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Mapping class group of a manifold

The mapping class group Iy, of a closed orientable manifold M
is the group of isotopy classes of orientation preserving
diffeomorphisms of M:

[y = 7o Difft M.

The Torelli group Ty, of M is the subgroup consisting of the
mapping classes that act trivially on the homology of M:

Ty = ker{l'yy — Aut H,(M; Z)}.

Denote the image of I'yy — Aut H,(M; Z) by Sys. The mapping
class group 'y is an extension

1—>TM—>FM—>SM—>1.



Examples
If Nis a subset of M (e.g., OM or a point), one can define

[ == mo(DiffT (M, N)).

» When M = S' x S' = R?/72, the evident homomorphism
SLQ(Z) — FM70

is an isomorphism. The Torelli group Ty g is trivial.
> If Ais the annulus S' x [0, 1] one has

rA,BA = {tz e Z} = 7.
The generator
ta:(0,1)— (6 +2rt,t)

is the called the Dehn twist about the curve S' x {1/2}.



Monodromy homomorphisms

» A locally trivial bundle X — T with fiber M over a smooth
manifold T gives rise to a monodromy representation

7['1(-,—7 fo) — FM

where we identify the fiber over t, with M.
» Represent a € (T, t,) by smooth a : (S',1) = (T, t,).
Have
(* X, M) —— (X, M)

| !

(S',1) —— (T, 1)

Lift the vector field 9/0t on S' = [0,1]/(0 ~ 1) to a vector
field on a* X. In integrate to get a diffeomorphism of the
fiber M over t,. Its mapping class in Iy, is well-defined.



The surface case

The case of surfaces is classical. Suppose that M is a compact
oriented surface of genus g > 2.

> lts MCG I'y is generated by a finite number of Dehn twists.
> |t is finitely presented (algebraic geometry, Thurston, .. .).
» Have Sy = Sp(H1(M; Z)) := Aut(Hi(M; Z),{ , )).

> lts Torelli group Ty, is a tough nut to crack:

> it is a countably generated free group when g = 2 (Mess)

» it is finitely generated when g > 3 (Johnson)

» it is conjectured to be finitely presented when g > 3, but
this is not known for any g > 2.



Uniformization Theorem

» The uniformization theorem says that every oriented
surface with negative Euler characteristic has a complete
hyperbolic metric.

» Another version says that the universal covering of every
Riemann surface with negative Euler characteristic is
biholomorphic to the upper half plane

h={zeC:3J(z) >0}

> It has the complete hyperbolic metric (dx? + dy?)/y?.

» As Isom™ (b, hyp) = Aut(h) = PSLa(R), this implies that if
g(M) > 2, then

{hyperbolic structures on M} = {complex structures on M}.



Hyperbolic structures on M—Dbriefly

Fix a hyperbolic structure on M.

» Each simple closed curve on M that does not bound a disk
is homotopic to a simple closed geodesic.

» Fix a “pants decomposition” of M. We can assume that
each curve in the decomposition is a geodesic.

» For a fixed pair of pants P, the function
{hyperbolic structures on P with geodesic boundary} — Ri

that takes the hyperbolic structure to lengths of the 3
boundary components is a bijection.

» Hyperbolic pants with geodesic boundary can be glued to
get a hyperbolic surface provided the lengths of the
corresponding boundary components match.



Teichmdiller space .7,

» A marked Riemann surface is a homotopy class of
diffeomorphisms f : M — X of M with a compact Riemann
surface, or equivalently, a hyperbolic surface.

» The set of marked Riemann surfaces of genus g is a
manifold 7 that is diffeomorphic to R89-8,

» To see why, decompose M into “pairs of pants”.
» Since x(P) = —1 and x(9P) = 0, we have

#P = —x(M) =29 -2

» Since each pair of pants has 3 boundary circles and since
each circle bounds 2 pants of pants, the number of curves
in the “pants decomposition is 3/2 x #P = 3g — 3.

3g-3  &1°9-3 6g-6
» Themap 7; - R ° x § —R that takes the
metric to the length and “twist angles” is a bijection.



Moduli of compact Riemann surfaces

» The mapping class group I'y, acts on Teichmuller space
Ty

ry M4 x [6] - [f] = [foo].

» This action is properly discontinuous and virtually free.

» The moduli space of compact Riemann surfaces is the
orbifold quotient:
Mg =T\ Ty

» ltis the orbifold classifying space Bl'y of I'y. That is, the
topology of My is determined by I .

» One manifestation of this is the isomorphism
H*(Tw; Q) = H*(Mg; Q).

» Much geometry of algebraic curves is encoded in the
cohomology and structure of I'y,.



Higher dimensions

To what extent does this hold in higher dimensions?

>

Suppose that .#), is a moduli space that parameterizes a
natural family of complex algebraic structures on M and
that there is a universal family 2~ — .Zy.

Suppose X is a complex algebraic manifold and that
¢ : M — X is an orientation preserving diffeomorphism.

Denote the point in .#), that corresponds to X by [X]. We
have a monodromy representation

T (M, [X]) = Tx — Ty

Is it close to being an isomorphism? (Image of finite index?
Finite kernel?)

Is .#), an Eilenberg—MacLane space K(I'y, 1) = BI'y?



