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Introductory comments

▶ There is much current interest in understanding when the Ceresa
(or Gross–Schoen) cycle of a non-hyperelliptic curve is torsion
mod algebraic equivalence: Beauville–Schoen, Qiu–Zhang,
Laterveer, Laga-Shnidman.

▶ Here we focus, not on cycles mod algebraic equivalence, but on
the torsion locus of the normal function of the Ceresa cycle.

▶ My goal is to introduce new global tools and techniques for
understanding the loci in moduli where this normal function is
torsion.

▶ For students and non-experts: this might be a tough talk — but
hang in there. I’ll do my best to make the material as accessible
as possible. There are plenty of open questions, some
computational, some foundational.



The Ceresa cycle

Throughout C will be a smooth projective curve of genus g ≥ 2.
Unless otherwise stated, the ground field will be C. For each x ∈ C
(or x ∈ Pic1 C) the Abel–Jacobi map

αx : C → JacC

takes y to the divisor class of y − x . Its image is an algebraic 1-cycle
Cx in JacC. Set C−

x = ι∗Cx . The Ceresa cycle of C is the algebraic
1-cycle

ZC,x := Cx − C−
x

in JacC. It is homologically trivial.

Note that ZC,x and ZC,y are algebraically equivalent.



Detecting cycles via Hodge theory

Suppose that Z =
∑

j njZj is an algebraic d-cycle on a smooth
projective variety Y . When [Z ] = 0 in H2d (Y ) there is an extension

0 H2d+1(Y )(−d) EZ Z(0) 0

of mixed Hodge structures (and ℓ-adic Galois modules when (Y ,Z ) is
defined over a number field).

Construction: pull the LES of (Y , |Z |) back along clZ : Z → H2d (|Z |):

0 H2d+1(Y ) H2d+1(Y , |Z |) H2d (|Z |) H2d (Y )

0 H2d+1(Y ) EZ (d) Z(d) 0

clZ

The top row is exact as dimR Z = 2d , so that H2d+1(|Z |) = 0.



The group of 1-extensions

Suppose that V is a Hodge structure of negative weight, then

Ext1MHS(Z,V ) ∼= J(V ) := VC/(VZ + F 0V ).

If V has weight −1, then VC = F 0V ⊕ F 0V , which implies that

VR → VC/F 0V

is an R-linear isomorphism. It induces an isomorphism

J(VR) := VR/VZ → J(V )

of tori. In particular, J(V ) is compact (but typically not algebraic).



The Griffiths invariant

A homologically trivial d-cycle on Y thus determines a point1

νZ ∈ J(H2d+1(Y )).

This depends only on the rational equivalence class of Z .

The Ceresa cycle ZC,x = Cx − C−
x determines

νC,x ∈ J(H3(JacC)) = J(Λ3H)

where H = H1(C).

1From now on I will suppress the Tate twist — always twist so that the odd weight
Hodge structure V in J(V ) has weight −1.



Let a1, . . . ,ag ,b1, . . . ,bg be a symplectic basis of H. Set

θ :=

g∑
j=1

aj ∧ bj ∈ Λ2H

Multiplication by θ is an injective morphism of Hodge structures

H ↪→ Λ3H(−1)

It induces an inclusion

JacC = J(H) ↪→ J(Λ3H).



Eliminating the base point

Proposition (Pulte)
If x , y ∈ C, then

νC,x − νC,y = the image of 2([x ]− [y ]) ∈ JacC ⊂ J(Λ3H)

Set
Λ3

0H = (Λ3H)/(θ · H).

The image of νC,x in J(Λ3
0H) does not depend on x ∈ C. It vanishes

when C is hyperelliptic.

Notation: Denote the image of νC,x in J(Λ3
0H) by νC .



Families of homologically trivial cycles

Suppose that f : Y → X is a smooth projective morphism and that Z
an algebraic cycle on Y whose restriction to each fiber is
homologically trivial and has dimension d and codimension e:

Zx Z Y

{x} X X

f

Set
V = R2e−1f∗ZX (e)

This has fiber H2d+1(Yx)(−d) over x ∈ X and weight −1.



The normal function of a family of cycles

The fiberwise Griffiths construction defines a section νZ : X → J(V)

νZ : x 7→ νZx ∈ J(Vx)

of the family of intermediate jacobians

J(V) → X

It is called the normal function of the family of cycles (Y ,Z ) over X .

This section is holomorphic and satisfies many technical conditions
which I will suppress.



The normal function of the Ceresa cycle

In the case of the Ceresa cycle, f : Y → X is the universal jacobian

J → Mg

over the moduli space (better, the moduli stack) of smooth projective
curves of genus g, where g > 2.

