What can one say about the loci where the normal function of the Ceresa cycle is constant?

Richard Hain

Duke University

VaNTAGe Seminar October 1, 2024

Introductory comments

- ▶ There is much current interest in understanding when the Ceresa (or Gross–Schoen) cycle of a non-hyperelliptic curve is torsion mod algebraic equivalence: Beauville–Schoen, Qiu–Zhang, Laterveer, Laga-Shnidman.
- ▶ Here we focus, not on cycles mod algebraic equivalence, but on the torsion locus of the normal function of the Ceresa cycle.
- ▶ My goal is to introduce new *global* tools and techniques for understanding the loci in moduli where this normal function is torsion.
- \triangleright For students and non-experts: this might be a tough talk but hang in there. I'll do my best to make the material as accessible as possible. There are plenty of open questions, some computational, some foundational.

The Ceresa cycle

Throughout *C* will be a smooth projective curve of genus *g* ≥ 2. Unless otherwise stated, the ground field will be \mathbb{C} . For each $x \in \mathcal{C}$ (or $x \in Pic^1$ *C*) the Abel–Jacobi map

$$
\alpha_{\mathsf{x}}: \mathcal{C} \to \mathsf{Jac}\, \mathcal{C}
$$

takes y to the divisor class of $y - x$. Its image is an algebraic 1-cycle C_x in Jac *C*. Set $C_x = \iota_* C_x$. The *Ceresa cycle* of *C* is the algebraic 1-cycle

$$
Z_{C,x}:=C_x-C_x^-
$$

in Jac *C*. It is homologically trivial.

Note that *ZC*,*^x* and *ZC*,*^y* are algebraically equivalent.

Detecting cycles via Hodge theory

Suppose that $Z = \sum_j n_j Z_j$ is an algebraic d-cycle on a smooth projective variety Y. When $[Z] = 0$ in $H_{2d}(Y)$ there is an extension

$$
0\,\to\,H_{2d+1}(Y)(-d)\,\to\,E_Z\,\to\,\mathbb{Z}(0)\,\to\,0
$$

of mixed Hodge structures (and ℓ-adic Galois modules when (*Y*, *Z*) is defined over a number field).

Construction: pull the LES of $(Y, |Z|)$ back along $c|_Z : \mathbb{Z} \to H_{2d}(|Z|)$:

$$
\begin{array}{ccccccc} 0 & \longrightarrow & H_{2d+1}(Y) & \longrightarrow & H_{2d+1}(Y,|Z|) & \longrightarrow & H_{2d}(|Z|) & \longrightarrow & H_{2d}(Y) \\ & & \parallel & & \uparrow & & \uparrow & & \\ 0 & \longrightarrow & H_{2d+1}(Y) & \xrightarrow{\quad} & E_Z(d) & \xrightarrow{\quad} & \mathbb{Z}(d) & \xrightarrow{\quad} & 0 \end{array}
$$

The top row is exact as dim_R $Z = 2d$, so that $H_{2d+1}(|Z|) = 0$.

The group of 1-extensions

Suppose that *V* is a Hodge structure of negative weight, then

$$
\mathsf{Ext}^1_{\mathrm{MHS}}(\mathbb{Z},V)\cong J(V):=V_\mathbb{C}/(V_\mathbb{Z}+F^0V).
$$

If *V* has weight −1, then $V_\mathbb{C} = F^0V \oplus F^0V$, which implies that

$$
V_{\mathbb R}\to\,V_{\mathbb C}/F^0\,V
$$

is an R-linear isomorphism. It induces an isomorphism

$$
J(V_{\mathbb R}):=V_{\mathbb R}/V_{\mathbb Z}\to J(V)
$$

of tori. In particular, *J*(*V*) is compact (but typically not algebraic).

The Griffiths invariant

A homologically trivial *d*-cycle on Y thus determines a point¹

$$
\nu_Z\in J(H_{2d+1}(Y)).
$$

This depends only on the rational equivalence class of *Z*.

The Ceresa cycle $Z_{C,x} = C_x - C_x^-$ determines

$$
\nu_{C,x}\in J(H_3(\operatorname{Jac} C))=J(\Lambda^3 H)
$$

where $H = H_1(C)$.

