Hecke actions on loops and periods of iterated Shimura integrals

Richard Hain

Duke University

Fields Institute, Toronto March 18, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Outline

Background and Motivation

Relative unipotent completion

The Hecke action

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Iterated line integrals

These are functions on the path space *PM* of a smooth manifold *M*. Suppose that $\omega_1, \ldots, \omega_r$ are smooth k-valued 1-forms on *M*. The function

$$\int \omega_1 \dots \omega_r : \mathbf{PM} \to \mathbb{k}$$

takes the value

$$\int_{\alpha} \omega_1 \dots \omega_r := \int_{0 \le t_1 \le \dots \le t_r \le 1} f_1(t_1) \dots f_r(t_r) dt_1 \dots dt_r$$

on the piecewise smooth path $\alpha : [0, 1] \rightarrow M$, where

$$\gamma^*\omega_j=f_j(t)dt.$$

(ロ) (同) (三) (三) (三) (○) (○)

An iterated line integral is a linear combination of such functions.

An iterated (line) integral is *closed* if its value on each path depends only on its homotopy class relative to its endpoints. Closed iterated integrals on *M* induce functions

 $\pi_1(M, x) \rightarrow \Bbbk.$

Iterated integrals of holomorphic 1-forms on a complex curve are closed.

Example: Take $M = \mathbb{P}^1 - \{0, 1, \infty\}$, $\omega_0 = dz/z$ and $\omega_1 = dz/(1-z)$. Then

$$\mathrm{Li}_k(z) = \int_0^z \omega_1 \underbrace{\omega_0 \ldots \omega_0}^{k-1}$$

is the *k*th polylogarithm, a multivalued function. On the principal branch $Li_k(1) = \zeta(k)$.

Iterated Shimura integrals (Manin, 2005)

Suppose that f_1, \ldots, f_m are modular forms of $\Gamma \leq SL_2(\mathbb{Z})$. Set

$$\omega_j = f_j(\tau) \tau^{k_j - 1} d\tau$$
 where $0 < k_j < (\text{weight of } f_j)$

An *iterated Shimura integral* is a linear combination of iterated iterated integrals of the form

$$\int \omega_1 \omega_2 \dots \omega_m.$$

They are closed and define holomorphic functions

$$\tau\mapsto\int_{\tau_0}^{\tau}\omega_1\omega_2\ldots\omega_m$$

on the upper half plane \mathfrak{h} , and thus functions

$$\Gamma \to \mathbb{C}, \quad \gamma \mapsto \int_{\tau_0}^{\gamma \tau_0} \omega_1 \omega_2 \dots \omega_m.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Multiple modular values (Brown, 2014)

A multiple modular value is the regularized value of

$$\int_0^{i\infty} \omega_1 \dots \omega_m$$

= $i^{k_1 + \dots + k_m} \int_{0 \le y_1 \le \dots \le y_m} f_1(iy_1) y_1^{k_1 - 1} \dots f_m(iy_m) y_m^{k_m - 1} dy_1 \dots dy_m.$

These include periods of cusp forms (m = 1) and all multiple zeta values:

Take $\Gamma = \Gamma(2)$ and f_j to be Eisenstein series of weight 2. Then $\Gamma \setminus \mathfrak{h} = \mathbb{P}^1 - \{0, 1, \infty\}$ and (for example)

$$\zeta(a,b) := \sum_{0 < m < n} \frac{1}{m^a n^b} = \int_0^1 \omega_1 \underbrace{\omega_0 \ldots \omega_0}^{a-1} \omega_1 \underbrace{\omega_0 \ldots \omega_0}^{b-1} \cdots \underbrace{\omega_0}^{b-1} \cdots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Twice iterated integrals of Eisenstein series

$$\Lambda(\mathbb{G}_m,\mathbb{G}_n;a,b)=\int_0^{i\infty}\mathbb{G}_m(\tau)\tau^{a-1}d\tau\ \mathbb{G}_n(\tau)\tau^{b-1}d\tau$$

where

$$\mathbb{G}_{2k}(\tau) = -\frac{B_{2k}}{4k} + \sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^n.$$

Brown (2014) showed that certain linear combinations of twice iterated integrals of Eisenstein series are non-critical periods of cusp forms. For example:

$$600\Lambda(\mathbb{G}_4,\mathbb{G}_{10};2,5)+480\Lambda(\mathbb{G}_4,\mathbb{G}_{10};3,4)=\frac{1}{\pi}\int_0^{i\infty}\Delta(\tau)\tau^{12}d\tau.$$

where Δ is the Ramanujan τ -function. Other \mathbb{Q} -linear combinations are multiple zeta values.

