The Goldman-Turaev Lie Bialgebra - is it Motivic?

Richard Hain

Duke University

IMAG
Université de Montpellier
May 13, 2024

Overview of the Series

Three relatively independent lectures:

- The Goldman-Turaev Lie bialgebra - is it motivic?
- Hecke actions on loops and periods of iterated Shimura integrals
- The rank of the normal function of the Ceresa cycle with a common theme:
topology of a variety $X \longleftrightarrow$ motives associated to X
especially when X is a moduli space of curves.

Initial setting

- For a topological space X, define $\lambda(X)=\left[S^{1}, X\right]$.
- When X is path connected (as it will be from now on)

$$
\lambda(X)=\text { conjugacy classes in } \pi_{1}(X, x)
$$

- For a commutative ring \mathbb{k} (for us \mathbb{Z} or a field of char 0) set

$$
\mathbb{k} \lambda(X)=\text { free } \mathbb{k} \text {-module generated by } \lambda(X)
$$

- There is an inclusion $\mathbb{k} \rightarrow \mathbb{k} \lambda(X)$ that takes 1 to the boundary of a disk and a projection $\mathbb{k} \lambda(X) \rightarrow \mathbb{k}$ that takes each loop to 1 . This gives a natural decomposition

$$
\mathbb{k} \lambda(X)=\mathbb{k} \mathbf{1} \oplus \mathfrak{l}_{\mathbb{k}} \lambda(X)
$$

- The cyclic quotient of an associative \mathbb{k}-algebra A is

$$
\mathscr{C}(A)=|A|:=A / \operatorname{span}\{u v-v u: u, v \in A\} .
$$

- For example the cyclic quotient of the free associative algebra $\mathbb{k}\langle x: x \in \mathscr{X}\rangle$ is spanned by the "cyclic words" in the elements x of the alphabet \mathscr{X} :

$$
x_{1} x_{2} \ldots x_{m} \sim x_{2} \ldots x_{m} x_{1}
$$

- We have $\mathbb{k} \lambda(X)=\mathscr{C}\left(\mathbb{k} \pi_{1}(X, x)\right)$.

The Goldman-Turaev Lie bialgebra

The Goldman bracket is a map

$$
\{, \quad\}: \mathbb{k} \lambda(X) \otimes \mathbb{k} \lambda(X) \rightarrow \mathbb{k} \lambda(X)
$$

that makes $\mathbb{k} \lambda(X)$ into a Lie algebra. The Turaev cobracket is a map

$$
\delta_{\xi}: \mathbb{k} \lambda(X) \rightarrow \mathbb{k} \lambda(X) \otimes \mathbb{k} \lambda(X)
$$

that depends on a framing ξ (a nowhere vanishing vector field) on X. Together they form a Lie bialgebra:

$$
\delta_{\xi}\{u, v\}=u \cdot \delta_{\xi}(v)-v \cdot \delta_{\xi}(u)
$$

where $w \cdot(x \otimes y)=\{w, x\} \otimes y+x \otimes\{w, y\}$.

The bracket and cobracket are defined using elementary surgery: Each element of $\lambda(X)$ can be represented by an immersed circle with simple normal crossings. (So no triple points, etc). One can perform surgery at a double point:

Goldman bracket

To define the Goldman bracket of $\alpha, \beta \in \lambda(X)$, represent them by oriented, transversally intersecting, immersed circles. Their Goldman bracket is

$$
\{\alpha, \beta\}=\sum_{P} \epsilon_{P} \alpha \# P \beta
$$

where P ranges over the points where α intersects $\beta, \epsilon_{P}= \pm 1$ is the local intersection number at P and $\alpha \# p \beta$ is the loop obtained by simple surgery at P.

