Johnson Homomorphisms, the Goldman–Turaev Lie bialgebra and GRT

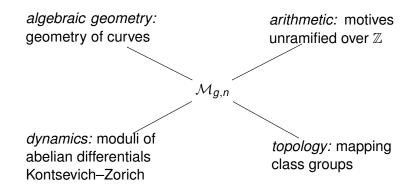
Richard Hain

Duke University

Dedicated to the memory of Steven Zucker

October 8, 2019

Richard Hain The Goldman–Turaev Lie bialgebra and GRT



Notation

Suppose that \overline{S} is a compact oriented surface of genus g, a set P of n distinct points in $\overline{S} - \partial \overline{S}$ and r boundary circles. Set $S = \overline{S} - (P \cup \partial S)$. We will suppose that S is *hyperbolic*:

$$\chi(S) = -(2g - 2 + r + n) < 0.$$

The mapping class group of S is:

$$\Gamma_{\mathcal{S}} := \pi_0 \operatorname{Diff}^+(\overline{\mathcal{S}}, \mathcal{P} \cup \partial \overline{\mathcal{S}}).$$

Up to an inner automorphism, it depends only on (g, n, r). We'll denote it by $\Gamma_{g,n+\vec{r}}$.

Remark: we can (and will) replace boundary components by non-zero tangent vectors.

Notation: $\mathcal{M}_{g,n+\vec{r}}$ is the moduli space of smooth projective curves *C* of genus *g* with:

- n + r distinct, labelled points $P = \{x_1, \ldots, x_n, y_1, \ldots, y_r\}$, and
- 2 *r* non-zero tangent vectors $V = {\vec{v}_1, ..., \vec{v}_r}$, where $\vec{v}_j \in T_{y_j}C$.

This is a smooth stack over $\mathbb{Z}.$ But we'll consider it to be $/\mathbb{C}$ unless otherwise stated.

There is a natural isomorphism

$$\pi_1(\mathcal{M}_{g,n+\vec{r}}, [C; P, V]) \cong \pi_0 \operatorname{Diff}^+(C, P, V).$$

The Torelli group consists of those mapping classes that act trivially on $H_1(\overline{S})$:

$$T_{g,n+\vec{r}} = \ker\{\Gamma_{g,n+\vec{r}} \to \operatorname{Sp}(H_1(\overline{S}), \operatorname{int} \operatorname{pairing})\}$$

The classifying space BT_g of T_g is the homotopy fiber of the period map period map $\mathcal{M}_g \to \mathcal{A}_g$. It encodes the difference between the geometry of curves and their jacobians.

Problem: Understand Torelli groups.

Johnson homomorphisms

Suppose (S, \vec{v}) is a surface of type $(g, n + \vec{1})$. The *Johnson filtration*

$$T_{g,n+\vec{1}} = J^1 T_{g,n+\vec{1}} \supset J^2 T_{g,n+\vec{1}} \supset J^3 T_{g,n+\vec{1}} \supset \cdots$$

is defined by

$$J^{k}T_{g,n+\vec{1}} := \ker \big\{ T_{g,n+\vec{1}} \to \operatorname{Aut}\big(\pi_{1}(\mathcal{S},\vec{v})/L^{k+1}\pi_{1}(\mathcal{S},\vec{v}) \big) \big\},$$

where L^{\bullet} is the lower central series (LCS).

The higher Johnson homomorphisms are the injective maps

$$\tau_k: \operatorname{Gr}_J^k T_{g,n+\vec{1}} \hookrightarrow \operatorname{Hom}_{\mathbb{Z}} \left(H_1(\overline{S}), \operatorname{Gr}_L^{k+1} \pi_1(\overline{S}, \vec{v}) \right).$$

Johnson: when $g \ge 3$, (and n = 0)

$$\tau_1: H_1(T_{g,\vec{1}};\mathbb{Z}) \to J^1/J^2 \cong \Lambda^3 H_1(\overline{S},\mathbb{Z})$$

is surjective with finite kernel of exponent 2.