Questions

- 1. Where do iterated Shimura integrals arise? What is the significance of multiple modular values?
- 2. Can Brown's computations of periods of twice iterated integrals of Eisenstein series be proved using a Hecke action on (say) iterated Shimura integrals?
- 3. What is the relationship of MMVs for $\Gamma(N)$, N > 1, to Goncharov's work on "higher cyclotomy"? (N = 1: Brown + Hain–Matsumoto.)

(ロ) (同) (三) (三) (三) (○) (○)

I'll address the first — the other two are works in progress.

Outline

Background and Motivation

Relative unipotent completion

The Hecke action

Executive summary

Relative unipotent completion replaces a discrete group, such as $SL_2(\mathbb{Z})$, by an affine \mathbb{Q} group (i.e., a pro-algebraic group) \mathcal{G} and a Zariski dense homomorphism $\tilde{\rho} : \Gamma \to \mathcal{G}(\mathbb{Q})$. It is an extension of a (possibly pro-) reductive group, to be specified in advance, by a prounipotent group.

The point is that relative completion replaces the discrete group Γ (not motivic) by a vector space — the ring of functions $\mathcal{O}(\mathcal{G})$ on \mathcal{G} . With the right choices, this Hopf algebra is "motivic" in the sense that it has a natural mixed Hodge structure (MHS) and, after tensoring with \mathbb{Q}_{ℓ} , a Galois action.

The connection to iterated Shimura integrals is that $\mathcal{O}(\mathcal{G})$ is a Hopf algebra of closed iterated integrals which contains all iterated Shimura integrals.

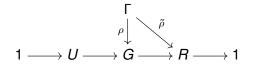
Brief definition

Γ a discrete group, R a (pro)reductive Q-group, ρ: Γ → R(Q) a Zariski representation

 \blacktriangleright Extensions of affine groups (over $\mathbb{Q})$ of the form

 $1 \rightarrow U \rightarrow G \rightarrow R \rightarrow 1$

where *U* is (pro)unipotent plus a homomorphism $\tilde{\rho} : \Gamma \to G(\mathbb{Q})$ that lift ρ



form a category. The relative completion of Γ (with respect to ρ) is the initial object of this category: $\Gamma \rightarrow \mathcal{G}(\mathbb{Q})$ where

$$1 \rightarrow \mathcal{U} \rightarrow \mathcal{G} \rightarrow R \rightarrow 1.$$

Setup for relative completion of $SL_2(\mathbb{Z})$

- Denote the modular curve SL₂(Z)\h by Y. It will be regarded as a stack. (That is, we work SL₂(Z) equivariantly on h.)
- ► The choice of a base point $\tau_0 \in \mathfrak{h}$ determines an isomorphism

$$\operatorname{SL}_2(\mathbb{Z}) \to \pi_1(Y, \tau_0).$$

The element γ maps to the loop that corresponds to the unique homotopy class c_{γ} of paths from τ_0 to $\gamma \tau_0$ in \mathfrak{h} .

- The most natural choice of a base point is the tangent vector ∂/∂q at the cusp. (That is, *i*[y,∞), y ≫ 0.)
- There are two natural choices for the relative completion of SL₂(Z) — the "small" and the "large".