An example

An example

An example

An example

$$
\{\alpha, \beta\}=\epsilon_{P} \alpha \#_{p} \beta+\epsilon_{Q} \alpha \#_{Q} \beta=\alpha \#_{p} \beta-\alpha \#_{Q} \beta
$$

The Turaev cobracket

For convenience, we denote the element $v \otimes w-w \otimes v$ of $V^{\otimes 2}$ by $v \wedge w$. Suppose that α is an immersed circle with simple normal crossings. The first step in defining the cobracket is to define for each double point P of α

$$
\delta_{P}(\alpha)=\alpha_{P}^{\prime} \wedge \alpha_{P}^{\prime \prime}
$$

where

To define $\delta_{\xi}(\alpha)$ represent α by an immersed loop with simple normal crossings and trivial winding number with respect to the framing:

$$
\operatorname{rot}_{\xi} \alpha=0
$$

(Add some "backflips" as necessary.) The cobracket is defined by

$$
\delta_{\xi}(\alpha)=\sum_{\text {double points } P} \epsilon_{P} \delta_{P}(\alpha)
$$

where $\epsilon_{P}= \pm 1$ is the local intersection number of the initial arcs of α_{P}^{\prime} and $\alpha_{P}^{\prime \prime}$ (in that order).

Sample cobracket

To compute the cobracket of

Sample cobracket

represent it by

Sample cobracket

to see that δ_{ξ} takes

Sample cobracket

Sample cobracket

Sample cobracket

to see that δ_{ξ} takes

to

- The Goldman-Turaev Lie bialgebra is involutive. That is

$$
\mathbb{k} \lambda(X) \xrightarrow{\delta_{\xi}} \mathbb{k} \lambda(X) \otimes \mathbb{k} \lambda(X) \xrightarrow{\{,\}} \mathbb{k} \lambda(X)
$$

is zero.

- The cobracket δ_{ξ} induces a map

$$
\bar{\delta}: \mathbb{k} \lambda(X) / \mathbb{k} \mathbf{1} \rightarrow(\mathbb{k} \lambda(X) / \mathbb{k} \mathbf{1})^{\otimes 2}
$$

It does not depend on the framing ξ. This is called the reduced cobracket.

The Kawazumi-Kuno action and Turaev coaction

- Let \vec{v} be a tangential base point - equivalently, a base point in the boundary of X.
- Kawazumi and Kuno extended the constructions of Goldman and Turaev to define a Lie algebra homomorphism

$$
\kappa_{\vec{v}}: \mathbb{k} \lambda(X) \rightarrow \operatorname{Der} \mathbb{k} \pi_{1}(X, \vec{v})
$$

Turaev defined a coaction

$$
\mathbb{k} \pi_{1}(X ; \vec{v}) \rightarrow \mathbb{k} \lambda(X) \otimes \mathbb{k} \pi_{1}(X ; \vec{v})
$$

Special derivations

A derivation D of $\mathbb{k} \pi_{1}(X, \vec{v})$ is special if there are $\mu_{1}, \ldots, \mu_{n} \in \mathbb{k} \pi_{1}(X, \vec{v})$ (resp., its completion) such that $D\left(\gamma_{0}\right)=0$ and

$$
D\left(\gamma_{j}\right)=\left[\gamma_{j}, \mu_{j}\right]:=\gamma_{j} \mu_{j}-\mu_{j} \gamma_{j} \text { when } j>0 .
$$

Here γ_{j} is any path of the form

Loops act as special derivations, so

$$
\kappa_{\vec{v}}: \mathbb{k} \lambda(X) \rightarrow \operatorname{SDer} \mathbb{k} \pi_{1}(X, \vec{v})
$$

Completions

- From now on, \mathbb{k} is a field of characteristic zero.
- Denote the augmentation idea of $\mathbb{k} \pi_{1}(X, \vec{v})$ by I.
- The I-adic completion of $\mathbb{k}_{\mathfrak{k}} \pi_{1}(X, \vec{v})$ is

$$
\mathfrak{k} \pi_{1}(X, \vec{v})^{\wedge}:=\underset{\underset{m}{\lim } \mathbb{k} \pi_{1}(X, \vec{v}) / I^{m}}{ }
$$

- Give $\mathbb{k} \lambda(X)$ the quotient topology via $\mathbb{k} \pi_{1}(X, \vec{v}) \rightarrow \mathbb{k} \lambda(X)$. Its I-adic completion is

$$
\mathbb{k} \lambda(X)^{\wedge}=\mathscr{C}\left(\mathbb{k} \pi_{1}(X, \vec{v})^{\wedge}\right)
$$

The completed GT Lie bialgebra

- Kawazumi and Kuno showed that the Goldman bracket and Turaev cobracket are continuous in the l-adic topology and thus induce maps

$$
\{, \quad\}: \mathbb{k} \lambda(X)^{\wedge} \otimes \mathbb{k} \lambda(X)^{\wedge} \rightarrow \mathbb{k} \lambda(X)^{\wedge}
$$

and

$$
\delta_{\xi}: \mathbb{k} \lambda(X)^{\wedge} \rightarrow \mathbb{k} \lambda(X)^{\wedge} \widehat{\otimes} \mathbb{k} \lambda(X)^{\wedge}
$$

This is the completed GT Lie bialgebra.

