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A central problem is to determine the image of (geometric)
Johnson homomorphisms.

More generally, and perhaps more naturally, we want to
bound the image arithmetic Johnson homomorphisms.

Over R, this is what is generated by the image of the
geometric Johnson homomorphism and also the image of
the Lie algebra of the real “Mumford—Tate group”.

Goncharov’s Hodge correlators provide a method of
computing the image of the real MT Lie algebra.

The Goldman—Turaev Lie bialgebra plays a central (if
somewhat hidden) role in both stories.

If you do not understand any of this, don’t worry — all will
be explained!



Outline

I: The Goldman-Turaev Lie Bialgebra



Initial setting

> For a topological space X, define A\(X) = [S', X].
» When X is path connected (as it will be from now on)

A(X) = conjugacy classes in (X, x).
» For a commutative ring k (for us Z or a field of char 0) set
kA(X) = free k-module generated by A(X).

» There is an inclusion k — kA(X) that takes 1 to the
boundary of a disk and a projection kA(X) — k that takes
each loop to 1. This gives a natural decomposition

KA(X) = k @ kA(X)



» The cyclic quotient of an associative k-algebra A is
€ (A) = A/span{uv —vu: u,v € A}.

» For example the cyclic quotient of the free associative
algebra k(x : x € Z7) is spanned by the “cyclic words” in
the elements x of the alphabet 2":

X1 Xo ... Xm~ Xo...XmXq.

» We have kA(X) = €' (km1(X, x)).



The Goldman—Turaev Lie bialgebra

The Goldman bracket is a map
{, }:kXX)@kAX) = kA(X)

that makes kA(X) into a Lie algebra. The Turaev cobracket is a
map
¢ - kKA(X) = kA(X) @ kA(X)

that depends on a framing £ (a nowhere vanishing vector field)
on X. Together they form a Lie bialgebra:

defu, vy =u-d¢(v) — v - d¢(u)

where w- (x@y)={w,x} @y +x@{w,y}.



The bracket and cobracket are defined using elementary
surgery: Each element of A(X) can be represented by an
immersed circle with simple normal crossings. (So no triple
points, etc). One can perform surgery at a double point:

surgery
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Goldman bracket

To define the Goldman bracket of «, 8 € A\(X), represent them
by oriented, transversally intersecting, immersed circles. Their
Goldman bracket is

{a,8} =) epa#pp
P

where P ranges over the points where « intersects 3, ep = +1
is the local intersection number at P and a#pg is the loop
obtained by simple surgery at P.



An example

{o, B} = epaitpl +eqai#tall



An example



An example



An example

P
ep =1
(@ ¢g=—1

{a, B} = epa#pl +eqadftaB = a#pl — a#qf

o) - (@9



The Turaev cobracket

For convenience, we denote the element v @ w — w @ v of V®?2
by v A w. Suppose that « is an immersed circle with simple
normal crossings. The first step in defining the cobracket is to
define for each double point P of «

dp(a) = ap A ap

where
o} ap ap

G 5 @@ b e



To define d¢(«) represent a by an immersed loop with simple
normal crossings and trivial winding number with respect to
the framing:
rote oo = 0.
(Add some “backflips” as necessary.) The cobracket is defined
by
Se()= > epdp(a)

double points P

where ep = £1 is the local intersection number of the initial
arcs of o/ and a/p (in that order).



Sample cobracket

To compute the cobracket of

£€=0/0x

rote oo = 1



Sample cobracket

represent it by




Sample cobracket

to see that /. takes @@@ to



Sample cobracket

to see that /. takes @@@ to



Sample cobracket

to see that /. takes @@@ to
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Sample cobracket
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to see that /. takes @@



» The Goldman—Turaev Lie bialgebra is involutive. That is

EA(X) 2 kA(X) © BAX) L kA(X)

is zero.
» The cobracket d; induces a map

5 kAX)/k — (KA(X)/k)®2

It does not depend on the framing &. This is called the
reduced cobracket.



The Kawazumi—Kuno action and Turaev coaction

» Let V be a tangential base point — equivalently, a base
point in the boundary of X.

» Kawazumi and Kuno extended the constructions of
Goldman and Turaev to define an action

kg : KA(X) — Derkmq (X, V).
Turaev defined a coaction

k1 (X; V) = kA(X) @ kmry (X; V).