The "small" completion of $SL_2(\mathbb{Z})$

• Here $R = SL_{2/\mathbb{Q}}$ and ρ is the inclusion. It is an extension

 $1 \rightarrow \mathcal{U} \rightarrow \mathcal{G} \rightarrow \text{SL}_2 \rightarrow 1.$

Its coordinate ring $\mathcal{O}(\mathcal{G})$ consists of all closed iterated integrals of elements of

 $\begin{cases} \text{"smooth modular forms" of level 1 on} \\ \mathfrak{h} \text{ with a "log singularity" at the cusp} \end{cases}$

It contains all iterated Shimura integrals of level 1. The homomorphism

 $\tilde{\rho}: \mathrm{SL}_2(\mathbb{Z}) \to \mathcal{G}(\mathbb{C})$

takes $\gamma \in \operatorname{SL}_2(\mathbb{Z})$ to

the maximal ideal of such iterated integrals that vanish on the path c_{γ} from τ_0 to $\gamma \tau_0$

The "large" completion of $SL_2(\mathbb{Z})$

- Every profinite group can be regarded as a pro-reductive group in natural way.
- ► To get the *large completion*, take $R = SL_{2/\mathbb{Q}} \times SL_2(\widehat{\mathbb{Z}})$ and ρ to be the diagonal inclusion.
- It is an extension

$$1 \to \widehat{\mathcal{U}} \to \widehat{\mathcal{G}} \to SL_{2/\mathbb{Q}} \times SL_2(\widehat{\mathbb{Z}}) \to 1.$$

Its coordinate ring contains iterated Shimura integrals of all levels as well as all continuous functions SL₂(²) → k.

• \mathcal{G} is a quotient of $\widehat{\mathcal{G}}$.

Motivic structures

- For each choice of *τ*₀ ∈ 𝔥, there are natural MHSs on *O*(*G*) and *O*(*Ĝ*). We will take *v* := ∂/∂*q*, the most natural choice.
- After tensoring with Qℓ, there is a natural GQ action. So O(Ĝ) looks like a motive as it has compatible Hodge and étale realizations.
- There is also a natural Q DR structure, so we have periods.
- The periods O(Ĝ) contain Brown's multiple modular values (MMVs), which are iterated Shimura integrals evaluated on the imaginary axis. This is c_γ for

$$\gamma = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

The graded quotients of the weight filtration of both are sums of "motives" of the form

$$\operatorname{Sym}^{r_1} V_{f_1} \otimes \cdots \otimes \operatorname{Sym}^{r_m} V_{f_m} \otimes S^n H(d)$$
(*)

where V_f denotes the motive (Hodge structure, Galois representation) associated to a Hecke eigen form *f* and $H = H^1(E_{\tau_0})$. (Note that $H_{\partial/\partial q} = \mathbb{Z}(0) \oplus \mathbb{Z}(1)$.)

Thus (after rearranging and taking SL₂ invariants) one generates lots of extensions of Q(0) by the "motives"

$$\operatorname{Sym}^{r_1} V_{f_1} \otimes \cdots \otimes \operatorname{Sym}^{r_m} V_{f_m}(d).$$

- Do these conform to Beilinson's conjectures? Wrinkle: Brown [1,§17] observed that they cannot quite conform.
- Does the Hecke algebra act on Z[SL₂(Z)], O(G) or its periods? If so, can one explain Brown's computation of periods of twice iterated integrals of Eisenstein?

Outline

Background and Motivation

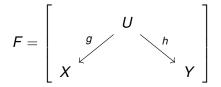
Relative unipotent completion

The Hecke action

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Étale correspondences

Call a correspondence

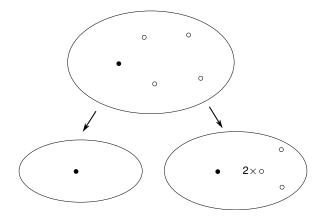


étale if both g and h are étale. It acts on (say) homology by the formula

$$F_* = h_* \circ g^*.$$

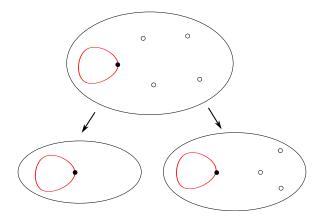
◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

An example to illustrate the problem:



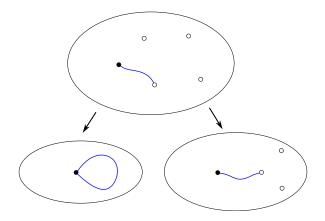
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

An example to illustrate the problem:



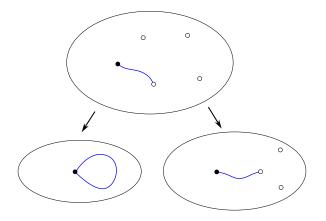
▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

An example to illustrate the problem:



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

An example to illustrate the problem:



This problem can be avoided by working with conjugacy classes — equivalently, with unbased loops.

