# Mixed Motives Associated to Classical Modular Forms

Richard Hain

**Duke University** 

July 27, 2015

#### Overview

This talk concerns mixed motives associated to classical modular forms.

#### Goals

These include making progress on:

- new cases of Beilinson's conjectures on special values of L-functions of modular forms,
- Morita's conjecture on the Galois action on the unipotent fundamental group of a smooth projective curve of arbitrary genus,
- a variant (all genera) of the unipotent-de Rham version of the Grothendieck-Teichmüller conjecture.

Collaborators: Francis Brown, Makoto Matsumoto



# A Holy Grail

Beilinson proposed that there is a  $\mathbb{Q}$ -linear tannakian category MM(X) of mixed motives associated a smooth scheme X over  $\mathbb{Z}$  (say) with the correct Ext groups:

$$\textit{Ext}^j_{\mathsf{MM}(X)}(\mathbb{Q},\mathbb{Q}(n)) = H^j_{\mathrm{mot}}(X,\mathbb{Q}(n)) := K_{2n-j}(X)^{(n)}.$$

The dimension of these groups should, in most cases, be the dimension of the real Deligne cohomology group

$$H^{j}_{\mathcal{D}}(X^{\mathrm{an}},\mathbb{R}(n))^{\overline{\mathcal{F}}_{\infty}}$$

or, equivalently, the order of vanishing of a certain L-function of X at the appropriate point.



### The Standard Example: Borel and Beilinson

If  $X = \operatorname{Spec} \mathcal{O}_{F,S}$ , where F is a number field, then  $H^j(X,\mathbb{Q}(n))$  vanishes when j > 1 or n < 0. Have  $H^0(X,\mathbb{Q}(0)) = \mathbb{Q}$  and

$$H^1_{\mathrm{mot}}(X,\mathbb{Q}(n)) = K_{2n-1}(\mathcal{O}_{K,S}) \otimes \mathbb{Q} \cong \begin{cases} \mathbb{Q}^{r_1+r_2+|S|-1} & n=1, \\ \mathbb{Q}^{r_1+r_2} & n>1 \text{ odd,} \\ \mathbb{Q}^{r_2} & n>0 \text{ even.} \end{cases}$$

All other groups vanish. The ranks are given by the order of vanishing of the Dedekind zeta function of  $\mathcal{O}_{K,S}$  at negative integers.

# Voevodsky Motives

Voevodsky (also Levine & Hanamura) has constructed a triangulated tensor category of motives associated to schemes over a perfect field k with the correct Ext groups. It is not tannakian and it is not known whether  $H^j_{\mathrm{mot}}(X,\mathbb{Q}(n))$  vanishes when j<0 (Beilinson-Soulé vanishing).

NB: Since  $H^j_{\text{mot}}(X,\mathbb{Q}(n))$  vanishes when j > 2n, the vanishing conjecture implies vanishing when n < 0.

#### Mixed Tate Motives

There is one case where things work well, almost as well as we want. Levine and Deligne-Goncharov have constructed (from Voevodsky's motives) a  $\mathbb{Q}$ -linear tannakian category  $\mathsf{MTM}(\mathcal{O}_{K,S})$  of mixed Tate motives over a number field K, unramified over S, with the correct ext groups:

$$H^j_{\mathrm{mot}}(\operatorname{\mathsf{Spec}}\,{\mathcal O}_{{\mathcal K},{\mathcal S}},{\mathbb Q}({\mathit n}))=\operatorname{\mathsf{Ext}}^j_{\mathsf{MTM}({\mathcal O}_{{\mathcal K},{\mathcal S}})}({\mathbb Q},{\mathbb Q}({\mathit n})).$$

Mixed Tate motives have weight filtrations. Their Hodge realizations are mixed Hodge structures whose weight graded quotients are sums of Tate Hodge structures  $\mathbb{Q}(r)$ .



