Relative higher Albanese manifolds over modular curves

Richard Hain

Duke University

Arithmetic, Geometry, Space and Time

International Centre for Mathematical Sciences University of Edinburgh

November 25-29, 2024

- Albanese varieties were defined by André Blanchard in 1956.¹ They were named in honour of Giacomo Albanese (1890–1947).
- Zucker and I defined "unipotent higher Albanese varieties" about 40 years ago(!)
- Their p-adic version plays a central role in Minhyong Kim's non-abelian Chabauty method for bounding rational and/or integral points on a variety.
- The unipotent Albanese varieties of X are trivial when $H^1(X) = 0$. Can you generalize Chabauty–Kim in this case?
- I'll introduce a generalization of unipotent Albanese varieties for complex algebraic varieties. Is there a parallel *p*-adic version that is useful in Chabauty–Kim?

¹Sur les variétés analytiques complexes, Ann. Sci. École Norm. Sup. (3) 73 (1956), 157–202.

Albanese varieties

The Albanese variety of a smooth projective variety X is defined by

$$\operatorname{Alb} X := H^0(X, \Omega^1_X)^{\vee} / H_1(X; \mathbb{Z}).$$

Rewrite this:

$$H_1(X;\mathbb{C}) = H^{1,0}(X)^{\vee} \oplus H^{0,1}(X)^{\vee} = H_1(X)^{-1,0} \oplus H_1(X)^{0,-1}.$$

So

$$H^0(X,\Omega^1_X)^{\vee}=H_1(X;\mathbb{C})/F^0H_1(X).$$

and

$$\operatorname{Alb} X = H_1(X;\mathbb{Z}) \setminus H_1(X;\mathbb{C}) / F^0 H_1(X). \tag{*}$$

The definition (*) applies to all smooth (even normal) varieties, not just projective varieties.

The Albanese mapping

If X is smooth and $x_0 \in X$, then have the Albanese mapping $(X, x_0) \rightarrow (Alb X, 0)$, which is defined by

$$lpha^{\mathbf{0}}: \mathbf{X} \mapsto \int_{\mathbf{X}_{0}}^{\mathbf{X}} \in H_{1}(\mathbf{X}; \mathbb{Z}) ackslash H^{\mathbf{0}}(\Omega^{1}_{\mathbf{X}})^{arphi}.$$

- If X is a smooth projective curve, Alb X = Jac X := Pic⁰ X and α⁰ is the Abel–Jacobi mapping.
- Also have an Albanese mapping when X is not projective. For example

 $Alb(\mathbb{P}^1 - \{0, 1, \infty\}) = \mathbb{C}^{\times} \times \mathbb{C}^{\times}.$

The Albanese mapping is $x \mapsto (x, 1 - x)$.

Albanese mappings are universal for maps (X, x₀) → (A, 0) of X to an algebraic torus (e.g., semi-abelian varieties).

Unipotent completion

The higher Albanese manifolds of a variety (X, x) are constructed from the unipotent fundamental group of (X, x) — the unipotent completion of $\pi_1(X, x)$.

The **unipotent completion** Γ^{un} of a finitely generated group Γ is a pro-unipotent group defined over \mathbb{Q} . The group algebra $\mathbb{Q}\Gamma$ has a natural topology defined by the powers of its augmentation ideal

$$I := \ker\{\epsilon : \mathbb{Q}\Gamma \to \mathbb{Q}\}, \quad \epsilon(\gamma) = 1, \ \gamma \in \Gamma.$$

The ring of functions on Γ^{un} is the Hopf algebra of continuous continuous $\mathbb{Q}\Gamma\to\mathbb{Q}$

$$\mathcal{O}(\Gamma^{\mathrm{un}}) = \mathrm{Hom}^{\mathrm{cts}}(\mathbb{Q}\Gamma, \mathbb{Q}) := \varinjlim \mathrm{Hom}(\mathbb{Q}\Gamma/I^m, \mathbb{Q}).$$

The canonical map $\Gamma \to \Gamma^{un}(\mathbb{Q})$ takes $\gamma \in \Gamma$ to the maximal ideal of continuous functions on $\mathbb{Q}\Gamma$ that vanish at γ .

Dual to $\mathcal{O}(\Gamma^{un})$ is the completed group algebra

$$\mathbb{Q}\Gamma^{\wedge} := \varprojlim \mathbb{Q}\Gamma/I^{m}.$$

It is a complete Hopf algebra with coproduct induced by $\Delta(\gamma) = \gamma \otimes \gamma$ for all $\gamma \in \Gamma$.

