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Overview

▶ A central problem is to determine the image of (geometric)
Johnson homomorphisms.

▶ More generally, and perhaps more naturally, we want to
bound the image arithmetic Johnson homomorphisms.

▶ Over R, this is what is generated by the image of the
geometric Johnson homomorphism and also the image of
the Lie algebra of the real “Mumford–Tate group”.

▶ Goncharov’s Hodge correlators provide a method of
computing the image of the real MT Lie algebra.

▶ The Goldman–Turaev Lie bialgebra plays a central (if
somewhat hidden) role in both stories.

▶ If you do not understand any of this, don’t worry — all will
be explained!
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Initial setting

▶ For a topological space X , define λ(X ) = [S1,X ].
▶ When X is path connected (as it will be from now on)

λ(X ) = conjugacy classes in π1(X , x).

▶ For a commutative ring k (for us Z or a field of char 0) set

kλ(X ) = free k-module generated by λ(X ).

▶ There is an inclusion k→ kλ(X ) that takes 1 to the
boundary of a disk and a projection kλ(X )→ k that takes
each loop to 1. This gives a natural decomposition

kλ(X ) = k⊕ Ikλ(X )



▶ The cyclic quotient of an associative k-algebra A is

C (A) = A/ span{uv − vu : u, v ∈ A}.

▶ For example the cyclic quotient of the free associative
algebra k⟨x : x ∈X ⟩ is spanned by the “cyclic words” in
the elements x of the alphabet X :

x1x2 . . . xm ∼ x2 . . . xmx1.

▶ We have kλ(X ) = C (kπ1(X , x)).



The Goldman–Turaev Lie bialgebra

The Goldman bracket is a map

{ , } : kλ(X )⊗ kλ(X )→ kλ(X )

that makes kλ(X ) into a Lie algebra. The Turaev cobracket is a
map

δξ : kλ(X )→ kλ(X )⊗ kλ(X )

that depends on a framing ξ (a nowhere vanishing vector field)
on X . Together they form a Lie bialgebra:

δξ{u, v} = u · δξ(v)− v · δξ(u)

where w · (x ⊗ y) = {w , x} ⊗ y + x ⊗ {w , y}.



The bracket and cobracket are defined using elementary
surgery: Each element of λ(X ) can be represented by an
immersed circle with simple normal crossings. (So no triple
points, etc). One can perform surgery at a double point:

surgery



Goldman bracket

To define the Goldman bracket of α, β ∈ λ(X ), represent them
by oriented, transversally intersecting, immersed circles. Their
Goldman bracket is

{α, β} =
∑

P

ϵP α#Pβ

where P ranges over the points where α intersects β, ϵP = ±1
is the local intersection number at P and α#Pβ is the loop
obtained by simple surgery at P.



An example

P

Q

ϵP = 1

ϵQ = −1

{α, β} = ϵP α#Pβ + ϵQ α#Qβ



An example

P

Q

ϵP = 1

ϵQ = −1

α#Pβ



An example

P

Q

ϵP = 1

ϵQ = −1

α#Qβ



An example

P

Q

ϵP = 1

ϵQ = −1

{α, β} = ϵP α#Pβ + ϵQ α#Qβ = α#Pβ − α#Qβ



The Turaev cobracket

For convenience, we denote the element v ⊗ w − w ⊗ v of V⊗2

by v ∧ w . Suppose that α is an immersed circle with simple
normal crossings. The first step in defining the cobracket is to
define for each double point P of α

δP(α) = α′
P ∧ α′′

P

where

P
A B

α

∧A B

α′
P α′′

P



To define δξ(α) represent α by an immersed loop with simple
normal crossings and trivial winding number with respect to
the framing:

rotξ α = 0.

(Add some “backflips” as necessary.) The cobracket is defined
by

δξ(α) =
∑

double points P

ϵP δP(α)

where ϵP = ±1 is the local intersection number of the initial
arcs of α′

P and α′′
P (in that order).



Sample cobracket

To compute the cobracket of

ξ = ∂/∂x

rotξ α = 1
P Q



Sample cobracket

represent it by

ξ = ∂/∂x

rotξ α = 0
P Q R



Sample cobracket

to see that δξ takes to

− ∧

+ ∧ − ∧1



Sample cobracket

to see that δξ takes to

− ∧

+ ∧ − ∧1



Sample cobracket

to see that δξ takes to

− ∧

+ ∧

− ∧1



Sample cobracket

to see that δξ takes to

− ∧

+ ∧ − ∧1



▶ The Goldman–Turaev Lie bialgebra is involutive. That is

kλ(X )
δξ // kλ(X )⊗ kλ(X )

{ , } // kλ(X )

is zero.
▶ The cobracket δξ induces a map

δ : kλ(X )/k→ (kλ(X )/k)⊗2

It does not depend on the framing ξ. This is called the
reduced cobracket.



