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The Dirichlet Unit Theorem (1842)

Suppose that F is a number field of degree r1 + 2r2, where:
▶ r1 is the number of embeddings ν : F ↪→ R
▶ r2 is the number of complex conjugate pairs of complex

(non-real) embeddings ν : F ↪→ C.

Theorem (Dirichlet)
The group of units O×

F in the ring of integers OF is finitely
generated of rank r1 + r2 − 1.



Dedekind’s formula (1863) + Hecke & Landau, 20th C
▶ For F a number field, define the regulator mapping

reg : O×
F → [RHom(F ,C)]Gal(C/R) by u 7→ (log |ν(u)|)ν .

Its image lies in the hyperplane
∑

xν = 0 (of dimension
r1 + r2 − 1) as each unit has norm 1.

▶ One has the Dedekind zeta function ζF (s). It has a pole of
order 1 at s = 1.

▶ Dedekind’s theorem says that the kernel of reg is torsion
and its image is a lattice in this hyperplane of covolume

RF =
wF

√
|dF |

2r1(2π)r2hF
Ress=1 ζF (s)

where dF is the discriminant of F , hF the order of the class
group and wF the order of the torsion in O×

F . This is the
regulator of F .



Quillen (1972)

Algebraic K -theory:

▶ K0(R) is the Grothendieck group of finitely generated
projective R-modules.

▶ For a commutative ring R (or an affine scheme SpecR):

Km(R) := πm(BGL(R)+) when m > 0,

where GL(R) = lim−→N
GLN(R). The plus construction

BGL(R)→ BGL(R)+ abelianizes π1, and induces an
isomorphism on homology.

▶ The determinant det : GL(R)→ R× induces a surjection

K1(R)→ R×

It is an isomorphism when R is a field.



▶ Quillen showed that the K -groups of the ring of integers
OF in a number field F are finitely generated.

K0(OF ) = Z⊕ (class group) , K1(OF ) = O×
F .

▶ He also showed that Km(OF )⊗Q→ Km(F )⊗Q is an
isomorphism when m > 1.

▶ Standard topology implies that

K•(R)⊗Q→ H•(GL(R);Q)

is injective. So, to understand the “rational K -groups” of R
we have to understand group homology of GL(R) —
equivalently, the stable rational homology of GLN(R).



Borel (1974, 1977)

▶ Borel computed the stable rational homology of SLn(OK )
and thus K•(OK )⊗Q. It vanishes in even positive degrees.

▶ When m > 1, K2m−1(OF ) has rank

dm =

{
r1 + r2 m odd
r2 m even

▶ He constructed a class βm (the “Borel element”) in
H2m−1(SL(C);R). It gives a map K2m−1(C)→ R. It gives
higher regulator mappings

regm : K2m−1(OF )→ Rdm ⊂ RHom(F ,C)

The kernel is finite; the image is a lattice (except when
m = 1, when it lies in hyperplane).



Theorem (Borel)
When m > 1, the covolume RF ,m of the regulator mapping

regm : K2m−1(OF )→ Rdm ⊂ RHom(F ,C)

satisfies

ζF (m) ∼Q×
πm dm+1√
|dF |

RF ,m

where dF is the discriminant of F .



Bloch (1978–)

▶ Bloch contributed important ideas and tools for studying
codimension 2 cycles. One of them was the dilogarithm.

▶ In particular he (and Wigner) introduced the single valued
dilogarithm D2 : P1(C)→ R:

D2(z) = − Im

∫ z

0
log(1− z)

dz
z

+ log |z|Arg(1− z).

It is the volume of the ideal hyperbolic tetrahedron with
vertices 0,1, z,∞ ∈ P1(C), boundary of H3.

▶ It satisfies Abel’s functional equation

4∑
j=0

(−1)jD2([z0 : · · · : ẑj : · · · : z4]) = 0.

▶ It is a 3-cocycle on GL2(C).



Abel’s equation for Bloch–Wigner dilogarithm

⟨z0, z1, z2, z3, z4⟩ = ⟨z0, ẑ1, z2, z3, z4⟩+ ⟨z0, z1, z2, ẑ3, z4⟩
= ⟨ẑ0, z1, z2, z3, z4⟩+ ⟨z0, z1, ẑ2, z3, z4⟩+ ⟨z0, z1, z2, z3, ẑ4⟩

z0

z1

z2

z3

z4 z0

z1

z2

z3

z4 z0

z1

z2

z3

z4



Beilinson 1984

▶ Beilinson (and Gillet, independently) constructed Chern
classes on K -theory, into Deligne–Beilinson cohomology:

cm : Kj(X )→ H2m−j
D (X ,Z(m))→ H2m−j

D (X ,R(m))

▶ When X is defined over a number field F

H•
D(X ,R(m)) =

[ ⊕
ν:F ↪→C

H•
D(Xν(C),R(m))

]Gal(C/R)
In particular, when X = SpecF :

H1
D(SpecF ,R(m)) ∼=

[ ⊕
ν:F ↪→C

C/imR
]Gal(C/R) ∼= Rdm .