Special derivations

A derivation D of k1 (X, V) is special if there are
Ui, - - o € kmy (X, V) (resp., its completion) such that
D(~y) =0 and

Here ~; is any path of the form

v
S .
0./\/%

Loops act as special derivations, so

Ky KA(X) — SDerkmq (X, V).



Completions

» From now on, k is a field of characteristic zero.
» Denote the augmentation idea of kr (X, V) by /.
» The /-adic completion of k(X V) is

k?ﬁ(X,V)A = L%nkﬂ1(X,V)//m.

> Give kA(X) the quotient topology via kmq (X, V) — kA(X).
Its /-adic completion is

KA(X)" = € (ki (X, ¥)").



The completed GT Lie bialgebra

» Kawazumi and Kuno showed that the Goldman bracket
and Turaev cobracket are continuous in the /-adic topology
and thus induce maps

{1, 1R @ kAX)" — kA(X)?

and
Je : RAX)" = RA(X) @ kA(X)"

This is the completed GT Lie bialgebra.

» They also showed that their action is continuous, so that
there is a continuous Lie algebra homomorphism

kgt KA(X)" — SDerkmq (X, V)"



Mixed Hodge structures for non-specialists

» Suppose that k is a subfield of R, such as Q. Ak-MHS Ais
a finite dimensional k vector space with additional
structure. Part of that is an increasing weight filtration

0=WyAC - CW,AC W, {AC - C WyA=A.

This is often topologically defined, as it is in our setting.

» The category of k-MHS is tannakian, which means that it is
equivalent to the category of finite dimensional
representations of an affine (aka, proalgebraic) group

Gy = m1(MHS,)

defined over k. So every k-MHS A has an action by Gy and
all morphisms of MHS are Gi-equivariant.



This group has a family of cocharacters x : G, — G. If we fix
one, then every k-MHS decomposes

A:@Am

meZ

where t € Gp(k) = k* acts on Ap, by t™. We have

W,A =P An.

m<r
This implies the exactness of the “weight graded” functor:
A= GV A= WA/W,_;.

This is a fundamental and very useful fact.



Updated setup

> Suppose that X = X — S where X is a compact oriented
surface, S = {sp,...,Sp} withn>0and v € Tg X,V £ 0.

» We have the exact sequence
0 — Ha(X) — Ho(S) — Hy(X) — H{(X) = 0.

Image e; of s; in H(X) is a small positive loop about s;.
We have the relationeg + --- +e, = 0.

Set Ey = span{eq,...,en} C H{(X).

Have the “weight” filtration

vvyyy

0 = W_gH;(X) € W_oH;(X) € W_1H;(X) = Hi(X)

where W,2H1 (X) = Eo.



Hodge theory

» Now suppose that X is a compact Riemann surface.

» There is a canonical MHS on H;(X) with the weight
filtration above:

G Hy(X) = Hi(X), Gr'% Hi(X) = E.

» There is a canonical pro-mixed Hodge structure (MHS) on
Qm(X,V)". It induces a canonical pro-MHS on QA(X)".

» The MHS on Q\(X)” does not depend on V, only on X.
> Set V = Gr" H;(X) = H® Ep, where H = Hy(X).
» There are canonical isomorphisms

Grl Qry(X, V)" = T(V)" and GrlY QA\(X)" = ¢(T(V))".



Theorem (H: G&T 2020, JEMS 2021)

After tensoring QA(X)" with Q(—1), the completed Goldman
bracket
{1, 1RAX)" @ kAX)" = kA(X)",

the completed Turaev cobracket (when & is meromorphic on X
and nowhere vanishing holomorphic on X)

e KAX)" = KA(X) @ kA(X)",
and the Kawazumi—Kuno action
kgt KA(X)" — SDerkmy (X, V)"
are all morphisms of pro-MHS.

The mixed Hodge structure Q(—1) is the one dimensional
Hodge structure of weight +2. Tensoring with it shifts the
weight filtration by 2.



> Fix a symplectic basis p1,...,Pg,d1, . . .,dg of Hi(X).
» Then
T(V)=Q(p1,...,Pg:q1,---,9g,€1,...,€n),

where each p;, q; has weight —1 and each e, weight —2.
» Define eg € T(V) so that

g
Jj=1

» A derivation D of T(V) is special if D(eg) = 0 and there are
ux € T(V) such that D(ex) = [ek, ux] when k = 0.



