Polylogs: prehistory and future directions

Richard Hain

Duke University

Brin Mathematics Research Center
September 11, 2023

Outline

I: Prehistory: 1842 to 1990

II: Goncharov’s Hodge Correlators

III: The Goldman-Turaev Lie Bialgebra

The Dirichlet Unit Theorem (1842)

Suppose that F is a number field of degree $r_{1}+2 r_{2}$, where:

- r_{1} is the number of embeddings $\nu: F \hookrightarrow \mathbb{R}$
- r_{2} is the number of complex conjugate pairs of complex (non-real) embeddings $\nu: F \hookrightarrow \mathbb{C}$.

Theorem (Dirichlet)
The group of units \mathcal{O}_{F}^{\times}in the ring of integers \mathcal{O}_{F} is finitely generated of rank $r_{1}+r_{2}-1$.

Dedekind's formula (1863) + Hecke \& Landau, 20th C

- For F a number field, define the regulator mapping

$$
\text { reg }: \mathcal{O}_{F}^{\times} \rightarrow\left[\mathbb{R}^{\operatorname{Hom}(F, \mathbb{C})}\right]^{\operatorname{Gal}(\mathbb{C} / \mathbb{R})} \text { by } u \mapsto(\log |\nu(u)|)_{\nu}
$$

Its image lies in the hyperplane $\sum x_{\nu}=0$ (of dimension $r_{1}+r_{2}-1$) as each unit has norm 1.

- One has the Dedekind zeta function $\zeta_{F}(s)$. It has a pole of order 1 at $s=1$.
- Dedekind's theorem says that the kernel of reg is torsion and its image is a lattice in this hyperplane of covolume

$$
R_{F}=\frac{w_{F} \sqrt{\left|d_{F}\right|}}{2^{r_{1}}(2 \pi)^{r_{2}} h_{F}} \operatorname{Res}_{s=1} \zeta_{F}(s)
$$

where d_{F} is the discriminant of F, h_{F} the order of the class group and w_{F} the order of the torsion in \mathcal{O}_{F}^{\times}. This is the regulator of F.

Quillen (1972)

Algebraic K-theory:

- $K_{0}(R)$ is the Grothendieck group of finitely generated projective R-modules.
- For a commutative ring R (or an affine scheme $\operatorname{Spec} R$):

$$
K_{m}(R):=\pi_{m}\left(B \operatorname{GL}(R)^{+}\right) \quad \text { when } m>0,
$$

where $\mathrm{GL}(R)=\lim _{N} \mathrm{GL}_{N}(R)$. The plus construction $B \operatorname{GL}(R) \rightarrow B \operatorname{GL}(R)^{+}$abelianizes π_{1}, and induces an isomorphism on homology.

- The determinant det: $\mathrm{GL}(R) \rightarrow R^{\times}$induces a surjection

$$
K_{1}(R) \rightarrow R^{\times}
$$

It is an isomorphism when R is a field.

- Quillen showed that the K-groups of the ring of integers \mathcal{O}_{F} in a number field F are finitely generated.

$$
K_{0}\left(\mathcal{O}_{F}\right)=\mathbb{Z} \oplus(\text { class group }), \quad K_{1}\left(\mathcal{O}_{F}\right)=\mathcal{O}_{F}^{\times}
$$

- He also showed that $K_{m}\left(\mathcal{O}_{F}\right) \otimes \mathbb{Q} \rightarrow K_{m}(F) \otimes \mathbb{Q}$ is an isomorphism when $m>1$.
- Standard topology implies that

$$
K_{\bullet}(R) \otimes \mathbb{Q} \rightarrow H_{\bullet}(\mathrm{GL}(R) ; \mathbb{Q})
$$

is injective. So, to understand the "rational K-groups" of R we have to understand group homology of GL(R) equivalently, the stable rational homology of $\mathrm{GL}_{N}(R)$.

Borel $(1974,1977)$

- Borel computed the stable rational homology of $\operatorname{SL}_{n}\left(\mathcal{O}_{K}\right)$ and thus $K_{\bullet}\left(\mathcal{O}_{K}\right) \otimes \mathbb{Q}$. It vanishes in even positive degrees.
- When $m>1, K_{2 m-1}\left(\mathcal{O}_{F}\right)$ has rank

$$
d_{m}= \begin{cases}r_{1}+r_{2} & m \text { odd } \\ r_{2} & m \text { even }\end{cases}
$$

- He constructed a class β_{m} (the "Borel element") in $H^{2 m-1}(\mathrm{SL}(\mathbb{C}) ; \mathbb{R})$. It gives a map $K_{2 m-1}(\mathbb{C}) \rightarrow \mathbb{R}$. It gives higher regulator mappings

$$
\operatorname{reg}_{m}: K_{2 m-1}\left(\mathcal{O}_{F}\right) \rightarrow \mathbb{R}^{d_{m}} \subset \mathbb{R}^{\operatorname{Hom}(F, \mathbb{C})}
$$

The kernel is finite; the image is a lattice (except when $m=1$, when it lies in hyperplane).

Theorem (Borel)
When $m>1$, the covolume $R_{F, m}$ of the regulator mapping

$$
\operatorname{reg}_{m}: K_{2 m-1}\left(\mathcal{O}_{F}\right) \rightarrow \mathbb{R}^{d_{m}} \subset \mathbb{R}^{\operatorname{Hom}(F, \mathbb{C})}
$$

satisfies

$$
\zeta_{F}(m) \sim_{\mathbb{Q}^{\times}} \frac{\pi^{m d_{m+1}}}{\sqrt{\left|d_{F}\right|}} R_{F, m}
$$

where d_{F} is the discriminant of F.

Bloch (1978-)

- Bloch contributed important ideas and tools for studying codimension 2 cycles. One of them was the dilogarithm.
- In particular he (and Wigner) introduced the single valued dilogarithm $D_{2}: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{R}$:

$$
D_{2}(z)=-\operatorname{lm} \int_{0}^{z} \log (1-z) \frac{d z}{z}+\log |z| \operatorname{Arg}(1-z)
$$

It is the volume of the ideal hyperbolic tetrahedron with vertices $0,1, z, \infty \in \mathbb{P}^{1}(\mathbb{C})$, boundary of \mathscr{H}_{3}.

- It satisfies Abel's functional equation

$$
\sum_{j=0}^{4}(-1)^{j} D_{2}\left(\left[z_{0}: \cdots: \widehat{z}_{j}: \cdots: z_{4}\right]\right)=0
$$

- It is a 3-cocycle on $\mathrm{GL}_{2}(\mathbb{C})$.

