Mapping class groups of simply connected algebraic manifolds

Richard Hain

Duke University

Institut de Mathématiques de Bourgogne, Dijon September 26, 2023

(ロ) (同) (三) (三) (三) (三) (○) (○)

Mapping class group of a manifold

The mapping class group Γ_M of a closed orientable manifold M is the group of *isotopy* classes of orientation preserving diffeomorphisms of M:

$$\Gamma_M := \pi_0 \operatorname{Diff}^+ M.$$

The *Torelli group* T_M of *M* is the subgroup consisting of the mapping classes that act trivially on the homology of *M*:

$$T_M := \ker\{\Gamma_M \to \operatorname{Aut} H_{\bullet}(M; \mathbb{Z})\}.$$

Denote the image of $\Gamma_M \to \operatorname{Aut} H_{\bullet}(M; \mathbb{Z})$ by S_M . The mapping class group Γ_M is an extension

$$1 \rightarrow T_M \rightarrow \Gamma_M \rightarrow S_M \rightarrow 1.$$

(日) (日) (日) (日) (日) (日) (日)

Examples

If *N* is a subset of *M* (e.g., ∂M or a point), one can define

$$\Gamma_{M,N} := \pi_0(\mathrm{Diff}^+(M,N)).$$

• When $M = S^1 \times S^1 \cong \mathbb{R}^2 / \mathbb{Z}^2$, the evident homomorphism

 $\mathrm{SL}_2(\mathbb{Z}) \to \Gamma_{M,0}$

is an isomorphism. The Torelli group $T_{M,0}$ is trivial. If *A* is the annulus $S^1 \times [0, 1]$ one has

$$\Gamma_{A,\partial A} = \{t_A^n : n \in \mathbb{Z}\} \cong \mathbb{Z}.$$

The generator

$$t_{\mathsf{A}}: (\theta, t) \mapsto (\theta + 2\pi t, t)$$

is the called the *Dehn twist* about the curve $S^1 \times \{1/2\}$.

Monodromy homomorphisms

A locally trivial bundle X → T with fiber M over a smooth manifold T gives rise to a monodromy representation

$$\pi_1(T, t_o) \to \Gamma_M$$

where we identify the fiber over t_o with M.

▶ Represent $a \in \pi_1(T, t_o)$ by smooth $\alpha : (S^1, 1) \to (T, t_o)$. Have

$$(\alpha^* X, M) \longrightarrow (X, M)$$

$$\downarrow \qquad \qquad \downarrow$$

$$(S^1, 1) \longrightarrow (T, t_0)$$

Lift the vector field $\partial/\partial t$ on $S^1 = [0, 1]/(0 \sim 1)$ to a vector field on $\alpha^* X$. In integrate to get a diffeomorphism of the fiber *M* over t_o . Its mapping class in Γ_M is well-defined.

The surface case

The case of surfaces is classical. Suppose that *M* is a compact oriented surface of genus $g \ge 2$.

- lts MCG Γ_M is generated by a finite number of Dehn twists.
- ▶ It is finitely presented (algebraic geometry, Thurston, ...).
- ► Have $S_M = \operatorname{Sp}(H_1(M; \mathbb{Z})) := \operatorname{Aut}(H_1(M; \mathbb{Z}), \langle , \rangle).$
- Its Torelli group T_M is a tough nut to crack:
 - it is a countably generated free group when g = 2 (Mess)
 - it is finitely generated when $g \ge 3$ (Johnson)
 - ► it is conjectured to be finitely presented when g ≫ 3, but this is not known for any g ≥ 2.

(日) (日) (日) (日) (日) (日) (日)

Uniformization Theorem

- The uniformization theorem says that every oriented surface with negative Euler characteristic has a complete hyperbolic metric.
- Another version says that the universal covering of every Riemann surface with negative Euler characteristic is biholomorphic to the upper half plane

$$\mathfrak{h} = \{z \in \mathbb{C} : \Im(z) > 0\}.$$

- lt has the complete hyperbolic metric $(dx^2 + dy^2)/y^2$.
- As lsom⁺(𝔥, hyp) = Aut(𝔥) = PSL₂(ℝ), this implies that if g(M) ≥ 2, then

{hyperbolic structures on M} = {complex structures on M}.