▶ He showed that (up to a constant), Borel’s regulators are
Chern classes.



Polylogarithms and Chern classes
▶ In several contexts, the first Chern class is log. For

example

c1 : K1(C)→ H1
D(SpecC,R(1)) ∼= R

is log | | as K1(C) = C×.
▶ The formula in Cech cohomology for the first Chern class

of a complex line bundle uses the logarithm and its
multivaluedness.

▶ The Bloch–Wigner dilogarithm D2 defines 3-cocycle on
GL2(C). It represents c2 : K3(C)→ H1

D(SpecC,R(2)) ∼= R.
▶ Beilinson and Deligne showed that the second Chern class

c2 : K2(X )→ H2
D(X ;Z(2)) ∼= H1(X ;C×)

where X is a complex curve, can be defined using the dilog
and its multivaluedness.



Ideas that were floating around in the mid 1980s

▶ The m-logarithm should be related to various incarnations
of the mth Chern class on algebraic K -theory.

▶ As such, it should satisfy a (2m + 1)-term functional
equation that will make (a single valued version of it) into a
(2m − 1)-cocycle on GLm(C).

▶ With the correct normalizations, this should represent the
Borel class.

▶ Nobody (. . . ) could make this work for the trilog.
▶ This lead to the idea of Grassmann polylogs — origins in

the work of Gelfand and MacPherson.



Grassmann polylogs: first steps

▶ Denote the “coordinate simplex” in PN by ∆N . It is the
union of N + 1 copies of PN−1. Each face intersects the
other faces in its coordinate simplex.

▶ Let Gp
q be the subset of G(q,Pp+q) consisting of those

L ⊂ Pp+q that do not intersect the p − 1 stratum of of ∆p+q:

Gp
q = {(v0, . . . , vp+q) ∈ Cp : each p × p minor ̸= 0}/GLp.

▶ The map Gp
q → Y p

q is a trivial (C×)p+q torsor, where

Y p
q := {(x0, . . . , xp+q) ∈ Pp−1 : each p span Pp−1}/PGLp.

▶ Gp
0 = (C×)p, G2

1 = Y 2
1 × (C×)3, Y 2

1 = C− {0,1} =M0,4,
▶ G2

2 = Y 2
2 × (C×)4, where

Y 2
2 = (C− {0, })2 − diagonal =M0,5.



The Grassmann complex

▶ Intersecting with the p + q + 1 coordinate hyperplanes
defines “face maps” Aj : Gp

q → Gp
q−1, j = 0, . . . ,p + q.

These lie over face maps Y p
q → Y p

q−1.

▶ Example: The face maps Aj : Y 2
2 → Y 2

1 are:

Aj : (x0, x1, x2, x3, x4) 7→ [x0 : · · · : x̂j : · · · : x4]

Aj(y , x ,1,0,∞) =



x j = 0
y j = 1
y/x j = 2
(1− y)/(1− x) j = 3
x(1− y)/y(1− x) j = 4

These are the functions that occur in the functional
equation of the dilogarithm.



This leads to the Grassmann complex Gp
• :

{Gp
q : 0 ≤ q ≤ p}+ face maps Aj : Gp

q → Gp
q−1.

Example:

G2
• =

[
G2

2 G2
1 G2

0

A0

A4

A0

A3

]
Set

volp :=
dx1

x1
∧ dx2

x2
∧ · · · ∧

dxp

xp
∈ Ωp(Gp

0).

Basic fact:

A∗volp :=

p+1∑
j=0

(−1)jA∗
j volp = 0 in Ωp(Gp

1).



Grassmann polylogs

▶ W2mΩ̃
k (X ) consists of logarithmic p-forms on X with

coefficients that are (closed) iterated integrals of length
≤ m − k of logarithmic 1-forms.

▶ volp ∈W2pΩ
p(Gp

0), log(1− x)dx/x ∈W4Ω̃(G2
1).

▶ Double complex (W2pΩ̃
•(Gp

•),d ,A∗). Set D = d ± A∗.
▶ D volp = A∗volp = 0. Is it exact?
▶ A Grassmann p-logarithm is an element Zp of this complex

satisfying D Zp = volp. Existence was established for
p ≤ 3.