We thus have the Ceresa normal function

ν(C) ∈ J(Λ3
0H1(C)) J(Λ3

0H)

[C] Mg

ν

It vanishes on the hyperelliptic locus.



Constant and torsion sections

▶ Suppose V is a variation of Hodge structure of weight −1 over X .
Assume VZ is torsion free.

▶ A section of J(V) over X is constant if it is a constant section of
the constant sub family

J(H0(X ,V)) ⊆ J(V).

▶ A section of J(V) is torsion if a positive multiple of it vanishes.
▶ A section is torsion mod constants if a positive multiple of it is

constant.



Theorem (Brosnan–Pearlstein, Kato et al, Schnell)
The locus where a normal function is torsion (or torsion mod
constants) is an algebraic subvariety of X .

Question:
1. What can we say about the components of the locus of points in

X where the normal function of a homologically trivial cycle is
constant? Or, more generally, torsion mod constants?

2. Is there a bound on the order of the restriction of the genus g
Ceresa cycle to components of its torsion locus?

3. Is the dimension of the components of the Ceresa torsion locus
in Mg −Hg bounded?



Level structures

To avoid working with stacks, we impose a level structure:

A level ℓ structure on a genus g curve C is an isomorphism

(JacC)[ℓ] ∼= (Z/ℓZ)2g

where the Weil pairing on the LHS corresponds to the “standard”
symplectic inner product on the RHS. The moduli space Mg(ℓ) of
smooth projective curves with a level ℓ ≥ 3 structure is a smooth
quasi-projective variety.

Note: The finite symplectic group Spg(Z/ℓ) acts on Mg(ℓ). The
quotient stack Spg(Z/ℓ)\\Mg(ℓ) is Mg .



Torsion leaves are affine

Theorem
If the restriction of the Ceresa normal function to the closed
subvariety X of Mg(ℓ) is torsion mod constants, then X is affine.

Trivial example: X is a point.

Example: The Ceresa normal function vanishes on the hyperelliptic
locus. It is affine.

Remark: The converse is not true: if T is an ample curve in Mg(ℓ)
whose closure contains at least one boundary point, then T is affine
but no multiple of ν is constant as π1(T , t0) → π1(Mg(ℓ), t0) is
surjective by Lefschetz.



The Deligne–Mumford compactification

The Deligne–Mumford compactification Mg of Mg is obtained by
adding points corresponding to stable (nodal) curves of genus g to
Mg . It has boundary ∆ := Mg −Mg (a divisor with normal
crossings) with irreducible components

∆ = ∆0 ∪∆1 ∪ · · · ∪∆⌊g/2⌋.

The generic point of ∆0 is an irreducible curve with one node. The
generic point of ∆h, when h > 0, has one node and two smooth
irreducible components, one of genus h and the other of genus g − h.

∆0 ∆h, h > 0
g − 1

h g − h

There is a natural compactification Mg(ℓ) of Mg(ℓ) where
Mg(ℓ) → Mg is ramified over ∆.



The Picard group of Mg

The Hodge bundle E over Mg has fiber H0(Ω1
C) over [C]. It extends to

Mg . Set L := det E .

Denote the class of ∆h in PicMg by δh and the class of L by λ. When
g ≥ 3

PicMg = Zλ

and
PicMg = Zλ⊕

⊕
0≤h≤g/2

Zδh.

Note: These divisor classes pull back to Mg(ℓ). The line bundle L is
ample on Mg(ℓ).

Now suppose that X is a smooth projective variety and that
f : X → Mg is a morphism. Set ∆X = f−1(∆) and X = X −∆X .



Theorem
There is a computable effective Q-divisor jX on X, supported on ∆X ,
with the following properties:

1. The divisor

(8g + 4)λ−
(

gδ0 + 4
⌊g/2⌋∑
h=1

h(g − h)δh + jX

)

has non-negative degree on all complete curves T in X with
f (T ) ̸⊂ ∆0.

2. The equality

(8g + 4)λ = gδ0 + 4
⌊g/2⌋∑
h=1

h(g − h)δh + jX

holds in (PicX )⊗Q if and only if ν is constant mod torsion on X.



Remarks

▶ jX is the jumping divisor, which I will define shortly.
▶ It is a non-negative Q-linear combination of codimension 1

boundary components of X . (Brosnan–Pearlstein,
Burgos–Holmes–de Jong)

▶ The jumping divisor can be computed using the work of
Brosnan–Pearlstein and/or de Jong–Shokrieh.