- They also showed that their action is continuous, so that there is a continuous Lie algebra homomorphism

$$
\kappa_{\vec{v}}: \mathbb{k} \lambda(X)^{\wedge} \rightarrow \operatorname{SDer} \mathbb{k} \pi_{1}(X, \vec{v})^{\wedge}
$$

- When (X, \vec{v}) is a surface of type $(g, \overrightarrow{1}), \kappa_{\vec{v}}$ induces an isomorphism

$$
\mathbb{Q} \lambda(X)^{\wedge} / \mathbb{Q} \mathbf{1} \xrightarrow{\simeq} \operatorname{SDer} \mathbb{k} \pi_{1}(X, \vec{v})^{\wedge}
$$

Hodge theory

- Suppose that $X=\bar{X}-S$ where \bar{X} is a compact Riemann surface, $S=\left\{s_{0}, \ldots, s_{n}\right\}$ with $n \geq 0$ and $\vec{v} \in T_{s_{0}} \bar{X}, \vec{v} \neq 0$. (So (\bar{X}, S, \vec{v}) is a topological surface of type $(g, n+\overrightarrow{1})$.)
- When needed, ξ is an algebraic framing of X. That is, a meromorphic vector field on \bar{X} that is nowhere vanishing and holomorphic on X.
- There is a canonical pro-mixed Hodge structure (MHS) on $\mathbb{Q} \pi_{1}(X, \vec{v})^{\wedge}$. It induces a canonical pro-MHS on $\mathbb{Q} \lambda(X)^{\wedge}$.
- The MHS on $\mathbb{Q} \lambda(X)^{\wedge}$ does not depend on \vec{v}, only on X.

Theorem (H: 2020, 2021)
The completed Goldman bracket

$$
\begin{aligned}
\{, \quad\}: \mathbb{k} \lambda(X)^{\wedge} \otimes \mathbb{Q}(-1) \otimes \mathbb{k} \lambda(X)^{\wedge} \otimes & \mathbb{Q} \\
& -1) \\
& \rightarrow \mathbb{k} \lambda(X)^{\wedge} \otimes \mathbb{Q}(-1),
\end{aligned}
$$

the completed Turaev cobracket

$$
\delta_{\xi}: \mathbb{k} \lambda(X)^{\wedge} \otimes \mathbb{Q}(1) \rightarrow\left[\mathbb{k} \lambda(X)^{\wedge} \otimes \mathbb{Q}(1)\right]^{\otimes_{2}}
$$

and the Kawazumi-Kuno action

$$
\kappa_{\vec{v}}: \mathbb{k} \lambda(X)^{\wedge} \otimes \mathbb{Q}(-1) \rightarrow \operatorname{SDer} \mathbb{k} \pi_{1}(X, \vec{v})^{\wedge}
$$

are all morphisms of pro-MHS.

Comments and Questions

- I believe that when X is defined over a number field K, then for all ℓ, the bracket and cobracket on $\mathbb{Q}_{\ell} \lambda(X)^{\wedge}$ (after a suitable Tate twists) are $\mathrm{Gal}(\overline{\mathbb{Q}} / K)$ equivariant. Similarly for the Kawazumi-Kuno action.
- I have a sketch of an indirect proof. Can this be proved directly by 'elementary' arguments?
- The Hodge and Galois equivariance suggests that the Goldman-Turaev Lie bialgebra is motivic. If so, what does it have to do with cycles and motives?
- It appears that there is a link to Ceresa cycle when $g \geq 3$.