The group of k rational points (char k = 0) of Γ^{un} is

 $\Gamma^{\mathrm{un}}(\Bbbk) = \{ \text{group-like elements of } \Bbbk \Gamma^{\wedge} \} := \{ u : \Delta u = u \otimes u \}.$

Its Lie algebra \mathfrak{g} is the set of primitive elements:

$$\mathfrak{g} = \{ u \in I^{\wedge} : \Delta u = 1 \otimes u + u \otimes 1 \}.$$

It is pro-nilpotent. The exponential mapping

 $\exp:\mathfrak{g}\otimes \Bbbk \to \mathsf{\Gamma}^{\mathrm{un}}(\Bbbk)$

is an isomorphism of pro-varieties for all $\Bbbk/\mathbb{Q}.$

When X is a connected manifold, Chen's de Rham theorem says that

 $\mathcal{O}(\pi_1^{\mathrm{un}}(X, x)) = \{ \text{closed iterated integrals of 1-forms on } X \}.$

When X is a smooth variety, $\mathcal{O}(\pi_1^{\mathrm{un}}(X, x))$ has a natural mixed Hodge structure (MHS) for which the product and coproduct are morphisms. This implies that the Lie algebra $\mathfrak{g}(X, x)$ of $\pi_1^{\mathrm{un}}(X, x)$ has a MHS. Its Hodge filtration satisfies

$$\mathfrak{g} \supseteq \cdots \supseteq F^{-2}\mathfrak{g} \supseteq F^{-1}\mathfrak{g} \supseteq F^0\mathfrak{g} \supseteq F^1\mathfrak{g} = 0.$$

Set $G = \pi_1^{un}(X, x)$. Denote its subgroup with Lie algebra $F^{\rho}\mathfrak{g}$ by $F^{\rho}G$

Set $G_m = G/L^{m+1}G$, where L^kG is the *k*th term of the LCS of *G*. This is a unipotent group. Set

$$\Gamma_m = \operatorname{im} \{ \pi_1(X, x) \to G_m(\mathbb{Q}) \}.$$

The *m*th higher Albanese of (X, x) is

$$\operatorname{Alb}^m(X, x) = \Gamma_m \backslash G_m(\mathbb{C}) / F^0 G(\mathbb{C})$$

This is a complex manifold (generally *not* algebraic). When m = 1 it is the classical Albanese manifold. One can use iterated integrals of length $\leq m$ to define higher Albanese mappings

$$\alpha_x^m: (X, x) \to \operatorname{Alb}^m(X, x).$$

These are holomorphic.

A *p*-adic version of this construction (especially with m = 2) plays a central role in Kim's non-abelian Chabauty method.

For some non-simply connected varieties of interest (e.g., the moduli stack M_g of smooth projective curves of genus $g \ge 2$), π_1^{un} is trivial.

For this reason, it is useful to introduce a relative version of unipotent completion.

Input:

- a discrete group Γ
- a reductive group S defined over \mathbb{Q}
- ► a Zariski dense homomorphism $\Gamma \to S(\mathbb{Q})$

Examples

group	S	ho	comment
Г	trivial	trivial	unipotent completion
$\mathrm{SL}_2(\mathbb{Z})$	SL_2/\mathbb{Q}	inclusion	
congruence subgroup	SL_2/\mathbb{Q}	inclusion	
$\pi_1(\mathcal{M}_g, [C])$	$\operatorname{Sp}(H_1(\mathcal{C}))/\mathbb{Q}$	monodromy	

The definition

The completion of Γ relative to $\rho : \Gamma \to S(\mathbb{Q})$ consists of

► an affine (ie, proalgebraic) group G defined over Q which is an extension

$$1 \rightarrow \mathcal{U} \rightarrow \mathcal{G} \rightarrow \textbf{S} \rightarrow 1$$

where $\ensuremath{\mathcal{U}}$ is prounipotent, and

• a homomorphism $\hat{\rho} : \Gamma \to \mathcal{G}(\mathbb{Q})$ such that ρ is the composition

