelian group A by S•(M ; A). Define the smooth singular cochains on
M with values in A to be its dual:

S•(M ; A) := HomZ(S•(M ; Z), A).

Then there are natural isomorphisms

Hk(M ; A) ∼= Hk(S•(M ; A)) and Hk(M ; A) ∼= Hk(S•(M ; A))

Integration induces a natural mapping∫
: E•

F (M)→ S•(M ; F )

Stokes’ Theorem implies that it is a chain mapping. Although both
E•

F (M) and S•(M ; F ) are F -algebras, this mapping is not an algebra
homomorphism.

The Universal Coefficient Theorem implies that the natural mapping

Hk(M ; F )→ HomZ(Hk(M ; Z), F )

1There are various ways to prove this, such as the method of acyclic models.
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is an isomorphism. We are now ready to state the classical de Rham
Theorem.

Theorem 1 (de Rham, 1929). The integration mapping induces a nat-
ural F -algebra isomorphism

H•
DR(M ; F )→ H•(M ; F ).

Using his iterated integrals, Chen generalized this theorem to ho-
motopy groups.2 We will concentrate on his de Rham theorem for the
fundamental group. Along the way, we will see that certain number
theoretically interesting expressions can be expressed in terms of iter-
ated integrals. This is not an accident.

1.2. Path Spaces and the Fundamental Groupoid. As in the pre-
vious section, M will denote a smooth manifold. The path space of M
is

PM := {γ : [0, 1]→M : γ is piecewise smooth}

This can be endowed with the compact-open topology. The end point
mapping

PM →M ×M, γ 7→
(
γ(0), γ(1)

)

is continuous. Denote the inverse image of (a, b) by Pa,bM . The set
π0(Pa,bM) of its connected components is simply the set of homotopy
classes of piecewise smooth paths from a to b in M . It is denoted by
π(M ; a, b).

Multiplication of paths defines mappings

π(M ; a, b)× π(M ; b, c)→ π(M ; a, c).

The category whose objects are the points of M and where the set of
morphisms from a to b is π(M ; a, b) is called the fundamental groupoid
of M . Here we encounter a point where conventions differ. I am com-
posing paths in the “natural order”, as do most topologists.3 The
fundamental groupoid can be defined for any topological space using
continuous mappings. For smooth manifolds, all definitions agree. This
is the content of the following exercise.

2A good reference is Chen’s Bulletin article [2]. About the same time, Dennis
Sullivan [20] developed a parallel theory of minimal models, which allows the com-
putation of the “real homotopy groups” of a manifold from its de Rham complex.
The theories of Chen and Sullivan are equivalent and compute the same invariants.
Both theories work well for simply connected manifolds and reasonably well for the
fundamental group of non-simply connected manifolds.

3Many algebraic geometers (including Deligne and Goncharov) compose paths
in the functional order. This does not create any serious problems, but you should
be aware of this when reading the literature.
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Exercise 1. Prove that the following mappings are all bijections:
{

piecewise smooth
paths from a to b

} /
smooth homotopies

→
{

piecewise smooth
paths from a to b

} /
homotopy

→
{

continuous paths
from a to b

} /
homotopy

This statement is the analogue for the fundamental groupoid of the
fact that, for smooth manifolds, singular homology can be computed
using smooth singular chains.

1.3. Iterated Integrals. Suppose that M is a smooth manifold and
that α, β ∈ Pa,aM . Then for any 1-form (closed or not) on M ,

(1)

∫

αβ

w =

∫

α

w +

∫

β

w =

∫

βα

w.

This means that ordinary line integrals are intrinsically abelian — they
cannot detect the order in which we compose α and β. Because of
this, ordinary line integrals cannot detect elements of the commutator
subgroup of π1(M, a). This raises the question of how one can use
differential forms to detect elements of π1(M, a) that are not visible in
H1(M ; R).

Chen gave a non-abelian generalization of the standard line integral.
These are called iterated line integrals.

Definition 2. Suppose that w1, . . . , wr are smooth 1-forms on M with
values in an associative R algebra A.4 (That is, wj ∈ E1

R(M) ⊗ A.)
Suppose that γ ∈ PM . Define∫

γ

w1w2 . . . wr ∈ A

to be the time ordered integral∫

0≤t1≤t2≤···≤tn≤1

f1(t1) . . . fr(tr)dt1 . . . dtr,

where γ∗wj = fj(t)dt. The iterated integral is to be viewed as a func-
tion ∫

w1w2 . . . wr : PM → A.

A general iterated integral is an R-linear combination of the constant
function and basic iterated integrals

∫
w1 . . . wr.

4Typically, A is C, Mn(R) or Mn(C), where Mn(R) denotes the R-algebra of
n× n matrices over a ring R.
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The time ordered nature of iterated integrals is the key to their non-
abelian properties.

Definition 3. Let S be a set. A function F : PM → S is a homotopy
functional the value of F on a path γ depends only in its homotopy
class in Pa,bM . More precisely, for each pair of points a, b in M , there
is a function fa,b : π(M ; a, b)→ S such that the diagram

Pa,bM

��

F
// S

π(M ; a, b)

fa,b

::vvvvvvvvvv

commutes.

A homotopy functional F : PM → S induces a function φF :
π1(M, a)→ S by taking the homotopy class of a loop γ to F(γ). More
generally, it induces functions φF : π(M ; a, b)→ S.

The basic problem, then, is to find all (or enough) iterated integrals
that are homotopy functionals.

Exercise 2. Show that if w is a 1-form on a connected manifold M ,
then ∫

w : PM → R

is a homotopy functional if and only if w is closed.

Not all iterated integrals of closed forms are homotopy functionals.

Exercise 3. Suppose that M is the 2-torus R2/Z2. Compute
∫

αβ

dx dy and

∫

βα

dx dy,

where (x, y) are the coordinates on R2 and α(t) = (t, 0), β(t) = (0, t).
Deduce that

∫
dx dy is not a homotopy functional.

Exercise 4. Show that if w1, . . . , wr are closed A-valued 1-forms on M
with the property that wj ∧ wj+1 = 0 for j = 1, . . . , r − 1, then

∫
w1w2 . . . wr : PM → A

is a homotopy functional. In particular, if M is a Riemann surface and
each wj is holomorphic, then

∫
w1 . . . wr is a homotopy functional.
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1.4. Basic Properties of Iterated Integrals. The most basic prop-
erty of iterated integrals is naturality, which is easily proved using the
definition.

Proposition 4. Suppose that f : M → N is a smooth mapping between
smooth manifolds. If w1, w2, . . . , wr ∈ E1(N) and α ∈ PM , then

∫

f◦α

w1w2 . . . wr =

∫

α

f ∗w1f
∗w2 . . . f ∗wr. �

The next three properties of iterated integrals are of a combinatorial
nature and reflect the combinatorics of simplices. They are formulas
for how to evaluate an iterated integral on the product of two paths,
how to pointwise multiply two iterated integrals (as functions on PM)
and how to evaluate an iterated integral on the inverse of a path.

Our model for the standard r-simplex is the time ordered r-simplex:

∆r = {(t1, t2, . . . , tr) ∈ Rr : 0 ≤ t1 ≤ t2 ≤ · · · ≤ tr ≤ 1}.

The definition of a basic iterated line integral may be restated as:

(2)

∫

γ

w1 · · ·wr =

∫

∆r

(p∗1γ
∗w1) ∧ (p∗2γ

∗w2) ∧ · · · ∧ (p∗rγ
∗wr)

where pj : Rr → R denotes projection onto the jth coordinate.
The two relevant combinatorial properties of simplices are estab-

lished in the next two exercises.

Exercise 5. In this exercise, t0 = 0 and tr+1 = 1. Show that

∆r =

r⋃

j=0

{
(t1, t2, . . . , tr) : 0 ≤ t1 ≤ · · · ≤ tj ≤ 1/2 ≤ tj+1 ≤ · · · ≤ tr

}

and that there is a natural identification of ∆j ×∆r−j with
{
(t1, t2, . . . , tr) : 0 ≤ t1 ≤ · · · ≤ tj ≤ 1/2 ≤ tj+1 ≤ · · · ≤ tr

}
.

Suppose that r and s are two non-negative integers. A permutation
σ of {1, 2, . . . , r + s} is a shuffle of type (r, s) if

σ−1(1) < σ−1(2) < · · · < σ−1(r) and

σ−1(r + 1) < σ−1(r + 2) < · · · < σ−1(r + s).

To make sense out of this definition, it helps to note that σ−1(k) is the
position of k in the ordered list

σ(1), σ(2), σ(3), . . . , σ(r + s).
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Thus σ is a shuffle of type (r, s) if the numbers 1, 2, 3, . . . , r occur in
order, and so do the numbers r + 1, r + 2, . . . , r + s. For example, the
6 shuffles of {1, 2, 3, 4} of type (2, 2) are

1234, 1324, 1342, 3124, 3142, 3412.

Denote the set of shuffles of type (r, s) by Sh(r, s). There are
(

r+s
r

)

of these.

Exercise 6. View ∆r ×∆s as a subset of Rr × Rs = Rr+s. Show that

∆r ×∆s =
⋃

σ∈Sh(r,s)

{(t1, t2, . . . , tr+s) : 0 ≤ tσ(1) ≤ tσ(2) ≤ · · · ≤ tσ(r+s) ≤ 1}.

Proposition 5. Suppose that w1, w2, · · · are smooth 1-forms on the
manifold M . Then:

Coproduct: If α, β ∈ PM are composable (i.e., α(1) = β(0)),
then

∫

αβ

w1w2 . . . wr =

r∑

j=0

∫

α

w1 . . . wj

∫

β

wj+1 · · ·wr.

Here we introduce and use the convention that
∫

γ
φ1 · · ·φk = 1

when k = 0.
Product: If α ∈ PM , then∫

α

w1 . . . wr

∫

α

wr+1 · · ·wr+s =
∑

σ∈Sh(r,s)

wσ(1)wσ(2) · · ·wσ(r+s).

Antipode: If α ∈ PM , then∫

α−1

w1w2 · · ·wr = (−1)r

∫

α

wrwr−1 · · ·w1.