The Kawazumi–Kuno action and Turaev coaction

▶ Let v⃗ be a tangential base point — equivalently, a base
point in the boundary of X .

▶ Kawazumi and Kuno extended the constructions of
Goldman and Turaev to define an action

κv⃗ : kλ(X )→ Der kπ1(X , v⃗).

Turaev defined a coaction

kπ1(X ; v⃗)→ kλ(X )⊗ kπ1(X ; v⃗).



Special derivations

A derivation D of kπ1(X , v⃗) is special if there are
µ1, . . . , µn ∈ kπ1(X , v⃗) (resp., its completion) such that
D(γ0) = 0 and

D(γj) = [γj , µj ] := γjµj − µjγj when j > 0.

Here γj is any path of the form

v⃗

s0 sj

Loops act as special derivations, so

κv⃗ : kλ(X )→ SDer kπ1(X , v⃗).



Completions

▶ From now on, k is a field of characteristic zero.
▶ Denote the augmentation idea of kπ1(X , v⃗) by I.
▶ The I-adic completion of kπ1(X , v⃗) is

kπ1(X , v⃗)∧ := lim←−
m

kπ1(X , v⃗)/Im.

▶ Give kλ(X ) the quotient topology via kπ1(X , v⃗)→ kλ(X ).
Its I-adic completion is

kλ(X )∧ = C (kπ1(X , v⃗)∧).



The completed GT Lie bialgebra

▶ Kawazumi and Kuno showed that the Goldman bracket
and Turaev cobracket are continuous in the I-adic topology
and thus induce maps

{ , } : kλ(X )∧ ⊗ kλ(X )∧ → kλ(X )∧

and
δξ : kλ(X )∧ → kλ(X )∧⊗̂kλ(X )∧

This is the completed GT Lie bialgebra.
▶ They also showed that their action is continuous, so that

there is a continuous Lie algebra homomorphism

κv⃗ : kλ(X )∧ → SDer kπ1(X , v⃗)∧



Mixed Hodge structures for non-specialists

▶ Suppose that k is a subfield of R, such as Q. A k-MHS A is
a finite dimensional k vector space with additional
structure. Part of that is an increasing weight filtration

0 = WMA ⊆ · · · ⊆Wr A ⊆Wr+1A ⊆ · · · ⊆WNA = A.

This is often topologically defined, as it is in our setting.
▶ The category of k-MHS is tannakian, which means that it is

equivalent to the category of finite dimensional
representations of an affine (aka, proalgebraic) group

Gk = π1(MHSk)

defined over k. So every k-MHS A has an action by Gk and
all morphisms of MHS are Gk-equivariant.



This group has a family of cocharacters χ : Gm → G. If we fix
one, then every k-MHS decomposes

A =
⊕
m∈Z

Am

where t ∈ Gm(k) = k× acts on Am by tm. We have

Wr A =
⊕
m≤r

Am.

This implies the exactness of the “weight graded” functor:

A→ GrWr A := Wr A/Wr−1.

This is a fundamental and very useful fact.



Updated setup

▶ Suppose that X = X − S where X is a compact oriented
surface, S = {s0, . . . , sn} with n ≥ 0 and v⃗ ∈ Ts0X , v⃗ ̸= 0.

▶ We have the exact sequence

0→ H2(X )→ H0(S)→ H1(X )→ H1(X )→ 0.

▶ Image ej of sj in H1(X ) is a small positive loop about sj .
▶ We have the relation e0 + · · ·+ en = 0.
▶ Set E0 = span{e1, . . . ,en} ⊆ H1(X ).
▶ Have the “weight” filtration

0 = W−3H1(X ) ⊆W−2H1(X ) ⊆W−1H1(X ) = H1(X )

where W−2H1(X ) = E0.



Hodge theory

▶ Now suppose that X is a compact Riemann surface.
▶ There is a canonical MHS on H1(X ) with the weight

filtration above:

GrW−1 H1(X ) = H1(X ), GrW−2 H1(X ) = E0.