Briefly: a (neutral) tannakian category \mathscr{T} is an abelian category that has the formal properties of the category of representations of a group (discrete, algebraic, Lie, ...) in finite dimensional vector spaces over a field F of char 0. Essential features: have

- tensor products and duals,
- trivial object 1_F ; natural isomorphism $V \otimes 1_F \cong V$
- dual objects $V^{\vee} = \text{Hom}(V, 1_F)$
- a *fiber functor* a faithful tensor functor $\omega : \mathscr{T} \to \text{Vec}_F$

Tannaka duality: if \mathcal{T} is a neutral *F*-linear tannakian category,

•
$$\pi_1(\mathscr{T},\omega) := \operatorname{Aut}^{\otimes} \omega$$
 is an affine *F*-group

- **2** if *V* is in \mathscr{T} , then $\omega(V)$ is naturally a $\pi_1(\mathscr{T}, \omega)$ -module
- **③** \mathscr{T} is equivalent to the category of $\pi_1(\mathscr{T}, \omega)$ -modules.

Input:

- a discrete group F
- a field F of characteristic 0
- a reductive group R/F
- a homomorphism $\rho : \Gamma \to R(F)$, Zariski dense

Let $\mathscr{R}(\Gamma, \rho)$ be the category of Γ -modules *V* (finite dim/*F*) that admit a filtration

$$0 = V_0 \subset V_1 \subset \ldots V_n = V$$

by Γ -submodules such that each V_j/V_{j-1} is an R-module and Γ acts on it via $\Gamma \to R(F) \to \operatorname{Aut}(V_j/V_{j-1})$. This is tannakian.

The completion of Γ relative to ρ is $\mathcal{G}^{rel} := \pi_1(\mathscr{R}(\Gamma, \rho), \omega)$.

Properties of Relative Completion

- Reduces to unipotent completion when R is trivial.
- ② It is an extension $1 \rightarrow U^{rel} \rightarrow G^{rel} \rightarrow R \rightarrow 1$, where U^{rel} is prounipotent.
- **③** This extension splits (Levi), so $\mathcal{G}^{\text{rel}} \cong \mathbf{R} \ltimes \mathcal{U}^{\text{rel}}$.

Theorem

- The relative completion $\mathcal{G}_C^{\text{rel}}$ of $\pi_1(\mathcal{M}_{g,n+\vec{r}}, [C])$ has a natural \mathbb{Q} -MHS. That is, its coordinate ring $\mathcal{O}(\mathcal{G}_C^{\text{rel}})$ and Lie algebra \mathfrak{g}_C are Hopf algebra and Lie algebra in the category (ind or pro) MHS.
- ② If C is defined over a number field K, then Gal($\overline{\mathbb{Q}}/K$) acts on $\mathcal{O}(\mathcal{G}_{C}^{rel}) \otimes \mathbb{Q}_{\ell}$ and $\mathfrak{g}_{C} \otimes \mathbb{Q}_{\ell}$.

Relative completions of mapping class groups

Take *S* a surface of type $(g, n + \vec{r})$. Take $F = \mathbb{Q}$ and ρ to be the natural action $\Gamma_S \to \operatorname{Sp}(H_1(\overline{S}))$. Denote the relative completion of Γ_S with respect to ρ by $\mathcal{G}_S^{\operatorname{rel}}$ (or $\mathcal{G}_{g,n+\vec{r}}$ and its prounipotent radical by $\mathcal{U}_S^{\operatorname{rel}} = \mathcal{U}_{g,n+\vec{r}}$. Denote their Lie algebras by $\mathfrak{g}_S^{\operatorname{rel}}$ and $\mathfrak{u}_S^{\operatorname{rel}}$.

• When *S* has genus 0, $\mathcal{G}_S = \mathcal{U}_S^{\text{rel}}$ is just unipotent completion. (Well understood.) When $g \ge 3$, there is a non-trivial extension

$$0 \to \mathbb{G}_a \to T_S^{\mathrm{un}} \to \mathcal{U}_S^{\mathrm{rel}} \to 1.$$

- 2 $\mathfrak{u}_S^{\text{rel}}$ is finitely generated except in genus 1. (Generating set known for all $g \ge 0$)
- (Finite) presentations of the u_S are known for all $g \neq 2$. A partial presentation is known in genus 2 Watanabe using Petersen.