Abel's equation for Bloch-Wigner dilogarithm

$$
\begin{aligned}
\left\langle z_{0}, z_{1}, z_{2}, z_{3}, z_{4}\right\rangle= & \left\langle z_{0}, \widehat{z_{1}}, z_{2}, z_{3}, z_{4}\right\rangle+\left\langle z_{0}, z_{1}, z_{2}, \widehat{z_{3}}, z_{4}\right\rangle \\
& =\left\langle\widehat{z_{0}}, z_{1}, z_{2}, z_{3}, z_{4}\right\rangle+\left\langle z_{0}, z_{1}, \widehat{z_{2}}, z_{3}, z_{4}\right\rangle+\left\langle z_{0}, z_{1}, z_{2}, z_{3}, \widehat{z_{4}}\right\rangle
\end{aligned}
$$

Beilinson 1984

- Beilinson (and Gillet, independently) constructed Chern classes on K-theory, into Deligne-Beilinson cohomology:

$$
c_{m}: K_{j}(X) \rightarrow H_{\mathscr{D}}^{2 m-j}(X, \mathbb{Z}(m)) \rightarrow H_{\mathscr{D}}^{2 m-j}(X, \mathbb{R}(m))
$$

- When X is defined over a number field F

$$
H_{\mathscr{D}}^{\bullet}(X, \mathbb{R}(m))=\left[\bigoplus_{\nu: F \hookrightarrow \mathbb{C}} H_{\mathscr{D}}^{\bullet}\left(X_{\nu}(\mathbb{C}), \mathbb{R}(m)\right)\right]^{\mathrm{Gal}(\mathbb{C} / \mathbb{R})}
$$

In particular, when $X=\operatorname{Spec} F$:

$$
H_{\mathscr{D}}^{1}(\operatorname{Spec} F, \mathbb{R}(m)) \cong\left[\bigoplus_{\nu: F \hookrightarrow \mathbb{C}} \mathbb{C} / i^{m} \mathbb{R}\right]^{\mathrm{Gal}(\mathbb{C} / \mathbb{R})} \cong \mathbb{R}^{d_{m}}
$$

- He showed that (up to a constant), Borel's regulators are Chern classes.

Polylogarithms and Chern classes

- In several contexts, the first Chern class is log. For example

$$
c_{1}: K_{1}(\mathbb{C}) \rightarrow H_{\mathscr{D}}^{1}(\operatorname{Spec} \mathbb{C}, \mathbb{R}(1)) \cong \mathbb{R}
$$

is $\log \left|\mid\right.$ as $K_{1}(\mathbb{C})=\mathbb{C}^{\times}$.

- The formula in Cech cohomology for the first Chern class of a complex line bundle uses the logarithm and its multivaluedness.
- The Bloch-Wigner dilogarithm D_{2} defines 3-cocycle on $\mathrm{GL}_{2}(\mathbb{C})$. It represents $c_{2}: K_{3}(\mathbb{C}) \rightarrow H_{\mathscr{D}}^{1}(\operatorname{Spec} \mathbb{C}, \mathbb{R}(2)) \cong \mathbb{R}$.
- Beilinson and Deligne showed that the second Chern class

$$
c_{2}: K_{2}(X) \rightarrow H_{\mathcal{D}}^{2}(X ; \mathbb{Z}(2)) \cong H^{1}\left(X ; \mathbb{C}^{\times}\right)
$$

where X is a complex curve, can be defined using the dilog and its multivaluedness.

Ideas that were floating around in the mid 1980s

- The m-logarithm should be related to various incarnations of the m th Chern class on algebraic K-theory.
- As such, it should satisfy a $(2 m+1)$-term functional equation that will make (a single valued version of it) into a $(2 m-1)$-cocycle on $\mathrm{GL}_{m}(\mathbb{C})$.
- With the correct normalizations, this should represent the Borel class.
- Nobody (...) could make this work for the trilog.
- This lead to the idea of Grassmann polylogs - origins in the work of Gelfand and MacPherson.

Grassmann polylogs: first steps

- Denote the "coordinate simplex" in \mathbb{P}^{N} by Δ_{N}. It is the union of $N+1$ copies of \mathbb{P}^{N-1}. Each face intersects the other faces in its coordinate simplex.
- Let G_{q}^{p} be the subset of $G\left(q, \mathbb{P}^{p+q}\right)$ consisting of those $L \subset \mathbb{P}^{p+q}$ that do not intersect the $p-1$ stratum of of Δ_{p+q} :

$$
G_{q}^{p}=\left\{\left(v_{0}, \ldots, v_{p+q}\right) \in \mathbb{C}^{p}: \text { each } p \times p \text { minor } \neq 0\right\} / \text { GL }_{p}
$$

- The map $G_{q}^{p} \rightarrow Y_{q}^{p}$ is a trivial $\left(\mathbb{C}^{\times}\right)^{p+q}$ torsor, where

$$
Y_{q}^{p}:=\left\{\left(x_{0}, \ldots, x_{p+q}\right) \in \mathbb{P}^{p-1}: \text { each } p \text { span } \mathbb{P}^{p-1}\right\} / \text { PGL }_{p}
$$

- $G_{0}^{p}=\left(\mathbb{C}^{\times}\right)^{p}, G_{1}^{2}=Y_{1}^{2} \times\left(\mathbb{C}^{\times}\right)^{3}, Y_{1}^{2}=\mathbb{C}-\{0,1\}=\mathcal{M}_{0,4}$,
- $G_{2}^{2}=Y_{2}^{2} \times\left(\mathbb{C}^{\times}\right)^{4}$, where

$$
Y_{2}^{2}=(\mathbb{C}-\{0,\})^{2}-\text { diagonal }=\mathcal{M}_{0,5}
$$

The Grassmann complex

- Intersecting with the $p+q+1$ coordinate hyperplanes defines "face maps" $A_{j}: G_{q}^{p} \rightarrow G_{q-1}^{p}, j=0, \ldots, p+q$. These lie over face maps $Y_{q}^{p} \rightarrow Y_{q-1}^{p}$.
- Example: The face maps $A_{j}: Y_{2}^{2} \rightarrow Y_{1}^{2}$ are:

$$
\begin{aligned}
& A_{j}:\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left[x_{0}: \cdots: \widehat{x}_{j}: \cdots: x_{4}\right] \\
& A_{j}(y, x, 1,0, \infty)= \begin{cases}x & j=0 \\
y & j=1 \\
y / x & j=2 \\
(1-y) /(1-x) & j=3 \\
x(1-y) / y(1-x) & j=4\end{cases}
\end{aligned}
$$

These are the functions that occur in the functional equation of the dilogarithm.

This leads to the Grassmann complex G_{0}^{p} :

$$
\left\{G_{q}^{p}: 0 \leq q \leq p\right\}+\text { face maps } A_{j}: G_{q}^{p} \rightarrow G_{q-1}^{p} .
$$

Example:

$$
G_{0}^{2}=\left[G_{2}^{2} \underset{A_{4}}{\stackrel{A_{0}}{\Longrightarrow \Longrightarrow}} G_{1}^{2} \underset{A_{3}}{\stackrel{A_{0}}{\Longrightarrow}} G_{0}^{2}\right]
$$

Set

$$
\operatorname{vol}_{p}:=\frac{d x_{1}}{x_{1}} \wedge \frac{d x_{2}}{x_{2}} \wedge \cdots \wedge \frac{d x_{p}}{x_{p}} \in \Omega^{p}\left(G_{0}^{p}\right) .
$$

Basic fact:

$$
A^{*} \operatorname{vol}_{p}:=\sum_{j=0}^{p+1}(-1)^{j} A_{j}^{*} \operatorname{vol}_{p}=0 \text { in } \Omega^{p}\left(G_{1}^{p}\right) .
$$

