Elliptic Motives and Multiple Zeta Values

Richard Hain

Duke University

April 3, 2008

Richard Hain Elliptic Motives and Multiple Zeta Values

・ロット (雪) () () () ()

3

 Preliminaries
 Acknowledgments

 Genus 1 Story
 Unipotent Complet

 Iliptic Motives
 Review of genus 0

Outline

Preliminaries

- Acknowledgments
- Unipotent Completion
- Review of genus 0 story
- 2 Genus 1 Story
 - Introduction
 - The Levin-Racinet connection
 - Monodromy representation
- 3 Mixed Elliptic Motives
 - Definition
 - Tannakian fundamental group
 - Generators and relations

Preliminaries	Acknowledgmen
enus 1 Story	Unipotent Compl
liptic Motives	Review of genus

Acknowledgments

Related Work

- Beilinson and Levin (1994): Elliptic polylogarithms
- Manin (2005): Iterated Shimura Integrals
- Levin and Racinet (2007): *Towards multiple elliptic polylogarithms*
- Calaque, Enriques, Etingof (2007): Universal elliptic KZB equation

Collaborators

- Makoto Matsumoto (Hiroshima): Galois theory
- Aaron Pollack (Duke): algebraic de Rham aspects
- Greg Pearlstein (Michigan State U.): Hodge theory
- Tomohide Terasoma (Tokyo): Hodge theory

 Preliminaries
 Ack

 Genus 1 Story
 Uni

 Elliptic Motives
 Rev

Acknowledgments Unipotent Completion Review of genus 0 story

Outline

Preliminaries

- Acknowledgments
- Unipotent Completion
- Review of genus 0 story

2 Genus 1 Story

- Introduction
- The Levin-Racinet connection
- Monodromy representation
- 3 Mixed Elliptic Motives
 - Definition
 - Tannakian fundamental group
 - Generators and relations

 Preliminaries
 Acknowledgments

 Genus 1 Story
 Unipotent Completion

 Elliptic Motives
 Review of genus 0 sto

Unipotent completion

For *F* a field of characteristic zero and Γ a finitely generated discrete group, have group algebra *F* Γ , its augmentation $\epsilon : F\Gamma \to F$ and its augmentation ideal $J = \ker\{\epsilon : F\Gamma \to F\}$. The *J*-adic completion of *F* Γ is

$$F\Gamma^{\wedge}: \varprojlim_n F\Gamma/J^n.$$

This is a complete Hopf algebra.

Unipotent Completion

The set of F-points of the unipotent completion of Γ F is the prounipotent group

$$\Gamma^{\mathrm{un}}(F) = \{ \text{group-like elets of } F\Gamma^{\wedge} \} = \{ x \in 1 + J^{\wedge} : \Delta x = x \otimes x \}.$$

イロト イポト イヨト イヨト

э

 Preliminaries
 Acknowled

 Genus 1 Story
 Unipotent

 Elliptic Motives
 Review of

Acknowledgments Unipotent Completion Review of genus 0 story

Example: completion of a free group

If Γ is the free group $\Gamma = \langle u, v \rangle$ and $ad - bc \neq 0$, then

$$\theta: F\Gamma^{\wedge} \xrightarrow{\simeq} F\langle\langle X, Y \rangle\rangle$$

is a (complete) Hopf algebra isomorphism when

$$\theta(u) = \exp U$$
 and $\theta(v) = \exp V$

where $U, V \in \mathbb{L}(X, Y)^{\wedge}$ and

$$U \equiv aX + bY$$
 and $V \equiv cX + dY \mod J^2$.