Suppose that (S, \vec{v}) is a surface of type $(g, n + \vec{1})$. Set

 $\mathfrak{p}(S, \vec{v}) = \text{ Lie algebra of } \pi_1^{\mathrm{un}}(S, \vec{v}).$

This is an object of $\mathscr{R}(\Gamma_S, \rho)$. So $\mathcal{G}_{S, \vec{v}}$ acts on it. The *geometric Johnson homomorphism* is the induced Lie algebra homomorphism

 $\phi_{\mathcal{S}}:\mathfrak{g}_{\mathcal{S},\vec{\mathsf{v}}}\to\mathsf{Der}\,\mathfrak{p}(\mathcal{S},\vec{\mathsf{v}}).$

Problem: Is ϕ_S injective? What is its image ?

The category MHS of (graded polarizable) \mathbb{Q} -mixed Hodge structures is tannakian. It is the category of representations of an affine \mathbb{Q} -group π_1 (MHS). This is an extension

$$1 \rightarrow \mathcal{U}^{\mathsf{MHS}} \rightarrow \pi_1(\mathsf{MHS}) \rightarrow \pi_1(\mathsf{MHS}^{\mathrm{ss}}) \rightarrow 1$$

where MHS^{ss} is the full sub-category of semi-simple MHS. The group π_1 (MHS^{ss}) is reductive and \mathcal{U}^{MHS} is prounipotent.

There is a canonical *central* cocharacter $\chi : \mathbb{G}_m \to \pi_1(MHS^{ss})$ that corresponds to the functor MHS^{ss} to graded vector spaces. By Levi's Theorem, this lifts to a cocharacter

$$\tilde{\chi}: \mathbb{G}_m \to \pi_1(\mathsf{MHS}).$$

It is unique up to conjugation by an element of $\mathcal{U}^{MHS}(\mathbb{Q})$.

Each MHS V has a canonical weight filtration by sub-MHS:

$$0 = W_a V \subseteq W_{a+1} V \subseteq \cdots \subseteq W_{b-1} V \subseteq W_b V = V$$

When $V_{\mathbb{Q}}$ is finite dimensional, each choice of the lift $\tilde{\chi}$ determines a splitting

$$V_{\mathbb{Q}} \cong \operatorname{Gr}^{W}_{\bullet} V_{\mathbb{Q}} := \bigoplus_{n \in \mathbb{Z}} \operatorname{Gr}^{W}_{n} V$$

of the weight filtration that is preserved by morphisms of MHS and is compatible with tensor products and duals.

For a pro-MHS V, the choice of $\tilde{\chi}$ determines an isomorphism

$$V_{\mathbb{Q}} \cong \widehat{\operatorname{Gr}}_{\bullet}^{W} V_{\mathbb{Q}} := \prod_{n \in \mathbb{Z}} \operatorname{Gr}_{n}^{W} V.$$

These splittings are natural but not canonical!

Sample presentations

Suppose that (S, \vec{v}) is of type $(g, \vec{1})$. Set $H = H_1(\overline{S})$. There are natural isomorphisms

$$\mathfrak{p}(S,ec{\mathsf{v}})\cong \widehat{\mathsf{Gr}}^{W}_{ullet}\mathfrak{p}(S,ec{\mathsf{v}})\cong \mathbb{L}(H)^{\wedge}$$

and, when $g \ge 4$,

$$\mathfrak{u}_{\mathcal{S},\vec{\mathsf{v}}} \cong \widehat{\operatorname{Gr}}^W_{\bullet} \mathfrak{u}_{\mathcal{S},\vec{\mathsf{v}}} \cong \mathbb{L}(\Lambda^3 H)^{\wedge}/(ext{quad relns})$$

The relations are almost determined by

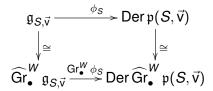
$$\mathbb{L}_{2}(\Lambda^{3}H) = \Lambda^{2}\Lambda^{3}H/(\textit{relns}) \cong \textit{V}_{[2,2]} + \textit{V}_{[1,1]}.$$

Both graded Lie algebras and the map $\operatorname{Gr}^{W}_{\bullet}\mathfrak{u}_{S,\vec{v}} \to \operatorname{Der} \mathbb{L}(H)$ can be described in terms of planar trivalent graphs in the standard way.

