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Unipotent completion

For F a field of characteristic zero and Γ a finitely generated
discrete group, have group algebra FΓ, its augmentation
ϵ : FΓ→ F and its augmentation ideal J = ker{ϵ : FΓ→ F}.
The J-adic completion of FΓ is

FΓ∧ : lim←−
n

FΓ/Jn.

This is a complete Hopf algebra.

Unipotent Completion
The set of F -points of the unipotent completion of Γ F is the
prounipotent group

Γun(F ) =
{

group-like elets of FΓ∧
}
= {x ∈ 1+J∧ : ∆x = x⊗x}.
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Example: completion of a free group

If Γ is the free group Γ = ⟨u, v⟩ and ad − bc ̸= 0, then

θ : FΓ∧
≃−→ F ⟨⟨X ,Y ⟩⟩

is a (complete) Hopf algebra isomorphism when

θ(u) = expU and θ(v) = expV

where U,V ∈ L(X ,Y )∧ and

U ≡ aX + bY and V ≡ cX + dY mod J2.

Theta induces an isomorphism Γun(F )
≃−→ expL(X ,Y )∧
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Integral base points

P1 − {0,1,∞} has no points over Z, and P1 has only 6
everywhere non-zero tangent vectors over Z:

P1 − {0,1,∞}

��

// P1

��
SpecZ

0,1,∞
66

no sections

JJ

SpecZ[ϵ]/(ϵ2)oo

6 sections

VV

These tangent vectors are ∂/∂z ∈ T0P1 and its translates under
Aut(P1, {0,1,∞}).
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Real blow-up

10

∞

1

∞

0
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Drinfeld Associator
The Drinfeld associator Φ(Y ,Z ) ∈ C⟨⟨Y ,Z ⟩⟩ is the regularized
value of the parallel transport, along the unit interval, of the
KZ -connection

∇f = df − fω

where

ω =
dz
z

Y +
dz

z − 1
Z ∈ H0(Ω1

P1(log{0,1,∞}
)
⊗ L(Y ,Z ).

Its coefficients are multi-zeta numbers:

Φ(Y ,Z ) = 1 + ζ(2)[Y ,Z ]− ζ(3)[Y , [Y ,Z ]] + ζ(1,2)[[Y ,Z ],Z ]

− ζ(4)[Y , [Y , [Y ,Z ]]]− ζ(1,3)[Y , [[Y ,Z ],Z ]]

+ ζ(1,1,2)[[[Y ,Z ],Z ],Z ] +
1
2
ζ(2)2[Y ,Z ]2 + · · ·

Richard Hain Elliptic Motives and Multiple Zeta Values
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Fundamental groupoid

The Drinfeld associator defines a
functor from the fundamental
groupoid of P1 − {0,1,∞} to the
group-like elements of

C⟨⟨X0,X1⟩⟩
∼= C⟨⟨X0,X1,X∞⟩⟩/(X0 +X1 +X∞). e(X∞/2)

e(X∞/2)

e(X0/2)

Φ(X0, X1)

e(X1/2)

Φ(X1, X∞)Φ(X∞, X0)
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Punctured elliptic curves

Want to study the motivic structure on the unipotent completion
of a punctured elliptic curve.

Suppose E = (E ,0) is an elliptic curve over C.
Set E ′ := E − {0}
For x ∈ E ′, have π1(E ′, x), a free group of rank 2.

Likewise, for v⃗ ∈ TidE − {0}, we have π1(E ′, v⃗)
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The fundamental torsor

We would like to generalize the genus 0 story to genus 1. But in
genus 1, there are many elliptic curves. So we consider all at
once:

E →M1,1

is the universal punctured elliptic curve. Over E ′, the universal
punctured elliptic curve, we have the torsor

PPP → E ′

whose fiber over [E , x ] is the unipotent completion of π1(E ′, x).

Richard Hain Elliptic Motives and Multiple Zeta Values
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The universal elliptic curve

To describe PPP, we need an explicit description of E . It is the
orbifold quotient

E =
(
SL2(Z)⋉ Z2)\(C× h

)
where

(m,n) : (ξ, τ) 7→ (ξ + mτ + n, τ)

and (
a b
c d

)
: (ξ, τ) 7→

(
ξ/(cτ + d), (aτ + b)/(cτ + d)

)
.