Theta induces an isomorphism $\Gamma^{un}(F) \xrightarrow{\simeq} \exp \mathbb{L}(X, Y)^{\wedge}$

イロン 不同 とくほう イヨン

 Preliminaries
 Acknowledgments

 Genus 1 Story
 Unipotent Completion

 Iliptic Motives
 Review of genus 0 story

Outline

Preliminaries

- Acknowledgments
- Unipotent Completion
- Review of genus 0 story

2 Genus 1 Story

- Introduction
- The Levin-Racinet connection
- Monodromy representation
- 3 Mixed Elliptic Motives
 - Definition
 - Tannakian fundamental group
 - Generators and relations

 Preliminaries
 Acknowledgments

 Genus 1 Story
 Unipotent Completion

 Elliptic Motives
 Review of genus 0 story

Integral base points

 $\mathbb{P}^1 - \{0, 1, \infty\}$ has no points over \mathbb{Z} , and \mathbb{P}^1 has only 6 everywhere non-zero tangent vectors over \mathbb{Z} :

These tangent vectors are $\partial/\partial z \in T_0\mathbb{P}^1$ and its translates under Aut($\mathbb{P}^1, \{0, 1, \infty\}$).

ヘロア 人間 アメヨア 人口 ア

Preliminaries	
Genus 1 Story	Unipotent Completion
Elliptic Motives	Review of genus 0 story

Real blow-up

ヘロト 人間 とくほとくほとう

₹ 990

Preliminaries	
Genus 1 Story	Unipotent Completion
Elliptic Motives	Review of genus 0 stor

Drinfeld Associator

The Drinfeld associator $\Phi(Y, Z) \in \mathbb{C}\langle\langle Y, Z \rangle\rangle$ is the regularized value of the parallel transport, along the unit interval, of the *KZ*-connection

$$\nabla f = df - f\omega$$

where

$$\omega = \frac{dz}{z}Y + \frac{dz}{z-1}Z \in H^0\big(\Omega^1_{\mathbb{P}^1}(\log\{0,1,\infty\}\big)\otimes \mathbb{L}(Y,Z).$$

Its coefficients are multi-zeta numbers:

$$\begin{aligned} \Phi(Y,Z) &= 1 + \zeta(2)[Y,Z] - \zeta(3)[Y,[Y,Z]] + \zeta(1,2)[[Y,Z],Z] \\ &- \zeta(4)[Y,[Y,[Y,Z]]] - \zeta(1,3)[Y,[[Y,Z],Z]] \\ &+ \zeta(1,1,2)[[[Y,Z],Z],Z] + \frac{1}{2}\zeta(2)^2[Y,Z]^2 + \cdots \end{aligned}$$

(雪) (ヨ) (ヨ)

æ

Acknowledgments Unipotent Completion Review of genus 0 story

Fundamental groupoid

The Drinfeld associator defines a functor from the fundamental groupoid of $\mathbb{P}^1-\{0,1,\infty\}$ to the group-like elements of

$$\mathbb{C}\langle\langle X_0, X_1\rangle\rangle \\ \cong \mathbb{C}\langle\langle X_0, X_1, X_\infty\rangle\rangle/(X_0 + X_1 + X_\infty).$$

くロト (過) (目) (日)

ъ

PreliminariesIntroductionGenus 1 StoryThe Levin-RaElliptic MotivesMonodromy r

Introduction The Levin-Racinet connection Monodromy representation

Outline

Preliminaries

- Acknowledgments
- Unipotent Completion
- Review of genus 0 story

Genus 1 Story

Introduction

- The Levin-Racinet connection
- Monodromy representation

3 Mixed Elliptic Motives

- Definition
- Tannakian fundamental group
- Generators and relations

Introduction The Levin-Racinet connection Monodromy representation

Punctured elliptic curves

Want to study the motivic structure on the unipotent completion of a punctured elliptic curve.

- Suppose E = (E, 0) is an elliptic curve over \mathbb{C} .
- Set E' := E − {0}
- For $x \in E'$, have $\pi_1(E', x)$, a free group of rank 2.