These statements follow directly from the alternative definition (2)
of iterated line integrals and the results of Exercises 5 and 6.

Example 6. If α and β are composable paths, then∫

αβ

w1w2w3 =

∫

α

w1w2w3+

∫

α

w1w2

∫

β

w3+

∫

α

w1

∫

β

w2w3+

∫

β

w1w2w3,

∫

α

w1

∫

α

w2w3 =

∫

α

w1w2w3 +

∫

α

w2w1w3 +

∫

α

w2w3w1,

and ∫

α−1

w1w2w3 = −

∫

α

w3w2w1.
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Exercise 7 (Commutator formula). Suppose that α, β ∈ Px,xM and
that w1, w2 ∈ E1(M). Show that

∫

αβα−1β−1

w1w2 =

∣∣∣∣
∫

α
w1

∫
α

w2∫
β
w1

∫
β
w2

∣∣∣∣ .

It is now clear that iterated line integrals can detect elements of
π1(M, x) not visible in H1(M ; R). For example, suppose U = P1 −
{0, 1,∞} and

w0 =
dz

z
and w1 =

dz

1− z
∈ H0(Ω1

U ).

If σ0 and σ1 are generators of π1(P
1 − {0, 1,∞}, 1/2) satisfying

∫

σj

wk = (−1)k2πiδjk,

then ∫

σ0σ1σ−1
0 σ−1

1

w0w1 =

∣∣∣∣
∫

σ0
w0

∫
σ0

w1∫
σ1

w0

∫
σ1

w1

∣∣∣∣ = 4π2.

Exercise 8 (Change of base point formula). Suppose that α ∈ Px,xM ,
γ ∈ Py,xM and that w1, w2 ∈ E1(M). Show that

∫

γαγ−1

w1w2 =

∫

α

w1w2 +

∣∣∣∣
∫

γ
w1

∫
γ
w2∫

α
w1

∫
α
w2

∣∣∣∣ .

Iterated line integrals do not depend on the parameterization of
paths. For two paths α, β ∈ Px,yM , write α ∼ β if there exists
φ ∈ P0,1[0, 1] such that β = α◦φ. This relation generates an equivalence
relation on PM that we shall also denote by ∼.

The following property is easily proved using elementary calculus.

Proposition 7. Iterated integrals
∫

w1w2 . . . wr : PM → A factor
through the quotient mapping PM → PM/ ∼. That is, if α, β ∈ PM
and α ∼ β, then ∫

α

w1 . . . wr =

∫

β

w1 . . . wr. �

The set (Px,xM)/ ∼ has a well defined associative product
[
(Px,xM)/ ∼

]
×

[
(Px,xM)/ ∼

]
→ (Px,xM)/ ∼ .

The identity is the constant path at x. We shall denote by 1x. Set

P (M, x) =
∐

(Px,xM)/∼

Z
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This is an associative algebra whose elements are formal finite linear
combinations

c =
∑

γ

nγγ

Iterated integrals with values in A define functions
∫

w1 . . . wr : P (M, x)→ A, c 7→
〈 ∫

w1 . . . wr, c
〉
.

Another fundamental property of iterated integrals is nilpotence.

Proposition 8 (Nilpotence). If r, s ≥ 1, w1, . . . , wr ∈ E1(M) and
α1, . . . , αs ∈ P (M, x), then

〈 ∫
w1, . . . , wr, (α1−1x)(α2−1x) · · · (αs−1x)

〉
=

{∏r
j=1

∫
αj

wj r = s

0 s > r.

This generalizes the property (1) of standard line integrals, which is
the case r = 1:

〈 ∫
w, (α− 1x)(β − 1x)

〉
=

〈 ∫
w, αβ − α− β + 1x

〉

=

∫

αβ

w −

∫

α

w −

∫

β

w +

∫

1x

w

= 0.

The proof of this proposition contains some important and useful
techniques due to Chen.

Proof. Denote the free associative R-algebra generated by indetermi-
nates X1, . . . , Xr by

R〈X1, . . . , Xr〉

and its completion with respect to the ideal I := (X1, . . . , Xr) by

R〈〈X1, . . . , Xr〉〉

Elements of this ring are formal power series in the non-commuting
indeterminates X1, . . . , Xr.

Consider the function T : PM → R〈〈X1, . . . , Xr〉〉 that takes γ to

1 +
∑

j

∫

γ

wjXj +
∑

j,k

∫

γ

wjwkXjXk +
∑

j,k,l

∫

γ

wjwkwlXjXkXl + · · · .

The coproduct property of iterated integrals implies that if α, β ∈ PM
are composable paths, then

T (αβ) = T (α)T (β).
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By linearity, this extends to an algebra homomorphism

T : P (M, x)→ R〈〈X1, . . . , Xr〉〉.

Since T (α)− 1 is in the maximal ideal I,

T
(
(α1 − 1x)(α2 − 1x) · · · (αs − 1x)

)
∈ Is.

The result follows by examining the coefficient of X1X2 . . .Xr. �

1.5. The Group Algebra and its Dual. Suppose that π is a discrete
group and R a commutative ring with 1. Denote the group algebra of
π over R by Rπ. This is the set of all finite linear combinations

∑

g∈π

rgg

where rg ∈ R. The augmentation is the homomorphism ε : Rπ → R
defined by

ε :
∑

g∈π

rgg 7→
∑

g∈π

rg.

The kernel of ε is called the augmentation ideal and denoted JR. (We
will denote it by J when R is clear from context.) The powers of JR

(3) Rπ = J0
R ⊇ JR ⊇ J2

R ⊇ J3
R ⊇ · · ·

define a topology — called the J-adic topology — on Rπ. Note that
this topology is frequently not separated — that is, the intersection of
the powers of JR is not always trivial. The J-adic completion of Rπ is

Rπ̂ := lim
←−

m

Rπ/Jm.

It is a topological R-algebra.

Exercise 9. Show that the function

πab → JR/J2
R, g 7→ (g − 1) + J2

R

is a homomorphism and induces an isomorphism

πab ⊗Z R ∼= JR/J2
R.

Hint: first prove the case where R = Z.

Note that πab ⊗Z R = H1(π; R), which is isomorphic to H1(X; R)
when π is the fundamental group of a path connected space X.

Exercise 10. Show that the graded algebra
∞⊕

m=0

Jm
R /Jm+1

R
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is generated by JR/J2
R. Deduce that a section of the projection JR̂→

JR/J2
R induces an algebra homomorphism

T (JR/J2
R)→ Rπ̂

with dense image, where

T (V ) := R⊕
⊕

m>0

V ⊗m

denotes the free associative R-algebra generated by the R-module V .
Deduce that if H1(π; R) is a free R-module, then Rπ̂ is the quotient
of the completed tensor algebra

T (H1(π; R))̂
generated by H1(π; R) where the projection T (H1(π; R))̂→ Rπ̂ in-
duces the identity

H1(π; R) ∼= I/I2 → J/J2 ∼= H1(π; R).

For a discrete R-module M , define

Homcts
R (Rπ, M) := lim

−→

m

HomR(Rπ/Jm, M).

Exercise 11. Show that the continuous dual

Homcts
R (Rπ, R) = Homcts

R (Zπ, R)

is a commutative R-algebra whose product is pointwise multiplication
of functions. Show that g 7→ g−1 induces a homomorphism

i : Homcts
R (Rπ, R)→ Homcts

R (Rπ, R)

and that multiplication

Rπ ⊗Rπ → Rπ

is continuous and induces a coproduct

∆ : Homcts
R (Rπ, R)→ Homcts

R (Rπ, R)⊗ Homcts
R (Rπ, R),

Together with the augmentation ε : Homcts
R (Rπ, R) → R induced by

evaluation at the identity, these give Homcts
R (Zπ, R) the structure of an

augmented commutative Hopf algebra.5

5An augmented bialgebra is an R-algebra A → R with a homomorphism,
∆ : A→ A⊗A, called the comultiplication. A commutative Hopf algebra is an aug-
mented bialgebra together with a homomorphism i : A → A, called the antipode,
which is compatible with the augmentation, multiplication and comultiplication.
Rather than write down the axioms, I will simply say that the standard example
is the coordinate ring of an affine algebraic group G — the coproduct is induced
by multiplication G×G→ G, the augmentation by evaluation at the identity, and
the antipode by the inverse mapping g 7→ g−1.



12 RICHARD HAIN

Exercise 12. Show that JR is the free R-module generated by the set

{g − 1 : g ∈ π, g 6= 1}.

Deduce that every element of Jm
R is an R-linear combination of ‘mono-

mials’

(g1 − 1)(g2 − 1) · · · (gk − 1)

of ‘degree’ k ≥ m.

Dual to the filtration (3) is the filtration

R = B0 Homcts
R (Rπ, R) ⊆ B1 Homcts

R (Rπ, R) ⊆ B2 Homcts
R (Rπ, R) ⊆ · · ·

of Homcts
R (Rπ, R), where

Bm Homcts
R (Rπ, R) = Homcts

R (Rπ/Jm+1, R).

With these filtrations, Homcts
R (Rπ, R) is a filtered Hopf algebra. That

is the multiplication, comultiplication and antipode induce mappings

Bn ⊗ Bm → Bm+n, Bn →
∑

j+k=n

Bj ⊗ Bk and Bm → Bm.

1.6. Chen’s de Rham Theorem for the Fundamental Group.

Suppose that M is a connected manifold, that x, y, z ∈ M and that
F = R or C. Denote the set of iterated integrals PM → F restricted
to Px,yM by Ch(Px,yM ; F ). The shuffle product formula implies that
this is an F -algebra. The coproduct formula implies that the mapping

(4) Ch(Px,zM ; F )→ Ch(Px,yM ; F )⊗F Ch(Py,zM : F )

given by

∫
w1w2 . . . wr 7→

r∑

j=0

∫
w1 . . . wj ⊗

∫
wj+1 . . . wr

is well defined and is dual to path multiplication

Px,yM × Py,zM → Px,zM.