Splitting the weight filtration

Hodge theory gives natural isomorphisms (so compatible with
the Goldman bracket and «y)

Qm(X,0)" = ] 6r¥ Qmy(X,9)" = T(V)"

m<0

QAX)" = ] Gy QAX)" 2 €(T(V)")

m<0

SDer Q1 (X, V)" = SDer Gr!¥ Qmq (X, V)" = SDer T(V)".

So we need only find formulas for { , } and xy on the
associated weight gradeds.



Formula for the KK-action

When A =k(ay, ..., am), have operators a%j : 6(A) — Aof
degree —1. For example:

— b ¢ — bac+ cab
a
For F € €(T(V)), do(F) € SDer T(V) is defined by

p; = —9F/oa;,
®o(F): 4 qj— OF/op;,
ey — [ek,aF/aek] k 75 0.

Its kernel is spanned by e}’ where j # 0 and m > 0.



Formula for the bracket

For F,Ge €(T(V))

Z[OF aG] +§(8F66_868F>‘
T 6ek’8ek k = 8pj aq,- 8pj aq/'

@
() ()=

Here k #0,u,ve Hand A, B,U,V € T(V

{F,G}o=




The Lie algebra ¢ (L(V))

The Lie algebra ¥ (IL(V)) is defined to be the Lie algebra of
V-decorated trivalent planar graphs modulo the AS-relation

AN
/ /

B A

and the IHX-relation

A B A D A C
C D B C D B



The homomorphism €(L(V)) — €(T(V))

Expanding V-labelled planar trivalent trees defines an injective
Lie algebra homomorphism

C(L(V)) = ¢(T(V))

[c.d]

/

\ = \ — |(ab— ba)(cd — dc)|
. b

/

[a, b]




The PBW Theorem gives a coalgebra isomorphism:

T(V) = UL(V) = P Sym™

m>0

“Cutting” an edge of a decorated tree defines a well-defined
map % (L(V)) — | Sym?L(V)|. It has an obvious inverse, so we
have a Lie algebra isomorphism

E(L(V)) = | Sym* L(V)].

The restriction of € (T(V)) — SDerL(V) to € (L(V)) is
surjective and has kernel

span{e?, ..., e2}.



Lifting €' (L(V)) to QA(X)"

» The set of primitive elements of Qmy (X, V)" is the Lie
algebra p(X, V) of the unipotent (aka, Malcev) completion
of m1(X, V). Its associated weight graded is canonically
isomorphic to L( V).

» The (completed) enveloping algebra of p(X, V) is
Q4 (X) \7)/\

» PBW gives an isomorphism (even in pro-MHSq)

Qmi(X, V)" = ] Sym™ (X, V).

m>0

> The image of Sym? p(X,V) in QA\(X)" is a sub-MHS. lts
associated weight graded is | Sym? (V).



» We have central extensions
0 —— span{ej2 1j#0} —— G(L(V)) — SDerL(V) — 0

! l l

0 — span{el :j#0,m >0} — €(T(V)) — SDer T(V) — 0
» We conclude that there is a central extension
0 — span{(log 0;)2 : j # 0} — | Sym? p(X, V)| — SDerp(X,V) — 0

of pro-MHS, where o is a small loop about s;. It spans a
copy of Q(1).



Outline

[I: Johnson Homomorphisms



Mapping class groups

» Denote the mapping class group of (X; S,V) by Mxy Itisa
mapping class group of type (g, n+ T).

» Assume that X is hyperbolic: 2g —2 +n+1 > 0.

» lts Torelli subgroup Ty ; is the kernel of the homomorphism
Mxs — Sp(Hy), where H = Hy (X k).

» We have the extension

1= Txg— Txy— Sp(Hz) — 1.

and the natural representation 'y ; — Aut 71 (X, V).



Relative completion of mapping class groups

The relative completion of I'y ; consists of an affine (aka
proalgebraic) group Gy ; defined over Q and a homomorphism

p:Txg— Ix3(Q)
This group is an extension
1= Uxg— Gxi— Sp(Hg) — 1
where Uy g is prounipotent. The composite
Mxg — 9x3(Q) — Sp(Hp)

is the canonical homomorphism. Such extensions form a
category. The relative completion is the initial object of this
category.