Likewise, for $\vec{v} \in T_{id}E - \{0\}$, we have $\pi_1(E', \vec{v})$

イロト 不得 とくほと くほとう

Introduction The Levin-Racinet connection Monodromy representation

The fundamental torsor

We would like to generalize the genus 0 story to genus 1. But in genus 1, there are many elliptic curves. So we consider all at once:

$$\mathcal{E}
ightarrow \mathcal{M}_{1,1}$$

is the universal punctured elliptic curve. Over \mathcal{E}' , the universal punctured elliptic curve, we have the torsor

$${\cal P}
ightarrow {\cal E}'$$

whose fiber over [E, x] is the unipotent completion of $\pi_1(E', x)$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Introduction The Levin-Racinet connection Monodromy representation

The universal elliptic curve

To describe $\boldsymbol{\mathcal{P}},$ we need an explicit description of $\mathcal{E}.$ It is the orbifold quotient

$$\mathcal{E} = \left(\mathrm{SL}_2(\mathbb{Z}) \ltimes \mathbb{Z}^2\right) \backslash \left(\mathbb{C} imes \mathfrak{h}\right)$$

where

$$(m,n): (\xi,\tau) \mapsto (\xi + m\tau + n,\tau)$$

and

$$egin{pmatrix} a & b \ c & d \end{pmatrix}$$
 : $(\xi, au) \mapsto ig(\xi/(c au+d), (a au+b)/(c au+d)ig).$

・ロト ・ 理 ト ・ ヨ ト ・

3

 Preliminaries
 Introduction

 Genus 1 Story
 The Levin-F

 Elliptic Motives
 Monodromy

Introduction The Levin-Racinet connection Monodromy representation

Outline

2

Preliminaries

- Acknowledgments
- Unipotent Completion
- Review of genus 0 story

Genus 1 Story

Introduction

The Levin-Racinet connection

Monodromy representation

3 Mixed Elliptic Motives

- Definition
- Tannakian fundamental group
- Generators and relations

The Jacobi form $F(\xi, \eta, \tau)$

A certain Jacobi modular form F is fundamental in writing down the connection on \mathcal{P} . Geometrically, F is a section of a line bundle over the total space of

$$\overline{\mathcal{E}} \times_{\overline{\mathcal{M}}_{1,1}} \overline{\mathcal{E}} \to \overline{\mathcal{M}}_{1,1}.$$

whose divisor is

$$\iota^*\Delta - Z_1 - Z_2$$

where $\iota^*\Delta$ is the graph of the elliptic involution $\iota : x \mapsto -x$ and Z_j is the locus $z_j = 0$, where (z_1, z_2) are the fiber coordinates.

ヘロト ヘアト ヘビト ヘビト

Formula for F

F is a meromorphic function on $\mathbb{C} \times \mathbb{C} \times \mathfrak{h}$, first defined by Kronecker (1881) and rediscovered by Zagier (1991):

$$\begin{aligned} F(\xi,\eta,\tau) &= \frac{\theta'(\mathbf{0};\tau)\theta(\xi+\eta;\tau)}{\theta(\xi,\tau)\theta(\eta,\tau)} \\ &= \frac{1}{\xi} + \frac{1}{\eta} - 2\sum_{r,s=0}^{\infty} (2\pi i)^{1+\max\{r,s\}} \left(\frac{\partial}{\partial \tau}\right)^{\min\{r,s\}} G_{|r-s|+1}(\tau) \frac{\xi^r}{r!} \frac{\eta^s}{s!}, \end{aligned}$$

where $G_{odd} = 0$ and

$$G_{2m}(\tau) = -\frac{B_{2m}}{4m} + \sum_{n=1}^{\infty} \sigma_{2m-1}(n)q^n$$

with $q = \exp(2\pi i\tau)$. The function *F* is modular in τ and is elliptic in ξ and η .