Hyperbolic structures on *M*—briefly

Fix a hyperbolic structure on *M*.

- Each simple closed curve on *M* that does not bound a disk is homotopic to a simple closed geodesic.
- ► Fix a "pants decomposition" of *M*. We can assume that each curve in the decomposition is a geodesic.
- ► For a fixed pair of pants *P*, the function

{hyperbolic structures on *P* with geodesic boundary} $\rightarrow \mathbb{R}^3_+$

that takes the hyperbolic structure to lengths of the 3 boundary components is a bijection.

Hyperbolic pants with geodesic boundary can be glued to get a hyperbolic surface provided the lengths of the corresponding boundary components match.

Teichmüller space \mathscr{T}_g

- ▶ A marked Riemann surface is a homotopy class of diffeomorphisms $f : M \to X$ of M with a compact Riemann surface, or equivalently, a hyperbolic surface.
- ► The set of marked Riemann surfaces of genus g is a manifold *S*_g that is diffeomorphic to ℝ^{6g-6}.
- To see why, decompose M into "pairs of pants".

Since
$$\chi(P) = -1$$
 and $\chi(\partial P) = 0$, we have

$$\#P=-\chi(M)=2g-2.$$

- Since each pair of pants has 3 boundary circles and since each circle bounds 2 pants of pants, the number of curves in the "pants decomposition is $3/2 \times \#P = 3g - 3$.
- The map $\mathscr{T}_g \to \mathbb{R}^{3g-3}_+ \times \widetilde{S^1}^{3g-3} \to \mathbb{R}^{6g-6}$ that takes the metric to the length and "twist angles" is a bijection.

Moduli of compact Riemann surfaces

The mapping class group Γ_M acts on Teichmüller space *S_g*:

$$\Gamma_M \quad \stackrel{f}{\longrightarrow} M \stackrel{f}{\longrightarrow} X \qquad [\phi]: [f] \mapsto [f \circ \phi^{-1}].$$

- This action is properly discontinuous and virtually free.
- The moduli space of compact Riemann surfaces is the orbifold quotient:

$$\mathcal{M}_{g} = \Gamma_{M} \backslash \mathscr{T}_{g}.$$

- It is the orbifold classifying space BΓ_g of Γ_M. That is, the topology of M_g is determined by Γ_M.
- One manifestation of this is the isomorphism

$$H^{\bullet}(\Gamma_M; \mathbb{Q}) \cong H^{\bullet}(\mathcal{M}_g; \mathbb{Q}).$$

Much geometry of algebraic curves is encoded in the cohomology and structure of Γ_M.

Higher dimensions

To what extent does this hold in higher dimensions?

- Suppose that \mathcal{M}_M is a moduli space that parameterizes a natural family of complex algebraic structures on M and that there is a universal family $\mathscr{X} \to \mathscr{M}_M$.
- Denote the point in *M_M* that corresponds to *X* by [*X*]. We have a monodromy representation

$$\pi_1(\mathscr{M}_M, [X]) \to \Gamma_X \stackrel{\simeq}{\longrightarrow} \Gamma_M$$

- Is it close to being an isomorphism? (Image of finite index? Finite kernel?)
- ► Is \mathcal{M}_M an Eilenberg–MacLane space $K(\Gamma_M, 1) = B\Gamma_M$?

The case of hypersurfaces

Projective space:

$$\mathbb{P}^{n+1} = (\mathbb{C}^{n+2} - \{0\})/\mathbb{C}^{\times}.$$

Coordinates $\mathbf{x} = (x_0, \dots, x_{n+1}) \in \mathbb{C}^{n+2}$ and $[\mathbf{x}] \in \mathbb{P}^{n+1}$.