The Johnson homomorphism

» Since unipotent completion is functorial, the action of I'y ;
on 1(X, V) induces a homomorphism

rX7\7 — Aut p(X, \7)
» The universal mapping property of relative completion

implies that it induces a homomorphism Gy ; — Aut p(X, V)
such that the diagram

TX,V I'XTV Aut 74 (X,\7)

[ [ [

Ux 3(Q) — Gx (Q) —— Autp(X,V)

commutes.



The homomorphism Gy ¢ — Aut p(X, V) induces a Lie
algebra homomorphism

gxy — SDerp(X,V) ()

This is (for me) the (geometric) Johnson homomorphism.

For each complex structure on (X, S, V), there is a
canonical MHS on gy y and (x) is a morphism of MHS.

So () determines (and is determined by) the
homomorphism of associated weight graded Lie algebras

Gl gx g — SDer Grl¥ p(X,V) = SDer (V).



Known results

Forall g > 0, gy 7 has weights < 0 and Gr§’ gy ; = sp(H).
The homomorphism Ty ; — Uy Q) induces T} — Uy .
This induces a homomorphism ty i — uy .

It is surjective when g > 2. When g > 3ithas a
1-dimensional kernel (in weight —2).

vvvyYyy

> When g > 3, uy ; (and therefore the image of the Johnson
homomorphism) is generated by

Gri¥uy g = Hi(Tyg) = NH @ H®"



Generators of the Johnson image

Denote the images of the geometric Johnson homomorphism
by gx ¢- When g > 3, gy y is generated in weight —1 by

S

Here a,b,c € Hand j > 1. The first kind arise from bounding
pair maps; the second kind from “point pushing”.

€



Injectivity and surjectivity
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It is not know whether gy ; — SDer p(X, V) is injective when
g > 0.

When n =0 and g > 3, results of Morita—Sakasai—Suzuki
imply that it is injective in weights > —6 .
Kupers—Randal-Williams show that, stably, the kernel is
central, thus contained in the Sp(H) trivial part of Gr/¥ Uy -

It is known (Morita, Enomoto—Satoh, Conant) that the
image of

Gr¥ uy g — SDer Grl¥ p(X, V) = SDerL(V)

is “small”. (ie, have a “large Johnson cokernel”)



The arithmetic Johnson homomorphism

» There is also a homomorphism (for k = Q, R).
mbs, — Derp(X, V)

where mbs, is the Lie algebra of Gy = m1(MHSy).
> Since mbs acts on gy g, we have

mbsy X Ix v

» Since mhs, acts on p(X, V), the Johnson homomorphism
extends to

mbs, x g7~ Derp(X, V)

» This is the arithmetic Johnson homomorphism



Arithmetic versus geometric Johnson image

» Denote the image of the arithmetic Johnson
homomorphism by gy ;.

» Denote their pronilpotent radicals of gy y and gx g by iy ¢
and 1y g, respectively.

» The proof of Oda’s Conjecture by Takao (+ lhara,
Matsumoto, Nakamura, ...), Hodge theory and Brown’s
fundamental theorem (on mixed Tate motives) give:

Theorem

The Lie algebras gx ; and gy y have natural MHS and the
inclusion is a morphism. Fork = Q,R, and all g,n > 0 there is
a SES

0— Grl/vﬁx’v — Gl’l/vﬁx’v — L(03,05,07,...) = 0



Constraining the Johnson image

It may be more natural to find constraints on the arithmetic
Johnson image gy y — equivalently, on Gr// uy g Consider the
diagram

S Ux i

|

X
0 — span{e? : j # 0} — |Sym?p(X,V)| — SDerp(X,V) — 0

[ | [

0 — span{1,ej’-" (j#£ 0} —— QA(X)N —— SDerQmy(X,V) — 0

with exact rows. The generalized Picard—Lefschetz formula of
Kawazumi—Kuno gives a lift on gy ;. It extends to iy ; as the
kernel has weight —2 and the new generators o, 1 all have
weights < —6



Constraints, ctd

Kawazumi and Kuno observed that the Turaev cobracket
constrains the geometric Johnson image. It also constrains the
arithmetic Johnson image. Suppose that ¢ is an algebraic
framing. Since the kernel of

| Sym? p(X,V)|(—1) — SDer p(X, V)

has weight —2, the cobracket induces

D¢ : W_3 SDer Qmy (X, V)" — (SDer Qmy(X, \7)A)®2

Theorem (special case)
Ifg>3andm> 3, then W_p, [y g, tix g] C ker Ds.