・ロト ・ 理 ト ・ ヨ ト ・

3

Preliminaries Introduction Genus 1 Story The Levin-Racinet connection Elliptic Motives Monodromy representation

The Levin-Racinet connection

Denote the group-like elements of $\mathbb{C}\langle\langle T, A \rangle\rangle$ by \mathcal{P} and its Lie algebra $\mathbb{L}(T, A)^{\wedge}$ by \mathfrak{p} . Then the 1-form

$$\omega = 2\pi i A rac{\partial}{\partial T} \, d au + \psi +
u \in H^0(\Omega^1_{\mathbb{C} imes \mathfrak{h}}) \hat{\otimes} \, \mathsf{Der} \, \mathfrak{p}$$

defines a connection on $\mathcal{P} \times \mathbb{C} \times \mathfrak{h} \to \mathfrak{h}$ by $\nabla f = df + \omega f$, where

$$\psi = 4\pi i \sum_{m \ge 1} \left[\frac{G_{2m+2}(\tau)}{(2m)!} d\tau \sum_{\substack{j+k=2m+1\\j,k>0}} (-1)^j [\operatorname{ad}_T^j(A), \operatorname{ad}_T^k(A)] \frac{\partial}{\partial A} \right]$$

and

$$\nu = \operatorname{ad}_{T} F(\xi, \operatorname{ad}_{T} / 2\pi i, \tau)(A) \, d\xi + \left(\frac{1}{\operatorname{ad}_{T}} + \operatorname{ad}_{T} \frac{\partial F}{\partial T}(\xi, \operatorname{ad}_{T} / 2\pi i, \tau)\right)(A) \, d\tau.$$

ヘロン 人間 とくほ とくほ とう

э.

Description of \mathcal{P}^{DR}

The action of $SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$ on $\mathbb{C} \times \mathfrak{h}$ can be lifted to this bundle. The quotient is, by definition, \mathcal{P}^{DR} . For $\gamma \in SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$ define

$$\gamma(\boldsymbol{u},\xi,\tau) = \left(\widetilde{\boldsymbol{M}}_{\gamma}(\xi,\tau)\boldsymbol{u},\boldsymbol{g}(\xi,\tau)\right)$$

where
$$\widetilde{M}_{\gamma}(\xi, \tau) = e^{-m \operatorname{ad}_{T}}$$
 when $\gamma = (m, n) \in \mathbb{Z}^{2}$ and, when $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_{2}(\mathbb{Z}),$

$$\widetilde{\textit{M}}_{\gamma}(\xi, au)=\textit{M}_{\gamma}(au)\circ \exp\left(\textit{\textit{C}}\xi\, \mathsf{ad}_{\textit{T}}\,/(\textit{\textit{C}} au+\textit{\textit{d}})
ight)$$

where

$$\mathcal{M}_{\gamma}(\tau): egin{cases} A &\mapsto (c au+d)^{-1}A+cT\ T &\mapsto (c au+d)T \end{cases}$$

・ロト ・ 理 ト ・ ヨ ト ・

3

Introduction The Levin-Racinet connection Monodromy representation

Flatness and descent

Theorem (Levin-Racinet)

• The connection is invariant: for all $\gamma \in SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$

$$\gamma^*\omega = \operatorname{Ad}(\gamma)\omega - d\widetilde{M}_{\gamma}\widetilde{M}_{\gamma}^{-1}$$

2 The connection is flat:

$$d\omega + \frac{1}{2}[\omega, \omega] = 0.$$

So the connection descends to a flat meromorphic connection on the principal \mathcal{P}^{DR} bundle $(SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2) \setminus (\mathcal{P} \times \mathbb{C} \times \mathfrak{h})$ over \mathcal{E} .

ヘロト ヘアト ヘビト ヘビト

ъ

Preliminaries Introduction Genus 1 Story The Levin-Racinet connection Elliptic Motives Monodromy representation

On each 2-pointed elliptic curve $(E_{\tau}, 0, x)$, the connection restricts to the flat connection

$$abla = d + \operatorname{ad}_T F(\xi, \operatorname{ad}_T / 2\pi i, \tau)(A) d\xi.$$

Parallel transport induces a homomorphism

$$\pi_1(E'_{\tau}, x) \to \mathcal{P}$$

that is an isomorphism as

$$\mathbf{a} \mapsto 2\pi i A$$
 and $\mathbf{b} \mapsto 2\pi i \tau A - T \mod [\mathcal{P}, \mathcal{P}].$

Theorem (Rigidity)

The flat bundles \mathcal{P}^{DR} and \mathcal{P} are isomorphic.