UMP: if *G* is an affine \mathbb{Q} group that is an extension of *S* by a (pro) unipotent group and if $\phi : \Gamma \to G(\mathbb{Q})$ is a homomorphism whose composition with $G(\mathbb{Q}) \to S(\mathbb{Q})$ is ρ , then there is a *unique* homomorphism $\theta : \mathcal{G} \to G$ of \mathbb{Q} -groups that commutes with their projections to *S* such that ϕ is the composite

$$\Gamma \stackrel{\hat{
ho}}{\longrightarrow} \mathcal{G}(\mathbb{Q}) \stackrel{ heta}{\longrightarrow} \mathcal{G}(\mathbb{Q}).$$

Some basic results

The Lie algebra ${\mathfrak g}$ of ${\mathcal G}$ is an extension

$$0
ightarrow \mathfrak{u}
ightarrow \mathfrak{g}
ightarrow \mathfrak{s}
ightarrow 0$$

where \mathfrak{u} is pronilpotent. The (co)homology $H^{\bullet}(\mathfrak{u})$ is an S-module.

There is an S-module isomorphism

$$H_1(\mathfrak{u})=\prod_lpha H^1(\Gamma,V_lpha)^ee\otimes V_lpha$$

where V_{α} ranges over representatives of the isomorphism classes of irreducible *S*-modules.

If X is a smooth variety and ρ : π₁(X, x) → S(Q) ⊂ Aut V_x is the monodromy representation of a variation of Hodge structure of geometric origin (or a PVHS), then O(G_x) is a Hopf algebra in the category of MHS and the Lie algebra g = g_x of G_x has a natural (pro) MHS.

One can also take relative completions G_{x,y} of path torsors π₁(M; x, y). These are torsors under G_x (and G_y). Their coordinate rings have a natural (ind) MHS.

Example: congruence subgroups of $SL_2(\mathbb{Z})$

Suppose that Γ is a congruence subgroup of $SL_2(\mathbb{Z})$. Denote the cusps of the modular curve $Y_{\Gamma} := \Gamma \setminus \mathfrak{h}$ by *C*. Denote the defining representation of SL_2 by *H*.

The irreducible representations of SL₂ are the symmetric powers S^mH. So

$$H_1(\mathfrak{u}) = \prod_{m \ge 0} H^1(\Gamma, S^m H)^{\vee} \otimes S^m H.$$

▶ By Eichler–Shimura and Manin–Drinfeld (when m > 0)

$$H^{1}(\Gamma, S^{m}H) = H^{1}_{cusp}(\Gamma, S^{m}H) \oplus H_{0}(C)$$
$$= \bigoplus_{f} V_{f} \oplus \bigoplus_{C} \mathbb{Q}(-m-1).$$

where *f* ranges over equivalence classes of normalized Hecke eigen cusp forms.

► The Lie algebra u is HUGE. It is free and isomorphic to L(H₁(u))[∧].

Higher relative Albanese manifolds

Suppose that X is a smooth variety and that (\mathcal{G}, ρ) is the relative completion of $\pi_1(X, x)$ relative to a PVHS. Let G be any finite dimensional quotient of \mathcal{G} that has a MHS and let Γ_G be the image of $\pi_1(X, x) \to G(\mathbb{Q})$.

We would like to define

$$\operatorname{Alb}_G(X, x) = \Gamma_G \setminus G(\mathbb{C}) / F^0 G.$$

But this is not quite right. To see why, let's provisionally define

$$\operatorname{Alb}^{0}(X, x) = \Gamma_{\mathcal{S}} \setminus \mathcal{S}(\mathbb{C}) / F^{0} \mathcal{S}.$$

To understand the problem, consider the case where X is the modular curve Y_{Γ} . Here S = SL(H) and

 F^0S = stabilizer of the Hodge filtration of = a Borel subgroup So $S(\mathbb{C})/F^0S = \mathbb{P}^1(H) = \mathfrak{h} \cup \mathbb{P}^1(\mathbb{R}) \cup \overline{\mathfrak{h}}$ and Alb⁰(Y_{Γ}) = SL₂(\mathbb{Z})\ $\mathbb{P}^1(H)$ = a mess! Instead we define

$$\operatorname{Alb}^{0}(X, x) = \Gamma_{\mathcal{S}} \setminus \mathcal{S}(\mathbb{R}) / (\mathcal{S}(\mathbb{R}) \cap F^{0}\mathcal{S}).$$

In the case of the modular curve Y_{Γ} , we have $S(\mathbb{R}) \cap F^0 S = SO(2)$, so that

$$\mathcal{S}(\mathbb{R})/(\mathcal{S}(\mathbb{R})\cap F^0\mathcal{S})=\mathrm{SL}_2(\mathbb{R})/\mathrm{SO}(2)=$$
 the upper half plane \mathfrak{h}

and

$$\operatorname{Alb}^{0}(Y_{\Gamma}) = \Gamma \setminus \mathfrak{h} = Y_{\Gamma}.$$

The 0th relative Albanese mapping is the identity $Y_{\Gamma} \rightarrow Y_{\Gamma}$.