# The Fundamental Group of $MTM(\mathbb{Z})$

The fundamental group of  $\mathsf{MTM}(\mathcal{O}_{K,S})$  is an extension of  $\mathbb{G}_m$  by a free prounipotent group. When  $\mathcal{O}_{K,S} = \mathbb{Z}$ , the Lie algebra of the kernel is

$$\mathfrak{k} = \mathbb{L}(\mathbf{z}_3, \mathbf{z}_5, \mathbf{z}_7, \mathbf{z}_9, \dots)^{\wedge}$$

where  $\mathbb{G}_m$  acts on  $\mathbf{z}_{2m+1}$  with weight 2m+1.

In general,

$$\mathfrak{t}_{K,S} = \mathbb{L}\bigg(\bigoplus_{n>0} K_{2n-1}(\mathcal{O}_{K,S})^*\bigg)^{\wedge}.$$

where  $\mathbb{G}_m$  acts on  $K_{2n-1}(\mathcal{O}_{K,S})^*$  with weight n.



# **Unipotent Fundamental Groups**

The *unipotent completion*  $\Gamma^{\mathrm{un}}_{/F}$  of a discrete group  $\Gamma$  over a field F of characteristic zero is the tannakian fundamental group of the category of unipotent representations of  $\Gamma$  on finite dimensional F vector spaces.

Every unipotent representation of  $\Gamma$  over F factors through  $\Gamma^{un}_{/F}$ :

$$\Gamma \xrightarrow{\longrightarrow} \Gamma^{\mathrm{un}}(F) \xrightarrow{\longrightarrow} \operatorname{Aut} V$$

The coordinate ring (equivalently, the Lie algebra) of the unipotent fundamental group  $\pi_1^{\mathrm{un}}(X,b)$  of a complex algebraic variety has a natural MHS. Here b may be a tangential base point.

# **Examples of Mixed Tate Motives**

Deligne and Goncharov showed that  $\pi_1^{\mathrm{un}}(\mathbb{P}^1 - \{0, 1, \infty\}, \vec{v})$  is a (pro-) object of MTM( $\mathbb{Z}$ ), where  $\vec{v} = \partial/\partial x \in \mathcal{T}_0\mathbb{P}^1$ . Its periods are multi-zeta values (MZVs):

$$\zeta(n_1,\ldots,n_r) = \sum_{0 < k_1 < \cdots < k_r} \frac{1}{k_1^{n_1} k_2^{n_2} \cdots k_r^{n_r}} \qquad n_r > 1$$

$$= \int_0^1 \omega_1 \underbrace{\omega_0 \ldots \omega_0}_{0 \ldots \omega_0} \omega_1 \underbrace{\omega_0 \ldots \omega_0}_{0 \ldots \omega_0} \ldots \omega_1 \underbrace{\omega_0 \ldots \omega_0}_{0 \ldots \omega_0}$$

where  $\omega_0 = dx/x$  and  $\omega_1 = dx/(1-x)$ .

**Question:** Do the MZV span the periods of objects of MTM( $\mathbb{Z}$ )?



#### Brown's Theorem

#### Theorem (Brown)

 $\pi_1(\mathsf{MTM}(\mathbb{Z}))$  acts faithfully on  $\pi_1^{\mathrm{un}}(\mathbb{P}^1 - \{0, 1, \infty\}, \vec{\mathsf{v}})$ . Consequently, the periods of all objects of  $\mathsf{MTM}(\mathbb{Z})$  are  $\mathsf{MZVs}$ .

#### Corollary

 $\mathcal{O} \big( \pi_1^{\mathrm{un}}(\mathbb{P}^1 - \{0,1,\infty\}, \vec{v}) \big)$  generates MTM( $\mathbb{Z}$ ) as a tannakian category and MTM( $\mathbb{Z}$ ) is isomorphic to the sub tannakian category of MHS $_{\mathbb{Q}}$  generated by it.

So one could define  $MTM(\mathbb{Z})$  to be the full subcategory of  $MHS_{\mathbb{Q}}$  generated by  $\mathcal{O}(\pi_1^{un}(\mathbb{P}^1 - \{0,1,\infty\},\vec{v}))$ .