ヘロア 人間 アメヨア 人口 ア

ъ

Outline

2

Preliminaries

- Acknowledgments
- Unipotent Completion
- Review of genus 0 story

Genus 1 Story

- Introduction
- The Levin-Racinet connection
- Monodromy representation

3 Mixed Elliptic Motives

- Definition
- Tannakian fundamental group
- Generators and relations

Introduction

Our goals are to:

- find suitable integrally defined base points that are everywhere non-zero;
- Ifor these, compute the monodromy isomorphism

$$\pi_1(E'_o, x_o)^{\mathrm{un}} \to \mathcal{P};$$

Compute the corresponding monodromy representation

$$\pi_1(\mathcal{M}_{1,\vec{1}}, \boldsymbol{o}) \to \operatorname{Aut} \mathcal{P}.$$

To do this, we will localize the LR connection about E_o , which will turn out to be the first order Tate curve.

ヘロト ヘ戸ト ヘヨト ヘヨト

Integral base points

The natural coordinate on $\overline{\mathcal{M}}_{1,1}$ about the cusp is $q := \exp(2\pi i \tau)$. The fiber of $\overline{\mathcal{E}} \to \mathcal{M}_{1,1}$ over the cusp q = 0 is the nodal cubic. This can be identified with \mathbb{P}^1 with $0 \sim \infty$. There is a unique parameter *w* on the nodal cubic that takes the value 1 at the identity.

- There are no integral points $\operatorname{Spec} \mathbb{Z} \to \mathcal{M}_{1,\vec{1}}$.
- The only everywhere non-zero integral tangent vectors are $\operatorname{Spec} \mathbb{Z}[\epsilon]/(\epsilon^2) \to \mathcal{M}'_{1\ \vec{1}}$ are $\pm \frac{\partial}{\partial q} \pm \frac{\partial}{\partial w}$.

Denote the fiber of \mathcal{E} over $\partial/\partial q$ by $E_{\partial/\partial q}$. It is the first order Tate curve. As a base point we choose $\vec{v} = \partial/\partial q + \partial/\partial w$.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Tangential base points

Since all of our base points will be tangential, we will restrict the torsor \mathcal{P} to the punctured relative tangent bundle of the identity section:

$$\mathcal{M}_{1,\vec{1}} \hookrightarrow \mathcal{E}',$$

This is the \mathbb{C}^* -bundle associated to the dual of the Hodge bundle over $\mathcal{M}_{1,1}$:

$$\mathcal{M}_{1,\vec{1}} = \{(E,\vec{v})\}/\text{isomorphism} = \text{SL}_2(\mathbb{Z}) \setminus (\mathbb{C} \times \mathfrak{h})$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} : (\xi,\tau) \mapsto (\xi/(c\tau+d), (a\tau+b)/(c\tau+d))$$

・ロト ・回 ト ・ヨト ・ヨト

Topologists' picture

ヘロト 人間 とくほとくほとう

Restriction of LR-connection to $E_{\partial/\partial q}$

This is $\nabla = d + \omega_0$, where

$$\omega_0 = N_q rac{dq}{q} + [T, A] rac{dw}{w-1} + \left(rac{\operatorname{ad}_T}{e^{\operatorname{ad}_T}-1}
ight) (A) rac{dw}{w}.$$

where

$$N_q = A \frac{\partial}{\partial T} + \sum_{m=1}^{\infty} \frac{B_{2m}}{2m(2m-2)!} \left(\operatorname{ad}_T^{2m-1}(A) - \sum_{\substack{j+k=2m-1\\j>k>0}} (-1)^j [\operatorname{ad}_T^j(A), \operatorname{ad}_T^k(A)] \frac{\partial}{\partial A} \right)$$

Set

$$R_0 = \left(rac{\mathrm{ad}_T}{e^{\mathrm{ad}_T} - 1}
ight)(A), \quad R_1 = [T, A], \quad R_\infty = \left(rac{\mathrm{ad}_T}{e^{-\mathrm{ad}_T} - 1}
ight)(A)$$

Note that R_0 is the generating function for Bernoulli numbers.