Morita’s proposal

Here we suppose that X is a surface of type (g, 1) with g > 3.
Morita has defined derivations ipm. 1 € Gr'Y,. , SDerp(X, V)
that he conjectures equal (up to a non-zero multiple) the
images of the o2, 1 mod the geometric derivations gy y-

Proposition (Morita)

For each m > 0 there is a unique copy of Sym®>™*' H in
G, 1 SDerp(X,V). When m > 0, is not in the Johnson
image.

There is a unique copy of the trivial representation in

A2 Sym2™1 H. The derivation 15, 1 is the image of a
generator of this trivial representation under the bracket map:

K piome1 = [A2 Sym2™ 1 HISPH) W, - SDerIL(H).

How might one approach proving this?



Outline

[ll: Goncharov’s Hodge Correlators



Oda’s conjecture (a theorem) is true for both k = Q and
k = R.
This implies that one can define gy  using either.

The group Gk := m1(MHSk) can be computed when k = R
but appears intractable when k = Q.

Goncharov’s Hodge correlators give a method for
computing mbhsg — SDer p(X, V).

I'll give a very brief introduction to Hodge correlators.



Real MHS

» Deligne showed that 71 (MHSR) is an extension
0 = N — m(MHSR) — Rc/rGm — 1

where
> Rc,r is Weil restriction:

R@/R(R) =C* and Rc/]R(C) =C* x (CX,

» n®C=1L(z"9:p,qg<0)"and w € C* = Rg/r(R) acts on
it via
w: 2P s wPwizP A,
> It was later observed (by Goncharov) that there is a
canonical (or at least very natural) choice of the zP9 that
also satisfy zP.9 = —z%P. (zP9 + z9P is purely imaginary.)
» The image of z~2"~1.=2"=1 ynder n — SDer p(X, V) is
congruent to o251 mod geometric derivations gy y-



» For every (framed) real MHS V, there is a unique, purely
imaginary derivation

Dy ciW_oEndGr" Vi

with D9 = 0 unless both p, g < 0 such that V is
isomorphic to the MHS

exp Dy : Grl/v Vg — Gr.W Ve.

Here the isomorphism of V with this MHS is required to be
the identity on GrV.

> The action n — End V¢ takes zP9 to D}9.
» This is “easy” to prove, once one knows the statement.



Hodge correlators

When V = p(X,V), the derivation D = D, x 3 and its (p, q)

components can be computed using Hodge correlators. The
setup:

» ¢ (T(H;(X)))V consists of all cyclic words in elements of
Q'(X) @ Q1(X), the complex harmonic 1-forms.

» Observe: the external vertices of a trivalent, planar tree T
are cyclically ordered.

» Begin by decorating the leaves of planar trivalent graphs
with elements of (T (H;(X)))V.




Decorated planar trivalent trees

A trivalent planar tree T with m internal vertices can be labelled
by a cyclic word w of length ¢/(w) = m + 2. Example, m = 3:

W = |Wiwow3awaws|



Decorated planar trivalent trees

A trivalent planar tree T with m internal vertices can be labelled
by a cyclic word w of length ¢/(w) = m + 2. Example, m = 3:

W = |wqwowzwaws|



Sketch of construction

» Suppose that w is a cyclic word in (T (H;(X)))" of length
/(w)=m+2.

» For each w-decorated (planar trivalent) graph T, one
constructs a 2m-current Q7 (w) on X from the 1-forms
that occur in w and derivatives of a Green’s operator
associated to each interior edge of T.

» The correlator associated to w is defined to be

Cor(w Z

THw

where the sum ranges over all trivalent planar trees T
decorated by w.



The Hodge correlator Cory g of (X, V) is:
Z Cor(w) € Homc(€(T(H1(X)))Y,C) =2 €(T(H;(X))).

Cory y determines a derivation D € SDer T(H; (X)), which,
one can show, lies in SDer L(H; (X)), is pure imaginary and
has no components of type (p, q) where p or g is > 0.
This is the derivation D,y i that determines the real MHS
on p(X, V). (I have not yet checked this.)

Hope is that one can show that D—2m-1.—2m-1 s g multiple
of Morita’s class pom1 mod g, for one curve (X, V). (That
will suffice.)
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