For a topological space define

 $\lambda(X) = \{ \text{free homotopy classes of maps } S^1 \to X \}.$

For a group Γ define

 $\lambda(\Gamma) = \{ \text{conjugacy classes in } \Gamma \}.$

If X is connected, then $\lambda(X) = \lambda(\pi_1(X, x))$.

Denote the free \Bbbk modules they generate by

 $\Bbbk \lambda(X)$ and $\Bbbk \lambda(\Gamma)$.

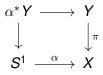
These are clearly covariant under maps $Y \to X$ and group homomorphisms $\Gamma' \to \Gamma$.

Pullback

When $\pi: Y \to X$ is étale, there is a pullback map

$$\pi^*:\mathbb{Z}\lambda(X)\to\mathbb{Z}\lambda(Y).$$

To compute its value on $\alpha : S^1 \to X$ observe that the pullback covering $\alpha^* Y \to S^1$

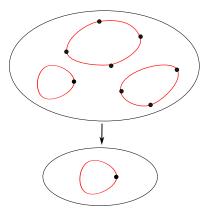


is a disjoint union of circles $\tilde{\alpha}_j : S^1 \to Y$. Define

$$\pi^*\alpha = \sum_j \tilde{\alpha}_j \in \lambda(Y).$$

(ロ) (同) (三) (三) (三) (○) (○)

An example:



Observe that deg $\pi = 8$ and that $\pi_*\pi^*\alpha = \alpha + \alpha^3 + \alpha^4 \neq 8\alpha$.

・ロト・日本・モト・モー ショー ショー

Étale correspondences act on $\mathbb{Z}\lambda(X)$

Proposition An étale, the correspondence

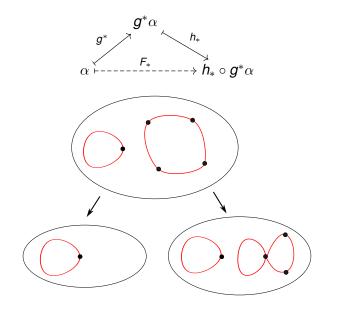
$$F = [X \xleftarrow{g} U \xrightarrow{h} Y]$$

induces a homomorphism $F_* : \mathbb{Z}\lambda(X) \to \mathbb{Z}\lambda(Y)$. Namely, the composite

$$\mathbb{Z}\lambda(X) \stackrel{g^*}{\longrightarrow} \mathbb{Z}\lambda(U) \stackrel{h_*}{\longrightarrow} \mathbb{Z}\lambda(Y).$$

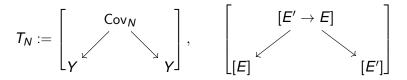
If F and G are composable étale correspondences, then $G \circ F$ is étale and $(G \circ F)_* = G_* \circ F_*$.

An example:



Hecke operators

Denote the moduli space of degree $N \ge 1$ isogenies $E' \to E$ of elliptic curves by Cov_N . The Hecke operator T_N is the étale correspondence



When N = p, a prime, $Cov_N = Y_0(p)$.

Proposition

The Hecke operators T_N , $N \in \mathbb{N}$, act on $\mathbb{Z}\lambda(SL_2(\mathbb{Z}))$. The operators T_N and T_M commute when M and N are relatively prime.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For each prime *p* define

$$\mathbf{e}_{\rho}:\mathbb{Z}\lambda(\mathrm{SL}_2(\mathbb{Z})) o\mathbb{Z}\lambda(\mathrm{SL}_2(\mathbb{Z}))$$

by $\mathbf{e}_{p} = \pi_{*}\pi^{*} - \mathrm{id}$ where $\pi : Y_{0}(p) \rightarrow Y$. It is a non-commutative generalization of p.