Grassmann polylogs

- $W_{2 m} \widetilde{\Omega}^{k}(X)$ consists of logarithmic p-forms on X with coefficients that are (closed) iterated integrals of length $\leq m-k$ of logarithmic 1 -forms.
- $\operatorname{vol}_{p} \in W_{2 p} \Omega^{p}\left(G_{0}^{p}\right), \log (1-x) d x / x \in W_{4} \widetilde{\Omega}\left(G_{1}^{2}\right)$.
- Double complex ($\left.W_{2 p} \tilde{\Omega}^{\bullet}\left(G_{\bullet}^{p}\right), d, A^{*}\right)$. Set $D=d \pm A^{*}$.
- $\operatorname{vol}_{p}=A^{*} \operatorname{vol}_{p}=0$. Is it exact?
- A Grassmann p-logarithm is an element Z_{p} of this complex satisfying $D Z_{p}=$ vol $_{p}$. Existence was established for $p \leq 3$.
- If exists, get $\mathscr{L}_{p} \in W_{2 p} \widetilde{\mathcal{O}}\left(G_{p-1}^{p}\right)$ that satisfies the $(2 p+1)$ term functional equation $A^{*} \mathscr{L}_{p}=0$.
- Hope is that Z_{p} represents

$$
c_{p}: K_{m}(X) \rightarrow H_{\mathscr{D}}^{2 p-m}(X, \mathbb{Z}(p))
$$

Example: the dilogarithm

The $p=2$ Grassmann complex is:

$$
G_{\bullet}^{2}=\left[G_{2}^{2} \underset{A_{4}}{\stackrel{A_{0}}{\Longrightarrow \Longrightarrow}} G_{1}^{2} \underset{A_{3}}{\stackrel{A_{0}}{\rightrightarrows}} G_{0}^{2}\right]
$$

The double complex is:

$$
\begin{aligned}
& W_{4} \widetilde{\mathcal{O}}\left(G_{2}^{2}\right) \xrightarrow{d} W_{4} \widetilde{\Omega}^{1}\left(G_{2}^{2}\right) \\
& A^{*} \uparrow \\
& W_{4} \widetilde{\mathcal{O}}\left(G_{1}^{2}\right) \xrightarrow{d} W_{4} \widetilde{\Omega}^{1}\left(G_{1}^{2}\right) \xrightarrow{d} \Omega^{2}\left(G_{1}^{2}\right) \\
& A^{*} \uparrow \quad A^{*} \uparrow \\
& W_{4} \widetilde{\Omega}^{1}\left(G_{0}^{2}\right) \xrightarrow{d} \Omega^{2}\left(G_{0}^{2}\right)
\end{aligned}
$$

Zagier's conjecture (1990- ϵ)

Suppose that $m>1$ and that F is a number field. For a certain single valued version D_{m} of the classical m-logarithm, there are are elements

$$
y_{1}, \ldots, y_{d_{m-1}} \in \mathbb{Q}[F-\{0,1\}]
$$

such that

$$
\zeta_{F}(m) \sim_{\mathbb{Q}^{\times}} \frac{\pi^{m d_{m+1}}}{\sqrt{\left|d_{F}\right|}} \operatorname{det} P
$$

where P is the $d_{m} \times d_{m}$ matrix whose entries are the values of D_{m} at representatives of the images of the y_{k} under the r_{2} complex places (when m is odd) or all places (when m is even). Alternatively,

$$
\operatorname{det} P \sim_{\mathbb{Q}^{\times}} R_{F, m} .
$$

He proved this when $m=2$.

Goncharov and the trilogarithm (1990)

- Remarkably, Goncharov succeeded in expressing the Grassmann trilog in terms of the classical trilogarithm.
- He used this to prove Zagier's conjecture for $\zeta_{F}(3)$.
- There was virtually no major progress until 2018 when Goncharov and Rudenko proved Zagier's conjecture for $\zeta_{F}(4)$ using some work of Gangl.
- I do not claim to understand this work.

The future ...

And finally, in an attempt to unify the entire subject into a coherent whole, difficulties of a different order are encountered, and some central unifying principle has still to be discovered.

$$
\text { Leonard Lewin, } 1981 .
$$

- This comment was prescient and still applies.
- It appears that Goncharov and Rudenko introduce two new tools:
- Cluster algebras (of which I am ignorant)
- motivic correlators (which I am trying to understand)
- I will give an introduction to the Hodge manifestation of motivic correlators.

Outline

I: Prehistory: 1842 to 1990

II: Goncharov’s Hodge Correlators

III: The Goldman-Turaev Lie Bialgebra

The landscape

Guided tour \& plan

Goncharov's Crelle paper is 138 journal pages. Need a guide:

- currents (introduction/review)
- planar trivalent trees
- recipe for Hodge correlators
- related algebra
- selected results of Goncharov

Two more items I believe are relevant:

- topology: the Goldman (Turaev) Lie (bi)algebra
- Hodge theory

Currents

A k-current T on an n manifold M is a continuous function on the space of $n-k$ forms on M that are compactly supported in some coordinate patch. One defines $b T$ (its boundary) by

$$
\langle b T, \psi\rangle:=\langle T, d \psi\rangle .
$$

Every locally $L^{1} k$-form ω on M gives a k-current $[\omega]$:

$$
[\omega]: \phi \rightarrow \int_{M} \omega \wedge \phi
$$

When ω is smooth, $[d \omega]=d[\omega]:=(-1)^{k+1} b[\omega]$. This is not true when ω is locally L^{1} but not smooth.

Integration over a codimension q closed submanifold (or subvariety) Z also gives a current, denoted δ_{Z} :

$$
\left\langle\delta_{Z}, \psi\right\rangle=\int_{Z} \psi
$$

For a k-current T on a complex manifold, we can define ∂T and $\bar{\partial} T$ by:

$$
\langle\partial T, \psi\rangle:=(-1)^{k+1}\langle T, \partial \psi\rangle \text { and }\langle\bar{\partial} T, \psi\rangle:=(-1)^{k+1}\langle T, \bar{\partial} \psi\rangle
$$

We have $d T=\partial T+\bar{\partial} T$.

When $M=\mathbb{C}$,

$$
\partial \bar{\partial}\left[\log |z|^{2}\right]=-2 \pi i \delta_{[0]} .
$$

That is, for all smooth, compactly supported functions h on \mathbb{C}

$$
\left\langle\partial \bar{\partial}\left[\log |z|^{2}\right], h\right\rangle=-2 \pi i h(0)
$$

Note that if f is a smooth function on \mathbb{C}, then

$$
\partial \bar{\partial} f=\frac{1}{4} \Delta f d z \wedge d \bar{z}=\frac{1}{2 i} \Delta f d x \wedge d y, \quad z=x+i y
$$

So we get the classical formula of distributions

$$
\Delta[\log |z|]=2 \pi \delta_{0}
$$

Here is a proof so that you can see how to work with currents:

$$
\left.\left.\left.\langle\partial \bar{\partial} \log | z\right|^{2}, h\right\rangle=\left.\langle\bar{\partial} \log | z\right|^{2}, \partial h\right\rangle
$$

h is smooth with compact support, $\bar{\partial}\left[\log |z|^{2}\right]$ is a 1 -current

Here is a proof so that you can see how to work with currents:

$$
\left.\left.\left.\langle\partial \bar{\partial} \log | z\right|^{2}, h\right\rangle=-\left.\langle\log | z\right|^{2}, \bar{\partial} \partial h\right\rangle
$$