Richard Hain Elliptic Motives and Multiple Zeta Values
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The Jacobi form F (ξ, η, τ)

A certain Jacobi modular form F is fundamental in writing down
the connection on PPP. Geometrically, F is a section of a line
bundle over the total space of

E ×M1,1
E →M1,1.

whose divisor is
ι∗∆− Z1 − Z2

where ι∗∆ is the graph of the elliptic involution ι : x 7→ −x and
Zj is the locus zj = 0, where (z1, z2) are the fiber coordinates.
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Formula for F

F is a meromorphic function on C× C× h, first defined by
Kronecker (1881) and rediscovered by Zagier (1991):

F (ξ, η, τ) =
θ′(0; τ)θ(ξ + η; τ)

θ(ξ, τ)θ(η, τ)

=
1
ξ
+

1
η
− 2

∞∑
r ,s=0

(2πi)1+max{r ,s}
(
∂

∂τ

)min{r ,s}

G|r−s|+1(τ)
ξr

r !
ηs

s!
,

where Godd = 0 and

G2m(τ) = −
B2m

4m
+

∞∑
n=1

σ2m−1(n)qn

with q = exp(2πiτ). The function F is modular in τ and is
elliptic in ξ and η.
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The Levin-Racinet connection

Denote the group-like elements of C⟨⟨T ,A⟩⟩ by P and its Lie
algebra L(T ,A)∧ by p. Then the 1-form

ω = 2πiA
∂

∂T
dτ + ψ + ν ∈ H0(Ω1

C×h)⊗̂Der p

defines a connection on P × C× h→ h by ∇f = df + ωf , where

ψ = 4πi
∑
m≥1

[
G2m+2(τ)

(2m)!
dτ

∑
j+k=2m+1

j,k>0

(−1)j [adj
T (A), ad

k
T (A)]

∂

∂A

]

and

ν = adT F (ξ, adT /2πi , τ)(A)dξ+
(

1
adT

+adT
∂F
∂T

(ξ, adT /2πi , τ)
)
(A)dτ.
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Description of PPPDR

The action of SL2(Z)⋉ Z2 on C× h can be lifted to this bundle.
The quotient is, by definition, PPPDR. For γ ∈ SL2(Z)⋉ Z2 define

γ(u, ξ, τ) =
(
M̃γ(ξ, τ)u,g(ξ, τ)

)
where M̃γ(ξ, τ) = e−m adT when γ = (m,n) ∈ Z2 and, when

γ =

(
a b
c d

)
∈ SL2(Z),

M̃γ(ξ, τ) = Mγ(τ) ◦ exp
(
cξ adT /(cτ + d)

)
where

Mγ(τ) :

{
A 7→ (cτ + d)−1A + cT
T 7→ (cτ + d)T

Richard Hain Elliptic Motives and Multiple Zeta Values



Preliminaries
Genus 1 Story
Elliptic Motives

Introduction
The Levin-Racinet connection
Monodromy representation

Flatness and descent

Theorem (Levin-Racinet)
1 The connection is invariant: for all γ ∈ SL2(Z)⋉ Z2

γ∗ω = Ad(γ)ω − dM̃γM̃−1
γ

2 The connection is flat:

dω +
1
2
[ω, ω] = 0.

So the connection descends to a flat meromorphic connection
on the principal PPPDR bundle (SL2(Z)⋉ Z2)\(P × C× h) over E .

Richard Hain Elliptic Motives and Multiple Zeta Values
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On each 2-pointed elliptic curve (Eτ ,0, x), the connection
restricts to the flat connection

∇ = d + adT F (ξ, adT /2πi , τ)(A)dξ.

Parallel transport induces a homomorphism

π1(E ′
τ , x)→ P

that is an isomorphism as

a 7→ 2πiA and b 7→ 2πiτA− T mod [P,P].

Theorem (Rigidity)

The flat bundles PPPDR and PPP are isomorphic.

Richard Hain Elliptic Motives and Multiple Zeta Values
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Introduction

Our goals are to:
1 find suitable integrally defined base points that are

everywhere non-zero;
2 for these, compute the monodromy isomorphism

π1(E ′
o, xo)

un → P;

3 “compute” the corresponding monodromy representation

π1(M1,⃗1,o)→ AutP.