▶ If exists, get Lp ∈W2pÕ(Gp
p−1) that satisfies the (2p + 1)

term functional equation A∗Lp = 0.
▶ Hope is that Zp represents

cp : Km(X )→ H2p−m
D (X ,Z(p))



Example: the dilogarithm

The p = 2 Grassmann complex is:

G2
• =

[
G2

2 G2
1 G2

0

A0

A4

A0

A3

]
The double complex is:

W4Õ(G2
2) W4Ω̃

1(G2
2)

W4Õ(G2
1) W4Ω̃

1(G2
1) Ω2(G2

1)

W4Ω̃
1(G2

0) Ω2(G2
0)

d

d

A∗

d

A∗

d

A∗ A∗



Zagier’s conjecture (1990 - ϵ)

Suppose that m > 1 and that F is a number field. For a certain
single valued version Dm of the classical m-logarithm, there are
are elements

y1, . . . , ydm−1 ∈ Q[F − {0,1}]

such that

ζF (m) ∼Q×
πm dm+1√
|dF |

detP

where P is the dm × dm matrix whose entries are the values of
Dm at representatives of the images of the yk under the r2
complex places (when m is odd) or all places (when m is even).
Alternatively,

detP ∼Q× RF ,m.

He proved this when m = 2.



Goncharov and the trilogarithm (1990)

▶ Remarkably, Goncharov succeeded in expressing the
Grassmann trilog in terms of the classical trilogarithm.

▶ He used this to prove Zagier’s conjecture for ζF (3).
▶ There was virtually no major progress until 2018 when

Goncharov and Rudenko proved Zagier’s conjecture for
ζF (4) using some work of Gangl.

▶ I do not claim to understand this work.



The future . . .

And finally, in an attempt to unify the entire subject into
a coherent whole, difficulties of a different order are en-
countered, and some central unifying principle has still
to be discovered.

Leonard Lewin, 1981.

▶ This comment was prescient and still applies.
▶ It appears that Goncharov and Rudenko introduce two new

tools:
▶ Cluster algebras (of which I am ignorant)
▶ motivic correlators (which I am trying to understand)

▶ I will give an introduction to the Hodge manifestation of
motivic correlators.



Outline

I: Prehistory: 1842 to 1990

II: Goncharov’s Hodge Correlators

III: The Goldman–Turaev Lie Bialgebra



The landscape

correlators

classical
Hodge
theory

algebra

mixed
Hodge
theory

topology

multiple
logarithms



Guided tour & plan

Goncharov’s Crelle paper is 138 journal pages. Need a guide:

▶ currents (introduction/review)
▶ planar trivalent trees
▶ recipe for Hodge correlators
▶ related algebra
▶ selected results of Goncharov

Two more items I believe are relevant:

▶ topology: the Goldman (Turaev) Lie (bi)algebra
▶ Hodge theory



Currents

A k -current T on an n manifold M is a continuous function on
the space of n − k forms on M that are compactly supported in
some coordinate patch. One defines bT (its boundary) by

⟨bT , ψ⟩ := ⟨T ,dψ⟩.

Every locally L1 k -form ω on M gives a k -current [ω]:

[ω] : ϕ→
∫

M
ω ∧ ϕ.

When ω is smooth, [dω] = d [ω] := (−1)k+1b[ω]. This is not true
when ω is locally L1 but not smooth.



Integration over a codimension q closed submanifold (or
subvariety) Z also gives a current, denoted δZ :

⟨δZ , ψ⟩ =
∫

Z
ψ.

For a k -current T on a complex manifold, we can define ∂T and
∂T by:

⟨∂T , ψ⟩ := (−1)k+1⟨T , ∂ψ⟩ and ⟨∂T , ψ⟩ := (−1)k+1⟨T , ∂ψ⟩

We have dT = ∂T + ∂T .



When M = C,
∂∂[log |z|2] = −2πi δ[0].

That is, for all smooth, compactly supported functions h on C

⟨∂∂[log |z|2],h⟩ = −2πi h(0).

Note that if f is a smooth function on C, then

∂∂f =
1
4
∆ f dz ∧ dz =

1
2i
∆ f dx ∧ dy , z = x + iy .

So we get the classical formula of distributions

∆[log |z|] = 2πδ0.



