Is the Goldman—Turaev Lie Bialgebra Motivic?

Richard Hain

Duke University

Periods Seminar, Tsinghua University
January 8, 2024



Initial setting

> For a topological space X, define A\(X) = [S', X].
» When X is path connected (as it will be from now on)

A(X) = conjugacy classes in (X, x).
» For a commutative ring k (for us Z or a field of char 0) set
kA(X) = free k-module generated by A(X).

» There is an inclusion k — kA(X) that takes 1 to the
boundary of a disk and a projection kA(X) — k that takes
each loop to 1. This gives a natural decomposition

KA(X) = k1 & kA(X)



» The cyclic quotient of an associative k-algebra A is
¢ (A) = |A|l .= A/span{uv — vu : u,v € A}

» For example the cyclic quotient of the free associative
algebra k(x : x € Z7) is spanned by the “cyclic words” in
the elements x of the alphabet 2":

X1 Xo ... Xm~ Xo...XmX1.

» We have kA(X) = €' (km1(X, x)).



The Goldman—Turaev Lie bialgebra

The Goldman bracket is a map
{, }:kXX)@kAX) = kA(X)

that makes kA(X) into a Lie algebra. The Turaev cobracket is a
map
¢ - kKA(X) = kA(X) @ kA(X)

that depends on a framing £ (a nowhere vanishing vector field)
on X. Together they form a Lie bialgebra:

defu, vy =u-d¢(v) — v - d¢(u)

where w- (x@y)={w,x} @y +x@{w,y}.



The bracket and cobracket are defined using elementary
surgery: Each element of A(X) can be represented by an
immersed circle with simple normal crossings. (So no triple
points, etc). One can perform surgery at a double point:

surgery
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Goldman bracket

To define the Goldman bracket of «, 8 € A\(X), represent them
by oriented, transversally intersecting, immersed circles. Their
Goldman bracket is

{a,8} =) epa#pp
P

where P ranges over the points where « intersects 3, ep = +1
is the local intersection number at P and a#pg is the loop
obtained by simple surgery at P.



An example

{o, B} = epaitpl +eqai#tall



An example



An example



An example

P
ep =1
(@ ¢g=—1

{a, B} = epa#pl +eqadftaB = a#pl — a#qf

o) - (@9



The Turaev cobracket

For convenience, we denote the element v @ w — w @ v of V®?2
by v A w. Suppose that « is an immersed circle with simple
normal crossings. The first step in defining the cobracket is to
define for each double point P of «

dp(a) = ap A ap

where
o} ap ap
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To define d¢(«) represent a by an immersed loop with simple
normal crossings and trivial winding number with respect to
the framing:
rote oo = 0.
(Add some “backflips” as necessary.) The cobracket is defined
by
Se()= > epdp(a)

double points P

where ep = £1 is the local intersection number of the initial
arcs of o/ and a/p (in that order).



Sample cobracket

To compute the cobracket of

£€=0/0x

rote oo = 1



Sample cobracket

represent it by




Sample cobracket

to see that /. takes @@@ to
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Sample cobracket

to see that /. takes @@@ to
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Sample cobracket

©)

to see that /. takes @@



» The Goldman—Turaev Lie bialgebra is involutive. That is

EA(X) 2 kA(X) © BAX) L kA(X)

is zero.
» The cobracket d; induces a map

5 RAX) /K1 — (KA(X)/k1)®?

It does not depend on the framing &. This is called the
reduced cobracket.



The Kawazumi—Kuno action and Turaev coaction

» Let V be a tangential base point — equivalently, a base
point in the boundary of X.

» Kawazumi and Kuno extended the constructions of
Goldman and Turaev to define a Lie algebra
homomorphism

kg KA(X) — Derkmy (X, V).
Turaev defined a coaction

k1 (X; V) = kA(X) @ kmry (X; V).



