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Initial setting

▶ For a topological space X , define λ(X ) = [S1,X ].
▶ When X is path connected (as it will be from now on)

λ(X ) = conjugacy classes in π1(X , x).

▶ For a commutative ring k (for us Z or a field of char 0) set

kλ(X ) = free k-module generated by λ(X ).

▶ There is an inclusion k→ kλ(X ) that takes 1 to the
boundary of a disk and a projection kλ(X )→ k that takes
each loop to 1. This gives a natural decomposition

kλ(X ) = k1⊕ Ikλ(X )



▶ The cyclic quotient of an associative k-algebra A is

C (A) = |A| := A/ span{uv − vu : u, v ∈ A}.

▶ For example the cyclic quotient of the free associative
algebra k⟨x : x ∈X ⟩ is spanned by the “cyclic words” in
the elements x of the alphabet X :

x1x2 . . . xm ∼ x2 . . . xmx1.

▶ We have kλ(X ) = C (kπ1(X , x)).



The Goldman–Turaev Lie bialgebra

The Goldman bracket is a map

{ , } : kλ(X )⊗ kλ(X )→ kλ(X )

that makes kλ(X ) into a Lie algebra. The Turaev cobracket is a
map

δξ : kλ(X )→ kλ(X )⊗ kλ(X )

that depends on a framing ξ (a nowhere vanishing vector field)
on X . Together they form a Lie bialgebra:

δξ{u, v} = u · δξ(v)− v · δξ(u)

where w · (x ⊗ y) = {w , x} ⊗ y + x ⊗ {w , y}.



The bracket and cobracket are defined using elementary
surgery: Each element of λ(X ) can be represented by an
immersed circle with simple normal crossings. (So no triple
points, etc). One can perform surgery at a double point:

surgery



Goldman bracket

To define the Goldman bracket of α, β ∈ λ(X ), represent them
by oriented, transversally intersecting, immersed circles. Their
Goldman bracket is

{α, β} =
∑

P

ϵP α#Pβ

where P ranges over the points where α intersects β, ϵP = ±1
is the local intersection number at P and α#Pβ is the loop
obtained by simple surgery at P.



An example

P

Q

ϵP = 1

ϵQ = −1

{α, β} = ϵP α#Pβ + ϵQ α#Qβ
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An example

P

Q

ϵP = 1

ϵQ = −1

{α, β} = ϵP α#Pβ + ϵQ α#Qβ = α#Pβ − α#Qβ



The Turaev cobracket

For convenience, we denote the element v ⊗ w − w ⊗ v of V⊗2

by v ∧ w . Suppose that α is an immersed circle with simple
normal crossings. The first step in defining the cobracket is to
define for each double point P of α

δP(α) = α′
P ∧ α′′

P

where

P
A B

α

∧A B

α′
P α′′

P



To define δξ(α) represent α by an immersed loop with simple
normal crossings and trivial winding number with respect to
the framing:

rotξ α = 0.

(Add some “backflips” as necessary.) The cobracket is defined
by

δξ(α) =
∑

double points P

ϵP δP(α)

where ϵP = ±1 is the local intersection number of the initial
arcs of α′

P and α′′
P (in that order).



Sample cobracket

To compute the cobracket of

ξ = ∂/∂x

rotξ α = 1
P Q



Sample cobracket

represent it by

ξ = ∂/∂x

rotξ α = 0
P Q R



Sample cobracket

to see that δξ takes to
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▶ The Goldman–Turaev Lie bialgebra is involutive. That is

kλ(X )
δξ // kλ(X )⊗ kλ(X )

{ , } // kλ(X )

is zero.
▶ The cobracket δξ induces a map

δ : kλ(X )/k1→ (kλ(X )/k1)⊗2

It does not depend on the framing ξ. This is called the
reduced cobracket.



The Kawazumi–Kuno action and Turaev coaction

▶ Let v⃗ be a tangential base point — equivalently, a base
point in the boundary of X .

▶ Kawazumi and Kuno extended the constructions of
Goldman and Turaev to define a Lie algebra
homomorphism

κv⃗ : kλ(X )→ Der kπ1(X , v⃗).

Turaev defined a coaction

kπ1(X ; v⃗)→ kλ(X )⊗ kπ1(X ; v⃗).



Special derivations

A derivation D of kπ1(X , v⃗) is special if there are
µ1, . . . , µn ∈ kπ1(X , v⃗) (resp., its completion) such that
D(γ0) = 0 and

D(γj) = [γj , µj ] := γjµj − µjγj when j > 0.

Here γj is any path of the form

v⃗

s0 sj

Loops act as special derivations, so

κv⃗ : kλ(X )→ SDer kπ1(X , v⃗).