Here is a proof so that you can see how to work with currents:

⟨∂∂ log |z|2,h⟩ = ⟨∂ log |z|2, ∂h⟩

h is smooth with compact support, ∂[log |z|2] is a 1-current



Here is a proof so that you can see how to work with currents:

⟨∂∂ log |z|2,h⟩ = −⟨log |z|2, ∂∂h⟩

[log |z|2] is a 0-current



Here is a proof so that you can see how to work with currents:

⟨∂∂ log |z|2,h⟩ = ⟨log |z|2, ∂∂h⟩

as ∂∂ = −∂∂



Here is a proof so that you can see how to work with currents:

⟨∂∂ log |z|2,h⟩ = ⟨log |z|2, ∂∂h⟩

=

∫
C
log |z|2∂∂h

the definition — the integrand is L1



Here is a proof so that you can see how to work with currents:

⟨∂∂ log |z|2,h⟩ = ⟨log |z|2, ∂∂h⟩

=

∫
C
log |z|2∂∂h

= lim
ϵ→0

∫
|z|≥ϵ

log |z|2∂∂h

by absolute continuity of the Lebesgue integral



Here is a proof so that you can see how to work with currents:

⟨∂∂ log |z|2,h⟩ = ⟨log |z|2, ∂∂h⟩

=

∫
C
log |z|2∂∂h

= lim
ϵ→0

∫
|z|≥ϵ

log |z|2∂∂h

= − lim
ϵ→0

∫
|z|=ϵ

(
h

dz
z

+ 2 log ϵ ∂h
)

via Stokes as log |z|2∂∂h = d
(
log|z|2∂h + h dz

z

)



Here is a proof so that you can see how to work with currents:

⟨∂∂ log |z|2,h⟩ = ⟨log |z|2, ∂∂h⟩

=

∫
C
log |z|2∂∂h

= lim
ϵ→0

∫
|z|≥ϵ

log |z|2∂∂h

= − lim
ϵ→0

∫
|z|=ϵ

(
h

dz
z

+ 2 log ϵ ∂h
)

= −2πi h(0)

as ϵ2 log ϵ→ 0 and as h continuous



Here is a proof so that you can see how to work with currents:

⟨∂∂ log |z|2,h⟩ = ⟨log |z|2, ∂∂h⟩

=

∫
C
log |z|2∂∂h

= lim
ϵ→0

∫
|z|≥ϵ

log |z|2∂∂h

= − lim
ϵ→0

∫
|z|=ϵ

(
h

dz
z

+ 2 log ϵ ∂h
)

= −2πi h(0)
= −2πi ⟨δ[0],h⟩

the definition of δ[0]



Suppose that X is a compact Riemann surface and that
ϕ1, . . . , ϕg , ψ1, . . . , ψg are harmonic representatives of a
symplectic basis of H1(X ). Choose any 2-form (or 2-current) µ
with

∫
X µ = 1. Then, in H2(X × X ), we have the formula

[∆] = [µ]× 1 + 1× [µ]−
g∑

j=1

([ϕj ]× [ψj ]− [ψj ]× [ϕj ]).

Harmonic theory implies that there is a 0-current Gµ such that

∂∂Gµ = δ∆ − µ× 1− 1× µ+

g∑
j=1

(ϕj × ψj − ψj × ϕj).

It is symmetric and uniquely determined, up to a constant, by µ.



Example

When P1 and µ = δ[∞]

G[∞](x , y) =
1

2πi
log |x − y |2 (x , y) ∈ C2

as
∂∂ log |x − y |2 = 2πi(δ∆P1 − δ[∞] × 1− 1× δ[∞]).

In general, Gµ(x , y)− log |x − y |2/2πi is smooth near the
diagonal.



Choices of µ and normalization

Three natural choices of µ are:
▶ a current δ[a] for some a ∈ X — works for all g ≥ 0;
▶ the Arakelov volume form — pulled back from the flat

metric on JacX along X → JacX — works for all g ≥ 1;
▶ the volume form of the hyperbolic metric on X — works for

g ≥ 2.

To fix Gµ, Goncharov chooses a point xo ∈ X (not a) and a
non-zero tangent vector v⃗ ∈ TxoX . Then take a holomorphic arc
t : (D,0)→ (X , xo) with ∂/∂t = v⃗. One insists that the
restriction of 2πi G − log |t |2 to t 7→ (x(t), xo) is smooth.

Example: G[∞] above satisfies this when X = P1, xo ∈ C and
v⃗ = ∂/∂z.



Set up

For the rest of this talk, X is a compact Riemann surface of
genus g ≥ 0 and S = {s0, s1, . . . , sn} is a finite subset. Set

X ′ = X − S and S0 := S − {s0} = {s1, . . . , sn}.