#### Interlude

#### **Questions and Comments**

- The theory of mixed Tate motives appears to be very much a "genus 0 story", or perhaps a "hyperplane complement story".
- Is there a "higher genus story"?
- If so (by Harer connectivity), genus 1 moduli spaces should be the fundamental building block. (Cf. general Grothendieck-Teichmüller story.)
- The elliptic case relates to genus 0 by specialization to the nodal cubic and to higher genus by degeneration to trees of elliptic curves.

# Motives Associated to Genus 1 Moduli Spaces

- The stack  $\mathcal{M}_{1,1}$  is defined over  $\mathbb{Z}$  and has everywhere good reduction. So its cohomology groups should be motives unramified over  $\mathbb{Z}$ .
- ②  $\mathbb{H}$  is the local system  $R^1f_*\mathbb{Q}$  associated to the universal elliptic curve  $f: \mathcal{E} \to \mathcal{M}_{1,1}$ . It is a PVHS of weight 1.
- Manin-Drinfeld: as a motive (Hodge, Galois, ...)

$$H^1(\mathcal{M}^{\text{an}}_{1,1}, S^{2n}\mathbb{H}) = \mathbb{Q}(-2n-1) \oplus H^1_{\text{cusp}}(\mathcal{M}^{\text{an}}_{1,1}, S^{2n}\mathbb{H})$$

The copy of  $\mathbb{Q}(-2n-1)$  corresponds to the Eisenstein series of weight 2n+2.

Eichler-Shimura:

$$H^1_{\mathrm{cusp}}(\mathcal{M}^{\mathrm{an}}_{1,1},\mathcal{S}^{2n}\mathbb{H}_{\mathbb{R}})=\bigoplus_f V_f$$

where  $V_f$  is the 2-dimensional real Hodge structure associated to the normalized Hecke eigen cusp form f of weight 2n + 2. It is of type (2n + 1, 0), (0, 2n + 1).

#### Mixed Modular Motives

- If there were tannakian category  $MM(\mathbb{Z})$  of mixed motives over  $\mathbb{Z}$ , then one could take the full subcategory of it generated by the  $H^1(\mathcal{M}_{1,1}, S^{2n}\mathbb{H})$  and the  $\mathbb{Q}(r)$ .
- ② Brown refers to this putative category as the category of mixed modular motives over  $\mathbb{Z}$ . Denote it by  $\mathsf{MMM}(\mathbb{Z})$ , or just  $\mathsf{MMM}$ .
- With current technology, the construction of MMM from Voevodsky motives seems to be far out of reach.
- Brown has an end run around this problem.

**Question:** Where can one find all of the pure motives associated to  $\mathcal{M}_{1,1}$  and lots of extensions between them?

**An Answer:** In the coordinate ring of the relative unipotent completion of  $\pi_1(\mathcal{M}_{1,1}, \partial/\partial q)$ .



# Relative Unipotent Completion of $SL_2(\mathbb{Z})$

The relative unipotent completion  $\mathcal{G}^{\mathrm{rel}}$  of  $\mathrm{SL}_2(\mathbb{Z})$  is the fundamental group of the tannakian category whose objects are finite dimensional representations V of  $\Gamma$  (over  $\mathbb{Q}$ , say) that admit a filtration

$$V = V^0 \supset V^1 \supset V^2 \supset \cdots \supset V^N \supset V^{N+1} = 0$$

with the property that each  $V^j/V^{j+1}$  is a sum of copies of modules of the form  $S^mH$ , where H is the fundamental representation of  $\mathrm{SL}_2$ .

It is an affine group scheme (over  $\mathbb{Q}$ ) (equivalently, a proalgebraic  $\mathbb{Q}$ -group) that is an extension

$$1 \to \mathcal{U}^{\text{rel}} \to \mathcal{G}^{\text{rel}} \to \text{SL}_2 \to 1$$

where  $\mathcal{U}^{rel}$  is prounipotent. The natural homomorphism  $\mathrm{SL}_2(\mathbb{Z}) o \mathcal{G}^{rel}(\mathbb{Q})$  is Zariski dense.