・ロト ・ 理 ト ・ ヨ ト ・

3

Introduction The Levin-Racinet connection Monodromy representation

Fundamental group of $E'_{\partial/\partial q}$

Identify outer and inner circles to obtain $E_{\partial/\partial q}$. The diagram gives a well defined homomorphism $\pi_1(E'_{\partial/\partial q}, \vec{v}) \rightarrow \mathcal{P}$ because of the cylinder relation:

$$e^{T} e(\lambda R_{0}) e^{-T} e(\lambda R_{\infty}) = 1$$

・ロット (雪) () () () ()

э

which holds for all $\lambda \in \mathbb{C}$.

Introduction The Levin-Racinet connection Monodromy representation

Monodromy computation

Define $\widetilde{\mathrm{SL}}_2(\mathbb{Z})$ to be the inverse image of $\mathrm{SL}_2(\mathbb{Z})$ in the universal covering group of $\mathrm{SL}_2(\mathbb{R})$. It is an extension

$$0 \to \mathbb{Z} \to \widetilde{\operatorname{SL}}_2(\mathbb{Z}) \to \operatorname{SL}_2(\mathbb{Z}) \to 1.$$

and has presentation $\langle S, U : S^2 = U^3 \rangle$. It is isomorphic to B_3 .

 $\pi_1(\mathcal{M}_{1,\vec{1}}, \vec{v})$ is isomorphic to $\widetilde{SL}_2(\mathbb{Z})$. It is generated by:

- the Dehn twist about q = 0, which acts as $exp(2\pi iN_q)$;
- any lift σ of τ → -1/τ to SL₂(Z), which acts via a formal series of iterated integrals of Eisenstein series, and acts via a representation of one of Manin's non-abelian modular symbols.

ヘロア 人間 アメヨア 人口 ア

Preliminaries	
enus 1 Story	The Levin-Racinet connection
liptic Motives	Monodromy representation

Remarks

- The condition that $\exp(N_q) : \mathcal{P} \to \mathcal{P}$ preserve the image of $\pi_1(E'_{\partial/\partial q}, \vec{v})$ and fix the image of $\pi_1(\mathbb{P}^1 \{0, 1, \infty\}, \partial/\partial w)$ appears to be strong. For example, it implies that $N_q(\Phi(R_0, R_1))\Phi(R_1, R_0)$ must commute with $\exp(2\pi i R_0)$. Pollack and I are currently investigating whether this implies, for example, the double shuffle relations.
- ² That the monodromy $\Theta(\sigma) : \mathcal{P} \to \mathcal{P}$ preserves the image of $\pi_1(E'_{\partial/\partial q}, \vec{v})$ appears to be deeper. This may impose relations on MZN, but more likely it will give a computation of Manin's non-abelian modular symbols of Eisenstein series in terms of MZN. If all periods of mixed Tate motives over \mathbb{Z} are MZNs, then (I believe) the coefficients of the Manin symbol will be MZNs.