When x = y, this is augmented by evaluation at the constant loop 1x.
With this augmentation, product and coproduct, Ch(Px,xM ; F ) is a
commutative Hopf algebra.
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Iterated integrals are naturally filtered by length. Denote the linear
span of the

∫
w1 . . . wr where r ≤ n by Ln Ch(Px,yM ; F ). With these

filtrations, Ch(Px,yM ; F ) is a filtered Hopf algebra.6

Denote the subspace consisting of those iterated integrals that are
homotopy functionals by H0(Ch(Px,yM ; F )). It is clearly a subring of
Ch(Px,yM ; F ) as the product of two homotopy functionals is a homo-
topy functional. The length filtration restricts to a length filtration L•

of H0(Ch(Px,yM ; F )).

Exercise 13. Show that the coproduct (4) and antipode restrict to a
coproduct

H0(Ch(Px,zM ; F ))→ H0(Ch(Px,yM ; F ))⊗F H0(Ch(Py,zPM : F ))

and antipode

H0(Ch(Px,zM ; F ))→ H0(Ch(Px,yM ; F )).

Deduce that H0(Ch(Px,xM ; F )) is a filtered commutative Hopf algebra.

Integration induces a mapping

(5)

∫
: H0(Ch(Px,yM ; F ))→ Homcts

F (Zπ1(M, x), F ).

This is injective, as the set of path components of Px,xM is π1(M, x)
and as H0(Ch(Px,yM ; F )) is, by definition, a subset of functions on
PM .

Exercise 14. Show that
∫

is a Hopf algebra homomorphism that maps
Lm into Bm.

One version of Chen’s de Rham Theorem for the fundamental groups
is:

Theorem 9 (Chen). The homomorphism (5) is surjective, and there-
fore an isomorphism of Hopf algebras. Moreover, it is an isomorphism
of filtered Hopf algebras. That is, for each m ≥ 0, integration induces
an isomorphism

LmH0(Ch(Px,yM ; F )) ∼= Homcts
F (Zπ1(M, x)/Jm+1, F ).

6It may appear that iterated integrals are graded by length. However, because
of identities such as

∫
w1 . . . wj−1(df)wj . . . wr

=

∫
w1 . . . wj−1(fwj)wj+1 . . . wr −

∫
w1 . . . wj−1(fwj−1)wj . . . wr,

iterated integrals are only filtered by length.
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We will prove a stronger version of this in the case where M is a
Zariski open subset of P1(C).

1.7. Proof of Chen’s Theorem when M = P1(C) − S. Suppose
that S is a finite subset of P1(C). If S is empty, then P1(C) is simply
connected, and there is nothing to prove. So we suppose that S is non-
empty. Since Aut P1 acts transitively, we may assume that ∞ ∈ S:

S = {a1, . . . , aN ,∞}.

Set U = P1(C)− S.
The holomorphic 1-forms on U with logarithmic poles on S

H0(Ω1
P1(log S))

has basis

wj :=
dz

z − aj
, j = 1, . . . , N.

Denote the set of iterated integrals built up from elements of

H0(Ω1
P1(log S))

by Ch(H0(Ω1
P1(log S))). By Exercise 4, these are all homotopy func-

tionals.

Theorem 10. For each x ∈ U , the composite

Ch(H0(Ω1
P1(log S))) ↪→ H0(Ch(Px,xU ; C)) ↪→ Homcts

Z (Zπ1(U, x), C)

is a Hopf algebra isomorphism.

Set
A = C〈〈X1, . . . , XN〉〉.

Define the augmentation ε : A → C by taking a power series to its
constant term. The augmentation ideal ker ε is the maximal ideal I =
(X1, . . . , XN). Consider the formal power series

T = 1 +
∑

j

∫
wjXj +

∑

j,k

∫
wjwkXjXk + · · ·

∈ Ch(H0(Ω1
P1(log S)))〈〈X1, . . . , XN〉〉,

where the coefficient of the monomial Xi1Xi2 . . .Xir is
∫

wi1wi2 . . . wir .
We shall view this as an A-valued iterated integral. Since each coef-
ficient of T is a homotopy functional, evaluating each coefficient on a
path defines a mapping

π1(U, x)→ A, γ 7→ 〈T, γ〉.

The coproduct property of iterated integrals implies that this is a
homomorphism. It thus induces a homomorphism Cπ1(U, x) → A.
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The nilpotence property (Prop. 8) of iterated integrals implies that
Θ(Jm) ⊆ Im, which implies that Θ is continuous. It therefore induces
a homomorphism

Θ̂ : Cπ1(U, x)̂→ A

Proposition 11. The mapping Θ̂ is an isomorphism.

Proof. By Exercise 10, Cπ1(U, x)̂ is the quotient of

T (H1(P
1(C)− S)) .̂

One thus has a commutative diagram

T (H1(U ; C))̂
Φ

��

bΘ◦Φ

%%KKKKKKKKKKKK

Cπ1(U, x)̂
bΘ

// A

It is easy to check that Θ̂ ◦ Φ induces an isomorphism on I/I2 and is
therefore an isomorphism. This implies that the coefficients of T span

Homcts
Z (Zπ1(U, x), C),

which completes the proof. �

1.8. The de Rham Theorem for the Fundamental Groupoid.

Chen’s de Rham theorem generalizes to the fundamental groupoid.
Suppose that x, y ∈ M , where M is a smooth manifold. The group
H0(Px,yM ; R) is the free R-module generated by π(M ; x, y). When
x = y, this is just the group algebra Rπ1(M, x).

Multiplication of paths gives H0(Px,yM ; R) the structure of a left
π1(M, x)-module and a right π1(M, y)-module. Both of these modules
are free of rank 1. Denote the augmentation ideal of Rπ1(M, z) by Jz.

Exercise 15. Show that for all n ≥ 1,

Jn
x H0(Px,yM ; R) = H0(Px,yM ; R)Jn

y .

Denote their common value by JnH0(Px,yM ; R) or Jx,y.

The filtration

H0(Px,yM ; R) ⊇ JH0(Px,yM ; R) ⊇ J2H0(Px,yM ; R) ⊇ · · ·

defines a topology (the J−adic topology) on H0(Px,yM ; R). The J-adic
completion of H0(Px,yM ; R) is

H0(Px,yM ; R)̂ := lim
←−

n

H0(Px,yM ; R)/Jn
x,y.
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When F is R or C, integration induces a mapping

(6) H0(Ch(Px,yM ; F ))→ Homcts
Z (H0(Px,yM), F ).

Chen’s de Rham theorem implies that this is an isomorphism of F -
algebras. Moreover, the coproduct

H0(Ch(Px,yM ; F ))→ H0(Ch(Px,zM ; F ))⊗H0(Ch(Pz,yM ; F ))

is dual to the product H0(Px,zM)⊗H0(Pz,yM)→ H0(Px,yM).

Exercise 16. Prove that the choice of γ ∈ π(M ; x, y) gives an isomor-
phism

Rπ1(M, x)/Jn
x
∼= H0(Px,yM ; R)/Jn

x,y.

Deduce that (6) is an isomorphism which restricts to isomorphisms

LnH0(Ch(Px,yM ; F ))→ HomZ(H0(Px,yM)/Jn+1
x,y , F ).

Remark 12. When U = P1(C)− S, as in the previous section, then T
induces an isomorphism

Θ̂x,y : H0(Px,yU ; C)→ A

which is defined by taking γ ∈ π(U ; x, y) to T (γ). This mapping is

compatible with path multiplication. That Θ̂ is an isomorphism follows
directly from Proposition 11 and Exercise 16.

1.9. Postscript. You can learn more about iterated integrals in Chen’s
Bulletin paper [2] and my expository papers [11, 13]. The first two of
these [2, 11] contain a more conceptual, though less direct, approach
to properties of iterated integrals; [11] contains an elementary proof of
Chen’s de Rham Theorem for the fundamental group.
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2. Iterated Integrals and Multiple Zeta Numbers

In this section we introduce multiple zeta numbers, develop some of
their basic properties, and show how they occur as iterated integrals.
Most of the material in this section is due to Zagier [24], Goncharov
[10] and Racinet [19].

2.1. Iterated integrals and Multiple Zeta Numbers. Multiple
zeta numbers generalize the classical values of the Riemann zeta func-
tion at integers larger than 1. They were first considered by Euler.
They have recently resurfaced in the works of Zagier [24] and Gon-
charov [10].

Definition 13. For positive integers n1, . . . , nr, where nr > 1, define

ζ(n1, . . . , nr) =
∑

0<k1<···<kr

1

kn1
1 kn2

2 . . . knr
r

.

The integer r is called the depth of the multiple zeta number, and
n1 + · · ·+ nr its weight.

Exercise 17. Show that

ζ(n1)ζ(n2) = ζ(n1, n2) + ζ(n1 + n2) + ζ(n2, n1)

and that

ζ(n1, n2)ζ(n3) = ζ(n1, n2, n3)

+ ζ(n1, n2 + n3) + ζ(n1, n3, n2) + ζ(n1 + n3, n2) + ζ(n3, n1, n2).

Note that how, in the second relation, the z3 “percolates” left. It
may occupy the same position as n1 or n2, but n1 and n2 cannot occupy
the same position.

2.2. Percolation Relations. The combinatorics of the domain of sum-
mation of multiple zeta numbers is similar to the combinatorics of time
ordered simplices. Because of this, multiple zeta values satisfy shuffle-
like relations that we shall call percolation relations.

Definition 14. Suppose that r, s are positive integers. A percolant of
type (r, s) and depth d (a positive integer) is a function

p : {1, 2, . . . , r + s} → {1, 2, . . . , r + s}

that surjects onto {1, 2, . . . , d} and whose restrictions to {1, 2, . . . , r}
and {1, 2, . . . , s} are strictly order preserving (and thus injective). De-
note the depth d of p by |p|; it satisfies

max(r, s) ≤ |p| ≤ r + s.

Denote the set of percolants of type (r, s) by Perc(r, s).
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The percolants of depth r + s are precisely the shuffles of type (r, s).
The number of percolants of type (r, s) is

r+s∑

d=max(r,s)

(
d

d− r d− s

)
;

the term corresponding to d is the number of percolants of depth d and
type (r, s).