Theorem

The actions of the Hecke operators T_{p^n} on $\mathbb{Z}\lambda(SL_2(\mathbb{Z}))$ satisfy

$$T_{p^n} \circ T_p = T_{p^{n+1}} + T_{p^{n-1}} \circ \mathbf{e}_p. \tag{\dagger}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Note that T_p does *not* commute with \mathbf{e}_p . Since

$$T_{
ho}^2=T_{
ho^2}+{f e}_{
ho}$$

we have

$$[T_{\rho}, T_{\rho^2}] = -[T_{\rho}, \mathbf{e}_{\rho}] \neq 0.$$

Generalized Hecke algebra

Each \mathbf{e}_p satisfies a polynomial relation. Let $m_p(x)$ be the monic generator of the ideal

$$\{h(x) \in \mathbb{Q}[x] : h(\mathbf{e}_{\rho}) = 0\} \subset \mathbb{Q}[x].$$

Then

$$m_p(x) = egin{cases} x(x+1)(x-2) & p=2\ x(x^2-1)(x-p) & p ext{ odd}. \end{cases}$$

Define a non commutative Hecke algebra $\widehat{\mathbb{T}}$ to be the restricted tensor product of the non-commutative algebras

$$\widehat{\mathbb{T}}_{p} := \mathbb{Z} \langle T_{p}, \mathbf{e}_{p} \rangle / (m_{p}(\mathbf{e}_{p})).$$

For m > 1, define $T_{\rho^m} \in \widehat{\mathbb{T}}_{\rho}$ using (†). Then $\widehat{\mathbb{T}}$ acts on $\mathbb{Z}[SL_2(\mathbb{Z})]$.

Dual version

Set
$$\mathscr{C}(\widehat{\mathcal{G}}) = \mathcal{O}(\widehat{\mathcal{G}})^{\operatorname{conj}} = \{ \text{class functions } \widehat{\mathcal{G}} \to \mathbb{C} \}.$$

Length 0: generated by tr and characters of $SL_2(\mathbb{Z}/N)$.

Length 1: Suppose *f* is a modular form of weight 2*n*, level 1. Denote the corresponding $S^{2n-2}H$ valued form by ω_f . Since

$$\mathcal{O}(\mathrm{SL}_2) = \bigoplus_{m \ge 0} (\operatorname{End} S^m H)^{\vee} \subset \mathcal{O}(\widehat{\mathcal{G}}),$$
 (Peter–Weyl)

 $\mathcal{O}(\mathrm{SL}_2)$ contains countable copies of $S^{2n-2}H$ for each $n \ge 0$. Fix an SL_2 invariant function $\varphi : S^{2n-2}H \to \mathcal{O}(\mathrm{SL}_2)$. Set

 $\omega_f(\varphi) = \varphi \circ \omega_f$, a 1-form with values in $\mathcal{O}(SL_2)$.

Then

$$F_{f,\varphi}: \alpha \mapsto \left\langle \int_{\alpha} \omega_f(\varphi), \alpha \right\rangle \quad \text{is in } \mathscr{C}\!\ell(\widehat{\mathcal{G}}).$$

Proposition

The ring $\mathscr{C}(\widehat{\mathcal{G}})$ of class functions on $\widehat{\mathcal{G}}$ carries a natural mixed Hodge structure as well as a natural $G_{\mathbb{Q}}$ action after tensoring with \mathbb{Q}_{ℓ} . Neither depends on the choice of the base point.

The weight graded quotients of $\mathscr{C}\!\ell(\widehat{\mathcal{G}})\otimes\mathbb{R}$ are sums of "motives" of the form

$$\operatorname{Sym}^{r_1} V_{f_1} \otimes \cdots \otimes \operatorname{Sym}^{r_m} V_{f_m}(d)$$

where f_1, \ldots, f_m are modular forms of arbitrary weight and level.

Theorem

Each Hecke correspondence T_N induces a (dual) Hecke operator

 $\check{T}_N:\mathscr{C}\!\ell(\widehat{\mathcal{G}})\to\mathscr{C}\!\ell(\widehat{\mathcal{G}})$

which is a morphism of mixed Hodge structures and, after tensoring with \mathbb{Q}_{ℓ} , is Galois equivariant. This action is dual to the action on $\mathbb{Z}\lambda(\mathrm{SL}_2(\mathbb{Z}))$ in the sense that

 $\langle \check{T}_N F, \alpha \rangle = \langle F, T_N(\alpha) \rangle.$

In addition, the Adams operations

$$\psi^{m}: \mathscr{C}\ell(\widehat{\mathcal{G}}) \to \mathscr{C}\ell(\widehat{\mathcal{G}})$$

defined by

$$\langle \psi^m F, \alpha \rangle := \langle F, \alpha^m \rangle$$

(ロ) (同) (三) (三) (三) (○) (○)

are morphisms of MHS and commute with the Galois action.