Mapping class groups

- Denote the mapping class group of $(\bar{X} ; S, \vec{v})$ by $\Gamma_{X, \bar{v}}$:

$$
\Gamma_{X, \vec{v}}:=\pi_{0} \operatorname{Diff}^{+}(\bar{X}, S, \vec{v}) \cong \pi_{1}\left(\mathcal{M}_{g, n+\overrightarrow{1}},[(X, \vec{v})]\right) .
$$

It is a mapping class group of type $(g, n+\overrightarrow{1})$.

- Assume that X is hyperbolic: $2 g-2+n+1>0$.
- Its Torelli subgroup $T_{X, \vec{v}}$ is the kernel of the homomorphism $\Gamma_{X, \vec{v}} \rightarrow \operatorname{Sp}\left(H_{k}\right)$, where $H=H_{1}(\bar{X} ; \mathbb{k})$.
- We have the extension

$$
1 \rightarrow T_{X, \vec{v}} \rightarrow \Gamma_{X, \vec{v}} \rightarrow \operatorname{Sp}\left(H_{\mathbb{Z}}\right) \rightarrow 1
$$

and the natural representation $\Gamma_{X, \vec{v}} \rightarrow$ Aut $\pi_{1}(X, \vec{v})$.

Relative completion of mapping class groups

The relative completion of $\Gamma_{X, \vec{v}}$ consists of an affine (aka proalgebraic) group $\mathcal{G}_{X, \vec{v}}$ defined over \mathbb{Q} and a homomorphism

$$
\rho: \Gamma_{X, \vec{v}} \rightarrow \mathcal{G}_{X, \vec{v}}(\mathbb{Q})
$$

This group is an extension

$$
1 \rightarrow \mathcal{U}_{X, \vec{v}} \rightarrow \mathcal{G}_{X, \vec{v}} \rightarrow \operatorname{Sp}\left(H_{\mathbb{Q}}\right) \rightarrow 1
$$

where $\mathcal{U}_{X, \vec{v}}$ is prounipotent. The composite

$$
\Gamma_{X, \vec{v}} \rightarrow \mathcal{G}_{X, \vec{v}}(\mathbb{Q}) \rightarrow \operatorname{Sp}\left(H_{\mathbb{Q}}\right)
$$

is the canonical homomorphism. Such extensions form a category. The relative completion is the initial object of this category.

The unipotent completion of $\pi_{1}(X, \vec{v})^{\wedge}$

- $\mathbb{Q} \pi_{1}(X, \vec{v})$ is a Hopf algebra; its completion $\mathbb{Q} \pi_{1}(X, \vec{v})^{\wedge}$ is a complete Hopf algebra.
- The set of primitive elements of $\mathbb{Q} \pi_{1}(X, \vec{v})^{\wedge}$ is the Lie algebra $\mathfrak{p}(X, \vec{v})$ of the unipotent (aka, Malcev) completion of $\pi_{1}(X, \vec{v})$.
- If X is affine, $\mathbb{Q} \pi_{1}(X, \vec{v})^{\wedge}$ is (un-naturally) isomorphic to the completed tensor algebra

$$
T\left(H_{1}(X ; \mathbb{k})\right)^{\wedge}
$$

with the coproduct $\Delta u=1 \otimes u+u \otimes 1, u \in H_{1}(X)$. And $\mathfrak{p}(X, \vec{v})$ is isomorphic to $\mathbb{L}\left(H_{1}(X)\right)^{\wedge}$.

The Johnson homomorphism

- Since unipotent completion is functorial, the action of $\Gamma_{X, \vec{v}}$ on $\pi_{1}(X, \vec{v})$ induces a homomorphism

$$
\Gamma_{X, \vec{v}} \rightarrow \operatorname{Aut} \mathfrak{p}(X, \vec{v})
$$

- The universal mapping property of relative completion implies that it induces a homomorphism $\mathcal{G}_{X, \vec{v}} \rightarrow$ Aut $\mathfrak{p}(X, \vec{v})$ such that the diagram

commutes.
- Denote the Lie algebras of $\mathcal{G}_{X, \vec{v}}$ and $\mathcal{U}_{X, \vec{v}}$ by $\mathfrak{g}_{X, \vec{v}}$ and $\mathfrak{u}_{X, \vec{v}}$.
- The homomorphism $\mathcal{G}_{X, \vec{v}} \rightarrow$ Aut $\mathfrak{p}(X, \vec{v})$ induces a Lie algebra homomorphism

$$
\begin{equation*}
\mathfrak{g}_{X, \vec{v}} \rightarrow \operatorname{SDer} \mathfrak{p}(X, \vec{v}) \tag{*}
\end{equation*}
$$

- For each (X, \vec{v}), there is a canonical MHS on $\mathfrak{g}_{X, \vec{v}}$ and $(*)$ is a morphism of MHS.
- This is (for me) the geometric Johnson homomorphism.