We will assume that X ′ is hyperbolic:

χ(X ′) = 2− 2g − n − 1 < 0.

The space of complex valued harmonic forms on X is

H = Ω1(X )⊕ Ω1(X ).



Planar trivalent trees

▶ m internal vertices
▶ m + 2 leaves (external vertices)
▶ 2m + 1 edges

•

◦

•

◦

◦•

◦

◦
m = 3

Note that the exterior vertices are cyclically ordered.



Cyclic words

Our alphabet is H ∪ S0. A word of length r in this alphabet is
an expression

v1 . . . vr , vj ∈H ∪ S0.

Let ∼ be the equivalence relation on these words generated by

v1 . . . vr ∼ vr v1 . . . vr−1.

A cyclic word of length r is an equivalence class. We’ll denote it
by

c(v1v2 . . . vr ).

Example: w = c(ω′s3 s1 ω
′s2), where ω′ and ω′′ ∈H .



Decorated planar trivalent trees

A trivalent planar tree T with m internal vertices can be labelled
by a cyclic word w of length ℓ(w) = m + 2.

•

◦

•

◦

◦•

◦

◦

w = c(ω′s3 s1 ω
′s2)



Decorated planar trivalent trees

A trivalent planar tree T with m internal vertices can be labelled
by a cyclic word w of length ℓ(w) = m + 2.

•

s1

•

ω′′

s2•

ω′

s3

w = c(ω′s3 s1 ω
′s2)



One more definition

For 0-currents G0, . . . ,Gr on M define φr+1(G0, . . . ,Gr ) by

1
(r + 1)!

r∑
k=0

(−1)k
∑

σ∈Sr+1

sgn(σ)

Gσ(0)∂Gσ(1) ∧ · · · ∧ ∂Gσ(k) ∧ ∂Gσ(k+1) ∧ · · · ∧ ∂Gσ(r).

It is a current of degree r on M and alternating in its
arguments.

Examples:
φ1(G0) = G0

and

φ2(G0,G1) =
1
2
(
G0∂G1 −G0∂G1 −G1∂G0 + G1∂G0

)



Useful formulas

If f is a rational function on X (not just a curve), then

d
[df

f

]
= ∂

[df
f

]
= 2πi δ[div f ], ∂

[df
f

]
= 0.

∂∂[log |f |2] = −2πi δ[div f ]

∂[log |f |2] =
[df

f

]
, ∂[log |f |2] =

[df
f

]

Example: if f0, f1 ∈ C(X )×, then

φ2(log |f0|2, log |f1|2)

=
(
log |f0|

df 1

f 1
− log |f0|

df1
f1
− log |f1|

df 0

f 0
+ log |f1|

df0
f0

)



The recipe I

Consider the w decorated planar tree

•

s1

•

ω′′

s2•

ω′

s3



The recipe I

Take a copy of X for each internal vertex:

x2

s1

x3

ω′′

s2x1

ω′

s3

(x1, x2, x3) ∈ X 3



The recipe II

Associate G(xj , xk ) to the edge joining xj and xk , and G(xj , sk )
the edge that joins xj to sk :

x2

s1

x3

ω′′(x3)

s2x1

ω′(x1)

s3

Define

ΩT (w) = ±φ5(G(s3, x1),G(x1, x2),G(x2, x3),G(x2, s1),G(x3, s2)) ∧ ω′(x1) ∧ ω′′(x3).

Terms correspond to an ordered list of edges.



How to compute the sign
In fact

ΩT (w) = −φ5(G(s3, x1),G(x1, x2),G(x2, x3),G(x2, s1),G(x3, s2)) ∧ ω′(x1) ∧ ω′′(x3).

1

2

3

4

e12 ∧ e13 ∧ e14



How to compute the sign
In fact

ΩT (w) = −φ5(G(s3, x1),G(x1, x2),G(x2, x3),G(x2, s1),G(x3, s2)) ∧ ω′(x1) ∧ ω′′(x3).

1

2

3

5

64

e12 ∧ e13 ∧ e14 ∧ e35 ∧ e36



How to compute the sign
In fact

ΩT (w) = −φ5(G(s3, x1),G(x1, x2),G(x2, x3),G(x2, s1),G(x3, s2)) ∧ ω′(x1) ∧ ω′′(x3).

1

2

3

5

64

7

8

orT = e12 ∧ e13 ∧ e14 ∧ e35 ∧ e36 ∧ e47 ∧ e48

= −e48 ∧ e14 ∧ e13 ∧ e12 ∧ e36 ∧ e47 ∧ e35



The recipe III

Here ΩT (w) is a 6-current on X 3 that depends on the
“variables” (s1, . . . , sn). One obtains a function of (s1, s2, s3) by
integrating it over X 3.