# Structure and Properties of $\mathcal{G}^{\text{rel}}$

- $\mathrm{SL}_2(\mathbb{Z})$  is naturally isomorphic to  $\pi_1(\mathcal{M}_{1,1}^{\mathrm{an}},\vec{t})$  where  $\vec{t}=\partial/\partial q$ . The fundamental representation H of  $\mathrm{SL}_2$  can be viewed as  $H^1(E_{\vec{t}})$ . It is isomorphic to  $\mathbb{Q}(0)\oplus\mathbb{Q}(-1)$ .
- ② The coordinate ring  $\mathcal{O}(\mathcal{G}^{\mathrm{rel}})$  has a natural (limit) MHS. Its periods are (regularized) iterated integrals of modular forms. These include Manin's iterated Shimura integrals, but there are a lot more.
- **③** The category of Hodge representations of  $\mathcal{G}^{\mathrm{rel}}$  is equivalent to the category of the admissible VMHS over  $\mathcal{M}_{1,1}^{\mathrm{an}}$  whose weight graded quotients are sums of variations of the form  $S^m\mathbb{H} \otimes A$ , where A is a Hodge structure.
- **③** For each prime  $\ell$ , have a  $G_{\mathbb{Q}}$  action on  $\mathcal{O}(\mathcal{G}^{\mathrm{rel}}) \otimes \mathbb{Q}_{\ell}$ . This is unramified at all primes (Mochizuki+Tamagawa) and crystalline at  $\ell$  (Olsson).



# Structure and Properties of $\mathcal{G}^{\text{rel}}$ (ctd)

- The Lie algebra  $\mathfrak{u}^{\mathrm{rel}}$  of  $\mathcal{U}^{\mathrm{rel}}$  is free. So it is (not naturally) isomorphic to  $\mathbb{L}(H_1(\mathfrak{u}^{\mathrm{rel}}))^{\wedge}$ .
- 2 As an SL(H)-module and as a MHS

$$H_1(\mathfrak{u}^{\mathrm{rel}}) \cong \prod_{n>0} H^1(\mathcal{M}_{1,1}^{\mathrm{an}}, S^{2n}\mathbb{H}) \otimes S^{2n}H(2n+1).$$

This implies that all of the Hodge structures

$$V_{f_1} \otimes \cdots \otimes V_{f_m}(r)$$

appear in  $\operatorname{Gr}_{\bullet}^{W}\mathcal{O}(\mathcal{G}^{\operatorname{rel}})$ . So the coordinate ring of  $\mathcal{G}^{\operatorname{rel}}$  contains "compatible families of extensions" (cf. Deligne)

Which extensions does one get?



#### Brown's End Run

Since  $(\mathcal{M}_{1,1}, \vec{t})$  is defined over  $\mathbb{Z}$  and has everywhere good reduction,  $\mathcal{G}^{\text{rel}}$  should be an object of MMM.

#### Brown's candidate

Define MMM to be the full tannakian subcategory of  $MHS_{\mathbb{Q}}$  generated by the coordinate ring of  $\mathcal{G}^{rel}$ .

It contains  $\text{MTM}(\mathbb{Z})$  and (after tensoring with  $\mathbb{R})$  all simple factors of

$$V_{f_1} \otimes \cdots \otimes V_{f_m}(r)$$
.

where the  $f_j$  are eigen forms, and thus extensions between them. If true, will exhibit Hodge and Galois realizations of all elements of

$$\mathsf{Ext}^1_{\mathsf{MM}(\mathbb{Z})}(\mathbb{Q},\,V_{\mathit{f}_1}\otimes\cdots\otimes V_{\mathit{f}_m}(r))$$

in subquotients of  $\mathcal{O}(\mathcal{G}^{\mathrm{rel}})$ .



# **Universal Mixed Elliptic Motives**

A universal MEM is a mixed Tate motive  $(V, M_{\bullet})$  with an  $\mathrm{SL}_2(\mathbb{Z})$  symmetry. The  $\mathrm{SL}_2(\mathbb{Z})$  action is required to factor through an action of  $\mathcal{G}^{\mathrm{rel}}$ . The monodromy coaction

$$V o V \otimes \mathcal{O}(\mathcal{G}^{\mathrm{rel}})$$

is required to be a morphism of MHS.