$\left[\log |z|^{2}\right]$ is a 0 -current

Here is a proof so that you can see how to work with currents:

$$
\left.\left.\left.\langle\partial \bar{\partial} \log | z\right|^{2}, h\right\rangle=\left.\langle\log | z\right|^{2}, \partial \bar{\partial} h\right\rangle
$$

as $\bar{\partial} \partial=-\partial \bar{\partial}$

Here is a proof so that you can see how to work with currents:

$$
\begin{aligned}
\left.\left.\langle\partial \bar{\partial} \log | z\right|^{2}, h\right\rangle & \left.=\left.\langle\log | z\right|^{2}, \partial \bar{\partial} h\right\rangle \\
& =\int_{\mathbb{C}} \log |z|^{2} \partial \bar{\partial} h
\end{aligned}
$$

the definition — the integrand is L^{1}

Here is a proof so that you can see how to work with currents:

$$
\begin{aligned}
\left.\left.\langle\partial \bar{\partial} \log | z\right|^{2}, h\right\rangle & \left.=\left.\langle\log | z\right|^{2}, \partial \bar{\partial} h\right\rangle \\
& =\int_{\mathbb{C}} \log |z|^{2} \partial \bar{\partial} h \\
& =\lim _{\epsilon \rightarrow 0} \int_{|z| \geq \epsilon} \log |z|^{2} \partial \bar{\partial} h
\end{aligned}
$$

by absolute continuity of the Lebesgue integral

Here is a proof so that you can see how to work with currents:

$$
\begin{aligned}
\left.\left.\langle\partial \bar{\partial} \log | z\right|^{2}, h\right\rangle & \left.=\left.\langle\log | z\right|^{2}, \partial \bar{\partial} h\right\rangle \\
& =\int_{\mathbb{C}} \log |z|^{2} \partial \bar{\partial} h \\
& =\lim _{\epsilon \rightarrow 0} \int_{|z| \geq \epsilon} \log |z|^{2} \partial \bar{\partial} h \\
& =-\lim _{\epsilon \rightarrow 0} \int_{|z|=\epsilon}\left(h \frac{d z}{z}+2 \log \epsilon \bar{\partial} h\right)
\end{aligned}
$$

via Stokes as $\log |z|^{2} \partial \bar{\partial} h=d\left(\log |z|^{2} \bar{\partial} h+h \frac{d z}{z}\right)$

Here is a proof so that you can see how to work with currents:

$$
\begin{aligned}
\left.\left.\langle\partial \bar{\partial} \log | z\right|^{2}, h\right\rangle & \left.=\left.\langle\log | z\right|^{2}, \partial \bar{\partial} h\right\rangle \\
& =\int_{\mathbb{C}} \log |z|^{2} \partial \bar{\partial} h \\
& =\lim _{\epsilon \rightarrow 0} \int_{|z| \geq \epsilon} \log |z|^{2} \partial \bar{\partial} h \\
& =-\lim _{\epsilon \rightarrow 0} \int_{|z|=\epsilon}\left(h \frac{d z}{z}+2 \log \epsilon \bar{\partial} h\right) \\
& =-2 \pi i h(0)
\end{aligned}
$$

as $\epsilon^{2} \log \epsilon \rightarrow 0$ and as h continuous

Here is a proof so that you can see how to work with currents:

$$
\begin{aligned}
\left.\left.\langle\partial \bar{\partial} \log | z\right|^{2}, h\right\rangle & \left.=\left.\langle\log | z\right|^{2}, \partial \bar{\partial} h\right\rangle \\
& =\int_{\mathbb{C}} \log |z|^{2} \partial \bar{\partial} h \\
& =\lim _{\epsilon \rightarrow 0} \int_{|z| \geq \epsilon} \log |z|^{2} \partial \bar{\partial} h \\
& =-\lim _{\epsilon \rightarrow 0} \int_{|z|=\epsilon}\left(h \frac{d z}{z}+2 \log \epsilon \bar{\partial} h\right) \\
& =-2 \pi i h(0) \\
& =-2 \pi i\left\langle\delta_{[0]}, h\right\rangle
\end{aligned}
$$

the definition of $\delta_{[0]}$

Suppose that X is a compact Riemann surface and that $\phi_{1}, \ldots, \phi_{g}, \psi_{1}, \ldots, \psi_{g}$ are harmonic representatives of a symplectic basis of $H^{1}(X)$. Choose any 2 -form (or 2-current) μ with $\int_{X} \mu=1$. Then, in $H^{2}(X \times X)$, we have the formula

$$
[\Delta]=[\mu] \times 1+1 \times[\mu]-\sum_{j=1}^{g}\left(\left[\phi_{j}\right] \times\left[\psi_{j}\right]-\left[\psi_{j}\right] \times\left[\phi_{j}\right]\right) .
$$

Harmonic theory implies that there is a 0 -current G_{μ} such that

$$
\bar{\partial} \partial \boldsymbol{G}_{\mu}=\delta_{\Delta}-\mu \times 1-1 \times \mu+\sum_{j=1}^{g}\left(\phi_{j} \times \psi_{j}-\psi_{j} \times \phi_{j}\right) .
$$

It is symmetric and uniquely determined, up to a constant, by μ.

Example

When \mathbb{P}^{1} and $\mu=\delta_{[\infty]}$

$$
G_{[\infty]}(x, y)=\frac{1}{2 \pi i} \log |x-y|^{2} \quad(x, y) \in \mathbb{C}^{2}
$$

as

$$
\bar{\partial} \partial \log |x-y|^{2}=2 \pi i\left(\delta_{\Delta_{\mathbb{P} 1}}-\delta_{[\infty]} \times 1-1 \times \delta_{[\infty]}\right)
$$

In general, $G_{\mu}(x, y)-\log |x-y|^{2} / 2 \pi i$ is smooth near the diagonal.

Choices of μ and normalization

Three natural choices of μ are:

- a current $\delta_{[a]}$ for some $a \in X$ - works for all $g \geq 0$;
- the Arakelov volume form - pulled back from the flat metric on Jac X along $X \rightarrow \operatorname{Jac} X$ - works for all $g \geq 1$;
- the volume form of the hyperbolic metric on X - works for $g \geq 2$.
To fix G_{μ}, Goncharov chooses a point $x_{0} \in X$ (not a) and a non-zero tangent vector $\vec{v} \in T_{x_{0}} X$. Then take a holomorphic arc $t:(\mathbb{D}, 0) \rightarrow\left(X, x_{0}\right)$ with $\partial / \partial t=\vec{v}$. One insists that the restriction of $2 \pi i G-\log |t|^{2}$ to $t \mapsto\left(x(t), x_{o}\right)$ is smooth.
Example: $G_{[\infty]}$ above satisfies this when $X=\mathbb{P}^{1}, x_{0} \in \mathbb{C}$ and $\vec{v}=\partial / \partial z$.

Set up

For the rest of this talk, X is a compact Riemann surface of genus $g \geq 0$ and $S=\left\{s_{0}, s_{1}, \ldots, s_{n}\right\}$ is a finite subset. Set

$$
X^{\prime}=X-S \text { and } S_{0}:=S-\left\{s_{0}\right\}=\left\{s_{1}, \ldots, s_{n}\right\} .
$$

We will assume that X^{\prime} is hyperbolic:

$$
\chi\left(X^{\prime}\right)=2-2 g-n-1<0 .
$$

The space of complex valued harmonic forms on X is

$$
\mathscr{H}=\Omega^{1}(X) \oplus \overline{\Omega^{1}(X)} .
$$

Planar trivalent trees

- m internal vertices
- $m+2$ leaves (external vertices)
- $2 m+1$ edges

Note that the exterior vertices are cyclically ordered.

Cyclic words

Our alphabet is $\mathscr{H} \cup S_{0}$. A word of length r in this alphabet is an expression

$$
v_{1} \ldots v_{r}, \quad v_{j} \in \mathscr{H} \cup S_{0}
$$

Let \sim be the equivalence relation on these words generated by

$$
v_{1} \ldots v_{r} \sim v_{r} v_{1} \ldots v_{r-1}
$$

A cyclic word of length r is an equivalence class. We'll denote it by

$$
c\left(v_{1} v_{2} \ldots v_{r}\right)
$$

Example: w $=c\left(\omega^{\prime} s_{3} s_{1} \omega^{\prime} s_{2}\right)$, where ω^{\prime} and $\omega^{\prime \prime} \in \mathscr{H}$.

