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The Mapping class group of a manifold

The mapping class group Iy, of a closed orientable manifold M
is the group of isotopy classes of orientation preserving
diffeomorphisms of M:

[y = 7o Difft M.

The Torelli group Ty, of M is the subgroup consisting of the
mapping classes that act trivially on the homology of M:

Ty = ker{l'yy — Aut H,(M; Z)}.

Denote the image of I'yy — Aut H,(M; Z) by Sys. The mapping
class group 'y is an extension

1—>TM—>FM—>SM—>1.



There is are also relative/decorated versions: If N is a subset of
M (e.g., M or a point) and p is a collection of cohomology
classes (e.g., Pontryagin classes, Kahler class), one can define
the mapping class group

Tung = 7o(Diff T (M, N; p)).
of (M, N) and its Torelli subgroup
Tun =ker{Tyn — Ho(M,N;Z)}.
If Ais the annulus S' x [—n, 7] one has
Faoa={ti:neZ} =17

The generator
ta: (0, ) — (0+t+m, 1)

is the Dehn twist about the curve S x {0}.



Monodromy homomorphisms

A locally trivial bundle X — T with fiber M over a smooth
manifold T gives rise to a monodromy representation

7T1(T, l'o)—> FM (*)
where we identify the fiber over t, with M.

A case of interest is where X — T is the universal family over a
moduli space (or stack) of complex projective structures on M.
One can then ask how close the monodromy representation (x)
is to being an isomorphism. Not much appears to be known,
even when M is simply connected. (More precise version later.)



The classical case — complex curves

Suppose that M is a compact oriented surface of genus g > 2.
> lts MCG 'y is generated by a finite number of Dehn twists.
> |t is finitely presented (algebraic geometry, Thurston, .. .).
» Have Sy = Sp(H1(M; Z)) := Aut(Hi(M; Z),{ , )).
> lts Torelli group Ty, is a tough nut to crack:

> it is a countably generated free group when g = 2 (Mess)

» it is finitely generated when g > 3 (Johnson)

» it is conjectured to be finitely presented when g > 3, but
this is not known for any g > 3.



Teichmdiller space .7,

» A marked Riemann surface is an isotopy class of
diffeomorphisms f: M — X of M with a compact Riemann
surface, or equivalently, a hyperbolic surface.

» The set of marked Riemann surfaces of genus g is a
manifold .7 that is diffeomorphic to R89-5.

» The mapping class group Iy, acts on Teichmuller space
Ty

ry M4 x [6] - [f] = [foo ]

» This action is properly discontinuous and virtually free.
» The moduli space of compact Riemann surfaces is the
orbifold quotient:
Mg =Tm\Tg.



Moduli of compact Riemann surfaces

» The moduli space of curves is the orbifold classifying
space Bl'y of I'y. That is, the topology of Mg is
determined by I'y.

» One manifestation of this is the isomorphism
H*(Tw; Q) = H*(Mg; Q).

Much geometry of algebraic curves is encoded in the
cohomology and structure of I'y.

» In this case, the monodromy homomorphism
US| (M97 [f]) - rM

is an isomorphism.



Higher dimensions

To what extent does this hold in higher dimensions? The
natural setting:

>

| 2

M)y is a moduli space that parameterizes a natural family
of complex projective structures on M.

Assume there is a universal family 2~ — .#),, where
2 c PN x M-

Let wy- € H?(2") be pullback of the hyperplane class
along 2~ — PN,

It restricts to a class w € H?(M).
Denote the stabilizer of w in 'y by 'y,



Some basic questions

Suppose that ¢ : (M,w) — (X, wy) is a diffeomorphism. We
have the monodromy representation

™ (%Ma [¢]) — rM,w

» Is p close to being an isomorphism?

» Does it have finite kernel?

» Does the image have finite index?

» Is .y — BI'y,, close to being a homotopy equivalence?



Abelian varieties

Suppose that (A, w) a principally polarized variety of complex
dimension g. Set Hg = Hi(A; R). Hatcher (1978) showed that
there is a split surjection exact sequence

0 — (finite abelian group) — I'(40). — Sp(Hz) — 1
Moduli space Ay = Sp(Hz)\bg ~ BSp(Hz). So
m1(Ag, [A]) = T(a0)w

injective with finite index image and Ag — Bl (4. IS close to
being a homotopy equivalence.



Sullivan’s first result

Denote the group of self homotopy equivalences of a
topological space X by ho Aut(X). Denote the localization of X

Theorem (Sullivan, 1977)

If X is a simply connected (or nilpotent) finite complex, then

ho Aut(X(0)) is an affine algebraic Q-group G ;’( whose reductive
quotient is a subquotient of the automorphism group of the
rational cohomology ring H*(X; Q). Moreover the image of

ho Aut(X) — G2(Q) is arithmetic and the kernel is finite.