The corresponding local system  $\mathbb{V}$  over the modular curve  $\mathcal{M}_{1,1}^{\mathrm{an}}$  is an admissible variation of MHS whose weight graded quotients are sums of pure variations of the form  $S^m\mathbb{H}(r)$ . Its fiber over  $\partial/\partial q$  is the Hodge realization of  $(V, M_{\bullet})$ .

# Universal Mixed Elliptic Motives (ctd)

#### **Examples of Universal MEM**

- **⑤**  $S^m \mathbb{H}(r)$  for all  $m \ge 0$  and all  $r \in \mathbb{Z}$ . These are the simple objects of MEM.
- ② All objects of  $\mathsf{MTM}(\mathbb{Z})$  are *geometrically constant* objects of MEM.
- **3** The Lie algebra of  $\pi_1^{\mathrm{un}}(E'_{\vec{\mathfrak{t}}},\vec{\mathsf{w}})$  is a pro-object of MEM.

Since V is mixed Tate, this action factors through the maximal Tate quotient  $\mathcal{G}^{\mathrm{eis}}$  of  $\mathcal{G}^{\mathrm{rel}}$ . Call this the Eisenstein quotient of  $\mathcal{G}^{\mathrm{rel}}$ . Denote the Lie algebra of its prounipotent radical by  $\mathfrak{u}^{\mathrm{eis}}$ . The fundamental group of MEM is

$$\pi_1(\mathsf{MEM}) \cong \pi_1(\mathsf{MTM}(\mathbb{Z})) \ltimes \mathcal{G}^{\mathrm{eis}}.$$



# First Steps Towards a Presentation of ueis

The Lie algebra ueis is a quotient of the free Lie algebra

$$\mathfrak{f}:=\mathbb{L}ig(igoplus_{n>0}S^{2n}Hig)=\mathbb{L}ig(\mathbf{e}_0^j\cdot\mathbf{e}_{2n+2}:n>0,\ 0\leq j\leq 2n)^{\wedge}$$

on which  $\mathfrak{sl}_2$  acts. The generator  $\mathbf{e}_{2n+2}$  is a highest weight vector of  $S^{2n}H$  dual to the Eisenstein series  $G_{2n}$ , when n > 0, and  $\mathbf{e}_0$  is the nilpotent of weight -2 in  $\mathfrak{sl}_2$ .

To give a presentation of  $\mathfrak{u}^{\mathrm{eis}}$ , we need only give a basis of the  $\mathfrak{sl}_2$  highest weight vectors in the relations. The highest weight vector of  $\mathfrak{sl}_2$  weight 2n and degree d that lies in  $[S^{2a}H,S^{2b}H]$  is

$$\mathbf{w}_{a,b}^{d} := \sum_{\substack{i+j=d-2\\i>0,j>0}} (-1)^{i} \binom{d-2}{i} (2a-i)! (2b-j)! [\mathbf{e}_{0}^{i} \cdot \mathbf{e}_{2a+2}, \mathbf{e}_{0}^{j} \cdot \mathbf{e}_{2b+2}]$$



# Monodromy and Pollack Relations

- The Lie algebra of  $\pi_1^{\mathrm{un}}(E_{\vec{\mathfrak{l}}}',\vec{\mathsf{v}})$  is isomorphic to  $\mathbb{L}(H)$ . This is a pro-object of MTM = MTM( $\mathbb{Z}$ ).
- The action of  ${\rm SL}_2(\mathbb{Z})$  on  $\pi_1^{\rm un}(E_{\vec{\mathfrak{t}}}',\vec{\mathsf{v}})$  induces a monodromy homomorphism

$$\mathfrak{u}^{\mathrm{rel}} o \mathsf{Der}\, \mathbb{L}(H).$$

- Its image is generated by certain derivations  $\epsilon_{2n}$ ,  $n \ge 0$ . These are dual to the Eisenstein series  $G_{2n}$  when n > 0.
- Matsumoto and the speaker naively predicted that each cusp form should determine relations between the  $\epsilon_{2n}$ 's of each degree  $d \geq 2$ .
- Pollack (in his undergraduate thesis) found such relations between the  $\epsilon_{2n}$ 's when d=2 and found relations that hold mod a certain filtration for all  $d \geq 3$ .
- The quadratic relations imply the Ihara-Takao relations.