Example 15. The partially ordered set of the 13 percolants of type
(2, 2) is:

1 2

3 4

1 2

3 4

1 2

3 4

tt
tt

t
JJ

JJ
J

1 2

3 4

tt
tt

t

JJJ
JJJ

1 2

3 4

ttt
tt

t
JJ

JJ
J

1 2

3 4

JJ
JJ

J

1 2

3 4

tt
tt

tt

JJJ
JJ

J

1 2

3 4

tt
tt

t

1 2

3 4

JJ
JJ

J

1 2

3 4

tt
tt

t

1 2

3 4

1 2

3 4

1 2

3 4

Here the number of columns of the box corresponding to a percolant
p is its depth. The set of numbers appearing in the jth column of the
diagram corresponding to p is p−1(j). The edges in the diagram are
“elementary moves.”
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Exercise 18. Show that if (k1, . . . , kr) ∈ Zr and (kr+1, . . . , kr+s) ∈ Zs

satisfy

0 < k1 < k2 < · · · < kr and 0 < kr+1 < kr+2 < · · · < kr+s,

then there is a unique percolant p of type (r, s) such that

kp(1) ≤ kp(2) ≤ · · · ≤ kp(r+s),

where kp(j1) = kp(j2) if and only if p(j1) = p(j2).

Exercise 19. Show that

ζ(n1, . . . , nr)ζ(nr+1, . . . , nr+s) =
∑

p∈Perc(r,s)

ζ(p∗z)

where the jth coordinate of p∗z ∈ C|p| is
∑

k∈p−1(j) zk.

Example 16. The formula for ζ(n1, n2)ζ(n3, n4) has 13 terms, one for
each of the percolants listed in Example 15:

ζ(n1, n2)ζ(n3, n4) = ζ(n1, n2, n3, n4) + ζ(n1, n3, n2, n4) + ζ(n3, n1, n2, n4)

+ ζ(n1, n3, n4, n2) + ζ(n3, n1, n4, n2) + ζ(n3, n4, n1, n2)

+ ζ(n1, n2 + n3, n4) + ζ(n1 + n3, n2, n4)

+ ζ(n1, n3, n2 + n4) + ζ(n3, n1, n2 + n4)

+ ζ(n1 + n3, n4, n2) + ζ(n3, n1 + n4, n2)

+ ζ(n1 + n3, n2 + n4).

Since the product of two multiple zeta numbers is a Z-linear com-
bination of multiple zeta numbers, the Q-linear span of the multiple
zeta numbers (including 1, the mixed zeta number of weight 0) in R is
a subalgebra MZN. Since ζ(2) = π2/6,

MZNC := MZN⊕ iπMZN

is a Q-subalgebra of C that contains (2πi)n for all n ≥ 1. We also have
the graded Q-algebra

MZN• =
⊕

m≥0

,

where MZNm is the Q-linear span of the mixed zeta numbers of weight
m. This has an increasing filtration by depth.

2.3. Multiple Zeta Numbers as Periods of Iterated Integrals.

Multiple zeta numbers can also be expressed as periods of iterated inte-
grals. The shuffle product and antipode formulas for iterated integrals
then give further relations between multiple zeta numbers.
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Exercise 20 (cf. [24]). Let U = P1(C)− {0, 1,∞} and

w0 =
dz

z
and w1 =

dz

1− z
∈ H0(Ω1

U ).

Suppose that i1, . . . , ir ∈ {0, 1}. We say that the iterated integral

∫ 1

0

wi1 . . . wir

converges to L if

lim
ε→0+

δ→0+

∫

[ε,1−δ]

wi1 . . . wir

exists and equals L.7 Show that

∫ 1

0

wi1 . . . wir

converges if and only if i1 = 1 and ir = 0. Show that if nr > 1, then

Z

[0,x]

w1

n1−1
z }| {
w0 . . . w0 w1

n2−1
z }| {
w0 . . . w0 w1 . . . w1

nr−1
z }| {
w0 . . . w0 =

X

0<k1<···<kr

xkr

k
n1

1 k
n2

2 . . . k
nr

r

.

Deduce that

ζ(n1, . . . , nr) =

∫ 1

0

w1

n1−1︷ ︸︸ ︷
w0 . . . w0 w1

n2−1︷ ︸︸ ︷
w0 . . . w0 w1 . . . w1

nr−1︷ ︸︸ ︷
w0 . . . w0 .

The antipode and naturality formulas satisfied by iterated integrals
(Prop. 5) give relations between multiple zeta numbers. The automor-
phism f : P1 → P1 defined by f(z) = 1− z has the property that

f∗[0, 1] = [0, 1]−1 = [1, 0] and f ∗wa = −wa+1 for a ∈ Z/2Z.

7The path t 7→ (1− t)a + tb in C from a to b will be denoted by [a, b].
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Consequently, if w = n1 + · · ·+ nr, then

ζ(n1, . . . , nr)

=

∫ 1

0

w1

n1−1︷ ︸︸ ︷
w0 . . . w0 w1

n2−1︷ ︸︸ ︷
w0 . . . w0 w1 . . . w1

nr−1︷ ︸︸ ︷
w0 . . . w0

= (−1)w

∫

[0,1]

f ∗w0

n1−1︷ ︸︸ ︷
f ∗w1 . . . f ∗w1 f ∗w0 . . . f ∗w0

nr−1︷ ︸︸ ︷
f ∗w1 . . . f ∗w1

= (−1)w

∫

f∗[0,1]

w0

n1−1︷ ︸︸ ︷
w1 . . . w1 w0 . . . w0

nr−1︷ ︸︸ ︷
w1 . . . w1

=

∫

[0,1]

nr−1︷ ︸︸ ︷
w1 . . . w1 w0 . . . w0

n1−1︷ ︸︸ ︷
w1 . . . w1 .

This is a multiple zeta number. For example

ζ(3) =

∫ 1

0

w1w0w0 =

∫ 1

0

w1w1w0 = ζ(1, 2).

More generally,
(7)

ζ(m1 +1, m2 +1, . . . , mr +1) = ζ(

mr︷ ︸︸ ︷
1, . . . , 1, 2, . . . ,

m2︷ ︸︸ ︷
1, . . . , 1, 2,

m1︷ ︸︸ ︷
1, . . . , 1, 2).

Writing multiple zeta numbers as iterated integrals and using the
shuffle product formula also gives formulas for their products. Surpris-
ingly, these are different from those given by the percolation formula.
This leads to interesting (and mysterious) relations between multiple
zeta numbers. For example, the shuffle product formula gives

ζ(2)2 =

∫ 1

0

w1w0

∫ 1

0

w1w0

= 2

∫ 1

0

w1w0w1w0 + 4

∫ 1

0

w1w1w0w0

= 2ζ(2, 2) + 4ζ(1, 3).

On the other hand, the percolant formula gives

ζ(2)2 = 2ζ(2, 2) + ζ(4).

Combining these with (7), we see that

ζ(4) = 4ζ(1, 3) = 4ζ(1, 1, 2).

These are examples of the mysterious double shuffle relations, which
are studied in detail by Racinet in [19].
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2.4. Polylogarithms. A multivalued function on a topological space
is simply a function on some (unramified) covering of the space. When
M is connected, a homotopy functional F : PM → A and a choice of
a base point xo ∈ M give rise to an A-multivalued function φF on M :
if x ∈ M and γ is a path in M from xo to x, then the value of φF at
x is F(γ). This depends only on the homotopy class of γ. You should
think of φF as the result of “analytically continuing” the germ of the
function φF |V defined in a simply connected neighbourhood V of xo

along γ.

Example 17. Set U = P1(C) − {0, 1,∞} and let w0 and w1 denote
the rational differentials on U defined in Exercise 20. By Exercise 4,∫

w1w0 is a homotopy functional on PU . Thus

x 7→

∫ x

0

w1w0

is a multi-valued holomorphic function on U .8 In fact, it is Euler’s
dilogarithm, whose principal branch in the unit disk is defined by

ln2(x) =
∑

n≥1

xn

n2
.

More generally, the k-logarithm

lnk(x) :=
∑

n≥1

xn

nk
|x| < 1

can be expressed as the length k iterated integral

∫ x

0

w1

k−1︷ ︸︸ ︷
w0 · · ·w0

From this integral expression, it is clear that lnk can be analytically
continued to a multi-valued function on C− {0, 1}.

Note that ζ(k), the value of the Riemann zeta function at an integer
k > 1, is the value lnk(1) of the principal branch of lnk(x) at x = 1.
More information about iterated integrals and polylogarithms can be
found, for example, in [12].

8Here we need to be careful about the path of integration. The path from 0 to
x should not pass through 0 or 1 once it has left 0.
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2.5. Multiple Polylogarithms. Multiple polylogarithms are to mul-
tiple zeta values as polylogarithms are to zeta values. Before defining
multiple polylogarithms, we need a criterion for an iterated line integral
of length ≤ 2 to be a homotopy functional.9

Exercise 21. Suppose that ξ, φ1, . . . , φr are closed scalar-valued 1-forms
on M and that ajk are scalars. Show that

∑

j,k

ajk

∫
φjφk +

∫
ξ + a constant

is a homotopy functional if and only if

dξ +
∑

j,k

ajk φj ∧ φk = 0.

Hint: pullback to the universal covering of M .

The multiple polylogarithm Lm1,...,mn
is defined by analytically con-

tinuing the holomorphic function defined on the unit polydisk in Cn

by

Lm1 ,...,mn
(x1, . . . , xn) :=

∑

0<k1<···<kn

xk1
1 xk2

2 . . . xkn
n

km1
1 km2

2 . . . kmn
n

|xj| < 1.

Note that the value at (1, 1, . . . , 1) of this branch is ζ(n1, . . . , nm).
Like polylogarithms, multiple polylogarithms can be expressed as

iterated integrals. For example,

L1,1(x, y) =

∫ (x,y)

(0,0)

(
dy

1− y

dx

1− x
+

d(xy)

1− xy

(
dy

1− y
−

dx

1− x
−

dx

x

))
.

This expression defines a well defined multi-valued function on

C2 − {(x, y) : xy(1− x)(1− y)(1− xy) = 0}

as the relation

dy

1− y
∧

dx

1− x
+

d(xy)

1− xy
∧

(
dy

1− y
−

dx

1− x
−

dx

x

)
= 0

holds in the rational 2-forms on C2. Similar formulas for all multiple
polylogarithms can be found in Zhao’s paper [25].