For each choice of a complex structure on (S, \vec{v}) , the geometric Johnson homomorphism

$$\phi_{\mathcal{S}}:\mathfrak{g}_{\mathcal{S},\vec{\mathsf{v}}}\to\mathsf{Der}\,\mathfrak{p}(\mathcal{S},\vec{\mathsf{v}})$$

is a morphism of MHS. After choosing a lift $\tilde{\chi}$ of χ , we can replace it by its weight graded:



When n = 0, this recovers the Johnson homomorphism:

where $\overline{\mathfrak{g}}_{S,\vec{v}}$ is the image of ϕ_S .

Arithmetic Johnson homomorphisms

Suppose that (S, \vec{v}) is a surface of type $(g, n + \vec{1})$. As above, $\bar{\mathfrak{g}}_{g,n+\vec{1}} \subset \text{Der } \mathfrak{p}(S, \vec{v})$ is the image of the geometric Johnson homomorphism.

Let \mathfrak{mhs} be the Lie algebra of $\pi_1(MHS)$. Fix a complex structure on (S, \vec{v}) . This acts on $\mathfrak{p}(S, \vec{v})$ and $\mathfrak{g}_{S, \vec{v}}$. Since the geometric Johnson homomorphism is a morphism of MHS, it extends to a homomorphism

$$\mathfrak{mhs} \ltimes \mathfrak{g}_{S, \vec{\mathsf{v}}} \to \mathsf{Der}\,\mathfrak{p}(S, \vec{\mathsf{v}}).$$

Denote its image by

 $\widehat{\mathfrak{g}}_{S,\vec{\mathsf{v}}} \subset \mathsf{Der}\,\mathfrak{p}(S,\vec{\mathsf{v}}).$

This inclusion is the arithmetic Johnson homomorphism.

The category MTM of mixed Tate motives unramified over \mathbb{Z} is tannakian. Its fundamental group is an extension

$$1 \rightarrow \mathcal{K} \rightarrow \pi_1(\mathsf{MTM}) \rightarrow \mathbb{G}_m \rightarrow 1$$

where $\ensuremath{\mathcal{K}}$ is the prounipotent group with Lie algebra

$$\mathfrak{k} = \mathbb{L}(\sigma_3, \sigma_5, \sigma_7, \sigma_9, \dots)^{\wedge}.$$

Let
$$U = \mathbb{P}^1 - \{0, 1, \infty\}$$
 and $\vec{v} = \partial/\partial z \in T_1 \mathbb{P}^1$.

Theorem

- (Deligne–Goncharov) $\mathfrak{p}(U, \vec{v})$ is a pro-object of MTM
- (Brown) the action $\mathfrak{k} \to \operatorname{Der} \mathfrak{p}(U, \vec{v})$ is faithful

The action of factors $\mathfrak{mhs} \longrightarrow \mathfrak{k} \longrightarrow \mathsf{Derp}(U)$

Theorem

If S is a hyperbolic surface of type $(g, n + \vec{1})$, then

- **(1)** $\hat{\mathfrak{g}}_{S}$ does not depend on the complex structure on S
- 2 there is a natural isomorphism $\widehat{\mathfrak{g}}_S / \overline{\mathfrak{g}}_S \cong \mathfrak{k}$

The second part follows the proof of Oda's Conjecture by Takao after previous work by various combinations of Ihara, Matsumoto and Nakamura. It implies that $\hat{\mathfrak{g}}_S/\bar{\mathfrak{g}}_S$ does not depend on g or n. The $(0, 2 + \vec{1})$ case follows from Brown's Theorem.