But we still have the HUGE unipotent radical ...

As above, X is a smooth variety and (\mathcal{G}, ρ) is the relative completion of $\pi_1(X, x)$ relative to a PVHS. We have the diagram

where $\mathscr{D} = S(\mathbb{R})/(S(\mathbb{R}) \cap F^0G)$ is the corresponding Griffiths period domain. Now define

$$\mathsf{Alb}(X,x) = \pi_1(X,x) \backslash (\mathcal{G}(\mathbb{C})/F^0\mathcal{G})|_{\mathscr{D}}$$

This is the inverse limit of a family of nilmanifolds over

$$\mathsf{Alb}^0(X,x) := \Gamma_0 \backslash \mathscr{D}$$

where Γ_0 is the image of $\pi_1(X, x)$ in $S(\mathbb{Q})$.

Albanese mappings

The (orbifold) fiber of $Alb(X, x) \rightarrow Alb^0(X, x)$ over $\alpha^0(y) \in Alb^0(X, x)$ is the (pro) variety (ker ρ) $\langle \mathcal{U}_{x,y}(\mathbb{C})/F^0\mathcal{U}_y$.

There is a holomorphic Albanese mapping

 $\alpha: (X, x) \to \mathsf{Alb}(X, x)$

It is defined using iterated integrals with coefficients in local systems \mathbb{V}_{α} over *X* that correspond to the V_{α} . It lifts the Griffiths period mapping $X \to \Gamma_0 \setminus D$ of the original PVHS.

We can truncate α to obtain families of nilmanifolds over Alb⁰(*X*, *x*) and families of Albanese mappings.

Back to modular curves

Here $\operatorname{Alb}^{0}(Y_{\Gamma}, x) = \Gamma \setminus \mathfrak{h} = Y_{\Gamma}$. The fiber of $\operatorname{Alb}(Y_{\Gamma}, x) \to Y_{\Gamma}$ over y is the (pro) affine space $\mathcal{U}_{x,y}(\mathbb{C})/F^{0}\mathcal{U}_{y}$.

The simplest truncations of this are where we push out along projections

$$\mathcal{U} \to H_1(\mathcal{U}) = H_1(\mathfrak{u}) = \prod_{m \geq 0} V_f^{\vee} \otimes S^m H \to V_f^{\vee} \otimes S^m H.$$

(Here the eigenform *f* can be a cusp form or Eisenstein series.) So for each equivalence class of weight (m + 2) Hecke eigenforms *f*, we have an Albanese mapping

$$\alpha_f: Y_{\Gamma} \to \mathsf{Alb}_f(Y_{\Gamma})$$

where $Alb_f(Y_{\Gamma})$ is an $(V_f^{\vee} \otimes S^m H)/F^0$ bundle over Y_{Γ} .

Understanding α_f

Denote by \mathbb{H} the local system over Y_{Γ} with fiber $H^{1}(E)$ over the moduli point [E] of the elliptic curve E. It is a PVHS of weight 1. The pullback of \mathbb{H} to \mathfrak{h} is the trivial bundle

$$\mathfrak{h} \times H \to \mathfrak{h}.$$

Denote the associated holomorphic vector bundle by \mathcal{H} .

Suppose that $\tau \in \mathfrak{h}$. Set $E_{\tau} = \mathbb{C}/\Lambda_{\tau}$, where $\Lambda_{\tau} = \mathbb{Z} \oplus \mathbb{Z}\tau$. Let **a**, **b** be the basis of $H_1(E_{\tau};\mathbb{Z})$ that corresponds to the basis 1, τ of Λ_{τ} . Set

$$\mathbf{w}(au) = 2\pi i (\mathbf{a}^{\vee} + au \mathbf{b}^{\vee}) \in H^0(E_{ au}, \Omega^1)$$

be the class of the abelian differential dz on E_{τ} . This is a holomorphic section of \mathcal{H} over \mathfrak{h} .