▶ There is a canonical pro-mixed Hodge structure (MHS) on
Qπ1(X , v⃗)∧. It induces a canonical pro-MHS on Qλ(X )∧.

▶ The MHS on Qλ(X )∧ does not depend on v⃗, only on X .
▶ Set V = GrW• H1(X ) = H ⊕ E0, where H = H1(X ).
▶ There are canonical isomorphisms

GrW• Qπ1(X , v⃗)∧ ∼= T (V )∧ and GrW• Qλ(X )∧ ∼= C (T (V ))∧.



Theorem (H: G&T 2020, JEMS 2021)
After tensoring Qλ(X )∧ with Q(−1), the completed Goldman
bracket

{ , } : kλ(X )∧ ⊗ kλ(X )∧ → kλ(X )∧,

the completed Turaev cobracket (when ξ is meromorphic on X
and nowhere vanishing holomorphic on X)

δξ : kλ(X )∧ → kλ(X )∧⊗̂kλ(X )∧,

and the Kawazumi–Kuno action

κv⃗ : kλ(X )∧ → SDer kπ1(X , v⃗)∧

are all morphisms of pro-MHS.

The mixed Hodge structure Q(−1) is the one dimensional
Hodge structure of weight +2. Tensoring with it shifts the
weight filtration by 2.



▶ Fix a symplectic basis p1, . . . ,pg ,q1, . . . ,qg of H1(X ).
▶ Then

T (V ) = Q⟨p1, . . . ,pg ,q1, . . . ,qg ,e1, . . . ,en⟩,

where each pj ,qj has weight −1 and each ek weight −2.
▶ Define e0 ∈ T (V ) so that

e0 + e1 + · · ·+ en +

g∑
j=1

[pj ,qj ] = 0.

▶ A derivation D of T (V ) is special if D(e0) = 0 and there are
uk ∈ T (V ) such that D(ek ) = [ek ,uk ] when k ̸= 0.



Splitting the weight filtration

Hodge theory gives natural isomorphisms (so compatible with
the Goldman bracket and κv⃗)

Qπ1(X , v⃗)∧ ∼=
∏
m≤0

GrWm Qπ1(X , v⃗)∧ ∼= T (V )∧

Qλ(X )∧ ∼=
∏
m≤0

GrWm Qλ(X )∧ ∼= C (T (V )∧)

SDerQπ1(X , v⃗)∧ ∼= SDer GrW• Qπ1(X , v⃗)∧ ∼= SDerT (V )∧.

So we need only find formulas for { , } and κv⃗ on the
associated weight gradeds.



Formula for the KK-action

When A = k⟨a1, . . . ,am⟩, have operators ∂
∂aj

: C (A)→ A of
degree −1. For example:

a

b

a

c∂

∂a
: 7→ bac + cab

For F ∈ C (T (V )), Φ0(F ) ∈ SDerT (V ) is defined by

Φ0(F ) :


pj 7→ −∂F/∂qj ,

qj 7→ ∂F/∂pj ,

ek 7→ [ek , ∂F/∂ek ] k ̸= 0.

Its kernel is spanned by em
k where j ̸= 0 and m ≥ 0.



Formula for the bracket

For F ,G ∈ C (T (V ))

{F ,G}0 =

∣∣∣∣∑
k ̸=0

[
∂F
∂ek

,
∂G
∂ek

]
ek +

g∑
j=1

(
∂F
∂pj

∂G
∂qj
− ∂G

∂pj

∂F
∂qj

)∣∣∣∣

A

ek

⊗

ek

B A

B

ek −

A

B

ek

U

u

⊗

v

V

⟨u, v⟩

U

V

Here k ̸= 0, u, v ∈ H and A,B,U,V ∈ T (V ).



The Lie algebra C (L(V ))

The Lie algebra C (L(V )) is defined to be the Lie algebra of
V -decorated trivalent planar graphs modulo the AS-relation

•

B

C

A

+ •

A

C

B

= 0

and the IHX-relation

C D

BA

+

B C

DA

+

D B

CA

= 0



The homomorphism C (L(V ))→ C (T (V ))

Expanding V -labelled planar trivalent trees defines an injective
Lie algebra homomorphism

C (L(V ))→ C (T (V ))

•

a

b

•

c

d
=

[a,b]

[c,d ]

7→
∣∣(ab − ba)(cd − dc)

∣∣



The PBW Theorem gives a coalgebra isomorphism:

T (V ) = UL(V ) =
⊕
m≥0

Symm L(V ).