The Goldman–Turaev Lie bialgebra

This part is mainly based on work Alekseev, Kawazumi, Kuno and Naef (AKKN) and the subset KK.

Suppose that S is a hyperbolic surface. Set

 $\lambda(S) = \{ \text{closed geodesics in } S \} = \text{ conj classes in } \pi_1(S, *).$

For
$$R = \mathbb{Z}, \mathbb{Q}, \dots$$
 , set

 $R\lambda(S) =$ free *R*-module generated by $\lambda(S) = |R\pi_1(S, *)|$

where |A| denotes the cyclic quotient

$$|\mathbf{A}| := \mathbf{A} / \{ \mathbf{u}\mathbf{v} - \mathbf{v}\mathbf{u} : \mathbf{u}, \mathbf{v} \in \mathbf{A} \}$$

of the associative algebra A. The completion of $R\lambda(S)$ is

$$R\lambda(S)^{\wedge} := |R\pi_1(S,*)^{\wedge}| = \varprojlim_n |R\pi_1(S,*)/I^n|.$$

• $\mathbb{Z}\lambda(S)$ has a Lie bracket, the Goldman bracket

 $\{ \ , \ \}: \mathbb{Z}\lambda(\mathcal{S})\otimes\mathbb{Z}\lambda(\mathcal{S})\to\mathbb{Z}\lambda(\mathcal{S})$

and a cobracket: the Turaev cobracket [framing ξ]

$$\delta_{\xi}: \mathbb{Z}\lambda(S) \to \mathbb{Z}\lambda(S) \otimes \mathbb{Z}\lambda(S).$$

• compatibility:

$$\delta_{\xi}\{u,v\} = u \cdot \delta_{\xi}(v) = v \cdot \delta_{\xi}(u)$$

where the dot denotes the natural adjoint action of $\mathbb{Z}\lambda(S)$ on $\mathbb{Z}\lambda(S) \otimes \mathbb{Z}\lambda(S)$. The bracket of two conjugacy classes a and b is

$$\{a, b\} = \sum_{p} \epsilon_{p}(\alpha, \beta) [\alpha \#_{p} \beta]$$

where

- α and β are transversely intersecting immersed circles representing a and b,
- 2 p is a point of intersection of α and β ,
- €_p(α, β) ∈ {±1} is the local intersection number of α and β at p,
- (a) $[\alpha \#_p \beta]$ is the free homotopy class of the loop $\alpha \#_p \beta$ obtained by joining α and β at *p* by a simple surgery.

Turaev cobracket

The cobracket of $a \in \lambda(X)$ is

$$\delta_{\xi}(\boldsymbol{a}) = \sum_{\rho} \epsilon_{\rho} (\boldsymbol{a}_{
ho}^{\prime} \otimes \boldsymbol{a}_{
ho}^{\prime \prime} - \boldsymbol{a}_{
ho}^{\prime \prime} \otimes \boldsymbol{a}_{
ho}^{\prime}),$$

where

- α is an immersed circle representing a with transverse self intersections and trivial winding number with respect to ξ,
- 2 p is a double point of α ,
- α'_p and α''_p are the two loops obtained by doing simple surgery on α at p,
- ϵ_p is the intersection number of the initial arcs of α'_p and α''_p
 at p,
- a'_p is the homotopy class of α'_p and a''_p is the class of α''_p .

Kawazumi and Kuno showed that the Goldman bracket and Turaev cobracket are continuous in the *I*-adic topology and thus induce

$$\{ \hspace{0.1 cm}, \hspace{0.1 cm} \}: \mathbb{Q}\lambda(\boldsymbol{\mathcal{S}})^{\wedge}\otimes \mathbb{Q}\lambda(\boldsymbol{\mathcal{S}})^{\wedge} o \mathbb{Q}\lambda(\boldsymbol{\mathcal{S}})^{\wedge}$$

and

$$\delta_{\xi}: \mathbb{Q}\lambda(\mathcal{S})^{\wedge} o \mathbb{Q}\lambda(\mathcal{S})^{\wedge} \widehat{\otimes} \mathbb{Q}\lambda(\mathcal{S})^{\wedge}$$

So $\mathbb{Q}\lambda(S)^{\wedge}$ is a completed Lie bialgebra.