A non-zero polynomial f(x) ∈ Sym^d Cⁿ⁺² defines a hypersurface

$$X_f:=\{[\mathbf{x}]\in\mathbb{P}^{n+1}:f(\mathbf{x})=0\}.$$

of degree *d* in \mathbb{P}^{n+1} .

lt is smooth when $f(\mathbf{x})$ has nowhere vanishing discriminant:

 $f(\mathbf{x}) = 0$ and $\nabla f(\mathbf{x}) = 0$ implies $\mathbf{x} = 0$.

Moduli of hypersurfaces

- Let U_{n,d} be the space of homogeneous polynomials of degree d in n + 2 variables with non-vanishing discriminant.
- The group GL_{n+2}(ℂ) acts on it. The (stack) quotient is the moduli space ℋ_{n,d} of hypersurfaces in ℙⁿ⁺¹ of degree d.
- The map U_{n,d} → ℋ_{n,d} is a principal GL_{n+2}(ℂ) bundle, so we have a central extension

$$0 o \mathbb{Z} o \pi_1(\mathscr{U}_{n,d}, f) o \pi_1(\mathscr{H}_{n,d}, [X_f]) o 1$$

where X_f denotes the hypersurface in \mathbb{P}^{n+1} defined by the homogeneous polynomial *f*.

Lefschetz hyperplane theorem

Theorem (Lefschetz, special case)

- If $n \ge 2$ and X is a smooth hypersurface in \mathbb{P}^{n+1} , then
 - 1. X is simply connected,
 - 2. the restriction map

$$H^{j}(\mathbb{P}^{n+1};\mathbb{Q}) o H^{j}(X;\mathbb{Q})$$

is an isomorphism when $j \neq n$,

3. in degree n we have an exact sequence

$$0 \to H^{n}(\mathbb{P}^{n+1};\mathbb{Q}) \to H^{n}(X;\mathbb{Q}) \to H^{n}_{o}(X;\mathbb{Q}) \to 0$$

The cokernel is the *primitive cohomology* of *X*. It has a non-degenerate $(-1)^n$ symmetric bilinear form \langle , \rangle .

The monodromy homomorphisms are:

 $\pi_1(\mathscr{U}_{n,d},f) \to \pi_1(\mathscr{H}_{n,d},[X_f]) \to \Gamma_M \to \operatorname{Aut}(H^n_o(X_f;\mathbb{Z});\langle \ ,\ \rangle).$

- ► Beauville (1986) computed the images of $\pi_1(\mathcal{M}, [X])$ and Γ_M . Both have finite index in Aut $(H_o^n(X; \mathbb{Z}); \langle , \rangle)$.
- When n = 3, we have

$$\dim H^n_o(X;\mathbb{Q}) = \frac{(d-1)^5 + 1}{d} - 1$$

which is positive for all $d \ge 3$. The only interesting part of the monodromy representation is

$$\pi_1(\mathscr{U}_{3,d},f) \to \operatorname{Sp}(H^n_o(X_f);\mathbb{Z}).$$

A D F A 同 F A E F A E F A Q A

- Since Beauville computed S_M , the problem is to understand or compute the Torelli group T_M .
- We will skip dim_C X = 2 as 4-manifold topology is harder and more subtle. But there are recent results in dimension 4 by Konno–Lin and Konno–Mallick–Taniguchi.

(日) (日) (日) (日) (日) (日) (日)

The first steps have been taken by Kreck and Su in complex dimension 3.

The result of Kreck and Su

Every complex projective manifold is a compact Kähler manifold. A simplified version of their main result is:

Theorem (Kreck-Su, 2022)

If M is a simply connected compact Kähler 3-fold with $b_2 = 1$, then there is a homomorphism

$$\delta_M: T_M \to H^3(M; \mathbb{Q})$$

whose image is a lattice of full rank and whose kernel is finite.

