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Mapping class group of a manifold

The mapping class group ΓM of a closed orientable manifold M
is the group of isotopy classes of orientation preserving
diffeomorphisms of M:

ΓM := π0 Diff
+ M.

The Torelli group TM of M is the subgroup consisting of the
mapping classes that act trivially on the homology of M:

TM := ker{ΓM → AutH•(M;Z)}.

Denote the image of ΓM → AutH•(M;Z) by SM . The mapping
class group ΓM is an extension

1 → TM → ΓM → SM → 1.



Examples
If N is a subset of M (e.g., ∂M or a point), one can define

ΓM,N := π0(Diff
+(M,N)).

▶ When M = S1 × S1 ∼= R2/Z2, the evident homomorphism

SL2(Z) → ΓM,0

is an isomorphism. The Torelli group TM,0 is trivial.
▶ If A is the annulus S1 × [0,1] one has

ΓA,∂A = {tn
A : n ∈ Z} ∼= Z.

The generator

tA : (θ, t) 7→ (θ + 2πt , t)

is the called the Dehn twist about the curve S1 × {1/2}.



Monodromy homomorphisms

▶ A locally trivial bundle X → T with fiber M over a smooth
manifold T gives rise to a monodromy representation

π1(T , to) → ΓM

where we identify the fiber over to with M.
▶ Represent a ∈ π1(T , to) by smooth α : (S1,1) → (T , to).

Have
(α∗X ,M) (X ,M)

(S1,1) (T , to)

Lift the vector field ∂/∂t on S1 = [0,1]/(0 ∼ 1) to a vector
field on α∗X . In integrate to get a diffeomorphism of the
fiber M over to. Its mapping class in ΓM is well-defined.



The surface case

The case of surfaces is classical. Suppose that M is a compact
oriented surface of genus g ≥ 2.
▶ Its MCG ΓM is generated by a finite number of Dehn twists.
▶ It is finitely presented (algebraic geometry, Thurston, . . . ).
▶ Have SM = Sp(H1(M;Z)) := Aut(H1(M;Z), ⟨ , ⟩).
▶ Its Torelli group TM is a tough nut to crack:

▶ it is a countably generated free group when g = 2 (Mess)
▶ it is finitely generated when g ≥ 3 (Johnson)
▶ it is conjectured to be finitely presented when g ≫ 3, but

this is not known for any g ≥ 2.



Uniformization Theorem

▶ The uniformization theorem says that every oriented
surface with negative Euler characteristic has a complete
hyperbolic metric.

▶ Another version says that the universal covering of every
Riemann surface with negative Euler characteristic is
biholomorphic to the upper half plane

h = {z ∈ C : ℑ(z) > 0}.

▶ It has the complete hyperbolic metric (dx2 + dy2)/y2.
▶ As Isom+(h, hyp) = Aut(h) = PSL2(R), this implies that if

g(M) ≥ 2, then

{hyperbolic structures on M} = {complex structures on M}.



Hyperbolic structures on M—briefly

Fix a hyperbolic structure on M.
▶ Each simple closed curve on M that does not bound a disk

is homotopic to a simple closed geodesic.
▶ Fix a “pants decomposition” of M. We can assume that

each curve in the decomposition is a geodesic.
▶ For a fixed pair of pants P, the function

{hyperbolic structures on P with geodesic boundary} → R3
+

that takes the hyperbolic structure to lengths of the 3
boundary components is a bijection.

▶ Hyperbolic pants with geodesic boundary can be glued to
get a hyperbolic surface provided the lengths of the
corresponding boundary components match.



Teichmüller space Tg

▶ A marked Riemann surface is a homotopy class of
diffeomorphisms f : M → X of M with a compact Riemann
surface, or equivalently, a hyperbolic surface.

▶ The set of marked Riemann surfaces of genus g is a
manifold Tg that is diffeomorphic to R6g−6.

▶ To see why, decompose M into “pairs of pants”.
▶ Since χ(P) = −1 and χ(∂P) = 0, we have

#P = −χ(M) = 2g − 2.

▶ Since each pair of pants has 3 boundary circles and since
each circle bounds 2 pants of pants, the number of curves
in the “pants decomposition is 3/2 ×#P = 3g − 3.

▶ The map Tg → R3g−3
+ × S̃1

3g−3
→ R6g−6 that takes the

metric to the length and “twist angles” is a bijection.



Moduli of compact Riemann surfaces
▶ The mapping class group ΓM acts on Teichmüller space

Tg :

ΓM M Xf
[ϕ] : [f ] 7→ [f ◦ ϕ−1].

▶ This action is properly discontinuous and virtually free.
▶ The moduli space of compact Riemann surfaces is the

orbifold quotient:
Mg = ΓM\Tg .

▶ It is the orbifold classifying space BΓg of ΓM . That is, the
topology of Mg is determined by ΓM .

▶ One manifestation of this is the isomorphism

H•(ΓM ;Q) ∼= H•(Mg ;Q).

▶ Much geometry of algebraic curves is encoded in the
cohomology and structure of ΓM .



Higher dimensions

To what extent does this hold in higher dimensions?
▶ Suppose that MM is a moduli space that parameterizes a

natural family of complex algebraic structures on M and
that there is a universal family X → MM .

▶ Suppose X is a complex algebraic manifold and that
ϕ : M → X is an orientation preserving diffeomorphism.

▶ Denote the point in MM that corresponds to X by [X ]. We
have a monodromy representation

π1(MM , [X ]) → ΓX
≃−→ ΓM

▶ Is it close to being an isomorphism? (Image of finite index?
Finite kernel?)

▶ Is MM an Eilenberg–MacLane space K (ΓM ,1) = BΓM?



The case of hypersurfaces

Projective space:

Pn+1 = (Cn+2 − {0})/C×.