ヘロン ヘアン ヘビン ヘビン

Definition Tannakian fundamental group Generators and relations

Outline

Preliminaries

- Acknowledgments
- Unipotent Completion
- Review of genus 0 story

2 Genus 1 Story

- Introduction
- The Levin-Racinet connection
- Monodromy representation

3 Mixed Elliptic Motives

- Definition
- Tannakian fundamental group
- Generators and relations

Definition Tannakian fundamental group Generators and relations

Informal description

A mixed elliptic motive over \mathbb{Z} should be a "motivic local system" \mathbb{V} of \mathbb{Q} -vector spaces over $\mathcal{M}_{1,1/\mathbb{Z}}$ with a weight filtration W_{\bullet} that satisfies:

- each weight graded quotient of V is a sum of the simple local systems Sⁿℍ(m), where ℍ = R¹π_{*}Q(0) and π : E → M_{1,1} is the universal elliptic curve;
- **2** the fiber $V_{\partial/\partial q}$ of \mathbb{V} over $\partial/\partial q$ is in MTM(\mathbb{Z}).

A basic example of an Ind-object of MEM(\mathbb{Z}) should be the local system consisting of the coordinate rings of the unipotent completions of the $\pi_1(E', \vec{v})$

ヘロア 人間 アメヨア 人口 ア

Definition Tannakian fundamental group Generators and relations

Mixed elliptic motives

Conjecture

There is a tannakian category $MEM(\mathbb{Z})$ of mixed elliptic motives over $Spec \mathbb{Z}$ that contains $MTM(\mathbb{Z})$ as a full subcategory and satisfies:

- There is a fiber functor $MEM(\mathbb{Z}) \to MTM(\mathbb{Z})$ whose restriction to $MTM(\mathbb{Z})$ is the identity.
- 2 There are realization functors, *Betti, Hodge, ℓ-adic,* Q*-de Rham,...* to Q*-*local systems, VMHS, lisse *ℓ*-adic sheaves, Q*-*connections, ... over *M*_{1,1} that commute with the fiber functor to MTM(Z).
- O All weight graded quotients are direct sums of Tate twists of symmetric powers of Ⅲ.

イロト イポト イヨト イヨト

Preliminaries De Genus 1 Story Tar Elliptic Motives Ge

Definition Tannakian fundamental group Generators and relations

Outline

Preliminaries

- Acknowledgments
- Unipotent Completion
- Review of genus 0 story

2 Genus 1 Story

- Introduction
- The Levin-Racinet connection
- Monodromy representation

3 Mixed Elliptic Motives

- Definition
- Tannakian fundamental group
- Generators and relations

Preliminaries Definition Genus 1 Story Tannakian fundamental group Elliptic Motives Generators and relations

Fundamental group of $MEM(\mathbb{Z})$

This will be a proalgebraic $\mathbb{Q}\text{-}\mathsf{group}$ that is a split extension

 $1 \rightarrow \mathcal{G} \rightarrow \pi_1(MEM) \rightarrow \pi_1(MTM) \rightarrow 1.$

where ${\mathcal G}$ (the "geometric fundamental group") is an extension

$$1 \rightarrow \mathcal{U} \rightarrow \mathcal{G} \rightarrow \text{SL}_2 \rightarrow 1$$

with \mathcal{U} prounipotent. There will be Zariski dense repns:

$$SL_2(\mathbb{Z}) \to \mathcal{G}(\mathbb{Q}) \text{ and } \pi_1(\mathcal{M}_{1,1/\mathbb{Q}}) \to \pi_1(\mathsf{MEM})(\mathbb{Q}_\ell).$$

Thus \mathcal{G} will be a quotient of the relative unipotent completion of $SL_2(\mathbb{Z})$ and $\pi_1(MEM)$ will be a quotient of the ℓ -adic relative unipotent completion of $\pi_1(\mathcal{M}_{1,1/\mathbb{Q}})$. The coordinate ring $\mathcal{O}(\mathcal{G})$ will be an Ind object of MTM(\mathbb{Z}).