The Hodge structure V_f has Hodge numbers (m + 1, 0) and (0, m + 1). This implies that

$$(V_f^{\vee}\otimes S^m\mathcal{H})/F^0=(V_f^{m+1,0})^{\vee}\otimes S^m\mathcal{H}.$$

The pullback of $Alb_f(Y_{\Gamma})$ to \mathfrak{h} is the trivial bundle

$$\mathfrak{h} \times (V_f^{m+1,0})^{\vee} \otimes S^m \mathcal{H} \to \mathfrak{h}.$$

Assume, for simplicity, that the Fourier coefficients of *f* lie in \mathbb{Q} . (This implies dim $V_f = 2$.) Then the pullback of α_f to a section of this bundle is

$$\alpha_f: \tau \mapsto 2\pi i \int_{\tau_0}^{\tau} f(\tau) \mathbf{w}(\tau)^m d\tau$$

where τ_0 is a lift of the base point of Y_{Γ} to \mathfrak{h} .

Higher relative Albanese maps

For $0 \le j \le m$, set

$$\omega_{f,j} = 2\pi i f(\tau) \tau^j d\tau.$$

At least some of the coefficients of higher Albanese mappings of modular curves are given locally by what Manin calls "iterated Shimura integrals"

$$\int_{\tau_0}^{\tau} \omega_{f_1, j_1} \omega_{f_2, j_2} \cdots \omega_{f_r, j_r}$$

where f_1, \ldots, f_r are normalized Hecke eigen forms of weights $m_1 + 2, \ldots, m_r + 2$ and $0 \le j_k \le m_k$.

Higher Genus

Denote the moduli space (stack) of smooth complex projective curves of genus $g \ge 2$ by M_g . Denote the moduli point of the curve *C* by [*C*]. We have

 $\pi_1(\mathcal{M}_g, [C]) = \Gamma_C =$ the mapping class group of *C*.

This is the group of isotopy classes of orientation preserving diffeomorphisms of *C*:

 $\Gamma_{\mathcal{C}} = \pi_0(\operatorname{Diff}^+ \mathcal{C}).$

Since $H_1(\mathcal{M}_g; \mathbb{Q})$ vanishes for all $g \ge 2$, $\pi_1^{un}(\mathcal{M}_g, [C])$ is trivial. So the current version of Chabauty–Kim is not a useful tool for understanding $\mathcal{M}_g(K)$, K is a # field.

Relative completion of Γ_C

The action of Γ_C on $H_1(C)$ induces a homomorphism

 $\rho: \Gamma_{\mathcal{C}} \to \operatorname{Sp}(H_1(\mathcal{C},\mathbb{Z})).$

It is surjective and has Zariski dense image in $\text{Sp}(H_1(C; \mathbb{Q}))$. The completion of Γ_C relative to ρ is an extension

$$1 \rightarrow \mathcal{U} \rightarrow \mathcal{G} \rightarrow \operatorname{Sp}(H) \rightarrow 1$$

where $H = H_1(C)$ and \mathcal{U} is prounipotent. Unlike in genus 1, the Lie algebra \mathfrak{u} of \mathcal{U} is finitely generated for all $g \ge 2$.

A celebrated result of Dennis Johnson implies that when $g \ge 3$

$$H_1(\mathfrak{u}) = (\Lambda^3 H)/H =: V$$

as an Sp(H) module, so that \mathfrak{u} is a quotient of $\mathbb{L}(V)^{\wedge}$.

Observe that

 ${
m Sp}(H_{\mathbb C})/F^0{
m Sp}(H_{\mathbb C})={
m grassmanian}$ of g-planes in $H^1(C,{\mathbb C})$ and that

$$\operatorname{Sp}(\mathcal{H}_{\mathbb{R}})/(\operatorname{Sp}(\mathcal{H}_{\mathbb{R}})\cap F^{0}\operatorname{Sp}(\mathcal{H}_{\mathbb{C}}))\cong \operatorname{Sp}_{g}(\mathbb{R})/U(g)$$

is the Siegel upper half plane

$$\mathfrak{h}_g = \{ Z \in \mathbb{M}_g(\mathbb{C}) : Z = Z^T \text{ and } \operatorname{Im}(Z) > 0 \}$$

Thus

$$\mathsf{Alb}^{\mathsf{0}}(\mathcal{M}_g) = \mathrm{Sp}(\mathcal{H}_{\mathbb{R}}) / (\mathrm{Sp}(\mathcal{H}_{\mathbb{R}}) \cap \mathcal{F}^{\mathsf{0}} \mathrm{Sp}(\mathcal{H}_{\mathbb{C}})) = \mathrm{Sp}_g(\mathbb{Z}) \backslash \mathfrak{h}_g = \mathcal{A}_g,$$

the moduli space of principally polarized abelian varieties (ppav's) of dimension g, and

$$\alpha^{0}: \mathcal{M}_{g} \to \mathcal{A}_{g} = \mathsf{Alb}^{0}(\mathcal{M}_{g})$$

is the period mapping.