¹ From now on I will suppress the Tate twist — always twist so that the odd weight Hodge structure *V* in *J*(*V*) has weight −1.

Let $a_1, \ldots, a_q, b_1, \ldots, b_q$ be a symplectic basis of *H*. Set

$$
\theta := \sum_{j=1}^g a_j \wedge b_j \in \Lambda^2 H
$$

Multiplication by θ is an injective morphism of Hodge structures

$$
H\hookrightarrow \Lambda^3H(-1)
$$

It induces an inclusion

Jac
$$
C = J(H) \hookrightarrow J(\Lambda^3 H)
$$
.

Eliminating the base point

Proposition (Pulte)

If x, *y* ∈ *C*, *then*

 $\nu_{C,x} - \nu_{C,y} =$ *the image of* 2([*x*] – [*y*]) ∈ Jac *C* ⊂ *J*(Λ³*H*)

Set

$$
\Lambda_0^3 H = (\Lambda^3 H)/(\theta \cdot H).
$$

The image of $\nu_{C,x}$ in $J(\Lambda^3_0H)$ does not depend on $x\in C.$ It vanishes when *C* is hyperelliptic.

Notation: Denote the image of $\nu_{C,x}$ in $J(\Lambda_0^3 H)$ by ν_C .

Families of homologically trivial cycles

Suppose that $f: Y \rightarrow X$ is a smooth projective morphism and that Z an algebraic cycle on *Y* whose restriction to each fiber is homologically trivial and has dimension *d* and codimension *e*:

Set

$$
\mathbb{V}=R^{2e-1}f_*\mathbb{Z}_X(e)
$$

This has fiber $H_{2d+1}(Y_x)(-d)$ over $x \in X$ and weight -1 .

The normal function of a family of cycles

The fiberwise Griffiths construction defines a section $\nu_Z : X \to J(\mathbb{V})$

$$
\nu_Z: X \mapsto \nu_{Z_x} \in J(V_x)
$$

of the family of intermediate jacobians

 $J(\mathbb{V}) \to X$

It is called the *normal function* of the family of cycles (*Y*, *Z*) over *X*.

This section is holomorphic and satisfies many technical conditions which I will suppress.

The normal function of the Ceresa cycle

In the case of the Ceresa cycle, $f: Y \rightarrow X$ is the universal jacobian

$$
\mathcal{J}\to \mathcal{M}_g
$$

over the moduli space (better, the moduli stack) of smooth projective curves of genus q , where $q > 2$.

We thus have the *Ceresa* normal function

$$
\begin{array}{ccc} \nu(C) \in J(\Lambda^3_0 H_1(C)) & \stackrel{ }{\longleftrightarrow} & J(\Lambda^3_0 \mathbb H) \\ \left(\begin{array}{ccc} \mid & & \downarrow \end{array}\right) \nu & & \\ \left[\begin{array}{ccc} \mid & & \downarrow \end{array}\right] & \mathcal{M}_g \end{array}
$$

It vanishes on the hyperelliptic locus.

Constant and torsion sections

- ▶ Suppose V is a variation of Hodge structure of weight −1 over *X*. Assume ∇z is torsion free.
- ▶ A section of *J*(V) over *X* is **constant** if it is a *constant* section of the constant sub family

$$
J(H^0(X,\mathbb{V}))\subseteq J(\mathbb{V}).
$$

- \blacktriangleright A section of $J(\mathbb{V})$ is **torsion** if a positive multiple of it vanishes.
- ▶ A section is **torsion mod constants** if a positive multiple of it is constant.

Theorem (Brosnan–Pearlstein, Kato et al, Schnell) *The locus where a normal function is torsion (or torsion mod constants) is an algebraic subvariety of X.*

Question:

- 1. *What can we say about the components of the locus of points in X where the normal function of a homologically trivial cycle is constant? Or, more generally, torsion mod constants?*
- 2. *Is there a bound on the order of the restriction of the genus g Ceresa cycle to components of its torsion locus?*
- 3. *Is the dimension of the components of the Ceresa torsion locus in* $\mathcal{M}_q - \mathcal{H}_q$ *bounded*?