The arithmetic Johnson homomorphism

- There is also a homomorphism (for $\mathbb{k}=\mathbb{Q}, \mathbb{R}$).

$$
\mathfrak{m h} \mathfrak{s}_{\mathfrak{k}} \rightarrow \operatorname{Der} \mathfrak{p}(X, \overrightarrow{\mathrm{v}})
$$

where $\mathfrak{m h}_{\mathfrak{F}_{k}}$ is the Lie algebra of $G_{\mathbb{k}}=\pi_{1}\left(\mathrm{MHS}_{\mathbb{k}}\right)$.

- Since $\mathfrak{m h} \mathfrak{s}_{\mathfrak{k}}$ acts on $\mathfrak{g}_{X, \vec{v}}$, we have

$$
\mathfrak{m} \mathfrak{S}_{\mathfrak{s}_{\mathrm{k}}} \ltimes \mathfrak{g}_{X, \overrightarrow{\mathrm{v}}}
$$

- Since $\mathfrak{m h} \mathfrak{s}_{\mathfrak{l}_{k}}$ acts on $\mathfrak{p}(X, \overrightarrow{\mathrm{v}})$, the Johnson homomorphism extends to

$$
\mathfrak{m} \mathfrak{s}_{\mathfrak{s}_{\mathrm{k}}} \ltimes \mathfrak{g}_{X, \vec{v}} \rightarrow \operatorname{Der} \mathfrak{p}(X, \overrightarrow{\mathrm{v}})
$$

- This is the arithmetic Johnson homomorphism

Arithmetic versus geometric Johnson image

- Denote the images of the geometric and arithmetic Johnson homomorphisms by $\overline{\mathfrak{g}}_{X, \vec{v}}$ and $\widehat{\mathfrak{g}}_{X, \vec{v}}$, respectively.
- Denote their pronilpotent radicals by $\overline{\mathfrak{u}}_{X, \vec{v}}$ and $\widehat{\mathfrak{u}}_{X, \vec{v}}$, respectively.
- The proof of Oda's Conjecture by Takao (+ Ihara, Matsumoto, Nakamura, ...), Hodge theory and Brown's fundamental theorem (on mixed Tate motives) give:

Theorem
The Lie algebras $\overline{\mathfrak{g}}_{X, \vec{v}}$ and $\widehat{\mathfrak{g}}_{X, \vec{v}}$ have natural MHS and the inclusion is a morphism. For $\mathbb{k}=\mathbb{Q}, \mathbb{R}$, and all $g, n \geq 0$ there is a SES

$$
0 \rightarrow \overline{\mathfrak{g}}_{X, \vec{v}} \rightarrow \widehat{\mathfrak{g}}_{X, \vec{v}} \rightarrow \operatorname{Lie} \pi_{1}(\operatorname{MTM}(\mathbb{Z})) \rightarrow 0
$$

Recall that $\operatorname{Gr}_{\bullet}^{W}$ Lie $\pi_{1}(\operatorname{MTM}(\mathbb{Z})) \cong \mathbb{Q}(0) \oplus \mathbb{L}\left(\sigma_{3}, \sigma_{5}, \sigma_{7}, \ldots\right)$, where σ_{m} has type $(-m,-m)$.