To do this, we will localize the LR connection about Eo, which
will turn out to be the first order Tate curve.
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Integral base points

The natural coordinate onM1,1 about the cusp is
q := exp(2πiτ). The fiber of E →M1,1 over the cusp q = 0 is
the nodal cubic. This can be identified with P1 with 0 ∼ ∞.
There is a unique parameter w on the nodal cubic that takes
the value 1 at the identity.

There are no integral points SpecZ→M1,⃗1.
The only everywhere non-zero integral tangent vectors are
SpecZ[ϵ]/(ϵ2)→M′

1,⃗1
are ± ∂

∂q ± ∂
∂w .

Denote the fiber of E over ∂/∂q by E∂/∂q. It is the first order
Tate curve. As a base point we choose v⃗ = ∂/∂q + ∂/∂w .

Richard Hain Elliptic Motives and Multiple Zeta Values
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Tangential base points

Since all of our base points will be tangential, we will restrict the
torsor PPP to the punctured relative tangent bundle of the identity
section:

M1,⃗1 ↪→ E
′,

This is the C∗-bundle associated to the dual of the Hodge
bundle overM1,1:

M1,⃗1 =
{
(E , v⃗)

}
/isomorphism = SL2(Z)\

(
C× h

)
(

a b
c d

)
: (ξ, τ) 7→

(
ξ/(cτ + d), (aτ + b)/(cτ + d)

)

Richard Hain Elliptic Motives and Multiple Zeta Values
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Topologists’ picture

E∂/∂qE0

~v∂/∂w

q = 0 ∂/∂q

identity section

M1,⃗1
//

##

E

��
M1,1
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Restriction of LR-connection to E∂/∂q

This is ∇ = d + ω0, where

ω0 = Nq
dq
q

+ [T ,A]
dw

w − 1
+

(
adT

eadT − 1

)
(A)

dw
w
.

where

Nq = A
∂

∂T
+

∞∑
m=1

B2m

2m(2m − 2)!

(
ad2m−1

T (A) −
∑

j+k=2m−1
j>k>0

(−1)j [adj
T (A), adk

T (A)]
∂

∂A

)

Set

R0 =

(
adT

eadT − 1

)
(A), R1 = [T ,A], R∞ =

(
adT

e− adT − 1

)
(A)

Note that R0 is the generating function for Bernoulli numbers.
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Fundamental group of E ′∂/∂q

e(R∞/2)

e(R∞/2)

e(R0/2)
Φ(R∞, R0) Φ(R1, R∞)

e(R0/2)

Φ(R0, R1)

e(R1/2)

eT eT

Identify outer and inner circles to
obtain E∂/∂q. The diagram gives a
well defined homomorphism
π1(E ′

∂/∂q, v⃗)→ P because of the
cylinder relation:

eT e(λR0)e−T e(λR∞) = 1

which holds for all λ ∈ C.
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Monodromy computation

Define S̃L2(Z) to be the inverse image of SL2(Z) in the
universal covering group of SL2(R). It is an extension

0→ Z→ S̃L2(Z)→ SL2(Z)→ 1.

and has presentation ⟨S,U : S2 = U3⟩. It is isomorphic to B3.

π1(M1,⃗1, v⃗) is isomorphic to S̃L2(Z). It is generated by:

1 the Dehn twist about q = 0, which acts as exp(2πiNq);
2 any lift σ of τ 7→ −1/τ to S̃L2(Z), which acts via a formal

series of iterated integrals of Eisenstein series, and acts
via a representation of one of Manin’s non-abelian modular
symbols.

Richard Hain Elliptic Motives and Multiple Zeta Values
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Remarks

1 The condition that exp(Nq) : P → P preserve the image of
π1(E ′

∂/∂q, v⃗) and fix the image of π1(P1 − {0,1,∞}, ∂/∂w)
appears to be strong. For example, it implies that
Nq(Φ(R0,R1))Φ(R1,R0) must commute with exp(2πiR0).
Pollack and I are currently investigating whether this
implies, for example, the double shuffle relations.