Special derivations

A derivation D of k1 (X, V) is special if there are
Ui, - - o € kmy (X, V) (resp., its completion) such that
D(~y) =0 and

Here ~; is any path of the form

v
S .
0./\/%

Loops act as special derivations, so

Ky KA(X) — SDerkmq (X, V).



Completions

» From now on, k is a field of characteristic zero.
» Denote the augmentation idea of kr (X, V) by /.
» The /-adic completion of k(X V) is

k?ﬁ(X,V)A = L%nkﬂ1(X,V)//m.

> Give kA(X) the quotient topology via kmq (X, V) — kA(X).
Its /-adic completion is

KA(X)" = € (ki (X, ¥)").



The completed GT Lie bialgebra

» Kawazumi and Kuno showed that the Goldman bracket
and Turaev cobracket are continuous in the /-adic topology
and thus induce maps

{, 1RO @KAX)" — KA(X)"

and
Je 1 RAX)" = RA(X) @ kA(X)"
This is the completed GT Lie bialgebra.

» They also showed that their action is continuous, so that
there is a continuous Lie algebra homomorphism

kgt KA(X)" — SDerkmq (X, V)"

» When (X, V) is a surface of type (g, T), ky induces an
isomorphism

QA(X)"/Q1 = SDerkmq (X, V)"



Hodge theory

» Suppose that X = X — S where X is a compact Riemann
surface, S = {sp,...,Sp} withn>0and v € T X,V # 0.
(So (X, S,V) is a topological surface of type (g, n + T).)

» When needed, ¢ is an algebraic framing of X. That is, a
meromorphic vector field on X that is nowhere vanishing
and holomorphic on X.

» There is a canonical pro-mixed Hodge structure (MHS) on
Qmy(X,V)". Itinduces a canonical pro-MHS on QA(X)".

» The MHS on QA(X)" does not depend on v, only on X.



Theorem (H: 2020, 2021)
The completed Goldman bracket

{, FRMX)" @Q(-1) @ kA(X)" ® Q(-1)
= kAX)" @ Q(-1),

the completed Turaev cobracket

e - kAX)" Q1) — [kAX)" @ Q(1)]?
and the Kawazumi—Kuno action

kg kA(X)" @ Q(—1) — SDerkmq (X, V)"

are all morphisms of pro-MHS.



Comments and Questions

> | believe that when X is defined over a number field K,
then for all ¢, the bracket and cobracket on Q,\(X)" (after
a suitable Tate twists) are Gal(Q/K) equivariant. Similarly
for the Kawazumi—Kuno action.

» | have a sketch of an indirect proof. Can this be proved
directly by ‘elementary’ arguments?

» The Hodge and Galois equivariance suggests that the
Goldman—Turaev Lie bialgebra is motivic. If so, what does
it have to do with cycles and motives?

> It appears that there is a link to Ceresa cycle when g > 3.

» It also appears to be related to Goncharov’s Hodge
correlators.



Mapping class groups

» Denote the mapping class group of (X; S,V) by Mxv:

rX’\-,* =T DIﬂ:Jr(y7 S, \7) = 7r1(Mg,n+1_" [(X, \7)])

It is @ mapping class group of type (g, n + T).

» Assume that X is hyperbolic: 2g — 2+ n+1 > 0.

> lts Torelli subgroup Ty g is the kernel of the homomorphism
rX7\7 — Sp(H]k), where H = H1 (Y, ]k).

» We have the extension

1— TX7\7 —Txy— Sp(Hz) — 1.

and the natural representation 'y ; — Aut 71 (X, V).



Relative completion of mapping class groups

The relative completion of I'y ; consists of an affine (aka
proalgebraic) group Gy ; defined over Q and a homomorphism

p:Txg— Ix3(Q)
This group is an extension
1= Uxg— Gxi— Sp(Hg) — 1
where Uy g is prounipotent. The composite
Mxg — 9x3(Q) — Sp(Hp)

is the canonical homomorphism. Such extensions form a
category. The relative completion is the initial object of this
category.