2.6. Postscript. You can learn more about multiple zeta numbers and
multiple polylogarithms in the papers of Zagier [24], Goncharov [9, 10],
Racinet [19] and Zhao [25], and also in [12].

9There is a more general formula valid for all iterated line integrals. See [2] for
details.
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3. Mixed Hodge-Tate Structures and Their Periods

The remaining two sections are devoted to explaining how multiple
zeta numbers occur periods of the mixed Hodge structure on the funda-
mental group of P1(C)−{0, 1,∞} with respect to a suitable asymptotic
base point. In this section, we introduce mixed Hodge-Tate structures,
develop their basic properties, and construct the mixed Hodge-Tate
structure on the de Rham fundamental group of P1(C)− {0, 1,∞}.

Throughout this section, Λ will denote Z or Q.

3.1. Preamble. Despite the new terminology we are about to intro-
duce, the idea of periods is natural and comprehensible. The basic
idea, which you should keep in mind while reading this section, is sim-
ple — one has two finite dimensional rational vector spaces V and V DR

together with an isomorphism

Φ : VC
'
−→ V DR

C

of their complexifications. The vector space V is to be thought of as
arising from topology and V DR as its de Rham analogue, consisting of
algebraic differential forms defined over Q. The isomorphism Φ typi-
cally arises from a de Rham type theorem and is defined by integration.

The periods of such a structure are the entries of the matrix of Φ with
respect to Q-bases of V and V DR. Typically, they are given by integrals
of Q-rational differential forms over topological cycles. They measure
the degree to which the two rational structures differ. Abstractly, one
can describe a matrix entry of φ as a number of the form

〈φ, Φ(v)〉 ∈ C

where v ∈ V and φ : V DR → Q.
In our case, we will take

V = Hom(Qπ1(P
1(C)− {0, 1,∞}, x)/Jn+1, Q)

and

V DR =

{
Q-linear combinations of iterated
integrals of w0 and w1 of length ≤ n

}

where w0 = dz/z and w1 = dz/(1 − z). The isomorphism of their
complexifications is given by Chen’s de Rham Theorem. The periods
of V will be Q-linear combinations of complex numbers of the form∫

γ

wj1wj2 . . . wjr
∈ C

where γ ∈ π1(P
1(C)− {0, 1,∞}, x), r ≤ n and jk ∈ {0, 1}.

In practice, V and V DR will be endowed with additional structure
— “weight filtrations” of V and V DR, and a “Hodge filtration” of V DR.
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The periods will be computed with respect to bases adapted to these
filtrations. When x is taken to be a suitable “asymptotic base point,”
the periods will be multiple zeta numbers.

3.2. Mixed Hodge-Tate Structures. 10 A Λ-mixed Hodge-Tate
structure V consists of a finitely generated Λ-module VΛ and two fil-
trations. The first is an increasing filtration

· · · ⊆ W2m−2VQ ⊆ W2mVQ ⊆ W2m+2VQ ⊆ · · ·

of VQ := VΛ⊗Λ Q. It is called the weight filtration of V and is denoted
W•VQ. It induces a filtration of VC by extension of scalars. The second
is a decreasing filtration

· · · ⊇ F p−1VC ⊇ F pVC ⊇ F p+1VC ⊇ · · ·

of VC := VΛ ⊗Λ C. It is called the Hodge filtration of V . The two
filtrations are required to satisfy the condition

(8) VC =
⊕

m∈Z

F mVC ∩W2mVC.

The most basic examples are the Hodge-Tate structures Λ(n), where
n ∈ Z. These are the Hodge theoretic analogues of the Galois modules
Λ`(n). In the Hodge case, the underlying Λ-module is the subgroup
(2πi)nΛ of C. Its complexification, Λ(n)C, is identified with C via the
inclusion (2πi)nΛ ↪→ C. The Hodge and weight filtrations are defined
by

W−2n−2Q(n) = 0, W−2nQ(n) = Q(n)

and
F−nΛ(n)C = Λ(n)C F−n+1Λ(n)C = 0.

Once we have defined tensor products and duals of mixed Hodge-
Tate structures, it will be clear that Λ(n) = Λ(1)⊗n and that Λ(−n)
is the dual of Λ(n). Thus all Λ(n) are obtained from Λ(1) by tensor
powers and duals.

Example 18. The Hodge-Tate structure Z(1) occurs naturally as

π1(Gm(C), id) = H1(C
∗; Z).

Its complexification is the dual of

H1(C∗; C) = C
dz

z
,

10The terminology “mixed Hodge-Tate structure” is not standard. In standard
terminology, a Λ-mixed Hodge-Tate structure is a Λ-mixed Hodge structure all of
whose weight graded quotients are direct sums of the Hodge-Tate structures Λ(n).
Here I have taken a more direct approach.
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where z is the standard coordinate on Gm. The integral lattice is
generated by the class of the positively oriented unit circle σ in C∗.
Denote the generator of H1(C

∗; C) dual to dz/z by Z:

〈
dz

z
, Z〉 = 1.

Then H1(C
∗; C) = CZ and the inclusion H1(C

∗; Z) ↪→ H1(C
∗; C) takes

σ to

〈
dz

z
, σ〉Z =

∫

σ

dz

z
Z = 2πiZ.

Thus, we can identify H1(C
∗, Z) with the subgroup 2πiZ Z of CZ =

H1(C
∗; C). The weight filtration is defined by

0 = W−4H1(C
∗; Q) ⊆ W−2H1(C

∗; Q) = H1(C
∗; Q)

and the Hodge filtration by

H1(C
∗; C) = F−1H1(C

∗; C) ⊇ F 0H1(C
∗; C) = 0.

These definitions should make more sense in a moment. But, at least
heuristically, F p consists of classes represented by differential forms,
each of whose terms is a product of ≥ p differentials of the form df/f .
Since Z is the dual of dz/z, it lies in F−1H1(C

∗).

A more general example is where U = P1(C) − S, a Zariski open
subset of the projective line. In this case11

H1(U) ∼= Z(1)|S|−1 and H1(U) ∼= Z(−1)|S|−1.

This follows as

H1(U ; C) = {d log f : f is an invertible regular function on U}.

3.3. The Mixed Hodge-Tate Structure on the Dual of the Fun-

damental Group. Suppose that U is a Zariski open subset of P1(C).
Given Theorem 10, the construction of a natural mixed Hodge structure
on the dual of the truncated group ring Zπ1(U, x)/Jn+1 is straightfor-
ward. We use the notation of Section 1.7 — U = P1(C)− S, where S
is a non-empty finite subset of P1(C) that contains ∞:

S = {a1, . . . , aN ,∞}.

The group H1(U ; C) is isomorphic to

H0(Ω1
P1(log S))

and has basis

wj :=
dz

z − aj

, j = 1, . . . , N.

11Direct sums of mixed Hodge-Tate structures are defined in the obvious way.
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We shall construct a natural mixed Hodge-Tate structure on

VZ = HomZ(Zπ1(U, x)/Jn+1, Z).

We identify its complexification

VC = HomZ(Zπ1(U, x)/Jn+1, C),

with Ln Ch(H0(Ω1
P1(log S))) via Theorem 10. Define the weight filtra-

tion by

W2mVQ = HomZ(Zπ1(U, x)/Jm+1, Q).

Note that, by Chen’s de Rham Theorem, the complexified weight fil-
tration is simply the length filtration:

W2mVC = Lm Ch(H0(Ω1
P1(log S))).

The pth term of the Hodge filtration is defined to be the linear span of
the iterated integrals in Ln Ch(H0(Ω1

P1(log S))) of length ≥ p.12 The
group

F mVC ∩W2mVC

consists of those elements of Ln Ch(H0(Ω1
P1(log S))) of length exactly

m. These filtrations define a mixed Hodge-Tate structure on V .
Note that the 2mth weight graded quotient

GrW
2m V := W2mV/W2m−2V

has complexification the space of iterated integrals

{∫
wj1wj2 . . . wjm

: wjk
∈ H0(Ω1

P1(log S))
}
∼= H1(U ; C)⊗m

of length exactly m. The integral lattice of 2mth weight graded quotient
is

HomZ(Jm
Z /Jm+1

Z , Z).

It follows from the nilpotence property (Prop. 8) that

GrW
2m V ∼= H1(U)⊗m ∼= Z(−m)⊕Nm

.

We will shortly see that this property holds more generally — the
weight graded quotients of Q-mixed Hodge-Tate structures are always
direct sums of Q(n)s.

12Unlike in the general case, the iterated integrals Ch(H0(Ω1
P1(log S))) are graded

by length. This can be deduced easily from the fact that w1, . . . , wN are linearly
independent in H1(U ; C) and from nilpotence property (Prop. 8) of iterated inte-
grals. Thus, in this case, it makes sense to talk about iterated integrals of length
m.
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Remark 19. The directed system

(9) 0 ↪→ Z ↪→ HomZ(Zπ1(U, x)/J2, Z) ↪→ · · ·

↪→ HomZ(Zπ1(U, x)/Jn, Z) ↪→ HomZ(Zπ1(U, x)/Jn+1, Z) ↪→ · · ·

is compatible with the Hodge and weight filtrations, and is a directed
system in the category of Z-mixed Hodge-Tate structures. It is common
and convenient to speak of the mixed Hodge structure on the direct
limit

Homcts
Z (Zπ1(U, x), Z)

of this system. Its complexification is Ch(H0(Ω1
P1(log S))). Its prod-

uct, coproduct and antipode are all morphisms of mixed Hodge-Tate
structures.

3.4. Basic Properties of Mixed Hodge-Tate Structures. Mixed
Hodge-Tate structures form a category with particularly nice prop-
erties. Although abstract, the properties are important and provide
powerful and useful computational tools.

Definition 20. A morphism φ : A → B between mixed Hodge-Tate
structures consists of a homomorphism φ : AΛ → BΛ such that the
induced homomorphisms AQ → BQ and AC → BC preserve the weight
and Hodge filtrations, respectively.