Decorated planar trivalent trees

A trivalent planar tree T with m internal vertices can be labelled by a cyclic word \mathbf{w} of length $\ell(\mathbf{w})=m+2$.

$$
\mathbf{w}=c\left(\omega^{\prime} s_{3} s_{1} \omega^{\prime} s_{2}\right)
$$

Decorated planar trivalent trees

A trivalent planar tree T with m internal vertices can be labelled by a cyclic word \mathbf{w} of length $\ell(\mathbf{w})=m+2$.

One more definition

For 0-currents G_{0}, \ldots, G_{r} on M define $\varphi_{r+1}\left(G_{0}, \ldots, G_{r}\right)$ by

$$
\begin{aligned}
\frac{1}{(r+1)!} \sum_{k=0}^{r}(-1)^{k} \sum_{\sigma \in \mathbb{S}_{r+1}} & \operatorname{sgn}(\sigma) \\
& G_{\sigma(0)} \partial G_{\sigma(1)} \wedge \cdots \wedge \partial G_{\sigma(k)} \wedge \bar{\partial} G_{\sigma(k+1)} \wedge \cdots \wedge \bar{\partial} G_{\sigma(r)}
\end{aligned}
$$

It is a current of degree r on M and alternating in its arguments.

Examples:

$$
\varphi_{1}\left(G_{0}\right)=G_{0}
$$

and

$$
\varphi_{2}\left(G_{0}, G_{1}\right)=\frac{1}{2}\left(G_{0} \bar{\partial} G_{1}-G_{0} \partial G_{1}-G_{1} \bar{\partial} G_{0}+G_{1} \partial G_{0}\right)
$$

Useful formulas

If f is a rational function on X (not just a curve), then

$$
\begin{gathered}
d\left[\frac{d f}{f}\right]=\bar{\partial}\left[\frac{d f}{f}\right]=2 \pi i \delta_{[\text {div } f]}, \quad \partial\left[\frac{d f}{f}\right]=0 . \\
\partial \bar{\partial}\left[\log |f|^{2}\right]=-2 \pi i \delta_{[\text {div } f]} \\
\partial\left[\log |f|^{2}\right]=\left[\frac{d f}{f}\right], \quad \bar{\partial}\left[\log |f|^{2}\right]=\left[\frac{d \bar{f}}{\bar{f}}\right]
\end{gathered}
$$

Example: if $f_{0}, f_{1} \in \mathbb{C}(X)^{\times}$, then

$$
\begin{aligned}
& \varphi_{2}\left(\log \left|f_{0}\right|^{2}, \log \left|f_{1}\right|^{2}\right) \\
& \quad=\left(\log \left|f_{0}\right| \frac{d f_{1}}{\bar{f}_{1}}-\log \left|f_{0}\right| \frac{d f_{1}}{f_{1}}-\log \left|f_{1}\right| \frac{d \bar{f}_{0}}{\bar{f}_{0}}+\log \left|f_{1}\right| \frac{d f_{0}}{f_{0}}\right)
\end{aligned}
$$

The recipe I

Consider the w decorated planar tree

The recipe I

Take a copy of X for each internal vertex:

The recipe II

Associate $G\left(x_{j}, x_{k}\right)$ to the edge joining x_{j} and x_{k}, and $G\left(x_{j}, s_{k}\right)$ the edge that joins x_{j} to s_{k} :

Define
$\Omega_{T}(\mathbf{w})= \pm \varphi_{5}\left(G\left(s_{3}, x_{1}\right), G\left(x_{1}, x_{2}\right), G\left(x_{2}, x_{3}\right), G\left(x_{2}, s_{1}\right), G\left(x_{3}, s_{2}\right)\right) \wedge \omega^{\prime}\left(x_{1}\right) \wedge \omega^{\prime \prime}\left(x_{3}\right)$.
Terms correspond to an ordered list of edges.

How to compute the sign

In fact

$\Omega_{T}(\mathbf{w})=-\varphi_{5}\left(G\left(s_{3}, x_{1}\right), G\left(x_{1}, x_{2}\right), G\left(x_{2}, x_{3}\right), G\left(x_{2}, s_{1}\right), G\left(x_{3}, s_{2}\right)\right) \wedge \omega^{\prime}\left(x_{1}\right) \wedge \omega^{\prime \prime}\left(x_{3}\right)$.

$e_{12} \wedge e_{13} \wedge e_{14}$

How to compute the sign

In fact
$\Omega_{T}(\mathbf{w})=-\varphi_{5}\left(G\left(s_{3}, x_{1}\right), G\left(x_{1}, x_{2}\right), G\left(x_{2}, x_{3}\right), G\left(x_{2}, s_{1}\right), G\left(x_{3}, s_{2}\right)\right) \wedge \omega^{\prime}\left(x_{1}\right) \wedge \omega^{\prime \prime}\left(x_{3}\right)$.

$e_{12} \wedge e_{13} \wedge e_{14} \wedge e_{35} \wedge e_{36}$

How to compute the sign

In fact

$$
\Omega_{T}(\mathbf{w})=-\varphi_{5}\left(G\left(s_{3}, x_{1}\right), G\left(x_{1}, x_{2}\right), G\left(x_{2}, x_{3}\right), G\left(x_{2}, s_{1}\right), G\left(x_{3}, s_{2}\right)\right) \wedge \omega^{\prime}\left(x_{1}\right) \wedge \omega^{\prime \prime}\left(x_{3}\right)
$$

$$
\begin{aligned}
\text { or }_{T} & =e_{12} \wedge e_{13} \wedge e_{14} \wedge e_{35} \wedge e_{36} \wedge e_{47} \wedge e_{48} \\
& =-e_{48} \wedge e_{14} \wedge e_{13} \wedge e_{12} \wedge e_{36} \wedge e_{47} \wedge e_{35}
\end{aligned}
$$

The recipe III

Here $\Omega_{T}(\mathbf{w})$ is a 6-current on X^{3} that depends on the "variables" $\left(s_{1}, \ldots, s_{n}\right)$. One obtains a function of $\left(s_{1}, s_{2}, s_{3}\right)$ by integrating it over X^{3}.

In general, for each w decorated (planar trivalent) graph T a current $\Omega_{T}(\mathbf{w})$ on X^{m}, where m is $\ell(\mathbf{w})-2$. Define the correlator associated to w (and μ) by

$$
\operatorname{Cor}_{\mu}(\mathbf{w}):=\sum_{T \vdash \mathbf{w}} \int_{X^{m}} \Omega_{T}(\mathbf{w})
$$

where the sum ranges over all trivalent planar trees T decorated by \mathbf{w}. It is a complex number or a function of $\left(s_{1}, \ldots, s_{n}\right)$ depending on your point of view.