“Cutting” an edge of a decorated tree defines a well-defined
map C (L(V ))→ |Sym2 L(V )|. It has an obvious inverse, so we
have a Lie algebra isomorphism

C (L(V )) ∼= | Sym2 L(V )|.

The restriction of C (T (V ))→ SDerL(V ) to C (L(V )) is
surjective and has kernel

span{e2
1, . . . ,e

2
n}.



Lifting C (L(V )) to Qλ(X )∧

▶ The set of primitive elements of Qπ1(X , v⃗)∧ is the Lie
algebra p(X , v⃗) of the unipotent (aka, Malcev) completion
of π1(X , v⃗). Its associated weight graded is canonically
isomorphic to L(V ).

▶ The (completed) enveloping algebra of p(X , v⃗) is
Qπ1(X , v⃗)∧.

▶ PBW gives an isomorphism (even in pro-MHSQ)

Qπ1(X , v⃗)∧ ∼=
∏
m≥0

Symm p(X , v⃗).

▶ The image of Sym2 p(X , v⃗) in Qλ(X )∧ is a sub-MHS. Its
associated weight graded is | Sym2 L(V )|.



▶ We have central extensions
0 span{e2

j : j ̸= 0} C (L(V )) SDerL(V ) 0

0 span{em
j : j ̸= 0,m ≥ 0} C (T (V )) SDer T (V ) 0

▶ We conclude that there is a central extension

0 → span{(log σj )
2 : j ̸= 0} → | Sym2 p(X , v⃗)| → SDer p(X , v⃗) → 0

of pro-MHS, where σj is a small loop about sj . It spans a
copy of Q(1).
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Mapping class groups

▶ Denote the mapping class group of (X ;S, v⃗) by ΓX ,⃗v. It is a
mapping class group of type (g,n + 1⃗).

▶ Assume that X is hyperbolic: 2g − 2 + n + 1 > 0.
▶ Its Torelli subgroup TX ,⃗v is the kernel of the homomorphism

ΓX ,⃗v → Sp(Hk), where H = H1(X ;k).
▶ We have the extension

1→ TX ,⃗v → ΓX ,⃗v → Sp(HZ)→ 1.

and the natural representation ΓX ,⃗v → Autπ1(X , v⃗).



Relative completion of mapping class groups

The relative completion of ΓX ,⃗v consists of an affine (aka
proalgebraic) group GX ,⃗v defined over Q and a homomorphism

ρ : ΓX ,⃗v → GX ,⃗v(Q).

This group is an extension

1→ UX ,⃗v → GX ,⃗v → Sp(HQ)→ 1

where UX ,⃗v is prounipotent. The composite

ΓX ,⃗v → GX ,⃗v(Q)→ Sp(HQ)

is the canonical homomorphism. Such extensions form a
category. The relative completion is the initial object of this
category.



The Johnson homomorphism

▶ Since unipotent completion is functorial, the action of ΓX ,⃗v
on π1(X , v⃗) induces a homomorphism

ΓX ,⃗v → Aut p(X , v⃗)

▶ The universal mapping property of relative completion
implies that it induces a homomorphism GX ,⃗v → Aut p(X , v⃗)
such that the diagram

TX ,⃗v ΓX ,⃗v Autπ1(X , v⃗)

UX ,⃗v(Q) GX ,⃗v(Q) Aut p(X , v⃗)

commutes.



▶ The homomorphism GX ,⃗v → Aut p(X , v⃗) induces a Lie
algebra homomorphism

gX ,⃗v → SDer p(X , v⃗) (∗)

▶ This is (for me) the (geometric) Johnson homomorphism.
▶ For each complex structure on (X ,S, v⃗), there is a

canonical MHS on gX ,⃗v and (∗) is a morphism of MHS.
▶ So (∗) determines (and is determined by) the

homomorphism of associated weight graded Lie algebras

GrW• gX ,⃗v → SDer GrW• p(X , v⃗) ∼= SDerL(V ).