Coordinates x = (x0, . . . , xn+1) ∈ Cn+2 and [x] ∈ Pn+1.
▶ A non-zero polynomial f (x) ∈ Symd Cn+2 defines a

hypersurface

Xf := {[x] ∈ Pn+1 : f (x) = 0}.

of degree d in Pn+1.
▶ It is smooth when f (x) has nowhere vanishing discriminant:

f (x) = 0 and ∇f (x) = 0 implies x = 0.



Moduli of hypersurfaces

▶ Let Un,d be the space of homogeneous polynomials of
degree d in n + 2 variables with non-vanishing
discriminant.

▶ The group GLn+2(C) acts on it. The (stack) quotient is the
moduli space Hn,d of hypersurfaces in Pn+1 of degree d .

▶ The map Un,d → Hn,d is a principal GLn+2(C) bundle, so
we have a central extension

0 → Z → π1(Un,d , f ) → π1(Hn,d , [Xf ]) → 1

where Xf denotes the hypersurface in Pn+1 defined by the
homogeneous polynomial f .



Lefschetz hyperplane theorem

Theorem (Lefschetz, special case)
If n ≥ 2 and X is a smooth hypersurface in Pn+1, then

1. X is simply connected,
2. the restriction map

H j(Pn+1;Q) → H j(X ;Q)

is an isomorphism when j ̸= n,
3. in degree n we have an exact sequence

0 → Hn(Pn+1;Q) → Hn(X ;Q) → Hn
o (X ;Q) → 0

The cokernel is the primitive cohomology of X . It has a
non-degenerate (−1)n symmetric bilinear form ⟨ , ⟩.



▶ The monodromy homomorphisms are:

π1(Un,d , f ) → π1(Hn,d , [Xf ]) → ΓM → Aut(Hn
o (Xf ;Z); ⟨ , ⟩).

▶ Beauville (1986) computed the images of π1(M , [X ]) and
ΓM . Both have finite index in Aut(Hn

o (X ;Z); ⟨ , ⟩).
▶ When n = 3, we have

dimHn
o (X ;Q) =

(d − 1)5 + 1
d

− 1

which is positive for all d ≥ 3. The only interesting part of
the monodromy representation is

π1(U3,d , f ) → Sp(Hn
o (Xf );Z).



▶ Since Beauville computed SM , the problem is to
understand or compute the Torelli group TM .

▶ We will skip dimC X = 2 as 4-manifold topology is harder
and more subtle. But there are recent results in dimension
4 by Konno–Lin and Konno–Mallick–Taniguchi.

▶ The first steps have been taken by Kreck and Su in
complex dimension 3.



The result of Kreck and Su

Every complex projective manifold is a compact Kähler
manifold. A simplified version of their main result is:

Theorem (Kreck–Su, 2022)
If M is a simply connected compact Kähler 3-fold with b2 = 1,
then there is a homomorphism

δM : TM → H3(M;Q)

whose image is a lattice of full rank and whose kernel is finite.

They give a complete computation of TM for simply connected
Kähler 3-folds.



Sullivan’s general results

Theorem (Sullivan, 1977)
If M is a simply connected closed manifold of (real) dimension
≥ 5, there is an affine algebraic group GM , defined over Q, that
is a central extension

1 → DM → GM → Gh
M → 1

and a homomorphism ΓM → GM(Q) with arithmetic image and
finite kernel. Here DM (the “Pontryagin distortion group”) is a
quotient of ⊕

4k≤dimR M

H4k−1(M;Q)

and Gh
M is the group of homotopy self equivalences of Sullivan’s

algebraic model of the rational homotopy type of M.



The group Gh
M is an extension

1 → Uh
M → Gh

M → SM → 1

where Uh
M is unipotent and SM is a subgroup of AutH•(M;Q).

The group SM is an arithmetic subgroup of SM . The group SM is
typically not reductive, such as when M = U(9).

Theorem (H, 2023)
Suppose that k is a subfield of R. If M is a compact Kähler
manifold with Kähler class ω ∈ H2(M; k), then the
automorphism group of its cohomology ring that fixes ω is a
reductive k group.

Corollary
If M is a complex projective manifold of complex dimension
≥ 3, then SM is a lattice in a reductive Q group.



Johnson homomorphisms of Algebraic 3-folds

If M is simply connected, π3(M)⊗Q is an extension.

0 → Sym2 H2(M;Q)/ im∆ → π3(M, xo)⊗Q → H3(M;Q) → 0,

where ∆ : H4(M;Q) → S2H2(M;Q) is the dual of the cup
product. The action of TM on this gives rise to Johnson
homomorphism.

Theorem (H, 2023) (updated)
If M is a simply connected compact Kähler 3-fold, there is a
surjective SM invariant homomorphism

τM : H1(TM ;Q) → Hom(H3(M;Q),Sym2 H2(M;Q)/ im∆)

whose kernel contains the distortion group DM = H3(M;Q).



Theorem (H, 2023)
If X is a hypersurface of degree d in P4, then the image of
π1(H3,d , [X ]) → GX (Q) does not intersect the distortion
subgroup DX of GX . In particular, the image of π1(H3,d , [X ]) in
ΓX has infinite index.

Theorem (Carlson–Toledo, 1999)
Suppose that X is a smooth hypersurface of degree d in Pn+1.
If d ≥ 3 and n > 1, the kernel of the representation
π1(Hn,d , [X ]) → AutHn(X ;Q) surjects onto a lattice in a non
compact, almost simple R-group of rank ≥ 2. In particular, it
contains a non-abelian free subgroup.
In short, when d ≥ 3, the homomorphism

π1(H3,d , [X ]) → ΓX

has a large kernel and “cokernel”.