In general, for each w decorated (planar trivalent) graph T a
current ΩT (w) on X m, where m is ℓ(w)− 2. Define the
correlator associated to w (and µ) by

Corµ(w) :=
∑
T⊢w

∫
X m

ΩT (w)

where the sum ranges over all trivalent planar trees T
decorated by w. It is a complex number or a function of
(s1, . . . , sn) depending on your point of view.



Examples
Take X = P1, µ = δ[∞]. Then 2πi Gµ(x , y) = log |x − y |2.

The logarithm: S = {0, z,∞}, w = c(1 z) and the w decorated
T is

1 z

Then 2πi ΩT (w) = log |z|2.

The dilogarithm: S = {∞,0,1, z}, w = c(0 1 z) and the w
decorated T is

x

z

0

1

3!(2πi)3
∫

x∈P1
ΩT (w) = φ3(log |x |2, log |x − 1|2, log |x − z|2)

= (coefficient)D2(z).



Algebra: preparation

Recall S = {s0, . . . , sn}, X ′ = X − S and S0 = {s1, . . . , sn}. We
have an exact sequence

0→ H2(X )→ H0(S)→ H1(X ′)→ H1(X )→ 0

Denote the class of a small (positive) loop about sj by ej . Then

H0(S)/H2(S) =
⊕n

k=0kek/k(e0 + · · ·+ en), k = Z,Q,R.

Set
E0 =

⊕n
k=1kek

Then E0
∼→ H0(S)/H2(S) is an iso. Define a symmetric bilinear

form on E0 by declaring e1, . . . ,en to be orthonormal. The
intersection pairing defines a symplectic form on H1(X ).



Algebra: setup

Suppose that V = H ⊕ E is a k vector space (k = Q,R), where
H has a symplectic inner product and E has a non-degenerate
symmetric inner product. Give H weight −1 and E weight −2.

Example: V = GrW• H1(X ′) = H1(X )⊕ E0.

Fix an orthonormal basis e1, . . . ,en of E . Denote the dual
space by V∨ = H∨ ⊕ E∨. Denote the dual basis of E∨ by
s1, . . . , sn.

Example: V∨ = GrW• H1(X ′) = H1(X )⊕ E∨
0 . The residue map

gives an isomorphism

Res : GrW2 H1(X ′)
≃−→ H̃0(S) =

{∑n
k=0aksk :

∑
k ak = 0

}
.

The dual orthonormal basis on E∨
0 is {s1, . . . , sn}.

Remark: Our alphabet is H ∪ S0 ∼= H1(X ) ∪ S0.



Special derivations

Let TV be the tensor algebra on V . It is the universal
enveloping algebra of the free Lie algebra L(V ). Both are
graded by weight. There are canonical graded isomorphisms

GrW• kπ1(X ′, v⃗)∧ ∼= T (H1(X )⊕ E0) = TV .

Define e0 ∈ GrW−2 TV by

e0 + e1 + · · ·+ en +

g∑
j=1

[pj ,qj ] = 0

where p1, . . . ,pg ,q1, . . . ,qg is a symplectic basis of H1(X ).

A derivation δ of TV is called special if δ(e0) = 0 and there are
uk ∈ TV such that δ(ek ) = [ek ,uk ] when k ̸= 0. A derivation δ
of L(V ) is special if each uj ∈ L(V ).



Cyclic words

The cyclic quotient of an associative k-algebra A is

C (A) = A/⟨uv − vu : u, v ∈ A⟩.

Elements of C (TV ) are cyclic words in the alphabet
{pj ,qj ,ek : 1 ≤ j ≤ g,1 ≤ k ≤ n}. It is a Lie algebra with
graded bracket (after a shift by 2):

{ , }0 : GrW2−j C (TV )⊗ GrW2−k C (TV )→ GrW2−j−k C (TV )

There is also a surjective Lie algebra homomorphism

Φ0 : C (TV )→ SDerTV .

Its kernel is spanned by em
j where j ̸= 0 and m ≥ 0.



Formula for the action

Suppose A = k⟨a1, . . . ,am⟩. We have operators ∂
∂aj

: C (A)→ A
of weight +2. For example:

a

b

a

c∂

∂a
: 7→ bac + cab

For F ∈ C (TV ), Φ0(F ) ∈ SDer(TV ) is defined by

Φ0(F ) :


pj 7→ −∂F/∂qj ,

qj 7→ ∂F/∂pj ,

ek 7→ [ek , ∂F/∂ek ] k ̸= 0.