If, in addition, X is a formal space (e.g., a compact Kéhler
manifold by DGMS), then the reductive quotient of g;g is the
reductive quotient of the group of automorphisms of the
cohomology ring H*(X; Q).



Examples and comments
1. When M = (S")", 67 = GL,/Q.
2. When M = P{,
G = Aut H*(P"; Q) = G/ Q.
3. When M = U(9), the Sullivan minimal model is

H*(U(9); Q) = A*(y1, Y3, ¥5, Y7, ¥o)

where |y;| = j. Its automorphism group an extension of
(Gm)® by the unipotent group G:

Yorr Yo+ tyiysys, Yy yjwhenj#9, tcQ.

In this case, Aut H*(M) is not reductive.



A Johnson homomorphisms for simply connected
manifolds

If M is simply connected, m3(M) ® Q is an extension.
0 — Sym? Ho(M; Q)/im A — m3(M, xo) ® Q — H3(M; Q) — 0,

where A : Hy(M; Q) — S2Ho(M; Q) is the dual of the cup
product. The action of Ty, on this gives rise to Johnson
homomorphism

v Hy (T Q) — Hom(Hs(M; Q), Sym?2 Ho(M; Q)/im A).

This is a higher dimensional analogue of the Johnson
homomorphism in the surface case. It is trivial when by = 1,
such as when M is a complete intersection.



Generalized Johnson homomorphism
Denote the kernel of ho Aut(M) — Aut H*(X) by ho Ty.

Theorem (H, 2023)

If M is a simply connected Kahler 3-fold, then the Johnson
homomorphism induces an Sy -invariant surjection

7 : Hy(ho Tpy; Q) — Hom(Hz(M; Q), Sym? Ho(M; Q)/ im A).
Question
Is this an isomorphism? | do not know if
hoTy — Autme(M) ® Q

is close to being injective (e.g., finite kernel) or if the image ®Q
is isomorphic to

Hom(Hs(M; Q), Sym? Ho(M; Q)/im A).



Pontryagin Distortion

The distortion of the Pontryagin classes is used to detect
elements of ker{l"yy — ho Aut(M)}.

» For p € Ty, the Wang sequence splits into SESs
0 — H=' (M) — H(M,) — H(M) — 0.

» A homotopy F : M x | — M from ¢ to the identity induces a
smooth homotopy equivalence F : M x S' — M.

» The kth distortion of F is
Sk(F) = F*(0x(My)) — pu(M) x 1 € H*"(Mm).
» The distortion of ¢ is
3(2) == (0k(F)) 4 € [Bak<dimamH™  (M; Q)] /I =: D,

where [ is the distortion of homotopies from idy, to itself.



Sullivan’s result for MCGs
Setp = (py,p2,...) and let g,’(jﬁ be the stabilizer of p and .

Theorem (Sullivan, 1977)

If M is a simply connected closed manifold of (real) dimension
> 5, there is an affine algebraic group Gy, defined over Q, that
is an extension
h+
1 —>DM—>QM—>QM,§—>1
and a homomorphism Iy — Gy (Q) with arithmetic image and
finite kernel.

When M is formal, the reductive quotient of Gy is the reductive
quotient of the group of automorphisms of the ring H*(M; Q)
that fixes p and juy.

Corollary
Ifdimg M > 5, then Ty is finitely presented.



The result of Kreck and Su

Kreck and Su gave a complete computation of the mapping
class groups of simply connected 3-folds with b, = 1. Below is
a rational (and much simplified) version of their main result.

Theorem (Kreck—Su, 2022)

If M is a simply connected compact Kéhler 3-fold with b, = 1,
then the distortion homomorphism

om: Ty — H3(M; Q)

has finite kernel and image a full lattice.



Automorphisms of H* of a compact Kahler manifold

We've already seen that the automorphism group of the
cohomology ring of U(9) (a formal space) is not reductive.
Theorem (H, 2023)

Suppose thatk is a subfield of R. If M is a compact Kahler
manifold with Kéhler class w € H?(M; k), then the

automorphism group of its cohomology ring that fixes w is a
reductive k group.

This is proved using the Hard Lefschetz Theorem.



Smooth hypersurfaces

Projective space:

BT — (€2 — {0})/C*.

Coordinates X = (g, . .., Xpr1) € C"2 and [x] € P™1.
» A non-zero polynomial f(x) € Sym? C"t2 defines a
hypersurface

X = {[x] € P : f(x) = 0}.

of degree d in P+,
» It is smooth when f(x) has nowhere vanishing discriminant.



Moduli of hypersurfaces

> Let %, 4 be the space of homogeneous polynomials of
degree d in n+ 2 variables with non-vanishing
discriminant.

» The group GL,,2(C) acts on it. The (stack) quotient is the
moduli space /7, 4 of hypersurfaces in P™1 of degree d.

» The map %, q — 74 q is a principal GLp;2(C) bundle, so
we have a central extension

0 = Z — m(%na, f) = ™1 (Hna, [Xi]) = 1

where X; denotes the hypersurface in P+ defined by the
homogeneous polynomial f.