Known results

▶ For all g ≥ 0, gX ,⃗v has weights ≤ 0 and GrW0 gX ,⃗v = sp(H).
▶ The homomorphism TX ,⃗v → UX ,⃗v(Q) induces T un

X ,⃗v → UX ,⃗v.
▶ This induces a homomorphism tX ,⃗v → uX ,⃗v.
▶ It is surjective when g ≥ 2. When g ≥ 3 it has a

1-dimensional kernel (in weight −2).
▶ When g ≥ 3, uX ,⃗v (and therefore the image of the Johnson

homomorphism) is generated by

GrW−1 uX ,⃗v
∼= H1(TX ,⃗v)

∼= Λ3H ⊕ H⊕n



Generators of the Johnson image

Denote the images of the geometric Johnson homomorphism
by gX ,⃗v. When g ≥ 3, gX ,⃗v is generated in weight −1 by

•

a

b

c

ej

a

Here a,b, c ∈ H and j ≥ 1. The first kind arise from bounding
pair maps; the second kind from “point pushing”.



Injectivity and surjectivity

▶ It is not know whether gX ,⃗v → SDer p(X , v⃗) is injective when
g > 0.

▶ When n = 0 and g ≫ 3, results of Morita–Sakasai–Suzuki
imply that it is injective in weights ≥ −6 .

▶ Kupers–Randal-Williams show that, stably, the kernel is
central, thus contained in the Sp(H) trivial part of GrW• uX ,⃗v.

▶ It is known (Morita, Enomoto–Satoh, Conant) that the
image of

GrW• uX ,⃗v → SDer GrW• p(X , v⃗) ∼= SDerL(V )

is “small”. (ie, have a “large Johnson cokernel”)



The arithmetic Johnson homomorphism

▶ There is also a homomorphism (for k = Q,R).

mhsk → Der p(X , v⃗)

where mhsk is the Lie algebra of Gk = π1(MHSk).
▶ Since mhsk acts on gX ,⃗v, we have

mhsk ⋉ gX ,⃗v

▶ Since mhsk acts on p(X , v⃗), the Johnson homomorphism
extends to

mhsk ⋉ gX ,⃗v → Der p(X , v⃗)

▶ This is the arithmetic Johnson homomorphism



Arithmetic versus geometric Johnson image

▶ Denote the image of the arithmetic Johnson
homomorphism by ĝX ,⃗v.

▶ Denote their pronilpotent radicals of gX ,⃗v and ĝX ,⃗v by uX ,⃗v
and ûX ,⃗v, respectively.

▶ The proof of Oda’s Conjecture by Takao (+ Ihara,
Matsumoto, Nakamura, . . . ), Hodge theory and Brown’s
fundamental theorem (on mixed Tate motives) give:

Theorem
The Lie algebras gX ,⃗v and ĝX ,⃗v have natural MHS and the
inclusion is a morphism. For k = Q,R, and all g,n ≥ 0 there is
a SES

0→ GrW• uX ,⃗v → GrW• ûX ,⃗v → L(σ3, σ5, σ7, . . . )→ 0



Constraining the Johnson image

It may be more natural to find constraints on the arithmetic
Johnson image ĝX ,⃗v — equivalently, on GrW• ûX ,⃗v. Consider the
diagram

ûX ,⃗v

0 span{e2
j : j ̸= 0} | Sym2 p(X , v⃗)| SDer p(X , v⃗) 0

0 span{1, em
j : j ̸= 0} Qλ(X)∧ SDerQπ1(X , v⃗)∧ 0

with exact rows. The generalized Picard–Lefschetz formula of
Kawazumi–Kuno gives a lift on gX ,⃗v. It extends to ûX ,⃗v as the
kernel has weight −2 and the new generators σ2m+1 all have
weights ≤ −6



Constraints, ctd

Kawazumi and Kuno observed that the Turaev cobracket
constrains the geometric Johnson image. It also constrains the
arithmetic Johnson image. Suppose that ξ is an algebraic
framing. Since the kernel of

| Sym2 p(X , v⃗)|(−1)→ SDer p(X , v⃗)

has weight −2, the cobracket induces

Dξ : W−3 SDerQπ1(X , v⃗)∧ →
(
SDerQπ1(X , v⃗)∧

)⊗2

Theorem (special case)
If g ≥ 3 and m ≥ 3, then W−m [ûX ,⃗v, ûX ,⃗v] ⊆ kerDξ.



Morita’s proposal

Here we suppose that X is a surface of type (g, 1⃗) with g ≥ 3.
Morita has defined derivations µ2m+1 ∈ GrW−4m−2 SDer p(X , v⃗)
that he conjectures equal (up to a non-zero multiple) the
images of the σ2n+1 mod the geometric derivations gX ,⃗v.