 Preliminaries
 Definition

 Genus 1 Story
 Tannakian fundamental gro

 Elliptic Motives
 Generators and relations

Outline

Preliminaries

- Acknowledgments
- Unipotent Completion
- Review of genus 0 story

2 Genus 1 Story

- Introduction
- The Levin-Racinet connection
- Monodromy representation

3 Mixed Elliptic Motives

- Definition
- Tannakian fundamental group
- Generators and relations

 Preliminaries
 Definition

 Genus 1 Story
 Tannakian fundamental grou

 Elliptic Motives
 Generators and relations

The Lie algebra of \mathcal{U}

A computation (with Matsumoto) of the relative unipotent completion of $\pi_1(\mathcal{M}_{1,\vec{1}/\mathbb{Q}},\partial/\partial q)$ implies that the Lie algebra \mathfrak{u} of \mathcal{U} (if it exists) has presentation of the form

$$\operatorname{Gr}_{\bullet}^{W}\mathfrak{u} = \mathbb{L}((\oplus_{m\geq 1}S^{2m-2}H(2m-1))/(\rho_{f,n}:n\geq 1))$$

where *f* ranges over the cusp forms of $SL_2(\mathbb{Z})$. Let e_{2m} be a highest weight vector of $S^{2m-2}H(2m-1)$ with respect to the torus that is diagonal in the basis *A*, *T* of *H*. It has motivic weight -2m.

ヘロア 人間 アメヨア 人口 ア

Preliminaries	Definition
Genus 1 Story	Tannakian fundamental group
Elliptic Motives	Generators and relations

For $m \ge 1$, set

$$\epsilon_{2m} := \operatorname{ad}_{T}^{2m-1}(A) - \sum_{\substack{j+k=2m-1\\j>k>0}} (-1)^{j} [\operatorname{ad}_{T}^{j}(A), \operatorname{ad}_{T}^{k}(A)] \frac{\partial}{\partial A}.$$

The homomorphism $\mathfrak{u} \to \text{Der }\mathfrak{p}$ will take e_{2m} to ϵ_{2m} . Relations satisfied by the e_{2m} will be satisfied by the ϵ_{2m} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

 Preliminaries
 Definition

 Genus 1 Story
 Tannakian fundamental group

 Elliptic Motives
 Generators and relations

Modular symbols

The *modular symbol* associated to a cusp form *f* of $SL_2(\mathbb{Z})$ of weight 2m is the homogeneous polynomial

$$r_f(x,y) := \int_0^{i\infty} f(\tau)(x-\tau y)^{m-2} d\tau.$$

of degree 2m - 2. The even bidegree part is

$$r_{f}^{+}(x,y) = (r_{f}(x,y) + r_{f}(x,-y))/2.$$

This can be generalized to Eisenstein series.

ヘロト 人間 ト ヘヨト ヘヨト

Preliminaries	Definition
Genus 1 Story	Tannakian fundamental group
Iliptic Motives	Generators and relations

Theorem (Pollack)

If m_j , n_j are positive integers satisfying $2m_j + 2n_j = 2k - 2$, then

$$\sum_{j} a_{j} \big[\epsilon_{2m_{j}+2}, \epsilon_{2n_{j}+2} \big] = 0 \text{ in } \operatorname{Der} \mathfrak{p}$$

if and only if there is a a modular form f of weight 2k + 2 such that

$$r_f^+(x,y) = \sum_j a_j (x^{2m_j} y^{2n_j} - x^{2n_j} y^{2m_j}).$$

- $c(x^{2n} y^{2n})$ is the period polynomial of G_{2n+2} . This gives the relation $[\epsilon_2, \epsilon_{2n}] = 0$ for all $n \ge 1$.
- 2 From the Ramanujan τ function: $[\epsilon_{10}, \epsilon_4] 3[\epsilon_8, \epsilon_6] = 0$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition Tannakian fundamental group Generators and relations

Remark

Compare with results of:

- Schneps (2005): relates modular symbols of cusp forms to congruences between certain integral elements in Der Gr_•^W π₁(ℙ¹ − {0, 1, ∞})^{un}.
- Gangl-Kaneko-Zagier (2006): Relations between double zeta values and period polynomials of cusp forms.

All three results should be manifestations of one result.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