#### Pollack Relations Lift

#### Theorem (Brown, Hain, Matsumoto)

For each cusp form f of  $\mathrm{SL}_2(\mathbb{Z})$  of weight 2n+2 and each  $d\geq 2$ , there is a degree d element

$$\mathbf{r}_{\mathit{f},\mathit{d}} = \sum c_{\mathit{a}} \mathbf{w}_{\mathit{a},\mathit{b}}^{\mathit{d}} + \mathit{higher order terms}$$

of  $\ker\{\mathfrak{f} o \mathfrak{u}^{eis}\} \otimes \mathbb{C}$ , where

$$\mathsf{r}_{\mathsf{f}}^{\epsilon}(x,y) = \sum c_{\mathsf{a}} x^{2\mathsf{a}-\mathsf{d}} y^{2\mathsf{n}-2\mathsf{a}-\mathsf{d}}$$

is the modular symbol of f. For each n and d as above,

 $\{\mathbf{r}_{f,d}: f \text{ a normalized eigen cusp form of weight } 2n+2\}$ 

projects to a linearly independent subset of

$$H^2(\mathfrak{u}^{\mathrm{eis}}, S^{2n}H(2n+d))^{\mathrm{GL}(H)}\otimes \mathbb{C}.$$



#### **Arithmetic Relations**

If standard conjectures in number theory are true, these *geometric relations* and their Galois (or Hodge) conjugates will generate all relations in  $\mathfrak{u}^{\mathrm{eis}}$ .

The remaining task is to determine the "infinitesimal Galois action", i.e., the action of  $\mathfrak k$  on  $\mathfrak u^{\mathrm{eis}}$ . That is, we need to determine the *arithmetic relations* 

$$[\boldsymbol{z}_{2m+1},\boldsymbol{e}_{2n}]\in\mathfrak{f}.$$

Brown and the speaker are trying to determine the quadratic terms of the RHS using his period computations. One application of this will be to Morita's Conjecture.

# Morita's Conjecture

- Suppose that C is a smooth projective curve over  $\mathbb Q$  of genus  $g \geq 2$  and that  $x \in C(\mathbb Q)$ . Here set  $H = H_1(C^{\mathrm{an}}, \mathbb Q_\ell)$ .
- The Lie algebra  $\mathfrak p$  of  $\pi_1^{\mathrm{un}}(C^{\mathrm{an}},x)\otimes \mathbb Q_\ell$  is isomorphic to

$$\mathbb{L}(\mathbf{a}_j, \mathbf{b}_j : j = 1, \dots, g)^{\wedge} / (\sum_j [\mathbf{a}_j, \mathbf{b}_j])$$

- Denote the relative completion of  $\pi_1(\mathcal{M}_{g,1/\overline{\mathbb{Q}}},[C,x])$  by  $\mathcal{G}_{g,1}$ . There is a monodromy action  $\mathcal{G}_{g,1} \to \operatorname{Aut} \mathfrak{p}$ . It induces a Lie algebra homomorphism  $\mathfrak{g}_{g,1} \to \operatorname{Der} \mathfrak{p}$ .
- There is a well defined map

$$\mathfrak{k} o \mathsf{Der}\,\mathfrak{p}/\mathsf{im}\,\mathfrak{g}_{g,1}$$

induced by the  $G_{\mathbb{Q}}$  action on  $\mathfrak{p}$ . It is injective by Brown's Theorem plus the solution of Oda's Conjecture by Takao and others. The image is independent of (C, x).

Morita has made an explicit conjecture about the image.



# Sample References

- F. Brown: Multiple modular values for SL<sub>2</sub>(ℤ), [arXiv:1407.5167]
- R. Hain: The Hodge-de Rham theory of modular groups, [arXiv:1403.6443]
- R. Hain, M. Matsumoto: Universal mixed elliptic motives, arXiv.org soon!
- Y. Manin: Iterated Shimura integrals, Mosc. Math. J. 5 (2005), 869–881.

and references therein.