A simple example

The Adams operator ψ^m acts on the periods of $\mathscr{C}(\widehat{\mathcal{G}})$ by

$$\psi^{m}: \langle F, \alpha \rangle \mapsto \langle F, \alpha^{m} \rangle.$$

If *f* is a modular form of weight 2*n* and level 1 and if $\alpha \in SL_2(\mathbb{Z})$ acts on $\mathbb{P}^1(\mathbb{F}_p)$ with one orbit, then

$$T_{p}\langle F_{f,\varphi}, \alpha \rangle := \langle F_{f,\varphi}, T_{p}(\alpha) \rangle = \frac{\psi^{p+1}}{p^{n-1}(p+1)} \langle F_{T_{p}(f),\varphi}, \alpha \rangle.$$

So if $f = \sum a_n q^n$ is a normalized Hecke eigenform, then $\langle F_{f,\varphi}, \alpha \rangle$ will be an "eigen-period" of T_p with "eigenvalue"

$$\frac{a_p}{p^{n-1}(p+1)}\psi^{p+1}.$$

Two questions

- Does Cl(G) generate MMM? This is closely related to Brown's question. As mentioned before, this generation statement is slightly inconsistent with Beilinson's conjecture.
- 2. Have we thrown out the baby with the bathwater when we replaced $\mathcal{O}(\widehat{\mathcal{G}})$ by $\mathscr{C}(\widehat{\mathcal{G}})$? At the other extreme, do they generate the same tannakian subcategory of (say) MHS, in which case there their rings of periods are the same?

Mumford–Tate groups

The category $MHS_{\mathbb{Q}}$ of \mathbb{Q} -Mixed Hodge structures is a \mathbb{Q} -linear tannakian category. It is therefore equivalent to the category of representations of an affine \mathbb{Q} -group $\pi_1(MHS)$. The Mumford–Tate group of a \mathbb{Q} -MHS *V* is the image of the homomorphism

 $\pi_1(MHS) \rightarrow Aut V_{\mathbb{Q}}.$

It is an affine algebraic group. Denote it by MT_V .

Since $\mathscr{C}(\widehat{\mathcal{G}}) \subset \mathcal{O}(\widehat{\mathcal{G}})$, the homomorphism

$$\mathrm{MT}_{\mathcal{O}(\widehat{\mathcal{G}})} \to \mathrm{MT}_{\mathscr{C}(\widehat{\mathcal{G}})}$$

is surjective. The question is whether this homomorphism is also injective.

The unipotent case

I am inclined to think that it is based on the unipotent case.

Theorem

If X is a smooth affine curve and \vec{v} a non-zero tangent vector at a cusp, then

$$W_{-3}\mathrm{MT}_{\mathcal{O}(\pi_1^{\mathrm{un}}(X,\vec{v}))} \to W_{-3}\mathrm{MT}_{\mathscr{C}(\pi_1^{\mathrm{un}}(X,\vec{v}))}$$

is an isomorphism.

The proof uses the unipotent completions of the Goldman bracket

$$\{ \ , \ \}: \mathbb{Z}\lambda(X)\otimes \mathbb{Z}\lambda(X) \to \mathbb{Z}\lambda(X),$$

which makes $\mathbb{Z}\lambda(X)$ into a Lie algebra, and the *Kawazumi–Kuno action*

$$\kappa: \mathbb{Z}(\lambda(X)) \to \operatorname{Der} \mathbb{Z}\pi_1(X, \vec{v}).$$

(ロ) (同) (三) (三) (三) (○) (○)

References

- [1] F. Brown: Multiple modular values and the relative completion of the fundamental group of M_{1,1}.
 [arXiv:1407.5167]
- R. Hain: *The Hodge–de Rham theory of modular groups*. Recent advances in Hodge theory, 422–514, London Math. Soc. Lecture Note Ser., 427, 2016. [arXiv:1403.6443]
- [3] R. Hain: *Hecke Actions on loops and periods of iterated Shimura integrals*, [arXiv:2303.00143]