Formula for the bracket

For F ,G ∈ C (TV )

{F ,G}0 = c
(∑

k ̸=0

[
∂F
∂ek

,
∂G
∂ek

]
ek +

g∑
j=1

(
∂F
∂pj

∂G
∂qj
− ∂G
∂pj

∂F
∂qj

))

A

ek

⊗

ek

B A

B

ek −

A

B

ek

U

u

⊗

v

V

⟨u, v⟩

U

V

Here k ̸= 0, u, v ∈ H and A,B,U,V ∈ TV .



The Lie algebra C (L(V ))

The Lie algebra C (L(V )) is defined to be the Lie algebra of
V -decorated trivalent planar graphs modulo the AS-relation

•

B

C

A

+ •

A

C

B

= 0

and the IHX-relation

C D

BA

+

B C

DA

+

D B

CA

= 0



The homomorphism C (L(V ))→ C (TV )

Expanding V -labelled planar trivalent trees defines an injective
Lie algebra homomorphism

C (L(V ))→ C (TV )

•

a

b

•

c

d
=

[a,b]

[c,d ]

7→ c
(
(ab − ba)(cd − dc)

)



The PBW Theorem gives a coalgebra isomorphism:

TV = UL(V ) =
⊕
m≥0

Symm L(V ).

“Cutting” an edge of a decorated tree defines a well-defined
map C (L(V ))→ |Sym2 L(V )|. It has an obvious inverse, so we
have a Lie algebra isomorphism

C (L(V )) ∼= | Sym2 L(V )|.

The restriction of C (TV )→ SDerL(V ) to C (L(V )) is surjective
and has kernel

span{e2
1, . . . ,e

2
n}.



Correlators revisited

Recall that, after fixing a “volume form” µ and w a cyclic word in
H ∪ S0, we defined

Corµ(w) =
∑
T⊢w

∫
X ℓ(w)−2

ΩT (w) ∈ C.

The cyclic words w are actually elements of C (TV )∨. So

Corµ(w) ∈ C (TV ).

Summing over all cyclic words w in the alphabet {ϕj , ψj , sk}
gives

Corµ ∈ C (TV )

and therefore a special derivation δX ′ ,⃗v := Φ0(Corµ) ∈ SDerTV .



The correlator Corµ is purely imaginary and lies in
F−1 ∩ F

−1
C (TV ). That is Corµ ∈ iC (L(V ))R.

Theorem (Goncharov)

1. Corµ ∈ C (L(V )), so that δX ′ ,⃗v ∈ i SDerL(V )R.
2. The derivation δX ′ ,⃗v determines a MHS on the completed

group algebra of π1(X ′, v⃗) via the map

exp δX ′ ,⃗v :
∏
m≥0

GrW−m Rπ1(X ′, v⃗)→
∏
m≥0

GrW−m Cπ1(X ′, v⃗).

Apparently, this is the canonical MHS.
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Enter topology

These cyclic constructions in correlators comes from topology
— specifically from the Goldman Lie algebra and the
Kawazumi–Kuno action of it on kπ1(X ′, v⃗). In topology, there is
additional structure — the Turaev cobracket which does not
(yet) appear in correlators.
▶ For a connected, oriented surface Y , set

λ(Y ) = [S1,Y ] = {conjugacy classes in π1(Y , y)}.

▶ For a commutative ring k (e.g., Z,Q,R,C), set

kλ(Y ) = free k-module generated by λ(Y ).

▶ It is the cyclic quotient of the group algebra:

kλ(Y ) = C (kπ1(Y , x))



The Goldman–Turaev Lie bialgebra

The Goldman bracket is a map

{ , } : kλ(Y )⊗ kλ(Y )→ kλ(Y )

that makes kλ(Y ) into a Lie algebra. The Turaev cobracket is a
map

δξ : kλ(Y )→ kλ(Y )⊗ kλ(Y )

that depends on a framing ξ (a nowhere vanishing vector field)
on X . Together they form a Lie bialgebra:

δξ{u, v} = u · δξ(v) + δξ(u) · v

where u · (x ⊗ y) = {u, x} ⊗ y and (x ⊗ y) · v = x ⊗ {y , v}.



An elementary surgery

The bracket and cobracket are defined using elementary
surgery: Each element of λ(Y ) can be represented by an
immersed circle with simple normal crossings. (So no triple
points, etc). One can perform surgery at a double point:

surgery



The Goldman bracket

To define the Goldman bracket of α, β ∈ λ(Y ), represent them
by oriented, transversally intersecting, immersed circles. Their
Goldman bracket is

{α, β} =
∑

P

ϵP α#Pβ

where P ranges over the points where α intersects β, ϵP = ±1
is the local intersection number at P and α#Pβ is the loop
obtained by simple surgery at P.