Exercise 22. Suppose that V is the mixed Hodge-Tate structure on
HomZ(Zπ1(U, x)/Jm+1, Z) defined above. Show that augmentation V →
Z(0), and the coproduct V → V ⊗ V are morphisms of mixed Hodge-
Tate structures.

A mixed Hodge-Tate structure on a finitely generated Λ-module can
be thought of as a grading of its complexification that is compatible
with the Hodge and weight filtrations.

Exercise 23. Show that the condition (8) implies that
(10)⋂

m∈Z

W2mVQ = 0,
⋃

m∈Z

W2mVQ = VQ,
⋂

m∈Z

F mVC = 0,
⋃

m∈Z

F mVC = VC.

It is convenient to set V p,p = F pVC ∩ W2pVC so that condition (8)
becomes VC = ⊕p∈ZV p,p. Show that

(11) W2mVC =
⊕

p≤m

V p,p and F pVC =
⊕

q≥p

V q,q.

Note, in particular, that Λ(n)C = V −n,−n. This corresponds to the
fact that Λ(n) is the one dimensional Hodge structure of type (−n,−n).
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The following result should be surprising in view of the fact that
the category of filtered vector spaces (and filtration preserving linear
maps) is not abelian. (Exercise: explain this.)

Exercise 24. Suppose that A and B are mixed Hodge-Tate structures.
Show that a homomorphism φ : AΛ → BΛ is a morphism of mixed
Hodge-Tate structures if and only if the induced homomorphism φC :
AC → BC preserves the gradings: φC(Ap,p) ⊆ Bp,p for all p ∈ Z. Deduce
that the category of mixed Hodge-Tate structures is abelian.13

The previous exercise implies that if V is a mixed Hodge-Tate struc-
ture, then so is each W2mV — the underlying Λ-module can be taken
to be14

(W2mV )Λ = i−1(W2mVQ),

where i : VΛ → VQ is the natural mapping.
By the previous exercise, the category of mixed Hodge-Tate struc-

tures is closed under taking subquotients. Thus each graded quotient

GrW
m V := WmV/Wm−1V

is again a mixed Hodge-Tate structure.

Exercise 25. Show that for each m ∈ Z, the functor GrW
2m from the

category of Q-mixed Hodge-Tate structures to the category of Q-vector
spaces is exact.

Definition 21. We will say that 2m ∈ 2Z is a weight of the mixed
Hodge-Tate structure V if GrW

2m VQ is not zero. A mixed Hodge-Tate
structure with only one weight 2m is said to be pure of weight 2m.

For example, Λ(m) is pure of weight −2m.

Exercise 26. Show that if V is a Q-mixed Hodge-Tate structure that
is pure of weight −2m, then V is isomorphic to a direct sum of copies
of Q(m).

This is often expressed by saying that the category of pure Q-mixed
Hodge-Tate structures is semi-simple.

13This is straightforward when Λ = Q. Remember that in an abelian category, a
morphism that is monic and epi is an isomorphism. When Λ = Z, you should think
about the morphism ×2 : Z(1) → Z(1). Is it an isomorphism? If not, what is its
kernel? cokernel? Two important (though generally not well appreciated) points
are, in order that the category of Z-mixed Hodge-Tate structures be abelian, one
is forced to (1) allow the underlying Z-module VZ to have torsion; (2) define the
weight filtration on VQ and not on VZ.

14There are several ways to induce a weight filtration on VΛ, but no canonical
choice.
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3.5. Duals and Tensor Products. It is useful to make explicit the
standard conventions for dualizing filtrations and for taking the tensor
product of two filtered vector spaces.

Suppose that V is an R-module with an increasing filtration G•:

· · · ⊆ Gm−1V ⊆ GmV ⊆ Gm+1V ⊆ · · ·

by R-submodules.15

This filtration induces a decreasing filtration (denoted by G•) on the
dual HomR(V, R):

Gm HomR(V, R) := HomR(V/Gm−1V, R).

Exercise 27. Show that when R is a field, there is a natural isomorphism

Grm
G HomR(V, R) ∼= HomR(GrG

m V, R).

Suppose that V ′ and V ′′ are R-modules with increasing filtrations,
G′

• and G′′
•. The tensor product filtration G• = G′

• ⊗ G′′
• of V ′ ⊗R V ′′

is defined by

Gm(V ′ ⊗R V ′′) :=
∑

r+s=m

(G′
rV

′)⊗R (G′′
sV

′′).

Exercise 28. Show that if R is a field, there is a natural isomorphism

GrG
m(V ′ ⊗R V ′′) ∼=

⊕

r+s=m

(GrG′

r V ′)⊗R (GrG′′

s V ′′).

There are two equivalent ways to induce a filtration on HomR(V ′, V ′′).
The first is to use the isomorphism

HomR(V ′, V ′′) ∼= HomR(V ′, R)⊗R V ′′,

the second is to define directly

Gm HomR(V ′, V ′′)

:= {φ ∈ HomR(V ′, V ′′) : φ(G′
nV

′) ⊆ G′′
m+nV ′′ for all n}.

If V ′ and V ′′ are two Λ-mixed Hodge-Tate structures, then V ′⊗V ′′ is
the Λ mixed Hodge structure whose underlying Λ-module is V ′

Λ ⊗Λ V ′′
Λ

and whose Hodge and weight filtrations are the tensor product of those
of V ′ and V ′′.

Similarly, Hom(V ′, V ′′) is the Λ-mixed Hodge-Tate structure whose
underlying Λ-module is HomΛ(V ′

Λ, V ′′
Λ ). The Hodge and weight filtra-

tions are both induced by those of V ′ and V ′′.

15The case of decreasing filtrations follows using the trick of negating indices: if
G• is an increasing filtration of V , then the filtration G• defined by GmV = G−mV
is decreasing, and vice-versa.
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Exercise 29. Show that

Λ(n)⊗ Λ(m) ∼= Λ(n + m) and Hom(Λ(n), Λ(m)) ∼= Λ(m− n).

The next exercise gives the relationship between the two different
Hom sets in the category of mixed Λ-mixed Hodge-Tate structures.

Exercise 30. For a mixed Λ-Hodge-Tate structure V , define

ΓV := HomHodge(Λ(0), V ).

This can be thought of the “invariants” or “global sections” of V . Show
that

HomHodge(V1, V2) = Γ HomΛ(V1, V2)

where V1 and V2 are Λ-mixed Hodge-Tate structures.

Theorem 22. The category of Q-mixed Hodge-Tate structures is an
abelian tensor category. �

3.6. Periods, Moduli and Extensions. There can be many mixed
Hodge-Tate structures with the same weight graded quotients. These
are parameterized by a moduli space whose coordinates are the periods.

The basic idea is quite simple. Suppose that V is a Λ-mixed Hodge-
Tate structure. For simplicity, we suppose that VΛ is torsion free and
that

GrW
−2m VΛ

∼= Λ(m)rm .

(This always holds when Λ = Q.) Write

VC =
⊕

m∈Z

V m,m

and chose a basis e
(m)
1 , . . . , e

(m)
rm of V −m,−m such that the Λ-lattice un-

derlying GrW
−2m V is

(2πi)mΛe
(m)
1 ⊕ · · · ⊕ (2πi)mΛe(m)

rm
.

Define W−2mVΛ = VΛ∩W−2mVC. Since W−2mVΛ → GrW
−2m VΛ is surjec-

tive, there is a basis

{v
(m)
1 , . . . , v(m)

rm
: m ∈ Z}

of VΛ where v
(m)
j ∈ W−2mVΛ and

v
(m)
j ≡ (2πi)me

(m)
j mod W−2m−2VΛ.

Set

e(m) = (e
(m)
1 , . . . , e(m)

rm
)T and vm = (v

(m)
1 , . . . , v(m)

rm
)T .
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The two bases are related by an upper triangular matrix:

(12)




...
v0
v1
v2
...




=




. . . ∗ ∗ ∗ ∗
0 Ir0 ∗ ∗ ∗
0 0 (2πi)Ir1 ∗ ∗
0 0 0 (2πi)2Ir2 ∗

0 0 0 0
. . .







...
e(0)

e(1)

e(2)

...




The entries of the matrix relating the two bases are called the periods
of V and the matrix is called the period matrix of V .

The set of all mixed Hodge-Tate structures whose weight graded
quotients are isomorphic to

Vo =
⊕

m∈Z

Λ(m)rm

via a fixed isomorphism is the quotient G(Λ)\M(C) of the set M(C)
of complex upper triangular matrices of the form




. . . ∗ ∗ ∗ ∗
0 Ir0 ∗ ∗ ∗
0 0 (2πi)Ir1 ∗ ∗
0 0 0 (2πi)2Ir2 ∗

0 0 0 0
. . .




by the subgroup G(Λ) of GLr(Λ) consisting of matrices of the form




. . . ∗ ∗ ∗ ∗
0 Ir0 ∗ ∗ ∗
0 0 Ir1 ∗ ∗
0 0 0 Ir2 ∗

0 0 0 0
. . .




.

Here r =
∑

m rm, the rank of V . The coset of the identity matrix
corresponds to the split mixed Hodge-Tate structure

Vo =
⊕

m∈Z

Λ(m)rm .

Exercise 31. Prove this.
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In the case when Vo = Λ(0)⊕ Λ(1), the moduli space is

Ext1
Hodge(Λ, Λ(1)) = G(Λ)\M(C)

=

(
1 Λ
0 1

) ∖(
1 C

0 2πi

)

∼= C/2πiΛ
∼= C∗ ⊗Z Λ.

Exercise 32. Show that

Ext1
Hodge(Q(0), Q(n)) ∼=

{
0 n ≥ 0

C/(2πi)nZ n > 0.

More generally, show that

Ext1
Hodge(Z(0), Z(n)) ∼=





Q/Z n > 0;

0 n = 0;

C/(2πi)nZ n > 0.

Example 23. The mixed Hodge-Tate structure in Ext1
Hodge(Z, Z(1))

corresponding to x ∈ C∗ can be constructed as follows. Let e0 and e1

be the standard basis of C2. Set V −m,−m = Cem. Define the Hodge
and weight filtrations on VC using formula (10). The integral lattice VZ

is spanned by v0 and v1 where
(

v0

v1

)
=

(
1 log x
0 2πi

) (
e0

e1

)

When x 6= 1, this can be constructed geometrically as H1(C
∗, {0, x}).

