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Overview of the Series

Three relatively independent lectures:
▶ The Goldman–Turaev Lie bialgebra — is it motivic?
▶ Hecke actions on loops and periods of iterated Shimura

integrals
▶ The rank of the normal function of the Ceresa cycle

with a common theme:

topology of a variety X motives associated to X

especially when X is a moduli space of curves.



Initial setting

▶ For a topological space X , define λ(X ) = [S1,X ].
▶ When X is path connected (as it will be from now on)

λ(X ) = conjugacy classes in π1(X , x).

▶ For a commutative ring k (for us Z or a field of char 0) set

kλ(X ) = free k-module generated by λ(X ).

▶ There is an inclusion k→ kλ(X ) that takes 1 to the
boundary of a disk and a projection kλ(X )→ k that takes
each loop to 1. This gives a natural decomposition

kλ(X ) = k1⊕ Ikλ(X )



▶ The cyclic quotient of an associative k-algebra A is

C (A) = |A| := A/ span{uv − vu : u, v ∈ A}.

▶ For example the cyclic quotient of the free associative
algebra k⟨x : x ∈X ⟩ is spanned by the “cyclic words” in
the elements x of the alphabet X :

x1x2 . . . xm ∼ x2 . . . xmx1.

▶ We have kλ(X ) = C (kπ1(X , x)).



The Goldman–Turaev Lie bialgebra

The Goldman bracket is a map

{ , } : kλ(X )⊗ kλ(X )→ kλ(X )

that makes kλ(X ) into a Lie algebra. The Turaev cobracket is a
map

δξ : kλ(X )→ kλ(X )⊗ kλ(X )

that depends on a framing ξ (a nowhere vanishing vector field)
on X . Together they form a Lie bialgebra:

δξ{u, v} = u · δξ(v)− v · δξ(u)

where w · (x ⊗ y) = {w , x} ⊗ y + x ⊗ {w , y}.



The bracket and cobracket are defined using elementary
surgery: Each element of λ(X ) can be represented by an
immersed circle with simple normal crossings. (So no triple
points, etc). One can perform surgery at a double point:

surgery



Goldman bracket

To define the Goldman bracket of α, β ∈ λ(X ), represent them
by oriented, transversally intersecting, immersed circles. Their
Goldman bracket is

{α, β} =
∑

P

ϵP α#Pβ

where P ranges over the points where α intersects β, ϵP = ±1
is the local intersection number at P and α#Pβ is the loop
obtained by simple surgery at P.



An example

P

Q

ϵP = 1

ϵQ = −1

{α, β} = ϵP α#Pβ + ϵQ α#Qβ
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An example

P

Q

ϵP = 1

ϵQ = −1

{α, β} = ϵP α#Pβ + ϵQ α#Qβ = α#Pβ − α#Qβ



The Turaev cobracket

For convenience, we denote the element v ⊗ w − w ⊗ v of V⊗2

by v ∧ w . Suppose that α is an immersed circle with simple
normal crossings. The first step in defining the cobracket is to
define for each double point P of α

δP(α) = α′
P ∧ α′′

P

where

P
A B

α

∧A B

α′
P α′′

P



To define δξ(α) represent α by an immersed loop with simple
normal crossings and trivial winding number with respect to
the framing:

rotξ α = 0.

(Add some “backflips” as necessary.) The cobracket is defined
by

δξ(α) =
∑

double points P

ϵP δP(α)

where ϵP = ±1 is the local intersection number of the initial
arcs of α′

P and α′′
P (in that order).



Sample cobracket

To compute the cobracket of

ξ = ∂/∂x

rotξ α = 1
P Q



Sample cobracket

represent it by

ξ = ∂/∂x

rotξ α = 0
P Q R



Sample cobracket

to see that δξ takes to

− ∧

+ ∧ − ∧1
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Sample cobracket

to see that δξ takes to

− ∧

+ ∧ − ∧1



▶ The Goldman–Turaev Lie bialgebra is involutive. That is

kλ(X )
δξ // kλ(X )⊗ kλ(X )

{ , } // kλ(X )

is zero.
▶ The cobracket δξ induces a map

δ : kλ(X )/k1→ (kλ(X )/k1)⊗2

It does not depend on the framing ξ. This is called the
reduced cobracket.



The Kawazumi–Kuno action and Turaev coaction

▶ Let v⃗ be a tangential base point — equivalently, a base
point in the boundary of X .

▶ Kawazumi and Kuno extended the constructions of
Goldman and Turaev to define a Lie algebra
homomorphism

κv⃗ : kλ(X )→ Der kπ1(X , v⃗).

Turaev defined a coaction

kπ1(X ; v⃗)→ kλ(X )⊗ kπ1(X ; v⃗).



Special derivations

A derivation D of kπ1(X , v⃗) is special if there are
µ1, . . . , µn ∈ kπ1(X , v⃗) (resp., its completion) such that
D(γ0) = 0 and

D(γj) = [γj , µj ] := γjµj − µjγj when j > 0.