Completions

▶ From now on, k is a field of characteristic zero.
▶ Denote the augmentation idea of kπ1(X , v⃗) by I.
▶ The I-adic completion of kπ1(X , v⃗) is

kπ1(X , v⃗)∧ := lim←−
m

kπ1(X , v⃗)/Im.

▶ Give kλ(X ) the quotient topology via kπ1(X , v⃗)→ kλ(X ).
Its I-adic completion is

kλ(X )∧ = C (kπ1(X , v⃗)∧).



The completed GT Lie bialgebra
▶ Kawazumi and Kuno showed that the Goldman bracket

and Turaev cobracket are continuous in the I-adic topology
and thus induce maps

{ , } : kλ(X )∧ ⊗ kλ(X )∧ → kλ(X )∧

and
δξ : kλ(X )∧ → kλ(X )∧⊗̂kλ(X )∧

This is the completed GT Lie bialgebra.
▶ They also showed that their action is continuous, so that

there is a continuous Lie algebra homomorphism

κv⃗ : kλ(X )∧ → SDer kπ1(X , v⃗)∧

▶ When (X , v⃗) is a surface of type (g, 1⃗), κv⃗ induces an
isomorphism

Qλ(X )∧/Q1 ≃−→ SDer kπ1(X , v⃗)∧



Hodge theory

▶ Suppose that X = X − S where X is a compact Riemann
surface, S = {s0, . . . , sn} with n ≥ 0 and v⃗ ∈ Ts0X , v⃗ ̸= 0.
(So (X ,S, v⃗) is a topological surface of type (g,n + 1⃗).)

▶ When needed, ξ is an algebraic framing of X . That is, a
meromorphic vector field on X that is nowhere vanishing
and holomorphic on X .

▶ There is a canonical pro-mixed Hodge structure (MHS) on
Qπ1(X , v⃗)∧. It induces a canonical pro-MHS on Qλ(X )∧.

▶ The MHS on Qλ(X )∧ does not depend on v⃗, only on X .



Theorem (H: 2020, 2021)
The completed Goldman bracket

{ , } : kλ(X )∧ ⊗Q(−1)⊗ kλ(X )∧ ⊗Q(−1)
→ kλ(X )∧ ⊗Q(−1),

the completed Turaev cobracket

δξ : kλ(X )∧ ⊗Q(1)→
[
kλ(X )∧ ⊗Q(1)

]⊗̂2

and the Kawazumi–Kuno action

κv⃗ : kλ(X )∧ ⊗Q(−1)→ SDer kπ1(X , v⃗)∧

are all morphisms of pro-MHS.



Comments and Questions

▶ I believe that when X is defined over a number field K ,
then for all ℓ, the bracket and cobracket on Qℓλ(X )∧ (after
a suitable Tate twists) are Gal(Q/K ) equivariant. Similarly
for the Kawazumi–Kuno action.

▶ I have a sketch of an indirect proof. Can this be proved
directly by ‘elementary’ arguments?

▶ The Hodge and Galois equivariance suggests that the
Goldman–Turaev Lie bialgebra is motivic. If so, what does
it have to do with cycles and motives?

▶ It appears that there is a link to Ceresa cycle when g ≥ 3.
▶ It also appears to be related to Goncharov’s Hodge

correlators.



Mapping class groups

▶ Denote the mapping class group of (X ;S, v⃗) by ΓX ,⃗v:

ΓX ,⃗v := π0 Diff
+(X ,S, v⃗) ∼= π1(Mg,n+1⃗, [(X , v⃗)]).

It is a mapping class group of type (g,n + 1⃗).
▶ Assume that X is hyperbolic: 2g − 2 + n + 1 > 0.
▶ Its Torelli subgroup TX ,⃗v is the kernel of the homomorphism

ΓX ,⃗v → Sp(Hk), where H = H1(X ;k).
▶ We have the extension

1→ TX ,⃗v → ΓX ,⃗v → Sp(HZ)→ 1.

and the natural representation ΓX ,⃗v → Autπ1(X , v⃗).



Relative completion of mapping class groups

The relative completion of ΓX ,⃗v consists of an affine (aka
proalgebraic) group GX ,⃗v defined over Q and a homomorphism

ρ : ΓX ,⃗v → GX ,⃗v(Q).

This group is an extension

1→ UX ,⃗v → GX ,⃗v → Sp(HQ)→ 1

where UX ,⃗v is prounipotent. The composite

ΓX ,⃗v → GX ,⃗v(Q)→ Sp(HQ)

is the canonical homomorphism. Such extensions form a
category. The relative completion is the initial object of this
category.



The unipotent completion of π1(X , v⃗)∧

▶ Qπ1(X , v⃗) is a Hopf algebra; its completion Qπ1(X , v⃗)∧ is a
complete Hopf algebra.