Examples

Take $X=\mathbb{P}^{1}, \mu=\delta_{[\infty]}$. Then $2 \pi i G_{\mu}(x, y)=\log |x-y|^{2}$.
The logarithm: $S=\{0, z, \infty\}, \mathbf{w}=c(1 z)$ and the \mathbf{w} decorated T is

Then $2 \pi i \Omega_{T}(\mathbf{w})=\log |z|^{2}$.
The dilogarithm: $S=\{\infty, 0,1, z\}, \mathbf{w}=c(01 z)$ and the \mathbf{w} decorated T is

$$
\begin{aligned}
3!(2 \pi i)^{3} \int_{x \in \mathbb{P}^{1}} \Omega_{T}(\mathbf{w}) & =\varphi_{3}\left(\log |x|^{2}, \log |x-1|^{2}, \log |x-z|^{2}\right) \\
& =(\text { coefficient }) D_{2}(z) .
\end{aligned}
$$

Algebra: preparation

Recall $S=\left\{s_{0}, \ldots, s_{n}\right\}, X^{\prime}=X-S$ and $S_{0}=\left\{s_{1}, \ldots, s_{n}\right\}$. We have an exact sequence

$$
0 \rightarrow H_{2}(X) \rightarrow H_{0}(S) \rightarrow H_{1}\left(X^{\prime}\right) \rightarrow H_{1}(X) \rightarrow 0
$$

Denote the class of a small (positive) loop about s_{j} by \mathbf{e}_{j}. Then

$$
H_{0}(S) / H_{2}(S)=\bigoplus_{k=0}^{n} \mathbb{k} \mathbf{e}_{k} / \mathbb{k}\left(\mathbf{e}_{0}+\cdots+\mathbf{e}_{n}\right), \quad \mathbb{k}=\mathbb{Z}, \mathbb{Q}, \mathbb{R}
$$

Set

$$
E_{0}=\bigoplus_{k=1}^{n} \mathbb{k} \mathbf{e}_{k}
$$

Then $E_{0} \xrightarrow{\sim} H_{0}(S) / H_{2}(S)$ is an iso. Define a symmetric bilinear form on E_{0} by declaring $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ to be orthonormal. The intersection pairing defines a symplectic form on $H_{1}(X)$.

Algebra: setup

Suppose that $V=H \oplus E$ is a \mathbb{k} vector space $(\mathbb{k}=\mathbb{Q}, \mathbb{R})$, where H has a symplectic inner product and E has a non-degenerate symmetric inner product. Give H weight -1 and E weight -2.
Example: $V=G{ }_{\bullet}^{W} H_{1}\left(X^{\prime}\right)=H_{1}(X) \oplus E_{0}$.
Fix an orthonormal basis $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ of E. Denote the dual space by $V^{\vee}=H^{\vee} \oplus E^{\vee}$. Denote the dual basis of E^{\vee} by s_{1}, \ldots, s_{n}.

Example: $V^{\vee}=\mathrm{Gr}_{\bullet}^{W} H^{1}\left(X^{\prime}\right)=H^{1}(X) \oplus E_{0}^{\vee}$. The residue map gives an isomorphism

$$
\text { Res : } \operatorname{Gr}_{2}^{W} H^{1}\left(X^{\prime}\right) \xrightarrow{\simeq} \widetilde{H}_{0}(S)=\left\{\sum_{k=0}^{n} a_{k} s_{k}: \sum_{k} a_{k}=0\right\} .
$$

The dual orthonormal basis on E_{0}^{\vee} is $\left\{s_{1}, \ldots, s_{n}\right\}$.
Remark: Our alphabet is $\mathscr{H} \cup S_{0} \cong H^{1}(X) \cup S_{0}$.

Special derivations

Let $T V$ be the tensor algebra on V. It is the universal enveloping algebra of the free Lie algebra $\mathbb{L}(V)$. Both are graded by weight. There are canonical graded isomorphisms

$$
\operatorname{Gr}_{\bullet}^{W} \mathbb{k} \pi_{1}\left(X^{\prime}, \overrightarrow{\mathrm{v}}\right)^{\wedge} \cong T\left(H_{1}(X) \oplus E_{0}\right)=T V
$$

Define $\mathbf{e}_{0} \in \mathrm{Gr}_{-2}^{W} T V$ by

$$
\mathbf{e}_{0}+\mathbf{e}_{1}+\cdots+\mathbf{e}_{n}+\sum_{j=1}^{g}\left[\mathbf{p}_{j}, \mathbf{q}_{j}\right]=0
$$

where $\mathbf{p}_{1}, \ldots, \mathbf{p}_{g}, \mathbf{q}_{1}, \ldots, \mathbf{q}_{g}$ is a symplectic basis of $H_{1}(X)$.
A derivation δ of $T V$ is called special if $\delta\left(\mathbf{e}_{0}\right)=0$ and there are $\mathbf{u}_{k} \in T V$ such that $\delta\left(\mathbf{e}_{k}\right)=\left[\mathbf{e}_{k}, \mathbf{u}_{k}\right]$ when $k \neq 0$. A derivation δ of $\mathbb{L}(V)$ is special if each $\mathbf{u}_{j} \in \mathbb{L}(V)$.

Cyclic words

The cyclic quotient of an associative \mathbb{k}-algebra A is

$$
\mathscr{C}(A)=A /\langle u v-v u: u, v \in A\rangle .
$$

Elements of $\mathscr{C}(T V)$ are cyclic words in the alphabet $\left\{\mathbf{p}_{j}, \mathbf{q}_{j}, \mathbf{e}_{k}: 1 \leq j \leq g, 1 \leq k \leq n\right\}$. It is a Lie algebra with graded bracket (after a shift by 2):

$$
\{,\}_{0}: G r_{2-j}^{W} \mathscr{C}(T V) \otimes G r_{2-k}^{W} \mathscr{C}(T V) \rightarrow G r_{2-j-k}^{W} \mathscr{C}(T V)
$$

There is also a surjective Lie algebra homomorphism

$$
\Phi_{0}: \mathscr{C}(T V) \rightarrow \text { SDer } T V .
$$

Its kernel is spanned by \mathbf{e}_{j}^{m} where $j \neq 0$ and $m \geq 0$.

Formula for the action

Suppose $A=\mathbb{k}\left\langle a_{1}, \ldots, a_{m}\right\rangle$. We have operators $\frac{\partial}{\partial a_{j}}: \mathscr{C}(A) \rightarrow A$ of weight +2 . For example:

For $F \in \mathscr{C}(T V), \Phi_{0}(F) \in \operatorname{SDer}(T V)$ is defined by

$$
\Phi_{0}(F):\left\{\begin{array}{l}
\mathbf{p}_{j} \mapsto-\partial F / \partial \mathbf{q}_{j}, \\
\mathbf{q}_{j} \mapsto \quad \partial F / \partial \mathbf{p}_{j}, \\
\mathbf{e}_{k} \mapsto\left[\mathbf{e}_{k}, \partial F / \partial \mathbf{e}_{k}\right] \quad k \neq 0
\end{array}\right.
$$

Formula for the bracket

For $F, G \in \mathscr{C}(T V)$

$$
\{F, G\}_{0}=c\left(\sum_{k \neq 0}\left[\frac{\partial F}{\partial \mathbf{e}_{k}}, \frac{\partial \boldsymbol{G}}{\partial \mathbf{e}_{k}}\right] \mathbf{e}_{k}+\sum_{j=1}^{g}\left(\frac{\partial F}{\partial \mathbf{p}_{j}} \frac{\partial G}{\partial \mathbf{q}_{j}}-\frac{\partial \boldsymbol{G}}{\partial \mathbf{p}_{j}} \frac{\partial F}{\partial \mathbf{q}_{j}}\right)\right)
$$

Here $k \neq 0, u, v \in H$ and $A, B, U, V \in T V$.