Theorem

If X is a smooth algebraic curve over \mathbb{C} , then

- **1** $\mathbb{Q}\lambda(X)^{\wedge}$ has a natural (pro) MHS (with negative weights),
- the (completed) Goldman bracket is a morphism of MHS of type (1,1),
- if ξ is a "quasi-algebraic framing" of X, then the completed cobracket δ_ξ is a morphism of MHS of type (1,1).

Except in genus 1, every framed surface (S, ξ) admits a complex structure where ξ is quasi-algebraic. (Kawazumi + H, perhaps well-known?)

Corollary

For every framed surface (S, ξ) that admits a complex structure with ξ quasi-algebraic^a, the completed Goldman–Turaev Lie bialgebra is isomorphic to its associated weight graded Lie bialgebra:

$$\mathbb{Q}\lambda(\mathcal{S})^{\wedge}\cong\prod_{m\leq 0}\operatorname{Gr}_{m}^{W}\mathbb{Q}\lambda(\mathcal{S}).$$

^aSo everything, except in genus 1.

The bracket and cobracket both increase weights (which are negative) by 2.

Kawazumi-Kuno action

Kawazumi and Kuno generalize the Goldman bracket to define an "action"

$$\kappa_{\vec{\mathsf{v}}}:\mathbb{Z}\lambda(S)\to \operatorname{\mathsf{Der}}\mathbb{Z}\pi_1(S,\vec{\mathsf{v}}).$$

It induces a map on completions. The completion is a morphism of MHS.

Theorem (Combination of results of KK and H)

For all surfaces of type $(g, n + \vec{1})$, there is a Lie algebra homomorphism $\widehat{\mathfrak{g}}_{S} \to \mathbb{Q}\lambda(S)^{\wedge}$ such that

commutes. All are morphisms of MHS when (S, \vec{v}) is algebraic.

Results of Kawazumi and Kuno imply that the image of g_S under δ_{ξ} is *H*. More generally, we have:

Theorem (KK + AKKN + H)

The image of $\widehat{\mathfrak{g}}_{\mathcal{S}}$ under

$$\widehat{\mathfrak{g}}_{\mathcal{S}} \longrightarrow \mathbb{Q}\lambda(\mathcal{S})^{\wedge} \xrightarrow{\delta_{\xi}} \mathbb{Q}\lambda(\mathcal{S})^{\wedge} \widehat{\otimes} \mathbb{Q}\lambda(\mathcal{S})^{\wedge}$$

is isomorphic to

$$H_1(S) \oplus H_1(\mathfrak{k}) \cong H \oplus \prod_{n \ge 1} \mathbb{Q}(2n+1).$$

Conjecture: ker $\delta_{\xi} \subseteq \widehat{\mathfrak{g}}$.

Theorem (AKKN)

When $(S, \xi, \vec{v}) = (\mathbb{P}^1 - \{0, 1, \infty\}, \partial/\partial z, (\partial/\partial z)_1)$, there is a canonical Lie algebra homomorphism

 $\operatorname{\mathsf{SDer}}\mathfrak{p}(\operatorname{\mathbb{P}}^1-\{0,1,\infty\})\hookrightarrow \operatorname{\mathbb{Q}}\lambda(\operatorname{\mathbb{P}}^1-\{0,1,\infty\})^\wedge$

whose composition with

$$\kappa_{\vec{v}}:\mathbb{Q}\lambda(\mathbb{P}^1-\{0,1,\infty\})^\wedge\to \mathsf{Der}\,\mathfrak{p}(\mathbb{P}^1-\{0,1,\infty\})$$

is the inclusion, and

$$\begin{split} \ker\{\mathfrak{grt} \to H_1(\mathfrak{k})\} &\subseteq \ker\{\mathfrak{grt} \to H_1(\mathfrak{k})\} \\ &= \ker \delta_{\xi} \cap \operatorname{SDer} \mathfrak{p}(\mathbb{P}^1 - \{0, 1, \infty\}) \end{split}$$

This is conjectured to be an equality.