- PBW gives an isomorphism of pro-MHS

$$
\mathbb{Q} \pi_{1}(X, \vec{v})^{\wedge} \cong \prod_{m \geq 0} \operatorname{Sym}^{m} \mathfrak{p}(X, \vec{v})
$$

- The image of $\operatorname{Sym}^{m} \mathfrak{p}(X, \vec{v})$ in $\mathbb{Q} \lambda(X)^{\wedge}$ is a sub-MHS.
- Denote its image in $\left|\mathbb{Q} \pi_{1}(X, \vec{v})^{\wedge}\right| \cong \mathbb{Q} \lambda(X)^{\wedge}$ by $\left|\operatorname{Sym}^{m} \mathfrak{p}(X, \vec{v})\right|$.
- For simplicity, l'll now restrict to the case where (X, \vec{v}) is of type $(g, \overrightarrow{1})$. In this case

$$
\mathbb{Q} \lambda(X)^{\wedge} / \mathbb{Q} \mathbf{1} \rightarrow \operatorname{SDer} \mathbb{Q} \pi_{1}(X, \vec{v})
$$

is an isomorphism by a result of Kawazumi and Kuno. It restricts to an isomorphism

$$
\left|\operatorname{Sym}^{2} \mathfrak{p}(X, \overrightarrow{\mathrm{v}})\right| \xrightarrow{\simeq} \operatorname{SDer} \mathfrak{p}(X, \overrightarrow{\mathrm{v}})
$$

So we have a diagram

of pro-MHS, where all maps are morphisms.

The restriction of the cobracket to $\left|\operatorname{Sym}^{2} \mathfrak{p}(X, \overrightarrow{\mathrm{v}})\right|$ induces a map

$$
\widehat{\mathfrak{u}}_{X, \vec{v}} \longrightarrow\left|\operatorname{Sym}^{2} \mathfrak{p}(X, \overrightarrow{\mathrm{v}})\right|(-1) \xrightarrow{\delta_{\xi}}\left[\mathbb{Q} \lambda(X)^{\wedge}\right]^{\otimes 2}
$$

It is closely related to the Enomoto-Satoh trace.
Theorem (H + Enomoto-Sato, Kawazumi-Kumo)
If $g \geq 3$ (with the "right choice" of ξ), the cobracket δ_{ξ} almost vanishes on $\widehat{\mathfrak{u}}_{X, \vec{v}}$. More precisely, its kernel is the kernel of

$$
W_{-2} \widehat{\mathfrak{u}}_{X, \vec{v}} \rightarrow H_{1}(\mathfrak{k}) \cong \bigoplus_{m \text { odd }>1} \mathbb{Q}(m)=\bigoplus_{m \text { odd }>1} \mathbb{Q} \sigma_{m},
$$

where \mathfrak{k} is the "motivic Lie algebra" of $\operatorname{Spec} \mathbb{Z}$.

Does taking the cyclic quotient kill periods?

The previous result implies that, for surfaces of type (g, \vec{v}), there is no loss of periods except for the period of the extension of \mathbb{Q} by $\mathbb{Q}(1)$ related to the choice of tangent vector \vec{v}.

Theorem

If X is a smooth affine curve and \vec{v} a non-zero tangent vector at a cusp, then

$$
W_{-3} \mathrm{MT}_{\mathbb{Q} \pi_{1}(X, \vec{v})^{\vee}} \rightarrow W_{-3} \mathrm{MT}_{\left|\mathbb{Q} \pi_{1}(X, \vec{v})^{\vee}\right|}
$$

is an isomorphism.
More on this in the next lecture.
A. Alekseev, N. Kawazumi, Y. Kuno, F. Naef: The Goldman-Turaev Lie bialgebra in genus zero and the Kashiwara-Vergne problem, Adv. Math. 326 (2018), 1-53.

圊 A. Alekseev, N. Kawazumi, Y. Kuno, F. Naef: The Goldman-Turaev Lie bialgebra and the Kashiwara-Vergne problem in higher genera, [arXiv:1804.09566]
W. Goldman: Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), 263-302.
A. Goncharov: Hodge correlators, J. Reine Angew. Math. 748 (2019), 1-138.
R. Rain: Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997), 597-651.

图 R. Hain: Hodge theory of the Goldman bracket, Geom. Topol. 24 (2020), 1841-1906.
R. Hain: Johnson homomorphisms, EMS Surv. Math. Sci. 7 (2020), 33-116.
R. Hain: Hodge theory of the Turaev cobracket and the Kashiwara-Vergne problem, J. Eur. Math. Soc. 23 (2021), 3889-3933.
V. Turaev: Skein quantization of Poisson algebras of loops on surfaces, Ann. Sci. École Norm. Sup. (4) 24 (1991), 635-704.