Here γj is any path of the form

v⃗

s0 sj

Loops act as special derivations, so

κv⃗ : kλ(X )→ SDer kπ1(X , v⃗).



Completions

▶ From now on, k is a field of characteristic zero.
▶ Denote the augmentation idea of kπ1(X , v⃗) by I.
▶ The I-adic completion of kπ1(X , v⃗) is

kπ1(X , v⃗)∧ := lim←−
m

kπ1(X , v⃗)/Im.

▶ Give kλ(X ) the quotient topology via kπ1(X , v⃗)→ kλ(X ).
Its I-adic completion is

kλ(X )∧ = C (kπ1(X , v⃗)∧).



The completed GT Lie bialgebra
▶ Kawazumi and Kuno showed that the Goldman bracket

and Turaev cobracket are continuous in the I-adic topology
and thus induce maps

{ , } : kλ(X )∧ ⊗ kλ(X )∧ → kλ(X )∧

and
δξ : kλ(X )∧ → kλ(X )∧⊗̂kλ(X )∧

This is the completed GT Lie bialgebra.
▶ They also showed that their action is continuous, so that

there is a continuous Lie algebra homomorphism

κv⃗ : kλ(X )∧ → SDer kπ1(X , v⃗)∧

▶ When (X , v⃗) is a surface of type (g, 1⃗), κv⃗ induces an
isomorphism

Qλ(X )∧/Q1 ≃−→ SDer kπ1(X , v⃗)∧



Hodge theory

▶ Suppose that X = X − S where X is a compact Riemann
surface, S = {s0, . . . , sn} with n ≥ 0 and v⃗ ∈ Ts0X , v⃗ ̸= 0.
(So (X ,S, v⃗) is a topological surface of type (g,n + 1⃗).)

▶ When needed, ξ is an algebraic framing of X . That is, a
meromorphic vector field on X that is nowhere vanishing
and holomorphic on X .

▶ There is a canonical pro-mixed Hodge structure (MHS) on
Qπ1(X , v⃗)∧. It induces a canonical pro-MHS on Qλ(X )∧.

▶ The MHS on Qλ(X )∧ does not depend on v⃗, only on X .



Theorem (H: 2020, 2021)
The completed Goldman bracket

{ , } : kλ(X )∧ ⊗Q(−1)⊗ kλ(X )∧ ⊗Q(−1)
→ kλ(X )∧ ⊗Q(−1),

the completed Turaev cobracket

δξ : kλ(X )∧ ⊗Q(1)→
[
kλ(X )∧ ⊗Q(1)

]⊗̂2

and the Kawazumi–Kuno action

κv⃗ : kλ(X )∧ ⊗Q(−1)→ SDer kπ1(X , v⃗)∧

are all morphisms of pro-MHS.



Comments and Questions

▶ I believe that when X is defined over a number field K ,
then for all ℓ, the bracket and cobracket on Qℓλ(X )∧ (after
a suitable Tate twists) are Gal(Q/K ) equivariant. Similarly
for the Kawazumi–Kuno action.

▶ I have a sketch of an indirect proof. Can this be proved
directly by ‘elementary’ arguments?

▶ The Hodge and Galois equivariance suggests that the
Goldman–Turaev Lie bialgebra is motivic. If so, what does
it have to do with cycles and motives?

▶ It appears that there is a link to Ceresa cycle when g ≥ 3.



Mapping class groups

▶ Denote the mapping class group of (X ;S, v⃗) by ΓX ,⃗v:

ΓX ,⃗v := π0 Diff
+(X ,S, v⃗) ∼= π1(Mg,n+1⃗, [(X , v⃗)]).

It is a mapping class group of type (g,n + 1⃗).
▶ Assume that X is hyperbolic: 2g − 2 + n + 1 > 0.
▶ Its Torelli subgroup TX ,⃗v is the kernel of the homomorphism

ΓX ,⃗v → Sp(Hk), where H = H1(X ;k).
▶ We have the extension

1→ TX ,⃗v → ΓX ,⃗v → Sp(HZ)→ 1.

and the natural representation ΓX ,⃗v → Autπ1(X , v⃗).



Relative completion of mapping class groups

The relative completion of ΓX ,⃗v consists of an affine (aka
proalgebraic) group GX ,⃗v defined over Q and a homomorphism

ρ : ΓX ,⃗v → GX ,⃗v(Q).

This group is an extension

1→ UX ,⃗v → GX ,⃗v → Sp(HQ)→ 1

where UX ,⃗v is prounipotent. The composite

ΓX ,⃗v → GX ,⃗v(Q)→ Sp(HQ)

is the canonical homomorphism. Such extensions form a
category. The relative completion is the initial object of this
category.



The unipotent completion of π1(X , v⃗)∧

▶ Qπ1(X , v⃗) is a Hopf algebra; its completion Qπ1(X , v⃗)∧ is a
complete Hopf algebra.

▶ The set of primitive elements of Qπ1(X , v⃗)∧ is the Lie
algebra p(X , v⃗) of the unipotent (aka, Malcev) completion
of π1(X , v⃗).