Graphic: an indexed pair of pants.

- A pants decomposition of a hyperbolic surface S of type (g, n) gives a maximally degenerate stable curve S₀ of type (g, n) by collapsing each circle to a point.
- There is a universal family of smoothings of S_0 indexed by Δ^N , where $N = \dim \mathcal{M}_{g,n} = 3g 3 + n$. Very roughly speaking, the parameters in Δ^N are $q_j = \ell_j e^{i\theta_j}$ where ℓ_j is the length of the *j*th circle and θ_j is the glueing angle (relative to the marking).

Definition

An *indexed pants decomposition*^{*a*} is a pants decomposition where all of the angles are 0 or π . They correspond to the first order smoothings of S_0 given by the tangent vectors

$$ec{\mathbf{w}} = \sum_{j=1}^N \pm \partial/\partial q_j \in \mathcal{T}_{\mathcal{S}_0}\overline{\mathcal{M}}_{g,n}.$$

^aCalled a *pillow decomposition* by Nakamura–Schneps.

You can think of the circles in the pants decompositions as having length 0 and each pair of pants a a "bordification" of the hyperbolic surface $\mathbb{P}^1 - \{0, 1, \infty\}$.

An *lhara curve* $C_{\vec{w}}$ is the first order smoothing of a nodal curve that corresponds to an indexed pants decomposition. (This can be made precise using the generalization of Tate's elliptic curve over $\mathbb{Z}[[q]]$ to higher genus curves by Ihara and Nakamura.)

Theorem

If $(X, \vec{v}, ...)$ is a decorated Ihara curve, then $\overline{\mathfrak{g}}_X, \mathfrak{p}(X, \vec{v}), \mathbb{Q}\lambda(X)^{\wedge}$, Der $\mathfrak{p}(X, \vec{v}), ...$ are all pro-objects of MTM.

This means that the action of $\pi_1(MHS)$ on each factors through the quotient map $\pi_1(MHS) \rightarrow \pi_1(MTM)$.

Objects: The moduli points $\vec{w} \in T\overline{\mathcal{M}}_{g,n+\vec{r}}$ corresponding to decorated lhara curves $C_{\vec{w}}$.

Morphisms: For $\vec{w}, \vec{w}' \in T\overline{\mathcal{M}}_{g,n}$ corresponding to Ihara curves, let

$$\mathsf{Hom}(\vec{\mathsf{w}},\vec{\mathsf{w}}') = \mathcal{G}^{\mathrm{rel}}_{\mathcal{M}_{g,n}}(\vec{\mathsf{w}},\vec{\mathsf{w}}')$$

the relative completion of the torsor of paths in $\mathcal{M}_{g,n}$ from \vec{w} to $\vec{w'}.$

There are other morphisms that correspond, for example, to "the morphism" $\mathcal{M}_{g',n'+\vec{1}} \times \mathcal{M}_{g'',n''+\vec{1}} \to \mathcal{M}_{g'+g'',n'+n''}$.

Functors: to (say) Lie (bi)algebras:

 $ec{\mathsf{w}}\mapsto \mathsf{Der}\,\mathfrak{p}(\mathit{C}_{ec{\mathsf{w}}},ec{\mathsf{v}}), \quad ec{\mathsf{w}}\mapsto \mathbb{Q}\lambda(\mathit{C}_{ec{\mathsf{w}}})^\wedge, \quad ec{\mathsf{w}}\mapsto \overline{\mathfrak{g}}_{\mathit{C}_{ec{\mathsf{w}}}}, \quad ec{\mathsf{w}}\mapsto \widehat{\mathfrak{g}}_{\mathit{C}_{ec{\mathsf{w}}}}.$

Natural transformations

There are many:

$$\mathfrak{g}_{\mathcal{C}_{\vec{\mathsf{w}}}} o \mathbb{Q}\lambda(\mathcal{C}_{\vec{\mathsf{w}}}) o \mathsf{OutDer}\,\mathfrak{p}(\mathcal{C}_{\vec{\mathsf{w}}}).$$