An example

P

Q

ϵP = 1

ϵQ = −1

{α, β} = ϵP α#Pβ + ϵQ α#Qβ



An example

P

Q

ϵP = 1

ϵQ = −1

α#Pβ



An example

P

Q

ϵP = 1

ϵQ = −1

α#Qβ



An example

P

Q

ϵP = 1

ϵQ = −1

{α, β} = ϵP α#Pβ + ϵQ α#Qβ = α#Pβ − α#Qβ



The Kawazumi–Kuno action

We will take Y = X ′ = X − S. There is a similarly defined Lie
algebra homomorphism

κv⃗ : kλ(X ′, v⃗)→ SDer kπ1(X ′, v⃗)

where here a derivation δ of kπ1(X ′, v⃗) is special if there are
µ1, . . . , µn ∈ kπ1(X ′, v⃗) such that δ(γ0) = 0 and

δ(γj) = [γj , µj ] := γjµj − µjγj when j > 0.

Here γj is any path of the form

v⃗

s0 sj



Completions

Now suppose that k is a field of characteristic 0.
▶ We can complete the group algebra kπ1(X ′, v⃗) in the

standard way:

kπ1(X ′, v⃗)∧ := lim←−
m

kπ1(X ′, v⃗)/Im

where I is the kernel of the augmentation kπ1(X ′, v⃗)→ k.
This has a natural topology — the I-adic topology.

▶ The corresponding completion of kλ(X ′) is

kλ(X ′)∧ := C (kπ1(X ′, v⃗)∧).

Give this the quotient topology — also called the I-adic
topology.



The completed Goldman Lie algebra

Kawazumi–Kuno: the bracket and the KK-action are continuous
and so induce continuous mappings

{ , } : kλ(X ′)∧ ⊗ kλ(X ′)∧ → kλ(X ′)∧

κv⃗ : kλ(X ′)∧ → SDer kπ1(X ′, v⃗)∧.

Theorem
▶ Qλ(X ′)∧ has a canonical mixed Hodge structure (MHS).
▶ It is a quotient of the canonical MHS on Qπ1(X ′, v⃗)∧ and

does not depend on the choice of s0 ∈ S or v⃗ ∈ TXs0 .
▶ The Tate twist Qλ(X ′)∧(−1) is a Lie algebra in the

category of pro-MHS.
▶ The action Qλ(X ′)∧(−1)→ SDerQπ1(X ′, v⃗)∧ is a

morphism of pro-MHS.



Hodge theory and splittings
Hodge theory gives natural isomorphisms of a MHS V with its
associated weight graded GrW• V . There is a canonical isom

GrW• Qπ1(X ′, v⃗)∧ ∼= T (GrW• H1(X ′)) ∼= T (H1(X )⊕ E0) = TV .

Theorem
▶ The graded Lie algebra GrW• Qλ(X ′)∧ is canonically

isomorphic to C (T (H ⊕ S0), { , }0).
▶ The diagram

GrW• Qλ(X ′)∧ SDer GrW• Qπ1(X ′, v⃗)∧

C (TV ) SDerTV

κ⃗v

∼= ∼=
Φ0

commutes.
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The Turaev cobracket

For convenience, we denote the element v ⊗ w − w ⊗ v of V⊗2

by v ∧ w . Suppose that α is an immersed circle with simple
normal crossings. The first step in defining the cobracket is to
define for each double point P of α

δP(α) = α′
P ∧ α

′′
P

where

P
A B

α

∧A B

α′
P α′′

P



To define δξ(α) represent α by an immersed loop with simple
normal crossings and trivial winding number with respect to
the framing:

rotξ α = 0.

(Add some “back flips” as necessary.) The cobracket is defined
by

δξ(α) =
∑

double points P

ϵP δP(α)

where ϵP = ±1 is the local intersection number of the initial
arcs of α′

P and α′′
P (in that order).



Sample cobracket

To compute the cobracket of

ξ = ∂/∂x

rotξ α = 1
P Q



Sample cobracket

repersent it by

ξ = ∂/∂x

rotξ α = 0
P Q R



Then δξ takes to

− ∧

+ ∧ − ∧1



Then δξ takes to

− ∧

+ ∧ − ∧1



Then δξ takes to

− ∧

+ ∧

− ∧1



Then δξ takes to

− ∧

+ ∧ − ∧1
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