The case of hypersurfaces

Projective space:
IP)n—H — ((Cn+2 o {O})/(CX

Coordinates X = (g, . .., Xnr1) € C"2 and [x] € P™1.

» A non-zero polynomial f(x) € Sym? C"*2 defines a
hypersurface

X = {[x] € P . f(x) = 0}.

of degree d in P!,
» It is smooth when f(x) has nowhere vanishing discriminant:

f(x) = 0 and Vf(x) = 0 implies x = 0.



Moduli of hypersurfaces

> Let %, 4 be the space of homogeneous polynomials of
degree d in n+ 2 variables with non-vanishing
discriminant.

» The group GL,,2(C) acts on it. The (stack) quotient is the
moduli space /7, 4 of hypersurfaces in P™1 of degree d.

» The map %, q — 74 q is a principal GLp;2(C) bundle, so
we have a central extension

0 = Z — m(%na, f) = ™1 (Hna, [Xi]) = 1

where X; denotes the hypersurface in P+ defined by the
homogeneous polynomial f.



Lefschetz hyperplane theorem

Theorem (Lefschetz, special case)

If n> 2 and X is a smooth hypersurface in P"t1, then
1. X is simply connected,
2. the restriction map

H (@™, Q) — H(X; Q)

is an isomorphism when j # n,
3. in degree n we have an exact sequence

0 — H"(P™'; Q) — H"(X;Q) — HI(X;Q) — 0

The cokernel is the primitive cohomology of X. It has a
non-degenerate (—1)"” symmetric bilinear form ( |, ).



» The monodromy homomorphisms are:
T(Una: ) = (A g, [X]) = Tw = Aut(Hp(Xr Z): (. ).

> Beauville (1986) computed the images of 71(.#, [X]) and
I'y. Both have finite index in Aut(HJ(X;Z); ( , )).

» When n = 3, we have
(d=10°+1
d

which is positive for all d > 3. The only interesting part of
the monodromy representation is

dim H)(X; Q) = 1

(U0, f) — Sp(Hg(X); Z2).



» Since Beauville computed Sy, the problem is to
understand or compute the Torelli group Ty.

» We will skip dim¢ X = 2 as 4-manifold topology is harder
and more subtle. But there are recent results in dimension
4 by Konno—Lin and Konno—Mallick—Taniguchi.

» The first steps have been taken by Kreck and Su in
complex dimension 3.



The result of Kreck and Su

Every complex projective manifold is a compact Kahler
manifold. A simplified version of their main result is:

Theorem (Kreck—Su, 2022)

If M is a simply connected compact Kahler 3-fold with by = 1,
then there is a homomorphism

om: Tw — H3(M; Q)
whose image is a lattice of full rank and whose kernel is finite.

They give a complete computation of Ty, for simply connected
Kéahler 3-folds.



Sullivan’s general results

Theorem (Sullivan, 1977)

If M is a simply connected closed manifold of (real) dimension
> 5, there is an affine algebraic group Gy, defined over Q, that
is a central extension

1~>DM%QMHQI,‘7/,~>1

and a homomorphism Ty — Gu(Q) with arithmetic image and
finite kernel. Here Dy, (the “Pontryagin distortion group”) is a

quotient of
@ H4k—1 (M, Q)
4k<dimy M

and G ;’,, is the group of homotopy self equivalences of Sullivan’s
algebraic model of the rational homotopy type of M.



The group G}}, is an extension
1= Upl—Gh— Sy —1

where U} is unipotent and Sy, is a subgroup of Aut H*(M; Q).
The group Sy is an arithmetic subgroup of Sy;. The group Sy is
typically not reductive, such as when M = U(9).

Theorem (H, 2023)

Suppose thatk is a subfield of R. If M is a compact Kahler
manifold with Kéhler class w € H?(M; k), then the
automorphism group of its cohomology ring that fixes w is a
reductive k group.

Corollary

If M is a complex projective manifold of complex dimension
> 3, then Sy is a lattice in a reductive Q group.



Johnson homomorphisms of Algebraic 3-folds

If M is simply connected, m3(M) @ Q is an extension.
0 — Sym? Ha(M; Q)/im A — m3(M, Xo) ® Q — Hz(M; Q) — 0,

where A : Hy(M; Q) — S?Hy(M; Q) is the dual of the cup
product. The action of Ty, on this gives rise to Johnson
homomorphism.

Theorem (H, 2023) (updated)

If M is a simply connected compact Kéhler 3-fold, there is a
surjective Sy, invariant homomorphism

v Hi(Ty; Q) — Hom(Hs(M; Q), Sym? Ha(M; Q)/im A)

whose kernel contains the distortion group Dy = H*(M; Q).



Theorem (H, 2023)

If X is a hypersurface of degree d in P*, then the image of
(43,0, [X]) = Gx(Q) does not intersect the distortion
subgroup Dx of Gx. In particular, the image of m1(43 g4, [X]) in
Ix has infinite index.

Theorem (Carlson—Toledo, 1999)

Suppose that X is a smooth hypersurface of degree d in P"+1.
Ifd > 3 and n > 1, the kernel of the representation

m1(H0,q, [X]) = Aut H"(X; Q) surjects onto a lattice in a non
compact, almost simple R-group of rank > 2. In particular, it
contains a non-abelian free subgroup.

In short, when d > 3, the homomorphism
m1 (A9, [X]) = Tx

has a large kernel and “cokernel”.