▶ The divisor class

M := (8g + 4)λ− gδ0 − 4
⌊g/2⌋∑
h=1

h(g − h)δh ∈ PicMg

is the Moriwaki divisor (class). It plays a role in the Arakelov
geometry of Mg .

▶ The first statement is a strengthened version of Moriwaki’s
inequality.



Example: hyperelliptic curves

The boundary Hg −Hg (a normal crossing divisor) has components

∆h, 0 < h ≤ g/2 and Ξk , 0 ≤ k ≤ (g − 1)/2.

The generic point of Ξk is an irreducible hyperelliptic curve with one
node when k = 0 and the union of two hyperelliptic curves of genera
k and g − k − 1 when k > 0.

Ξ0
Ξk , k > 0

g − 1 k g − k − 1

PicHg = Zξ0 ⊕
⊕

0<k<(g−1)/2

Zξk ⊕
⊕

0<h≤g/2

Zδh



▶ The restriction mapping PicMg → PicHg is

δ0 7→ ξ0 + 2
∑
k>0

ξk and δh 7→ δh when h > 0.

▶ Since ν ≡ 0 on Hg , the second theorem + Cornalba–Harris imply
that in PicHg

M − jHg
= 0 = (8g + 4)λ − gξ0 − 2

⌊(g−1)/2⌋∑
k=1

(k + 1)(g − k)ξk − 4
⌊g/2⌋∑

h=1

h(g − h)δh.

▶ So the jumping divisor of Hg is

jHg
= 2

⌊(g−1)/2⌋∑
k=1

k(g − k − 1)ξk ∈ PicHg

I’ll discuss the elements of the second theorem first, then sketch the
proof of the first.



Biextensions

Suppose V is a Hodge structure of weight −1. Recall

J(V ) = Ext1(Z,V )

= {MHSs with weight graded quotients Z,V}

The dual torus is

J(V )∨ := Pic0 J(V ) = Ext1(V ,Z(1)).

A polarization ϕ : V ⊗ V → Z(1) induces an isogeny

J(V ) → J(V )∨.



Set

B(V ) = {MHSs with weight graded quotients Z,V ,Z(1)}

This is the set of biextensions E with GrW−1 E = V . Have

B(V ) → J(V )× J(V )∨, E 7→ (E/W−2,W−1E)

This is a torsor under Ext1MHS(Z,Z(1)) = C×.

Example: If p,q, r , s are distinct points on the curve C, then

H1(C − {p,q}, {r , s}) ∈ B(H1(C)).

Have
H1(C, {r , s}) ∈ Ext1(Z,H)

H1(C − {p,q}) = Hom(H1(C, {p,q}),Z(1)) ∈ Ext1(H,Z(1)).



The biextension metric

The C× bundle B(V ) → J(V )× J(V )∨ has a canonical metric. Set

BR(V ) = {R-MHSs with weight graded quotients R,VR,R(1)}

Since Ext1MHS(R,V ) = VC/(VR + F 0V ) = 0, there are canonical
isomorphisms

h : BR(V ) Ext1MHS(R,R(1)) R.≃ ≃

Define
∥E∥ = exph(ER) ∈ R×



Relative version

When V is a polarized variation of Hodge structure of weight −1 over
X , we have bundles

BX J(V)×X J(V)∨ X

Its restriction to x ∈ X is

B(Vx) → J(Vx)× J(Vx)
∨ → {x}.

It is naturally metrized. We can pull this back along

J(V) → J(V)×X J(V)∨

to obtain a metrized C× bundle over J(V). Denote the corresponding
metrized line bundle by

B(V) → J(V).



Biextension line bundles

This can be pulled back along a normal function ν : X → J(V) to
obtain a metrized line bundle

BX := ν∗B(V)

over X . Suppose that X is a smooth projective completion of X

Theorem (Lear, 1990; B–P, 2019; B–H–deJ, 2019)
A positive power B⊗r

X of the biextension line bundle BX extends to a
holomorphic line bundle Br

X
over X with the property that the metric

on B⊗r
X extends to a continuous metric on X −∆sing

X .

Remark: (Brosnan–Pearlstein) If ν is admissible (and r = 1), then
H0(X ,B×

X
) is the space of admissible biextensions over X with

extensions ν ∈ Ext1MHS(X)(Z,V) and ν∨ ∈ Ext1MHS(X)(V,Z(1)).



Positivity

There is a unique 2-form ωϕ on J(V) that is translation invariant on
every fiber, corresponds to the polarization ϕ ∈ H2(J(Vx)) and is
locally constant with respect to the isomorphism

J(V) ∼= VR/VZ.