The Lie algebra $\mathscr{C}(\mathbb{L}(V))$

The Lie algebra $\mathscr{C}(\mathbb{L}(V))$ is defined to be the Lie algebra of V-decorated trivalent planar graphs modulo the AS-relation

and the IHX-relation

The homomorphism $\mathscr{C}(\mathbb{L}(V)) \rightarrow \mathscr{C}(T V)$

Expanding V-labelled planar trivalent trees defines an injective Lie algebra homomorphism

$$
\mathscr{C}(\mathbb{L}(V)) \rightarrow \mathscr{C}(T V)
$$

The PBW Theorem gives a coalgebra isomorphism:

$$
T V=U \mathbb{L}(V)=\bigoplus_{m \geq 0} \operatorname{Sym}^{m} \mathbb{L}(V)
$$

"Cutting" an edge of a decorated tree defines a well-defined $\operatorname{map} \mathscr{C}(\mathbb{L}(V)) \rightarrow\left|\operatorname{Sym}^{2} \mathbb{L}(V)\right|$. It has an obvious inverse, so we have a Lie algebra isomorphism

$$
\mathscr{C}(\mathbb{L}(V)) \cong\left|\operatorname{Sym}^{2} \mathbb{L}(V)\right| .
$$

The restriction of $\mathscr{C}(T V) \rightarrow \mathrm{SDer} \mathbb{L}(V)$ to $\mathscr{C}(\mathbb{L}(V))$ is surjective and has kernel

$$
\operatorname{span}\left\{\mathbf{e}_{1}^{2}, \ldots, \mathbf{e}_{n}^{2}\right\}
$$

Correlators revisited

Recall that, after fixing a "volume form" μ and \mathbf{w} a cyclic word in $\mathscr{H} \cup S_{0}$, we defined

$$
\operatorname{Cor}_{\mu}(\mathbf{w})=\sum_{T \vdash \mathbf{w}} \int_{X^{\ell(\mathbf{w})-2}} \Omega_{T}(\mathbf{w}) \in \mathbb{C} .
$$

The cyclic words \mathbf{w} are actually elements of $\mathscr{C}(T V)^{\vee}$. So

$$
\operatorname{Cor}_{\mu}(\mathbf{w}) \in \mathscr{C}(T V)
$$

Summing over all cyclic words \mathbf{w} in the alphabet $\left\{\phi_{j}, \psi_{j}, s_{k}\right\}$ gives

$$
\operatorname{Cor}_{\mu} \in \mathscr{C}(T V)
$$

and therefore a special derivation $\delta_{X^{\prime}, \vec{v}}:=\Phi_{0}\left(\operatorname{Cor}_{\mu}\right) \in \operatorname{SDer} T V$.

The correlator Cor_{μ} is purely imaginary and lies in $F^{-1} \cap \bar{F}^{-1} \mathscr{C}(T V)$. That is $\operatorname{Cor}_{\mu} \in i \mathscr{C}(\mathbb{L}(V))_{\mathbb{R}}$.

Theorem (Goncharov)

1. $\operatorname{Cor}_{\mu} \in \mathscr{C}(\mathbb{L}(V))$, so that $\delta_{X^{\prime}, \vec{v}} \in i \operatorname{SDer} \mathbb{L}(V)_{\mathbb{R}}$.
2. The derivation $\delta_{X^{\prime}, \vec{v}}$ determines a MHS on the completed group algebra of $\pi_{1}\left(X^{\prime}, \vec{v}\right)$ via the map

$$
\exp \delta_{X^{\prime}, \vec{v}}: \prod_{m \geq 0} \operatorname{Gr}_{-m}^{W} \mathbb{R} \pi_{1}\left(X^{\prime}, \vec{v}\right) \rightarrow \prod_{m \geq 0} \operatorname{Gr}_{-m}^{W} \mathbb{C} \pi_{1}\left(X^{\prime}, \vec{v}\right)
$$

Apparently, this is the canonical MHS.

Outline

I: Prehistory: 1842 to 1990

II: Goncharov's Hodge Correlators

III: The Goldman-Turaev Lie Bialgebra

Enter topology

These cyclic constructions in correlators comes from topology

- specifically from the Goldman Lie algebra and the Kawazumi-Kuno action of it on $\mathbb{k} \pi_{1}\left(X^{\prime}, \vec{v}\right)$. In topology, there is additional structure - the Turaev cobracket which does not (yet) appear in correlators.
- For a connected, oriented surface Y, set

$$
\lambda(Y)=\left[S^{1}, Y\right]=\left\{\text { conjugacy classes in } \pi_{1}(Y, y)\right\}
$$

- For a commutative ring \mathbb{k} (e.g., $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$), set

$$
\mathbb{k} \lambda(Y)=\text { free } \mathbb{k} \text {-module generated by } \lambda(Y)
$$

- It is the cyclic quotient of the group algebra:

$$
\mathbb{k} \lambda(Y)=\mathscr{C}\left(\mathbb{k} \pi_{1}(Y, x)\right)
$$

The Goldman-Turaev Lie bialgebra

The Goldman bracket is a map

$$
\{, \quad\}: \mathbb{k} \lambda(Y) \otimes \mathbb{k} \lambda(Y) \rightarrow \mathbb{k} \lambda(Y)
$$

that makes $\mathbb{k} \lambda(Y)$ into a Lie algebra. The Turaev cobracket is a map

$$
\delta_{\xi}: \mathbb{k} \lambda(Y) \rightarrow \mathbb{k} \lambda(Y) \otimes \mathbb{k} \lambda(Y)
$$

that depends on a framing ξ (a nowhere vanishing vector field) on X. Together they form a Lie bialgebra:

$$
\delta_{\xi}\{u, v\}=u \cdot \delta_{\xi}(v)+\delta_{\xi}(u) \cdot v
$$

where $u \cdot(x \otimes y)=\{u, x\} \otimes y$ and $(x \otimes y) \cdot v=x \otimes\{y, v\}$.

An elementary surgery

The bracket and cobracket are defined using elementary surgery: Each element of $\lambda(Y)$ can be represented by an immersed circle with simple normal crossings. (So no triple points, etc). One can perform surgery at a double point:

The Goldman bracket

To define the Goldman bracket of $\alpha, \beta \in \lambda(Y)$, represent them by oriented, transversally intersecting, immersed circles. Their Goldman bracket is

$$
\{\alpha, \beta\}=\sum_{P} \epsilon_{P} \alpha \# P \beta
$$

where P ranges over the points where α intersects $\beta, \epsilon_{P}= \pm 1$ is the local intersection number at P and $\alpha \#_{P} \beta$ is the loop obtained by simple surgery at P.

An example

An example

An example

An example

$$
\{\alpha, \beta\}=\epsilon_{P} \alpha \#_{P} \beta+\epsilon_{Q} \alpha \#_{Q} \beta=\alpha \#_{P} \beta-\alpha \#_{Q} \beta
$$

The Kawazumi-Kuno action

We will take $Y=X^{\prime}=X-S$. There is a similarly defined Lie algebra homomorphism

$$
\kappa_{\vec{v}}: \mathbb{k} \lambda\left(X^{\prime}, \vec{v}\right) \rightarrow \operatorname{SDer} \mathbb{k} \pi_{1}\left(X^{\prime}, \vec{v}\right)
$$

where here a derivation δ of $\mathbb{k} \pi_{1}\left(X^{\prime}, \vec{v}\right)$ is special if there are $\mu_{1}, \ldots, \mu_{n} \in \mathbb{k} \pi_{1}\left(X^{\prime}, \vec{v}\right)$ such that $\delta\left(\gamma_{0}\right)=0$ and

$$
\delta\left(\gamma_{j}\right)=\left[\gamma_{j}, \mu_{j}\right]:=\gamma_{j} \mu_{j}-\mu_{j} \gamma_{j} \text { when } j>0
$$

Here γ_{j} is any path of the form

Completions

Now suppose that \mathbb{k} is a field of characteristic 0 .