2 That the monodromy Θ(σ) : P → P preserves the image of
π1(E ′

∂/∂q, v⃗) appears to be deeper. This may impose
relations on MZN, but more likely it will give a computation
of Manin’s non-abelian modular symbols of Eisenstein
series in terms of MZN. If all periods of mixed Tate motives
over Z are MZNs, then (I believe) the coefficients of the
Manin symbol will be MZNs.
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Informal description

A mixed elliptic motive over Z should be a “motivic local
system” V of Q-vector spaces overM1,1/Z with a weight
filtration W• that satisfies:

1 each weight graded quotient of V is a sum of the simple
local systems SnH(m), where H = R1π∗Q(0) and
π : E →M1,1 is the universal elliptic curve;

2 the fiber V∂/∂q of V over ∂/∂q is in MTM(Z).
A basic example of an Ind-object of MEM(Z) should be the
local system consisting of the coordinate rings of the unipotent
completions of the π1(E ′, v⃗)
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Mixed elliptic motives

Conjecture

There is a tannakian category MEM(Z) of mixed elliptic motives
over SpecZ that contains MTM(Z) as a full subcategory and
satisfies:

1 There is a fiber functor MEM(Z)→ MTM(Z) whose
restriction to MTM(Z) is the identity.

2 There are realization functors, Betti, Hodge, ℓ-adic,
Q-de Rham,. . . to Q-local systems, VMHS, lisse ℓ-adic
sheaves, Q-connections, . . . overM1,1 that commute with
the fiber functor to MTM(Z).

3 All weight graded quotients are direct sums of Tate twists
of symmetric powers of H.
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Fundamental group of MEM(Z)
This will be a proalgebraic Q-group that is a split extension

1→ G → π1(MEM)→ π1(MTM)→ 1.

where G (the “geometric fundamental group”) is an extension

1→ U → G → SL2 → 1

with U prounipotent. There will be Zariski dense repns:

SL2(Z)→ G(Q) and π1(M1,1/Q)→ π1(MEM)(Qℓ).

Thus G will be a quotient of the relative unipotent completion of
SL2(Z) and π1(MEM) will be a quotient of the ℓ-adic relative
unipotent completion of π1(M1,1/Q). The coordinate ring O(G)
will be an Ind object of MTM(Z).
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The Lie algebra of U

A computation (with Matsumoto) of the relative unipotent
completion of π1(M1,⃗1/Q, ∂/∂q) implies that the Lie algebra u of
U (if it exists) has presentation of the form

GrW• u = L
(
(⊕m≥1S2m−2H(2m − 1)

)
/(ρf ,n : n ≥ 1)

where f ranges over the cusp forms of SL2(Z). Let e2m be a
highest weight vector of S2m−2H(2m − 1) with respect to the
torus that is diagonal in the basis A,T of H. It has motivic
weight −2m.
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For m ≥ 1, set

ϵ2m := ad2m−1
T (A)−

∑
j+k=2m−1

j>k>0

(−1)j [adj
T (A), ad

k
T (A)]

∂

∂A
.

The homomorphism u→ Der p will take e2m to ϵ2m. Relations
satisfied by the e2m will be satisfied by the ϵ2m.
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Modular symbols

The modular symbol associated to a cusp form f of SL2(Z) of
weight 2m is the homogeneous polynomial

rf (x , y) :=
∫ i∞

0
f (τ)(x − τy)m−2dτ.

of degree 2m − 2. The even bidegree part is

r+f (x , y) =
(
rf (x , y) + rf (x ,−y)

)
/2.

This can be generalized to Eisenstein series.
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Theorem (Pollack)
If mj ,nj are positive integers satisfying 2mj + 2nj = 2k − 2, then∑

j

aj
[
ϵ2mj+2, ϵ2nj+2

]
= 0 in Der p

if and only if there is a a modular form f of weight 2k + 2 such
that

r+f (x , y) =
∑

j

aj
(
x2mj y2nj − x2nj y2mj

)
.

1 c(x2n − y2n) is the period polynomial of G2n+2. This gives
the relation [ϵ2, ϵ2n] = 0 for all n ≥ 1.

2 From the Ramanujan τ function: [ϵ10, ϵ4]− 3[ϵ8, ϵ6] = 0
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Remark
Compare with results of:

Schneps (2005): relates modular symbols of cusp forms to
congruences between certain integral elements in
Der GrW• π1(P1 − {0,1,∞})un.
Gangl-Kaneko-Zagier (2006): Relations between double
zeta values and period polynomials of cusp forms.

All three results should be manifestations of one result.
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