Level structures

To avoid working with stacks, we impose a level structure:

A level ℓ structure on a genus *g* curve *C* is an isomorphism

 $(\mathsf{Jac}\, C)[\ell]\cong (\mathbb{Z}/\ell\mathbb{Z})^{2g}$

where the Weil pairing on the LHS corresponds to the "standard" symplectic inner product on the RHS. The moduli space $\mathcal{M}_q(\ell)$ of smooth projective curves with a level $\ell \geq 3$ structure is a smooth quasi-projective variety.

Note: The finite symplectic group $\text{Sp}_g(\mathbb{Z}/\ell)$ acts on $\mathcal{M}_g(\ell)$. The quotient stack ${\rm Sp}_g({\mathbb Z}/\ell){\backslash\!\backslash}{\mathcal M}_g(\ell)$ is $\tilde{{\mathcal M}}_g$.

Torsion leaves are affine

Theorem

If the restriction of the Ceresa normal function to the closed subvariety X of $M_q(\ell)$ *is* **torsion mod constants***, then X is affine.*

Trivial example: *X* is a point.

Example: The Ceresa normal function vanishes on the hyperelliptic locus. It is affine.

Remark: The converse is not true: if *T* is an ample curve in $\mathcal{M}_q(\ell)$ whose closure contains at least one boundary point, then *T* is affine but no multiple of ν is constant as $\pi_1(T, t_0) \to \pi_1(\mathcal{M}_g(\ell), t_0)$ is surjective by Lefschetz.

The Deligne–Mumford compactification

The Deligne–Mumford compactification $\overline{\mathcal{M}}_q$ of \mathcal{M}_q is obtained by adding points corresponding to stable (nodal) curves of genus *g* to \mathcal{M}_q . It has boundary $\Delta := \overline{\mathcal{M}}_q - \mathcal{M}_q$ (a divisor with normal crossings) with irreducible components

$$
\Delta=\Delta_0\cup\Delta_1\cup\cdots\cup\Delta_{\lfloor g/2\rfloor}.
$$

The generic point of Δ_0 is an irreducible curve with one node. The generic point of Δ_h , when $h > 0$, has one node and two smooth irreducible components, one of genus *h* and the other of genus *g* − *h*.

There is a natural compactification $\mathcal{M}_q(\ell)$ of $\mathcal{M}_q(\ell)$ where $\overline{\mathcal{M}}_{q}(\ell) \rightarrow \overline{\mathcal{M}}_{q}$ is ramified over Δ .

The Picard group of M*^g*

The Hodge bundle $\mathcal E$ over $\mathcal M_g$ has fiber $H^0(\Omega^1_C)$ over [*C*]. It extends to $\overline{\mathcal{M}}_q$. Set $\mathcal{L} := \det \mathcal{E}$.

Denote the class of Δ_h in Pic $\overline{\mathcal{M}}_q$ by δ_h and the class of $\mathcal L$ by λ . When $q > 3$

$$
Pic \mathcal{M}_g = \mathbb{Z} \lambda
$$

and

$$
\mathsf{Pic}\,\overline{\mathcal{M}}_g=\mathbb{Z}\lambda\oplus\bigoplus_{0\le h\le g/2}\mathbb{Z}\delta_h.
$$

Note: These divisor classes pull back to $\overline{\mathcal{M}}_{q}(\ell)$. The line bundle \mathcal{L} is ample on $\mathcal{M}_q(\ell)$.

Now suppose that \overline{X} is a smooth projective variety and that $f:X\to \overline{\mathcal{M}}_g$ is a morphism. Set $\Delta_X=f^{-1}(\Delta)$ and $X=\overline{X}-\Delta_X.$

Theorem

There is a computable effective \mathbb{Q} -divisor $j_{\overline{X}}$ on \overline{X} , supported on Δ_X , *with the following properties:*

1. *The divisor*

$$
(8g+4)\lambda-\left(g\delta_0+4\sum_{h=1}^{\lfloor g/2\rfloor}h(g-h)\delta_h+j_{\overline{X}}\right)
$$

has non-negative degree on all complete curves T in X with f(*T*) \subset ∆₀.