The unipotent completion of 74 (X, V)"

» Qmq(X,V) is a Hopf algebra; its completion Q¢ (X, V)" is a
complete Hopf algebra.

» The set of primitive elements of Qm (X, V)" is the Lie
algebra p(X, V) of the unipotent (aka, Malcev) completion
of 74 (X, \7)

» If X is affine, Qmq(X, V)" is (un-naturally) isomorphic to the
completed tensor algebra

T(Hy (X; k)"

with the coproduct Au=1@u+u®1, ue Hi(X). And
p(X, V) is isomorphic to L(H;(X))".



The Johnson homomorphism

» Since unipotent completion is functorial, the action of I'y ;
on 1(X, V) induces a homomorphism

rX7\7 — Aut p(X, \7)
» The universal mapping property of relative completion

implies that it induces a homomorphism Gy ; — Aut p(X, V)
such that the diagram

TX,V I'XTV Aut 74 (X,\7)

[ [ [

Ux 3(Q) — Gx (Q) —— Autp(X,V)

commutes.



> Denote the Lie algebras of Gy ; and Uy ; by gx y and uy g.

» The homomorphism Gy g — Autp(X, V) induces a Lie
algebra homomorphism

gxy — SDerp(X,V) (+)

> For each (X, V), there is a canonical MHS on gy ; and (x) is
a morphism of MHS.

» This is (for me) the geometric Johnson homomorphism.



The arithmetic Johnson homomorphism

» There is also a homomorphism (for k = Q, R).
mbs, — Derp(X, V)

where mbs, is the Lie algebra of Gy = m1(MHSy).
> Since mbs acts on gy g, we have

mbsy X Ix v

» Since mhs, acts on p(X, V), the Johnson homomorphism
extends to

mbs, x g7~ Derp(X, V)

» This is the arithmetic Johnson homomorphism



Arithmetic versus geometric Johnson image

» Denote the images of the geometric and arithmetic
Johnson homomorphisms by g ; and gy g, respectively.

> Denote their pronilpotent radicals by iy y and iy g,
respectively.

» The proof of Oda’s Conjecture by Takao (+ lhara,
Matsumoto, Nakamura, . ..), Hodge theory and Brown’s
fundamental theorem (on mixed Tate motives) give:

Theorem
The Lie algebras gx ; and gy y have natural MHS and the
inclusion is a morphism. Fork = Q,R, and all g,n > 0 there is
a SES

0—gxy— ﬁxﬁ — Liem1(MTM(Z)) — 0

Recall that Grl Lie 7y (MTM(Z)) = Q(0) @ L(03, 05, 07, . . . ),
where o, has type (—m, —m).



PBW gives an isomorphism of pro-MHS

Qmi(X, V)" = [T Sym™p(X, V).
m>0
The image of Sym p(X, V) in Q\(X)" is a sub-MHS.
Denote its image in |Qmq (X, V)"| = QA(X)" by
| Sym™ p(X, V).
For simplicity, I'll now restrict to the case where (X, V) is of
type (g, 1). In this case

QA(X)"/Q1 — SDer Qmq(X, V)

is an isomorphism by a result of Kawazumi and Kuno. It
restricts to an isomorphism

| Sym? p(X, V)| = SDer p(X, V)



So we have a diagram

| Sym? p(X,V)|(—1) —=— SDerp(X,V)

[ [

QAX)" @ Q(—1) — SDerQmq (X, V)"

of pro-MHS, where all maps are morphisms.



The restriction of the cobracket to | Sym? p(X, V)| induces a map
~ 2 — d¢ AT®2
uxy — [Sym*p(X,V)[(-1) —— [QA(X)"]

It is closely related to the Enomoto—Satoh trace.

Theorem (H + Enomoto—Sato, Kawazumi—Kumo)

If g > 3 (with the “right choice” of £), the cobracket ¢ almost
vanishes on iy g. More precisely, its kernel is the kernel of

iy~ HB=2 P Am= & Qom

m odd>1 m odd>1

where t is the “motivic Lie algebra” of Spec Z.
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