This group is freely generated by the classes of σ and γ illustrated in
Figure 1.

1

infty

0

x

γ

σ

Figure 1. Generators of H1(C
∗, {1, x})
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Its dual H1(C∗, {0, x}) is spanned by the boundary map

∂ : H1(C
∗, {0, x})→ H̃({0, 1}; Z) ∼= Z([x]− [1]) ∼= Z

and by
∫

dz/z : H1(C
∗, {0, x}) → C. Let e0, e1 ∈ H1(C

∗, {0, x}; C) be
dual to ∂, dz/z. The period matrix of this mixed Hodge-Tate structure
with respect to v0 = γ, v1 = σ and e0, e1 is

(
1

∫
γ

dz
z

0
∫

σ
dz
z

)
=

(
1 log x
0 2πi

)
.

The most interesting period is the composite

Z
γ
−→ H1(C

∗, {0, x}; C)
dz/z
−→ C

which takes 1 to
∫

γ
dz/z = log x.

3.7. Periods of π1(P
1(C) − S, x) and its Dual. The mixed Hodge-

Tate structure on Zπ1(P
1(C) − S, x)/Jn+1 is the dual of the mixed

Hodge-Tate structure constructed in Section 3.3. This can be described
concretely using the isomorphism

Θ̂ : Cπ1(P
1(C)− S, x)/Jn+1 → A/In+1

given by Proposition 11. The basis of monomials

Xj1Xj2 . . .Xjr
jk ∈ {1, 2, . . . , N}, 0 ≤ r ≤ n

of A/In1 is dual to the basis
∫

wj1wj2 . . . wjr
jk ∈ {1, 2, . . . , N}, 0 ≤ r ≤ n

of Ln Ch(H0(Ω1
P1(log S))). The monomials of degree r span A−r,−r, and

the Hodge and weight filtrations on

A/In1 ∼= Cπ1(P
1(C)− S, x)/Jn+1

are defined using the formulas in (11). The weight filtration is rationally
defined as

W−2mCπ1(P
1(C)− S, x)/Jn+1 = Jm/Jn+1 0 ≤ m ≤ n.

The periods of Zπ1(P
1(C) − S, x)/Jn+1 (and its dual) are matrix

entries:

Z
c

−−−→ Cπ1(P
1(C)− S, x)/Jn+1

R
wj1

...wjr
−−−−−−→ C

where c ∈ Zπ1(P
1(C) − S, x)/Jn+1 and jk ∈ {1, . . . , N}. That is, the

periods are complex numbers of the form
∫

c
wj1wj2 . . . wjr

.
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3.8. Hodge Theory for the Fundamental Groupoid. The same
method can be used to define a mixed Hodge-Tate structure on

H0(Px,y(P
1(C)− S))/Jn+1

x,y .

Define Hodge and weight filtrations on A/In+1 as above. Transfer these
to H0(Px,y(P

1(C)− S))/Jn+1
x,y via the isomorphism

Θ̂ : H0(Px,y(P
1(C)− S))/Jn+1

x,y → A/In+1

described in Remark pathDR. Its periods are simply Z-linear combi-
nations of values of iterated integrals

∫
wj1 . . . wjr

over paths from x to
y.

The extension corresponding to x ∈ C∗ can also be realized naturally
using path spaces.

Exercise 33. For any manifold M and points x, y ∈ M , there is a
natural augmentation H0(Px,yM ; R) → R defined by taking each γ ∈
π0(M ; x, y) to 1. Show that there is a natural isomorphism H1(M ; R) ∼=
Jx,y/J

2
x,y. Deduce that there is a natural exact sequence

0→ H1(M ; R)→ H0(Px,yM ; R)/J2
x,y → R→ 0.

Show that if U = P1(C) − S, then, for each n ≥ 1, the augmentation
H0(Px,yM)/Jn

x,y → Z(0) is a morphism of mixed Hodge-Tate structures.
Show that, for all x ∈ C∗,

0→ H1(C
∗)→ H0(Px,yC

∗)/J2
1,x → Z(0)→ 0

is an exact sequence of mixed Hodge structures that represents the
element x of

Ext1
Hodge(Z, H1(C

∗)) ∼= Ext1
Hodge(Z, Z(1)) ∼= C∗.

Here we are identifying H1(C
∗) with Z(1) as in Exercise 18.

3.9. Periods in the Presence of Arithmetic. When a mixed Hodge-
Tate structure V arises from a variety defined over a subfield K of C

there is typically a K structure on the vector space VC. This is easy to
see in the case of the mixed Hodge-Tate structure on the dual of the
truncated fundamental group when the variety is an open subset of P1.

Suppose that U = P1(C) − S and that S = {a1, . . . , aN ,∞}, where
each aj ∈ K. Then each wj = dz/(z − aj) is defined over K and

H0(Ω1
P1

C
(log S)) = H0(Ω1

P1
K
(log S))⊗K C

This K-structure on the logarithmic differentials extends to the iterated
integrals: set

V DR
C = Ln Ch(H0(Ω1

P1
C
(log S)))
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and
V DR = Ln Ch(H0(Ω1

P1
K
(log S))).

Then V DR
C = V DR ⊗K C. This gives the iterated integrals a natural K

structure where each ∫
wj1wj2 . . . wjr

∈ V DR

and the Hodge and weight filtrations are defined over K — that is,
they are induced by filtrations of V DR.

In these lectures, the most important case is where S = {0, 1,∞}.
In this case, K = Q. The periods of the mixed Hodge-Tate structure
on

HomZ(Zπ1(U, x)/Jn+1, Z)

measure the difference between the two rational structures on it:

Hom(Zπ1(U, x)/Jn+1, Q) ↪→ V DR
C ←↩ V DR.

3.10. Postscript. Mixed Hodge-Tate structures are examples of mixed
Hodge structures. A good introduction to Deligne’s theory of mixed
Hodge structures can be found in Carlson’s paper [1]. Once you under-
stand the basic ideas, Deligne’s paper [4] is an excellent source. The
paper [11] contains an introduction to the mixed Hodge structure on
the fundamental group of a smooth complex algebraic variety in terms
of iterated integrals. Details of the case where this mixed Hodge struc-
ture is Tate can be found in [15].
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4. Limit Mixed Hodge Structures and the Drinfeld

Associator

4.1. Preamble. It is useful to begin with an informal discussion of
“mixed Tate motives over Spec Z.” Motives over Spec Z should arise
as invariants (cohomology, homotopy, etc.) of varieties (and stacks)
defined over Z that have good reduction at every prime number. Ob-
vious examples include the projective spaces PN

Z and the moduli stacks
of curves Mg,n.

Here we are interested in open subsets of the projective line:

UZ = P1
Z − S := Spec Z[z, t1, . . . , tN ]/

(
(z − aj)tj − 1 : j = 1, . . . , N

)
,

where S = {a1, . . . , aN ,∞} and each aj ∈ Z. This has good reduction
at the prime p if the cardinality of S mod p equals that of S. It is clear
that U has good reduction at all primes if and only if S = {0, 1,∞}.16

Now take U = P1 − {0, 1,∞}. In order to consider the fundamental
group of U , we need a base point x. If we choose x ∈ Z− {0, 1}, then
the pair (U, x) has bad reduction at the prime p whenever p|x(x − 1)
as then the base point reduces to 0 or 1, which are not in U(Fp).

This forces us to consider “asymptotic base points.” These are tan-
gent vectors of P1

Z at {0, 1,∞} that are non-zero at each prime p, such
as

−→
01 := ∂/∂z ∈ T0P

1 and
−→
10 := −∂/∂z ∈ T1P

1.

The tannakian category of Q-mixed Tate motives over Spec Z does
exist via the works of Voevodsky [22], Levine [18, 17] and Goncharov
[8]. Deligne and Goncharov [6] have shown that the direct system (9)

of the HomQ(Qπ1(P
1 − {0, 1,∞},

−→
01)/Jn+1, Q) is a directed system in

this category.

The topological and Hodge theoretic aspects of π1(P
1−{0, 1,∞},

−→
01)

and π0(P−→
01,

−→
10

(P1−{0, 1,∞})) will be discussed in the rest of this section.

4.2. Asymptotic Base Points. Suppose that C ′ = C − S, where C
is a Riemann surface and S is a discrete subset. Suppose that ~v is a
non-zero tangent vector of C at P ∈ S. Deligne [5] introduced the idea
of the fundamental group of C with the asymptotic base point ~v. It is
isomorphic to the standard fundamental group of C ′. Intuitively, it is
π1(C

′, x) where x is infinitesimally close to P in the direction of ~v.
It will be convenient to define P~v,~wC ′ where ~v ∈ TP C, ~w ∈ TQC

and P, Q ∈ S. This is the set γ of piecewise smooth paths in C that
begin at P with tangent vector ~v and end at Q with tangent vector
−~w. The path is also required to satisfy γ(]0, 1[) ⊂ C ′. The set of

16Note that in this case, U =M0,4.
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homotopy classes of such paths will be denoted by π0(P~v,~wC ′) or by
π(C ′;~v, ~w). The fundamental group of C ′ with base point ~v is defined
to be π0(P~v,~vC

′).

γ
w

P

Q

v

Figure 2. An element of P~v,~wC ′

For non-zero tangent vectors ~u,~v, ~w of C at points of S, composition
of paths

π0(P~u,~vC
′)× π0(P~v,~wC ′)→ π0(P~u,~wC ′)

is well defined. Consequently, π1(C
′, ~v) is a group.

Exercise 34. Show that if x ∈ C ′, then π1(C
′, ~v) is isomorphic to

π1(C
′, x) by an isomorphism unique up to an inner automorphism.

Alternatively, one may define P~v,~wC ′ by replacing C by the real ori-
ented blowup

C̃ := BlR +
P,Q C

of C at P and Q and then removing S ′ := S − {P, Q}. The vectors

~v, ~w determine points [~v], [~w] in the boundary of C̃−S ′, which consists
of the exceptional circles that lie over P and Q. One can then define

P~v,~wC ′ to be P[~v],[~w](C̃ − S ′).
In this section we will consider the path spaces P~v,~w(P1 − {0, 1,∞})

where ~v, ~w ∈ {
−→
01,
−→
10}.