2. *The equality*

$$
(8g+4)\lambda = g\delta_0 + 4\sum_{h=1}^{\lfloor g/2\rfloor} h(g-h)\delta_h + j_{\overline{X}}
$$

holds in (Pic \overline{X}) ⊗ $\mathbb Q$ *if and only if* ν *is constant mod torsion on X.*

Remarks

- \blacktriangleright *j_X* is the *jumping divisor*, which I will define shortly.
- \blacktriangleright It is a non-negative Q-linear combination of codimension 1 boundary components of *X*. (Brosnan–Pearlstein, Burgos–Holmes–de Jong)
- \blacktriangleright The jumping divisor can be computed using the work of Brosnan–Pearlstein and/or de Jong–Shokrieh.
- \blacktriangleright The divisor class

$$
M:=(8g+4)\lambda-g\delta_0-4\sum_{h=1}^{\lfloor g/2\rfloor}h(g-h)\delta_h\in\operatorname{Pic}\overline{\mathcal{M}}_g
$$

is the *Moriwaki divisor* (class). It plays a role in the Arakelov geometry of \mathcal{M}_q .

 \blacktriangleright The first statement is a strengthened version of Moriwaki's inequality.

Example: hyperelliptic curves

The boundary $\overline{\mathcal{H}}_q - \mathcal{H}_q$ (a normal crossing divisor) has components

$$
\Delta_h, 0 < h \leq g/2 \text{ and } \Xi_k, 0 \leq k \leq (g-1)/2.
$$

The generic point of Ξ*^k* is an irreducible hyperelliptic curve with one node when $k = 0$ and the union of two hyperelliptic curves of genera *k* and $g - k - 1$ when $k > 0$.

▶ The restriction mapping Pic $\overline{\mathcal{M}}_q$ → Pic $\overline{\mathcal{H}}_q$ is

$$
\delta_0 \mapsto \xi_0 + 2 \sum_{k>0} \xi_k \text{ and } \delta_h \mapsto \delta_h \text{ when } h > 0.
$$

► Since $\nu \equiv 0$ on \mathcal{H}_q , the second theorem + Cornalba–Harris imply that in Pic $\overline{\mathcal{H}}_q$

$$
M - j_{\overline{\mathcal{H}}_g} = 0 = (8g + 4)\lambda - g\xi_0 - 2\sum_{k=1}^{\lfloor (g-1)/2 \rfloor} (k+1)(g-k)\xi_k - 4\sum_{h=1}^{\lfloor g/2 \rfloor} h(g-h)\delta_h.
$$

 \triangleright So the jumping divisor of $\overline{\mathcal{H}}_{q}$ is

$$
j_{\overline{\mathcal{H}}_g}=2\sum_{k=1}^{\lfloor (g-1)/2 \rfloor} k(g-k-1)\xi_k \in \operatorname{Pic} \overline{\mathcal{H}}_g
$$

I'll discuss the elements of the second theorem first, then sketch the proof of the first.

Biextensions

Suppose *V* is a Hodge structure of weight −1. Recall

$$
J(V) = \text{Ext}^{1}(\mathbb{Z}, V)
$$

= {MHSs with weight graded quotients \mathbb{Z}, V }

The dual torus is

$$
J(V)^{\vee} := \mathrm{Pic}^0 \, J(V) = \mathrm{Ext}^1(V, \mathbb{Z}(1)).
$$

A polarization $\phi: V \otimes V \rightarrow \mathbb{Z}(1)$ induces an isogeny

 $J(V) \rightarrow J(V)^{\vee}$.

 $B(V) = \{ MHSs with weight graded quotients Z, V, Z(1) \}$ This is the set of biextensions E with $\mathsf{Gr}^W_{-1} E = V$. Have $B(V) \rightarrow J(V) \times J(V)^{\vee}, \quad E \mapsto (E/W_{-2}, W_{-1}E)$ This is a torsor under $\mathsf{Ext}^1_{\mathrm{MHS}}(\mathbb{Z},\mathbb{Z}(1))=\mathbb{C}^\times.$

Example: If *p*, *q*, *r*, *s* are distinct points on the curve *C*, then

$$
H_1(C - \{p,q\}, \{r,s\}) \in B(H_1(C)).
$$

Have

$$
H_1(C, \{r, s\}) \in \text{Ext}^1(\mathbb{Z}, H)
$$

$$
H_1(C - \{p, q\}) = \text{Hom}(H_1(C, \{p, q\}), \mathbb{Z}(1)) \in \text{Ext}^1(H, \mathbb{Z}(1)).
$$