Automorphisms of *all* of these natural transformations:

 $\pi_1(\text{MTM}).$ Drinfeld's GRT is the automorphism group if we restrict to genus 0. Let

 $GRT^{new} =$ Automorphism group all genera

Is GRT^{new} a *proper* subgroup of GRT? Elements of GRT^{new} satisfy at least one essentially new condition:

When *S* is an Ihara curve, it acts on $\overline{\mathfrak{g}}_S$ and the inclusion $\overline{\mathfrak{g}} \hookrightarrow \mathbb{Q}\lambda(S)^{\wedge}$ is GRT^{new}-equivariant.

I do not see why GRT should stabilize the image of $\overline{\mathfrak{g}}_{\mathcal{S}}$ unless one can see that $\mathfrak{k}=\mathfrak{grt}^1.$

Opinion: GRT is very much a genus 0 gadget. I find it hard to imaging how it can see higher genus phenomena like the Johnson homomorphism. Perhaps it does, but I do not see how.

Today I have focused on bounding $\hat{\mathfrak{g}}_{S}$ and the image of the Johnson homomorphism by the kernel of the cobracket. Another (and complementary) approach is to try to prove that the cohomology $H^{\bullet}(\mathfrak{u}_{g,n})$ is stably pure — that is, for each fixed *n*, if $g \gg 0$, then $H^m(\mathfrak{u}_{a,n}) = \operatorname{Gr}_m^W H^m(\mathfrak{u}_{a,n})$. One can then compute the stable values of $\operatorname{Gr}^{W}_{\bullet}\mathfrak{u}_{a,n}$ in the representation ring of Sp.¹ This approach might be used to disprove the injectivity of $\mathfrak{g}_{\mathfrak{a},\vec{1}} \to \mathsf{Der}\,\mathfrak{p}(\mathcal{S},\vec{v})$, if that indeed is the case. So far, there is very little evidence (0 < m < 7), most of it due to Morita. Sakasai and Suzuki.

This is explained in my Johnson homomorphism survey.

¹Garoufalidis–Getzler (with help from Petersen + Randal-Williams) have computed the pure part stably, which is a quadratic algebra.

Footnotes

Interlocutors

- Francis Brown (ongoing, e.g, modular inverter)
- Alekseev, Kawazumi, Kuno, and Naef: lots of help with understanding their work

Survey of Johnson homomorphisms: [arXiv:1909.03914]. It describes the cohomological version of computing the stable value of $\operatorname{Gr}_{-m}^{W}\mathfrak{u}_{g,*}$ in the representation ring of $\operatorname{Sp}_{g}(H)$, where $* \in \{0, 1, \vec{1}\}$. This will give an upper bound on the stable value of $\operatorname{Gr}_{\bullet}^{W} \overline{\mathfrak{g}}_{g,*}$ and is conjecturally equal to it. This will require proving that $H^{\bullet}(\mathfrak{u}_{g})$ is *stably pure*. Equivalently,

$$H^1(\mathfrak{u}_g)^{\otimes m} \to H^m(\mathfrak{u}_g)$$

is surjective when $g \gg 0$.

References

- A. Alekseev, N. Kawazumi, Y. Kuno, F. Naef: The Goldman–Turaev Lie bialgebra in genus zero and the Kashiwara–Vergne problem, Adv. Math. 326 (2018), 1–53.
- A. Alekseev, N. Kawazumi, Y. Kuno, F. Naef: The Goldman–Turaev Lie bialgebra and the Kashiwara–Vergne problem in higher genera, [arXiv:1804.09566]
- R. Hain: Hodge theory of the Goldman bracket, [arXiv:1710.06053]
- R. Hain: Hodge Theory of the Turaev Cobracket and the Kashiwara–Vergne Problem, [arxiv:1807.09209]
- S. Hain: Johnson homomorphisms, [arXiv:1909.03914]

And references therein ...