▶ If X is affine, Qπ1(X , v⃗)∧ is (un-naturally) isomorphic to the
completed tensor algebra

T (H1(X ;k))∧

with the coproduct ∆u = 1⊗ u + u ⊗ 1, u ∈ H1(X ). And
p(X , v⃗) is isomorphic to L(H1(X ))∧.



The Johnson homomorphism

▶ Since unipotent completion is functorial, the action of ΓX ,⃗v
on π1(X , v⃗) induces a homomorphism

ΓX ,⃗v → Aut p(X , v⃗)

▶ The universal mapping property of relative completion
implies that it induces a homomorphism GX ,⃗v → Aut p(X , v⃗)
such that the diagram

TX ,⃗v ΓX ,⃗v Autπ1(X , v⃗)

UX ,⃗v(Q) GX ,⃗v(Q) Aut p(X , v⃗)

commutes.



▶ Denote the Lie algebras of GX ,⃗v and UX ,⃗v by gX ,⃗v and uX ,⃗v.
▶ The homomorphism GX ,⃗v → Aut p(X , v⃗) induces a Lie

algebra homomorphism

gX ,⃗v → SDer p(X , v⃗) (∗)

▶ For each (X , v⃗), there is a canonical MHS on gX ,⃗v and (∗) is
a morphism of MHS.

▶ This is (for me) the geometric Johnson homomorphism.



The arithmetic Johnson homomorphism

▶ There is also a homomorphism (for k = Q,R).

mhsk → Der p(X , v⃗)

where mhsk is the Lie algebra of Gk = π1(MHSk).
▶ Since mhsk acts on gX ,⃗v, we have

mhsk ⋉ gX ,⃗v

▶ Since mhsk acts on p(X , v⃗), the Johnson homomorphism
extends to

mhsk ⋉ gX ,⃗v → Der p(X , v⃗)

▶ This is the arithmetic Johnson homomorphism



Arithmetic versus geometric Johnson image

▶ Denote the images of the geometric and arithmetic
Johnson homomorphisms by gX ,⃗v and ĝX ,⃗v, respectively.

▶ Denote their pronilpotent radicals by uX ,⃗v and ûX ,⃗v,
respectively.

▶ The proof of Oda’s Conjecture by Takao (+ Ihara,
Matsumoto, Nakamura, . . . ), Hodge theory and Brown’s
fundamental theorem (on mixed Tate motives) give:

Theorem
The Lie algebras gX ,⃗v and ĝX ,⃗v have natural MHS and the
inclusion is a morphism. For k = Q,R, and all g,n ≥ 0 there is
a SES

0→ gX ,⃗v → ĝX ,⃗v → Lieπ1(MTM(Z))→ 0

Recall that GrW• Lieπ1(MTM(Z)) ∼= Q(0)⊕ L(σ3, σ5, σ7, . . . ),
where σm has type (−m,−m).



▶ PBW gives an isomorphism of pro-MHS

Qπ1(X , v⃗)∧ ∼=
∏
m≥0

Symm p(X , v⃗).

▶ The image of Symm p(X , v⃗) in Qλ(X )∧ is a sub-MHS.
▶ Denote its image in |Qπ1(X , v⃗)∧| ∼= Qλ(X )∧ by
|Symm p(X , v⃗)|.

▶ For simplicity, I’ll now restrict to the case where (X , v⃗) is of
type (g, 1⃗). In this case

Qλ(X )∧/Q1→ SDerQπ1(X , v⃗)

is an isomorphism by a result of Kawazumi and Kuno. It
restricts to an isomorphism

| Sym2 p(X , v⃗)| ≃−→ SDer p(X , v⃗)



So we have a diagram

ûX ,⃗v

| Sym2 p(X , v⃗)|(−1) SDer p(X , v⃗)

Qλ(X )∧ ⊗Q(−1) SDerQπ1(X , v⃗)∧

≃

of pro-MHS, where all maps are morphisms.



The restriction of the cobracket to |Sym2 p(X , v⃗)| induces a map

ûX ,⃗v |Sym2 p(X , v⃗)|(−1)
[
Qλ(X )∧

]⊗2δξ

It is closely related to the Enomoto–Satoh trace.

Theorem (H + Enomoto–Sato, Kawazumi–Kumo)
If g ≥ 3 (with the “right choice” of ξ), the cobracket δξ almost
vanishes on ûX ,⃗v. More precisely, its kernel is the kernel of

W−2ûX ,⃗v → H1(k) ∼=
⊕

m odd>1

Q(m) =
⊕

m odd>1

Qσm,

where k is the “motivic Lie algebra” of SpecZ.



Does taking the cyclic quotient kill periods?

The previous result implies that, for surfaces of type (g, v⃗),
there is no loss of periods except for the period of the extension
of Q by Q(1) related to the choice of tangent vector v⃗.

Theorem
If X is a smooth affine curve and v⃗ a non-zero tangent vector at
a cusp, then

W−3MTQπ1(X ,⃗v)∨ →W−3MT|Qπ1(X ,⃗v)∨|

is an isomorphism.

More on this in the next lecture.
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