Our goal is to compute the periods of Zπ1(P
1 − {0, 1,∞},

−→
01)/Jn+1.

If we do this naively — by taking the limit of the periods of

Zπ1(P
1 − {0, 1,∞}, x)/Jn+1

as x→ 0 along
−→
01 — we find that the periods diverge.

Exercise 35. Suppose that to, ε ∈ R and γ ∈ π1(P
1 − {0, 1,∞}, to),

where 0 < ε < to < 1. Choose σ1 ∈ π1(P
1 − {0, 1,∞}, to) whose

winding number about 0 is 0 and about 1 is 1. Use the change of base
point formula (Exercise 8) to show that∫

[ε,to]σ1[to,ε]

w0w1 = 2πi log ε + bounded term

as ε→ 0.
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It is necessary to regularize or renormalize the periods when taking
the limit. The resulting mixed Hodge-Tate structure is then a limit
mixed Hodge structure.

4.3. Some ODE. First, consider the ordinary differential equation

tv′(t) = Bv(t)

defined for t ∈ C∗, where B ∈ MN(C) and v(t) ∈ CN . This is the
prototypical system of differential equations with a regular singular
point at t = 0. The general solution is

v(t) = tBv0,

where v0 ∈ CN and tB is the GLN (C)-multivalued function on C∗

defined by

tB = eB log t.

Note that, when tB is analytically continued around the unit circle, it
becomes

eB(log t+2πi) = e2πiBtB.

From this it follows that every solution v = tAv0 is multiplied on the
left by e2πiB when it is analytically continued around the unit circle.

The following result is more general. A proof can be found in [23,
Chapt. II].

Lemma 24. Suppose that V is a finite dimensional complex vector
space and that B : ∆ → End V is holomorphic. If no two eigenvalues
of B0 := B(0) differ by a non-zero integer (e.g., if B0 is nilpotent), then
there is a unique holomorphic function P : ∆→ Aut V with P (0) = idV

such that each (local) solution v : ∆∗ → V of the differential equation

tv′(t) = B(t)v(t)

is of the form

v(t) = P (t) tB0v0.

Corollary 25. If B0 is nilpotent, then

lim
t→0

t−B0v(t) = v0

where the limit is taken along any angular ray.

Proof. We have

t−B0v(t) = t−B0P (t) tB0v0.

If Bk+1
0 = 0, then there is a constant C such that

‖tB0‖ and ‖t−B0‖ ≤ C
(
log 1/|t|

)k
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when 0 < |t| ≤ R, for some R > 0. Writing P (t) = I +
∑

n≥1 Pntn, we
have

‖t−B0P (t)tB0 − I‖ ≤ 2C|t|
(
log 1/|t|

)k
∞∑

n=1

‖Pn‖|t|
n−1

which goes to zero along each angular ray. �

Remark 26. Note that t−B0v(t) is not, in general, single-valued on the
punctured disk even though its limit as t → 0 along each radial ray
exists.

To see why this is relevant to understanding the asymptotics of peri-
ods of iterated integrals, we need to study how iterated integrals vary
when the end point of the path is moved.

Suppose that M is a manifold and that γ ∈ PM . For a, b ∈ [0, 1],
denote by γt the path defined by

γb
a(t) = γ

(
ta + (1− t)b

)

This is the segment of γ that starts at γ(a) and ends at γ(b).

Exercise 36. Show that

d

dt

∣∣∣∣
t=a

∫

γb
t

w1 . . . wr = −〈w1, γ
′(a)〉

( ∫

γb
a

w2 . . . wr

)
.

and that

d

dt

∣∣∣∣
t=b

∫

γt
a

w1 . . . wr =

( ∫

γb
a

w1 . . . wr−1

)
〈wr, γ

′(b)〉.

The significance of these formulas is that they show that iterated inte-
grals satisfy ordinary differential equations.

Now let U = P1(C) − S, where S = {a1, . . . , aN ,∞}. Suppose that
λ, µ ∈ C∗. Set

~v = λ
∂

∂z
∈ Taj

P1 and ~w = µ
∂

∂z
∈ Tak

P1

where z is the natural holomorphic coordinate on P1(C)− {∞}. Set

A = C〈〈X1, . . . , XN〉〉.

We will now define a “regularized” mapping

Θ̂reg
~v,~w : P~v,~w U → A.

We do this using the A-valued iterated integral

T = 1 +
∑

r>0

∑

(j1,...,jr)

∫
wj1 . . . wjr

Xj1 . . .Xjr
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and its truncations Tn := T mod In+1. Here, as usual, wj = d log(z −
aj).

Every element of π(U ;~v, ~w) is represented by a path of the form

γ(t) =





aj + tλ 0 ≤ to

α(t) to ≤ t ≤ 1− to
ak + (1− t)µ 1− to ≤ t ≤ 1

where 0 < to < 1/2 and α : [to, 1− to]→ U is a piecewise smooth path.
For t in a neighbourhood of 0, set

vn(t) = 〈Tn, γto
t 〉 ∈ A/In+1 and v(t) = lim

n→∞
vn(t) = 〈T, γto

t 〉 ∈ A.

Exercise 37. Show that vn(t) satisfies the differential equation

v′
n(t) = B(t)vn(t)

where

B(t) = left multiplication by
N∑

s=1

−λXs

(aj − as) + tλ
.

This has a pole at t = 0 with residue left multiplication by −Xj, which
is a nilpotent endomorphism of A/In+1. Deduce that

lim
t→0

tXjvn(t) ∈ A/In+1

exists. By taking limits in the I-adic topology, deduce that

lim
t→0

tXjv(t) ∈ A

exists.
By taking inverses or else giving a similar argument, show that

lim
t→0
〈T, γt

to〉 t
−Xk ∈ A

exists.

We shall use the notation of the previous exercise in the definition

of the regularization of Θ̂.

Definition 27. For ~v ∈ Taj
P1 and ~w ∈ Tak

P1, define

Θ̂reg
~v,~w : P~v,~w U → A

by

Θ̂reg
~v,~w(γ) = lim

ε→0
δ→0

εXj 〈T, γ1−δ
ε 〉 δ−Xk = lim

t→0
tXj 〈T, γ1−t

t 〉 t
−Xk
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Exercise 38. Suppose that ~u ∈ Ta`
P1. Show that if α ∈ P~u,~v U and

β ∈ P~v,~w U , then

Θ̂reg
~u,~w(αβ) = Θ̂reg

~u,~v(α)Θ̂reg
~v,~w(β).

Exercise 39. Show that

Θ̂reg
~v,~w : H0(P~v,~w U ; C)̂→ A.

is an isomorphism, and that Θ̂reg
~v,~w(Jn

~v,~w) = In for all n ≥ 1.

The limit mixed Hodge-Tate structure on H0(P~v,~w U)/Jn+1 is now

easily defined using Θ̂reg
~v,~w. One first defines the Hodge and weight filtra-

tions on A/In+1 in the standard way, and then transfers these to Hodge
and weight filtrations on H0(P~v,~w U)/Jn+1 using the isomorphism

Θ̂reg
~v,~w : H0(P~v,~w U ; C)/Jn+1 → A/In+1.

The periods of this limit MHS associated to c ∈ H0(P~v,~w U ; C)/Jn+1

are the coefficients of Θ̂reg
~v,~w(c) ∈ A/In+1.

Exercise 40. Suppose that ~v = λ∂/∂z ∈ Taj
U . Suppose that σj ∈

P~v,~v U is the loop αγα−1 obtained by joining a sufficiently small, pos-
itively oriented circle γ centered at aj to aj by a line segment α from
aj to the point on γ of the form aj + tλ where t > 0. Show that

Θ̂reg
~v,~v(σj) = e2πiXj ∈ A.

4.4. The Limit Mixed Hodge Structure on the Fundamen-

tal Groupoid of P1 − {0, 1,∞}. We now consider the fundamen-
tal groupoid of P1 − {0, 1,∞} with objects the two tangent vectors
−→
01 ∈ T0P

1 and
−→
10 ∈ T1P

1. This is generated by the paths

σ0 σ1[0,1]

Figure 3

where σ0 ∈ P−→
01,

−→
01(P

1 − {0, 1,∞}) and σ1 ∈ P−→
10,

−→
10(P

1 − {0, 1,∞}).
Set

Φ(X0, X1) = Θ̂reg
−→
01,

−→
10

([0, 1]) = lim
t→0

tX0T ([t, 1− t])tX1 ∈ A.

This is known as the Drinfeld associator and was first constructed
in [7]. It has many remarkable properties, one of which is that the
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coefficients of Φ(X0, X1) are multiple zeta numbers. This should not
be surprising as its coefficients are convergent iterated integrals on the
unit interval. This fact was observed without proof by Drinfeld [7] and
proved by Le and Murakami [16] where one can find an explicit formula
for Φ(X0, X1).

Exercise 41. Prove the formulas

tX0 = 〈1 +

∫
w0X0 +

∫
w0w0X

2
0 + · · · , [1, t]〉

and

t−X1 = 〈1 +

∫
w1X1 +

∫
w1w1X

2
1 + · · · , [0, 1− t]〉

and use them to find an expression for the Drinfeld associator whose
coefficients are iterated integrals of the form

∫
[0,1]

w1 . . . w0. Deduce

that the coefficients of Φ(X0, X1) are multiple zeta numbers and that
all multiple zeta numbers occur.

Theorem 28. The periods of the limit mixed Hodge-Tate structure on

Qπ1(P
1 − {0, 1,∞},

−→
01)̂ is precisely MZNC.

Proof. This follows immediately from the facts that π1(P
1−{0, 1,∞},

−→
01)

is generated by the paths σ0 and [0, 1]σ1[1, 0] and the facts that

Θ̂−→
01,

−→
01

(σ0) = e2πiX0 and Θ̂−→
01,

−→
01

(σ1) = e−2πiX1

and the fact that the coefficients of Φ(X0, X1) are multiple zeta num-
bers. �
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