- We can complete the group algebra $\mathbb{k} \pi_{1}\left(X^{\prime}, \vec{v}\right)$ in the standard way:

$$
\mathbb{k} \pi_{1}\left(X^{\prime}, \vec{v}\right)^{\wedge}:={\underset{m}{\lim }} \mathbb{k} \pi_{1}\left(X^{\prime}, \vec{v}\right) / I^{m}
$$

where I is the kernel of the augmentation $\mathbb{k} \pi_{1}\left(X^{\prime}, \vec{v}\right) \rightarrow \mathbb{k}$. This has a natural topology - the l-adic topology.

- The corresponding completion of $\mathbb{k} \lambda\left(X^{\prime}\right)$ is

$$
\mathbb{k} \lambda\left(X^{\prime}\right)^{\wedge}:=\mathscr{C}\left(\mathbb{k} \pi_{1}\left(X^{\prime}, \vec{v}\right)^{\wedge}\right)
$$

Give this the quotient topology - also called the I-adic topology.

The completed Goldman Lie algebra

Kawazumi-Kuno: the bracket and the KK-action are continuous and so induce continuous mappings

$$
\begin{gathered}
\{, \quad\}: \mathbb{k} \lambda\left(X^{\prime}\right)^{\wedge} \otimes \mathbb{k} \lambda\left(X^{\prime}\right)^{\wedge} \rightarrow \mathbb{k} \lambda\left(X^{\prime}\right)^{\wedge} \\
\kappa_{\vec{v}}: \mathbb{k} \lambda\left(X^{\prime}\right)^{\wedge} \rightarrow \operatorname{SDer} \mathbb{k} \pi_{1}\left(X^{\prime}, \vec{v}\right)^{\wedge} .
\end{gathered}
$$

Theorem
$-\mathbb{Q} \lambda\left(X^{\prime}\right)^{\wedge}$ has a canonical mixed Hodge structure (MHS).

- It is a quotient of the canonical MHS on $\mathbb{Q} \pi_{1}\left(X^{\prime}, \vec{v}\right)^{\wedge}$ and does not depend on the choice of $s_{0} \in S$ or $\vec{v} \in T X_{s_{0}}$.
- The Tate twist $\mathbb{Q} \lambda\left(X^{\prime}\right)^{\wedge}(-1)$ is a Lie algebra in the category of pro-MHS.
- The action $\mathbb{Q} \lambda\left(X^{\prime}\right)^{\wedge}(-1) \rightarrow \operatorname{SDer} \mathbb{Q} \pi_{1}\left(X^{\prime}, \vec{v}\right)^{\wedge}$ is a morphism of pro-MHS.

Hodge theory and splittings

Hodge theory gives natural isomorphisms of a MHS V with its associated weight graded $\mathrm{Gr}_{\bullet}^{W} V$. There is a canonical isom

$$
\operatorname{Gr}_{\bullet}^{W} \mathbb{Q} \pi_{1}\left(X^{\prime}, \overrightarrow{\mathrm{v}}\right)^{\wedge} \cong T\left(\operatorname{Gr}_{\bullet}^{W} H_{1}\left(X^{\prime}\right)\right) \cong T\left(H_{1}(X) \oplus E_{0}\right)=T V
$$

Theorem

- The graded Lie algebra $\mathrm{Gr}_{\bullet}^{W} \mathbb{Q} \lambda\left(X^{\prime}\right)^{\wedge}$ is canonically isomorphic to $\mathscr{C}\left(T\left(H \oplus S_{0}\right),\{, \quad\}_{0}\right)$.
- The diagram

$$
\begin{aligned}
& \operatorname{Gr}_{\bullet}^{W} \mathbb{Q} \lambda\left(X^{\prime}\right)^{\wedge} \xrightarrow{\kappa_{\overrightarrow{\mathrm{r}}}} \operatorname{SDer} \operatorname{Gr}_{\bullet}^{W} \mathbb{Q} \pi_{1}\left(X^{\prime}, \overrightarrow{\mathrm{v}}\right)^{\wedge} \\
& \begin{array}{cc}
\cong \\
\mathscr{C}(T V) \\
\Phi_{0} & \downarrow \\
& \text { SDer TV }
\end{array}
\end{aligned}
$$

commutes.

目 S．Bloch：Applications of the dilogarithm function in algebraic K－theory and algebraic geometry．Proceedings of the International Symposium on Algebraic Geometry（Kyoto Univ．，Kyoto，1977），pp．103－114．

目 A．Borel：Stable real cohomology of arithmetic groups，Ann． Sci．École Norm．Sup． 7 （1974），235－272．

R A．Borel：Cohomologie de SL_{n} et valeurs de fonctions zeta aux points entiers，Ann．Scuola Norm．Sup．Pisa CI．Sci． 4 （1977），613－636．

囯 B．Bost，H．Gillet，C．Soulé：Heights of projective varieties and positive Green forms，J．Amer．Math．Soc． 7 （1994）， 903－1027．

囯 H．Gillet，C．Soulé：Arithmetic intersection theory，Inst． Hautes Études Sci．Publ．Math．No． 72 （1990），93－174 （1991）．

R．Gelfand，R．MacPherson：Geometry in Grassmannians and a generalization of the dilogarithm，Adv．in Math． 44 （1982），279－312．
A．Goncharov：The classical trilogarithm，algebraic K－theory of fields and Dedekind zeta functions，Bull．Amer． Math．Soc． 24 （1991），155－162．
（A．Goncharov：Hodge correlators，J．Reine Angew．Math． 748 （2019），1－138．

嗇 A．Goncharov，D．Rudenko：Motivic correlators，cluster varieties and Zagier＇s conjecture on $\zeta_{F}(4)$ ， ［arXiv：1803．08585］

围 R．Hain，R．MacPherson：Higher logarithms，Illinois J． Math． 34 （1990），392－475．

圊 D．Quillen：Higher algebraic K－theory，I，in Algebraic K－theory，I：Higher K－theories（Proc．Conf．，Battelle Inst．， 1972），pp．85－147．Springer LNM．341， 1973.

The Turaev cobracket

For convenience, we denote the element $v \otimes w-w \otimes v$ of $V \otimes 2$ by $v \wedge w$. Suppose that α is an immersed circle with simple normal crossings. The first step in defining the cobracket is to define for each double point P of α

$$
\delta_{P}(\alpha)=\alpha_{P}^{\prime} \wedge \alpha_{P}^{\prime \prime}
$$

where

To define $\delta_{\xi}(\alpha)$ represent α by an immersed loop with simple normal crossings and trivial winding number with respect to the framing:

$$
\operatorname{rot}_{\xi} \alpha=0
$$

(Add some "back flips" as necessary.) The cobracket is defined by

$$
\delta_{\xi}(\alpha)=\sum_{\text {double points } P} \epsilon_{P} \delta_{P}(\alpha)
$$

where $\epsilon_{P}= \pm 1$ is the local intersection number of the initial arcs of α_{P}^{\prime} and $\alpha_{P}^{\prime \prime}$ (in that order).

Sample cobracket

To compute the cobracket of

Sample cobracket

repersent it by

Then δ_{ξ} takes

Then δ_{ξ} takes

Then δ_{ξ} takes

Then δ_{ξ} takes