We can extend the definition of V to all ppav's A by setting

$$V_A = (\Lambda^3 H_1(A)) / H_1(A) = P H_3(A).$$

Put it in weight -1, so that its Hodge numbers are

$$(-2,1), (-1,0), (0,-1), (1,-2)$$

Set

$$J(V_A) = V_{A,\mathbb{Z}} \setminus V_{A,\mathbb{C}} / F^0 V_A$$

We can assemble these into the family

$$J(\mathbb{V}) o \mathcal{A}_g$$

of compact complex tori over \mathcal{A}_g . This is $\operatorname{Alb}^1(\mathcal{M}_g)$.

When $g \ge 3$, we have the diagram

$$\begin{array}{ccc} \operatorname{Alb}^{1}(\mathcal{M}_{g}) & \stackrel{\cong}{\longrightarrow} & J(\mathbb{V}) \\ & & & \downarrow \\ & & & \downarrow \\ \mathcal{M}_{g} & \xrightarrow{\alpha^{0}} & \operatorname{Alb}^{0}(\mathcal{M}_{g}) & \stackrel{\cong}{\longrightarrow} & \mathcal{A}_{g} \end{array}$$

The Albanese mapping α^1 is the normal function of the Ceresa cycle. (More about this in Padma Srinivasan's talk.)

The normal function associated to a cusp form Set

 $\mathbb{U}_f := V_f^{\vee} \otimes S^m \mathbb{H}$

This is a PVHS of weight -(m+1) + m = -1 over Y_{Γ} .

We can quotient it out by $\mathbb{U}_{\mathbb{Z}}$ to obtain a family of compact complex tori $J(\mathbb{U}_f)$ over Y_{Γ} with fiber

$$J(U_y) := U_{y,\mathbb{Z}} \setminus \big[V_f^{\vee} \otimes S^m H^1(E;\mathbb{C}) \big] / F^0 \big[V_f^{\vee} \otimes S^m H^1(E) \big]$$

over y = [E]. This is the family of Griffiths intermediate jacobians associated to \mathbb{U}_f . The Albanese mapping α_f descends to a section ν_f of $J(\mathbb{U}_f)$. It is a (admissible) normal function

This should be the normal function associated to certain algebraic cycles associated to Hecke operators.

Questions

- Is there a p-adic version of relative Albanese varieties and maps? Can Chabauty–Kim be extended to this situation?² Might it be useful?
- Can modular forms of weight > 2 be used to bound K rational points on modular curves?
- Can the *p*-adic Ceresa normal function) be used to bound the *K*-rational points of \mathcal{M}_g , *K* a number field, especially when $g \gg 0$. Note that \mathcal{M}_g is unirational when $g \ge 14$.
- ► Might this shed any light on Lang's Conjecture when g ≥ 24, where M_g is of general type?

²After giving this talk I learned that Noam Kantor developed such a *p*-adic verion in his PhD thesis. See references.

References

- Hain, Richard: *The geometry of the mixed Hodge structure on the fundamental group*. Algebraic geometry, Bowdoin, 1985, 247–282, Proc. Sympos. Pure Math., 46, Part 2, 1987.
- 2. Hain, Richard: *The Hodge–de Rham theory of modular groups*. Recent advances in Hodge theory, 422–514, London Math. Soc. Lecture Note Ser., 427, Cambridge Univ. Press, 2016.
- 3. Hain, Richard, Zucker, Steven: *Unipotent variations of mixed Hodge structure*. Invent. Math. 88 (1987), 83–124.
- 4. Kantor, Noam: *The Chabauty–Kim Method for Relative Completions*. PhD Thesis, Oxford, 2019. [arXiv:2006.10725]
- 5. Kim, Minhyong: *The unipotent Albanese map and Selmer varieties for curves*. Publ. RIMS 45 (2009), 89–133.
- Manin, Yuri: Iterated integrals of modular forms and noncommutative modular symbols. Algebraic geometry and number theory, 565–597, Progr. Math., 253, Birkhäuser, 2006.