Proposition (Morita)
For each m ≥ 0 there is a unique copy of Sym2m+1 H in
GrW−2m−1 SDer p(X , v⃗). When m > 0, is not in the Johnson
image.
There is a unique copy of the trivial representation in
Λ2 Sym2m+1 H. The derivation µ2m+1 is the image of a
generator of this trivial representation under the bracket map:

kµ2m+1 = [Λ2 Sym2m+1 H]Sp(H) −→ GrW−4m−2 SDerL(H).

How might one approach proving this?
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▶ Oda’s conjecture (a theorem) is true for both k = Q and
k = R.

▶ This implies that one can define ĝX ,⃗v using either.
▶ The group Gk := π1(MHSk) can be computed when k = R

but appears intractable when k = Q.
▶ Goncharov’s Hodge correlators give a method for

computing mhsR → SDer p(X , v⃗).
▶ I’ll give a very brief introduction to Hodge correlators.



Real MHS
▶ Deligne showed that π1(MHSR) is an extension

0→ N → π1(MHSR)→ RC/RGm → 1

where
▶ RC/R is Weil restriction:

RC/R(R) = C× and RC/R(C) = C× × C×,

▶ n⊗ C ∼= L(zp,q : p,q < 0)∧ and w ∈ C× = RC/R(R) acts on
it via

w : zp,q 7→ wpwqzp,q .

▶ It was later observed (by Goncharov) that there is a
canonical (or at least very natural) choice of the zp,q that
also satisfy zp,q = −zq,p. (zp,q + zq,p is purely imaginary.)

▶ The image of z−2n−1,−2n−1 under n→ SDer p(X , v⃗) is
congruent to σ2n+1 mod geometric derivations gX ,⃗v.



▶ For every (framed) real MHS V , there is a unique, purely
imaginary derivation

DV ∈ i W−2 EndGr
W
• VR

with Dp,q
V = 0 unless both p,q < 0 such that V is

isomorphic to the MHS

expDV : GrW• VR → GrW• VC.

Here the isomorphism of V with this MHS is required to be
the identity on GrW• .

▶ The action n→ EndVC takes zp,q to Dp,q
V .

▶ This is “easy” to prove, once one knows the statement.



Hodge correlators

When V = p(X , v⃗), the derivation D = Dp(X .⃗v) and its (p,q)
components can be computed using Hodge correlators. The
setup:

▶ C (T (H1(X )))∨ consists of all cyclic words in elements of
Ω1(X )⊕ Ω1(X ), the complex harmonic 1-forms.

▶ Observe: the external vertices of a trivalent, planar tree T
are cyclically ordered.

▶ Begin by decorating the leaves of planar trivalent graphs
with elements of C (T (H1(X )))∨.



Decorated planar trivalent trees

A trivalent planar tree T with m internal vertices can be labelled
by a cyclic word w of length ℓ(w) = m + 2. Example, m = 3:

•

◦

•

◦

◦•

◦

◦

w = |ω1ω2ω3ω4ω5|



Decorated planar trivalent trees

A trivalent planar tree T with m internal vertices can be labelled
by a cyclic word w of length ℓ(w) = m + 2. Example, m = 3:

•

ω3

•

ω4

ω5•

ω1

ω2

w = |ω1ω2ω3ω4ω5|



Sketch of construction

▶ Suppose that w is a cyclic word in C (T (H1(X )))∨ of length
ℓ(w) = m + 2.

▶ For each w-decorated (planar trivalent) graph T , one
constructs a 2m-current ΩT (w) on X m from the 1-forms
that occur in w and derivatives of a Green’s operator
associated to each interior edge of T .

▶ The correlator associated to w is defined to be

Cor(w) :=
∑
T⊢w

∫
X m

ΩT (w) ∈ C

where the sum ranges over all trivalent planar trees T
decorated by w.



▶ The Hodge correlator CorX ,⃗v of (X , v⃗) is:∑
w

Cor(w) ∈ HomC(C (T (H1(X )))∨,C) ∼= C (T (H1(X ))).

▶ CorX ,⃗v determines a derivation D ∈ SDerT (H1(X )), which,
one can show, lies in SDerL(H1(X )), is pure imaginary and
has no components of type (p,q) where p or q is ≥ 0.

▶ This is the derivation Dp(X ,⃗v) that determines the real MHS
on p(X , v⃗). (I have not yet checked this.)

▶ Hope is that one can show that D−2m−1,−2m−1 is a multiple
of Morita’s class µ2m+1 mod g• for one curve (X , v⃗). (That
will suffice.)
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