Proposition (H, 2014; Pearlstein–Peters, 2019)
The curvature of BX is 2ν∗ωϕ. It is a semi-positive (1,1)-form on X
that extends to a locally L1 form (current) on X − S, where S ⊂ ∆sing

X .
It vanishes if and only if ν is constant.



Now take X = Mg , X = Mg .

Theorem (H-Reed, 2004)
The biextension line bundle of the normal function of the Ceresa
cycle is the Moriwaki line bundle:

c1(BMg
) = (8g + 4)λ− gδ0 − 4

∑
h>0

h(g − h)δh ∈ PicMg .



Theorem
A normal function ν is constant if and only if BX is trivial on X.

Corollary
kν is constant on X if and only if B⊗k2

X
is trivial on X.

This establishes the second part of the second theorem.

For this result to be useful, we need to be able to compute the Chern
class of BX . This leads us to height jumping . . .



Height jumping

Consider f : (X ,X ) → (Y ,Y ) with X and Y smooth. Have PVHS V
over Y and normal function ν : Y → J(V). Have BX = f ∗BY , so

f ∗BY = BX (jX/Y ).

where jX/Y is supported on ∆Y . The following result is key.

Theorem ( Brosnan–Pearlstein, Burgos–Holmes–de Jong;
2019)
The jumping divisor jX/Y is effective.

Corollary (strengthened Moriwaki inequality)
The Moriwaki divisor has non-negative degree on all curves in Mg
that do not lie in ∆0.
This establishes part (1) of the second theorem.



Why height jumping?

Toy example: Consider a biextension defined over D∗ × D∗ with
coordinates (z1, z2). The biextension bundle B extends to (as a
necessarily trivial) line bundle over D2. In general, the metric is
defined only over D2 − {0}. When there is height jumping, the metric
has the form

log ∥σ(z1, z2)∥B ∼ − log |z1| log |z2|/(log |z1|+ log |z2|)

where σ is a trivializing section and ∼ means that the difference is a
bounded function, smooth on (D∗)2.

If 0 < |a| < 1, then

log ∥σ(t ,a)∥B ∼ − log |a|/(1 + log |a|/ log |t |)

which is continuous in t and bounded near t = 0. So the metric is
continuous over D2 − {0}. However . . .



If we restrict to the curve f : D → D2 given by t 7→ (tn1 , tn2) with
n1,n2 > 0, then

log ∥σ(t)∥B ∼ − n1n2

n1 + n2
log |t |

so that ∥σ(t)/tn1n2/(n1+n2)∥ ∼ 1. This implies that

jf =
n1n2

n1 + n2
[0].

Note: In the normal crossing case, the local behaviour at a boundary
point p of the biextension metric is determined by a local monodromy
representation

ρp : π1((D∗)d , ∗) → Sp(V )⋉ V .

Meme: log ∥σ∥ is a period of a real variation of mixed Hodge
structure. Its growth as one approaches the boundary point p along a
curve is a rational multiple of log |t | determined by the local
monodromy ρp.



Sketch of proof of the affine result

Suppose that X is a closed subvariety of Mg(ℓ) on which ν is torsion
mod constants.
▶ Extend to a smooth compactification X → Mg(ℓ).
▶ Have f ∗M = jX mod torsion in PicX , where jX := jX/Mg

.
▶ Rearrange this to see that a positive multiple of λ is supported on

an effective divisor with support |∆X |.
▶ But λ is ample on Mg(ℓ) (Baily), and therefore on X . So the

pullback of an ample divisor on the closure of the image of X in
PN is effective divisor with support |∆X |.

▶ Conclude that X = X −∆X is affine.



Question and/or (wild) speculation

Question:
Is there an arithmetic or Arakelov version of of the main theorem?
One possible version:
▶ Suppose C is a smooth curve over a number field K . . .
▶ and that C is a (flat, regular, . . . ) model of C over OK .
▶ Define the arithmetic Moriwaki divisor M̂ ∈ P̂icMg/Z.

▶ Define M̂C ∈ P̂ic(SpecOK ) to be the pullback of M̂ along
SpecOK → Mg/Z.

▶ Define the arithmetic jumping divisor ȷ̂C ∈ P̂ic(SpecOK ) as a sum
over the singular fibers of C → SpecOK using the local Galois
representations GKP

→ GSp(HZℓ
)⋉ VZℓ

, where P ̸ |ℓ. (Assume
ȷ̂C is integral.)

▶ Is the class of the Ceresa (or GS) cycle in CH1(JacC) trivial mod
translations if and only if M̂C = ȷ̂C ?
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