The biextension metric

The \mathbb{C}^\times bundle $B(V)\to J(V)\times J(V)^\vee$ has a canonical metric. Set

 $B_{\mathbb{R}}(V) = \{\mathbb{R}\text{-}MHSs \text{ with weight graded quotients } \mathbb{R}, V_{\mathbb{R}}, \mathbb{R}(1)\}\$ $\textsf{Since Ext}_{\text{MHS}}^1(\mathbb{R},\textit{V})=\textit{V}_\mathbb{C}/(\textit{V}_\mathbb{R}+\textit{F}^0\textit{V})=0,$ there are canonical isomorphisms

$$
h: B_{\mathbb{R}}(V) \stackrel{\simeq}{\longrightarrow} \text{Ext}^1_{\text{MHS}}(\mathbb{R}, \mathbb{R}(1)) \stackrel{\simeq}{\longrightarrow} \mathbb{R}.
$$

Define

$$
\|E\|=\exp h(E_{\mathbb{R}})\in\mathbb{R}^\times
$$

Relative version

When V is a polarized variation of Hodge structure of weight −1 over *X*, we have bundles

$$
B_X \longrightarrow\hspace{0.1em}\mathcal{J}(\mathbb{V})\times_X\hspace{0.1em}\mathcal{J}(\mathbb{V})^\vee \longrightarrow\hspace{0.1em}\mathcal{X}
$$

Its restriction to $x \in X$ is

$$
B(V_x) \to J(V_x) \times J(V_x)^{\vee} \to \{x\}.
$$

It is naturally metrized. We can pull this back along

$$
\textsf{J}(\mathbb{V}) \to \textsf{J}(\mathbb{V}) \times_X \textsf{J}(\mathbb{V})^\vee
$$

to obtain a metrized \mathbb{C}^\times bundle over $J(\mathbb{V})$. Denote the corresponding metrized line bundle by

$$
\mathscr{B}(\mathbb{V}) \to J(\mathbb{V}).
$$

Biextension line bundles

This can be pulled back along a normal function $\nu : X \to J(\mathbb{V})$ to obtain a metrized line bundle

 $\mathscr{B}_X := \nu^* \mathscr{B}(\mathbb{V})$

over *X*. Suppose that \overline{X} is a smooth projective completion of *X*

Theorem (Lear, 1990; B–P, 2019; B–H–deJ, 2019) *A positive power* B[⊗]*^r X of the biextension line bundle* B*^X extends to a holomorphic line bundle* $\mathscr{B}_{\overline{\chi}}^r$ *over* $\overline{\chi}$ *with the property that the metric on* $\mathscr{B}_{X}^{\otimes r}$ *extends to a continuous metric on* $\overline{X}-\Delta_{X}^{\textrm{sing}}$ *.*

Remark: (Brosnan–Pearlstein) If ν is admissible (and $r = 1$), then $H^0(X,\mathscr{B}_{\overline{X}}^\times)$ is the space of admissible biextensions over X with $\mathsf{extension} \ \nu \in \mathsf{Ext}^1_{\mathrm{MHS}(X)}(\mathbb{Z},\mathbb{V}) \text{ and } \nu^\vee \in \mathsf{Ext}^1_{\mathrm{MHS}(X)}(\mathbb{V},\mathbb{Z}(1)).$

Positivity

There is a unique 2-form ω_{ϕ} on $J(V)$ that is translation invariant on every fiber, corresponds to the polarization $\phi \in H^2({\mathsf{J}}(V_\mathsf{x}))$ and is locally constant with respect to the isomorphism

 $J(\mathbb{V}) \cong \mathbb{V}_{\mathbb{R}} / \mathbb{V}_{\mathbb{Z}}$.

Proposition (H, 2014; Pearlstein–Peters, 2019)

The curvature of \mathscr{B}_X *is* $2\nu^*\omega_\phi$ *. It is a semi-positive* (1, 1)*-form on X that extends to a locally L*₁ *form (current) on* \overline{X} – S, where S \subset Δ_X^{sing} . *It vanishes if and only if ν is constant.*

Now take $X = \mathcal{M}_q$, $\overline{X} = \overline{\mathcal{M}}_q$.