They give a complete computation of T_M for simply connected Kähler 3-folds.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Sullivan's general results

Theorem (Sullivan, 1977)

If *M* is a simply connected closed manifold of (real) dimension ≥ 5 , there is an affine algebraic group \mathcal{G}_M , defined over \mathbb{Q} , that is a central extension

$$1 \to \mathcal{D}_M \to \mathcal{G}_M \to \mathcal{G}_M^h \to 1$$

and a homomorphism $\Gamma_M \to \mathcal{G}_M(\mathbb{Q})$ with arithmetic image and finite kernel. Here \mathcal{D}_M (the "Pontryagin distortion group") is a quotient of

$$\bigoplus_{4k \leq \dim_{\mathbb{R}} M} H^{4k-1}(M; \mathbb{Q})$$

and \mathcal{G}_{M}^{h} is the group of homotopy self equivalences of Sullivan's algebraic model of the rational homotopy type of M.

The group \mathcal{G}_M^h is an extension

$$1 \to \mathcal{U}_M^h \to \mathcal{G}_M^h \to \mathcal{S}_M \to 1$$

where U_M^h is unipotent and S_M is a subgroup of Aut $H^{\bullet}(M; \mathbb{Q})$. The group S_M is an arithmetic subgroup of S_M . The group S_M is typically not reductive, such as when M = U(9).

Theorem (H, 2023)

Suppose that \Bbbk is a subfield of \mathbb{R} . If M is a compact Kähler manifold with Kähler class $\omega \in H^2(M; \Bbbk)$, then the automorphism group of its cohomology ring that fixes ω is a reductive \Bbbk group.

Corollary

If *M* is a complex projective manifold of complex dimension ≥ 3 , then *S*_{*M*} is a lattice in a reductive \mathbb{Q} group.

Johnson homomorphisms of Algebraic 3-folds

If *M* is simply connected, $\pi_3(M) \otimes \mathbb{Q}$ is an extension.

$$0 \to \operatorname{Sym}^2 H_2(M;\mathbb{Q})/\operatorname{im} \Delta \to \pi_3(M,x_o)\otimes \mathbb{Q} \to H_3(M;\mathbb{Q}) \to 0,$$

where $\Delta : H_4(M; \mathbb{Q}) \to S^2 H_2(M; \mathbb{Q})$ is the dual of the cup product. The action of T_M on this gives rise to Johnson homomorphism.

Theorem (H, 2023) (updated)

If M is a simply connected compact Kähler 3-fold, there is a surjective S_M invariant homomorphism

 $\tau_{M}: H_{1}(T_{M}; \mathbb{Q}) \to \operatorname{Hom}(H_{3}(M; \mathbb{Q}), \operatorname{Sym}^{2} H_{2}(M; \mathbb{Q}) / \operatorname{im} \Delta)$

whose kernel contains the distortion group $\mathcal{D}_M = H^3(M; \mathbb{Q})$.

Theorem (H, 2023)

If X is a hypersurface of degree d in \mathbb{P}^4 , then the image of $\pi_1(\mathscr{H}_{3,d}, [X]) \to \mathcal{G}_X(\mathbb{Q})$ does not intersect the distortion subgroup \mathcal{D}_X of \mathcal{G}_X . In particular, the image of $\pi_1(\mathscr{H}_{3,d}, [X])$ in Γ_X has infinite index.

Theorem (Carlson–Toledo, 1999)

Suppose that X is a smooth hypersurface of degree d in \mathbb{P}^{n+1} . If $d \ge 3$ and n > 1, the kernel of the representation $\pi_1(\mathscr{H}_{n,d}, [X]) \to \operatorname{Aut} H^n(X; \mathbb{Q})$ surjects onto a lattice in a non compact, almost simple \mathbb{R} -group of rank ≥ 2 . In particular, it contains a non-abelian free subgroup.

In short, when $d \ge 3$, the homomorphism

$$\pi_1(\mathscr{H}_{3,d},[X]) \to \Gamma_X$$

has a large kernel and "cokernel".