Lefschetz hyperplane theorem

Theorem (Lefschetz, special case)

If n> 2 and X is a smooth hypersurface in P"t1, then
1. X is simply connected,
2. the restriction map

H (@™, Q) — H(X; Q)

is an isomorphism when j # n,
3. in degree n we have an exact sequence

0 — H"(P™'; Q) — H"(X;Q) — HI(X;Q) — 0

The cokernel is the primitive cohomology of X. It has a
non-degenerate (—1)"” symmetric bilinear form ( |, ).



» The monodromy homomorphisms are:
T(Una: ) = (A g, [X]) = Tw = Aut(Hp(Xr Z): (. ).

> Beauville (1986) computed the images of 71(.#, [X]) and
I'y. Both have finite index in Aut(HJ(X;Z); ( , )).

» When n = 3, we have
(d=10°+1
d

which is positive for all d > 3. The only interesting part of
the monodromy representation is

dim H)(X; Q) = 1

™1 (%s,0, ) — Sp(H3(Xy): Z.).



» Since Beauville computed Sy, the problem is to
understand or compute the Torelli group Ty.

» We will skip dim¢ X = 2 as 4-manifold topology is harder.
There are recent results in dimension 4 by Konno—Lin,
Konno—Mallick—Taniguchi and Baraglia.

» Not much is known, apart from the results of Kreck and Su
in complex dimension 3.



Distortion for complete intersections

In the case of a complete intersection M, we can extend the
distortion homomorphism

6 ker{T'y = GI(Q)} — Dy

to its Torelli group. In this case, the Pontryagin classes are
multiplies px(M) = axw?* of powers of the hyperplane class.

Proposition (H, 2023)
Suppose that M is a smooth manifold with by = 0. If there is
w € H?(M; Q) such that px(M) = ayw?, then

Dy = @ H4k71 (M, Q)
k

(no indeterminacies) and the distortion homomorphism extends
naturally to a homomorphism 6 : Ty; — Dy.



For a smooth hypersurface in P! and degree d, set
Ky = ker{pm : m1(H5 g[M])— Aut HJ(M; Q)}.

This maps to Ty,.

Theorem (H, 2023)

Suppose thatn > 3 and n = 3 mod 4. If M is a smooth
hypersurface in P"' of degree d > 1, then

Am
Ku

T —— H"(M;Q)

is trivial. If d > 3, then the image of A\ has infinite index in Ty,.



The following is a simplified version of a result of Carlson and
Toledo.

Theorem (Carlson—Toledo, 1999)

Suppose that M is a smooth hypersurface of degree d in P+,
Ifd > 3 and n > 1, the kernel of the representation

m1(H0.q, [M]) — Aut H"(M) surjects onto a lattice in a non
compact, almost simple R-group of rank > 2. In particular, it
contains a non-abelian free subgroup.

In summary:

Corollary
Ifd > 3 and n > 3, then the kernel of the monodromy
representation

v m(Hpa, [M]) — Ty
contains a non-abelian free group. When n = 3 mod 4, its
image has infinite index.



Where does the kernel come from?

Consider

¢
Und — Uni1d — Hni1,d

|

Hn.d

where ¢ takes f(x) to y? + f(x). If M is the hypersurface
f(x) = 0, then the hypersurface M corresponding to o([M]) is
the cyclic cover of P™1 of degree d branched along M.

This provides a second monodromy representation

pm 1 (Ung) — (Aut HI (I\7I; Q))/scalars.

Carlson and Toledo show the image is a lattice in the Zariski
closure of the image of gy (a reductive group), which they show
has a non-compact factor of real rank > 2.



The wrong problem?
A hypersurface M in P can (and should?) be regarded as a
pair (P"*', M). Perhaps instead we should consider the MCG
F(Pn+1 ,M) =T DifF+(Pn+1 s M)

where Diff *(P™+' M) denotes the group of orientation
preserving diffeomorphisms of P™+! that restrict to a
diffeomorphism of M. The geometric monodromy of the
universal hypersurface 2" C J#;, g x P is a homomorphism

@t my @ ™1 (Hnas [M]) = Tpnit

Question
How close is Apn+1 p) to being an isomorphism?



Future directions?

» Try to understand the problem for Hyper Kahler manifolds
or, more generally, Calabi—Yau manifolds. (They are simply
connected and have reasonably well understood moduli
spaces via work of Verbitzky, Looijenga, ....) Kreck and
Su in an earlier paper (2019) show that the Torelli group of
the HK-manifold K?(T) surjects onto a lattice.

» One should be able to use (mixed) Hodge theory to study
the groups m1(.#)) and I'y; and the monodromy
homomorphism 71 (.#y) — T u-

» What can one say about mapping class groups of algebraic
surfaces? E.g., for K3 surfaces or hypersurfaces in P3?
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