Theorem (H-Reed, 2004)

The biextension line bundle of the normal function of the Ceresa cycle is the Moriwaki line bundle:

$$
c_1(\mathscr{B}_{\overline{\mathcal{M}}_g})=(8g+4)\lambda-g\delta_0-4\sum_{h>0}h(g-h)\delta_h\in\operatorname{Pic}\overline{\mathcal{M}}_g.
$$

Theorem *A normal function* ν *is constant if and only if* $\mathscr{B}_{\overline{\chi}}$ *is trivial on X.* **Corollary** $k\nu$ *is constant on X if and only if* $\mathscr{B}_{\overline{\mathbf{x}}}^{\otimes k^2}$ $\frac{1}{X}$ *is trivial on X*.

This establishes the second part of the second theorem.

For this result to be useful, we need to be able to compute the Chern class of B*^X* . This leads us to *height jumping* . . .

Height jumping

Consider $f : (\overline{X}, X) \to (\overline{Y}, Y)$ with \overline{X} and \overline{Y} smooth. Have PVHS $\mathbb {V}$ $\mathsf{over}\,\,Y$ and normal function $\nu:Y\to\mathsf{J}(\mathbb{V}).$ Have $\mathscr{B}_X=f^*\mathscr{B}_Y,$ so

$$
f^*\mathscr{B}_{\overline{Y}}=\mathscr{B}_{\overline{X}}(j_{\overline{X}/\overline{Y}}).
$$

where $\dot{\mathit{J}}_{\overline{X}/\overline{Y}}$ is supported on $\Delta_{Y}.$ The following result is key.

Theorem (Brosnan–Pearlstein, Burgos–Holmes–de Jong; 2019)

The jumping divisor $j_{\overline{X}/\overline{Y}}$ *is effective.*

Corollary (strengthened Moriwaki inequality)

The Moriwaki divisor has non-negative degree on all curves in $\overline{\mathcal{M}}_q$ *that do not lie in* Δ_0 .

This establishes part (1) of the second theorem.

Why height jumping?

Toy example: Consider a biextension defined over **D^{*} × D^{*}** with coordinates (z_1, z_2) . The biextension bundle $\mathscr B$ extends to (as a necessarily trivial) line bundle over \mathbb{D}^2 . In general, the metric is defined only over $\mathbb{D}^2 - \{0\}$. When there is height jumping, the metric has the form

$$
\log \|\sigma(Z_1,Z_2)\|_{\mathscr B} \sim -\log |Z_1| \log |Z_2|/(\log |Z_1| + \log |Z_2|)
$$

where σ is a trivializing section and \sim means that the difference is a bounded function, smooth on $(\mathbb{D}^*)^2$.

If $0 < |a| < 1$, then

$$
\log \|\sigma(t,a)\|_{\mathscr{B}} \sim -\log |a|/(1+\log |a|/\log |t|)
$$

which is continuous in *t* and bounded near $t = 0$. So the metric is continuous over $\mathbb{D}^2 - \{0\}$. However ...

If we restrict to the curve $f: \mathbb{D} \to \mathbb{D}^2$ given by $t \mapsto (t^{n_1}, t^{n_2})$ with $n_1, n_2 > 0$, then

$$
\log \|\sigma(t)\|_{\mathscr{B}} \sim -\frac{n_1 n_2}{n_1+n_2}\log |t|
$$

so that $\|\sigma(t)/t^{n_1n_2/(n_1+n_2)}\| \sim$ 1. This implies that

$$
j_f = \frac{n_1 n_2}{n_1 + n_2} [0].
$$

Note: In the normal crossing case, the local behaviour at a boundary point *p* of the biextension metric is determined by a local monodromy representation

$$
\rho_p: \pi_1((\mathbb{D}^*)^d, *) \to \mathrm{Sp}(V) \ltimes V.
$$

Meme: log ∥σ∥ is a period of a real variation of mixed Hodge structure. Its growth as one approaches the boundary point *p* along a curve is a rational multiple of log |*t*| determined by the local monodromy ρ*p*.

Sketch of proof of the affine result

Suppose that X is a closed subvariety of $\mathcal{M}_{q}(\ell)$ on which ν is torsion mod constants.