▶ The set of primitive elements of Qπ1(X , v⃗)∧ is the Lie
algebra p(X , v⃗) of the unipotent (aka, Malcev) completion
of π1(X , v⃗).

▶ If X is affine, Qπ1(X , v⃗)∧ is (un-naturally) isomorphic to the
completed tensor algebra

T (H1(X ;k))∧

with the coproduct ∆u = 1⊗ u + u ⊗ 1, u ∈ H1(X ). And
p(X , v⃗) is isomorphic to L(H1(X ))∧.



The Johnson homomorphism

▶ Since unipotent completion is functorial, the action of ΓX ,⃗v
on π1(X , v⃗) induces a homomorphism

ΓX ,⃗v → Aut p(X , v⃗)

▶ The universal mapping property of relative completion
implies that it induces a homomorphism GX ,⃗v → Aut p(X , v⃗)
such that the diagram

TX ,⃗v ΓX ,⃗v Autπ1(X , v⃗)

UX ,⃗v(Q) GX ,⃗v(Q) Aut p(X , v⃗)

commutes.



▶ Denote the Lie algebras of GX ,⃗v and UX ,⃗v by gX ,⃗v and uX ,⃗v.
▶ The homomorphism GX ,⃗v → Aut p(X , v⃗) induces a Lie

algebra homomorphism

gX ,⃗v → SDer p(X , v⃗) (∗)

▶ For each (X , v⃗), there is a canonical MHS on gX ,⃗v and (∗) is
a morphism of MHS.

▶ This is (for me) the geometric Johnson homomorphism.



The arithmetic Johnson homomorphism

▶ There is also a homomorphism (for k = Q,R).

mhsk → Der p(X , v⃗)

where mhsk is the Lie algebra of Gk = π1(MHSk).
▶ Since mhsk acts on gX ,⃗v, we have

mhsk ⋉ gX ,⃗v

▶ Since mhsk acts on p(X , v⃗), the Johnson homomorphism
extends to

mhsk ⋉ gX ,⃗v → Der p(X , v⃗)

▶ This is the arithmetic Johnson homomorphism



Arithmetic versus geometric Johnson image

▶ Denote the images of the geometric and arithmetic
Johnson homomorphisms by gX ,⃗v and ĝX ,⃗v, respectively.

▶ Denote their pronilpotent radicals by uX ,⃗v and ûX ,⃗v,
respectively.

▶ The proof of Oda’s Conjecture by Takao (+ Ihara,
Matsumoto, Nakamura, . . . ), Hodge theory and Brown’s
fundamental theorem (on mixed Tate motives) give:

Theorem
The Lie algebras gX ,⃗v and ĝX ,⃗v have natural MHS and the
inclusion is a morphism. For k = Q,R, and all g,n ≥ 0 there is
a SES

0→ gX ,⃗v → ĝX ,⃗v → Lieπ1(MTM(Z))→ 0

Recall that GrW• Lieπ1(MTM(Z)) ∼= Q(0)⊕ L(σ3, σ5, σ7, . . . ),
where σm has type (−m,−m).



▶ PBW gives an isomorphism of pro-MHS

Qπ1(X , v⃗)∧ ∼=
∏
m≥0

Symm p(X , v⃗).

▶ The image of Symm p(X , v⃗) in Qλ(X )∧ is a sub-MHS.
▶ Denote its image in |Qπ1(X , v⃗)∧| ∼= Qλ(X )∧ by
|Symm p(X , v⃗)|.

▶ For simplicity, I’ll now restrict to the case where (X , v⃗) is of
type (g, 1⃗). In this case

Qλ(X )∧/Q1→ SDerQπ1(X , v⃗)

is an isomorphism by a result of Kawazumi and Kuno. It
restricts to an isomorphism

| Sym2 p(X , v⃗)| ≃−→ SDer p(X , v⃗)



So we have a diagram

ûX ,⃗v

| Sym2 p(X , v⃗)|(−1) SDer p(X , v⃗)

Qλ(X )∧ ⊗Q(−1) SDerQπ1(X , v⃗)∧

≃

of pro-MHS, where all maps are morphisms.



The restriction of the cobracket to |Sym2 p(X , v⃗)| induces a map

ûX ,⃗v |Sym2 p(X , v⃗)|(−1)
[
Qλ(X )∧

]⊗2δξ

It is closely related to the Enomoto–Satoh trace.

Theorem (H + Enomoto–Sato, Kawazumi–Kumo)
If g ≥ 3 (with the “right choice” of ξ), the cobracket δξ almost
vanishes on ûX ,⃗v. More precisely, its kernel is the kernel of

ûX ,⃗v → H1(k) ∼=
⊕

m odd>1

Q(m) =
⊕

m odd>1

Qσm,

where k is the “motivic Lie algebra” of SpecZ.
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