- Extend to a smooth compactification $\overline{X} \to \overline{\mathcal{M}}_{q}(\ell)$.
- ▶ Have $f^*M = j_{\overline{X}}$ mod torsion in Pic \overline{X} , where $j_{\overline{X}} := j_{\overline{X}/\overline{\mathcal{M}}_g}$.
- \blacktriangleright Rearrange this to see that a positive multiple of λ is supported on an effective divisor with support $|\Delta_{\overline{\chi}}|.$
- **►** But λ is ample on $\mathcal{M}_q(\ell)$ (Baily), and therefore on X. So the pullback of an ample divisor on the closure of the image of *X* in P *^N* is effective divisor with support |∆*^X* |.
- ▶ Conclude that $X = \overline{X} \Delta_{\overline{X}}$ is affine.

Question and/or (wild) speculation

Question:

Is there an arithmetic or Arakelov version of of the main theorem? One possible version:

- ▶ Suppose *C* is a smooth curve over a number field *K* . . .
- \blacktriangleright and that $\mathscr C$ is a (flat, regular, ...) model of *C* over $\mathcal O_K$.
- ▶ Define the arithmetic Moriwaki divisor $\widehat{M} \in \widehat{Pic} \mathcal{M}_{q/\mathbb{Z}}$.
- ▶ Define $\widehat{M}_{\mathscr{C}} \in \widehat{\text{Pic}}(\mathsf{Spec}\,\mathcal{O}_K)$ to be the pullback of \widehat{M} along $Spec\,\mathcal{O}_K\to\overline{\mathcal{M}}_{\sigma/\mathbb{Z}}$.
- **►** Define the arithmetic jumping divisor $\hat{\gamma}_{\mathscr{C}} \in \widehat{\text{Pic}}(\text{Spec } \mathcal{O}_K)$ as a sum over the singular fibers of $\mathscr{C} \to \text{Spec } \mathcal{O}_K$ using the local Galois representations $G_{K_{\mathfrak{P}}}\to \mathrm{GSp}(H_{\mathbb{Z}_\ell})\ltimes V_{\mathbb{Z}_\ell}$, where $\mathfrak{P}\not\parallel\!\ell.$ (Assume $\hat{\gamma}_{\mathscr{C}}$ is integral.)
- \blacktriangleright Is the class of the Ceresa (or GS) cycle in CH¹(Jac *C*) trivial mod translations if and only if $M_{\mathscr{C}} = \widehat{\jmath}_{\mathscr{C}}$?

References

- [1] A. Beauville, C. Schoen: *A non-hyperelliptic curve with torsion Ceresa cycle modulo algebraic equivalence*, IMRN 2023, 3671–3675.
- [2] P. Brosnan, G. Pearlstein: *On the algebraicity of the zero locus of an admissible normal function*, Compos. Math. 149 (2013), 1913–1962.
- [3] P. Brosnan, G. Pearlstein: *Jumps in the Archimedean height*, Duke Math. J. 168 (2019), 1737–1842.
- [4] J. Burgos Gil, D. Holmes, R. de Jong: *Positivity of the height jump divisor*, IMRN 2019, 2044–2068.
- [5] M. Cornalba, J. Harris: *Divisor classes associated to families of stable varieties, with applications to the moduli space of curves*, Ann. Sci. École Norm. Sup. (4) 21 (1988), 455–475.
- [6] R. Hain: *Biextensions and heights associated to curves of odd genus*, Duke Math. J. 61 (1990), 859–898.
- [7] R. Hain: *Normal functions and the geometry of moduli spaces of curves*, Handbook of moduli. Vol. I, 527–578, Adv. Lect. Math. 24, 2013.
- [8] R. Hain, D. Reed: *On the Arakelov geometry of moduli spaces of curves*, J. Diff. Geom. 67 (2004), 195–228.
- [9] R. de Jong, F. Shokrieh: *Jumps in the height of the Ceresa cycle*, J. Diff. Geom. 126 (2024), 169–214.
- [10] K. Kato, C. Nakayama, S. Usui: *Analyticity of the closures of some Hodge theoretic subspaces*, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), 167–172.
- [11] M. Kerr, S. Tayou: *On the torsion locus of the Ceresa normal function*, [arXiv:2406.19366]
- [12] J. Laga, A. Shnidman: *Ceresa cycles of bielliptic Picard curves*, [arXiv:2312.12965]
- [13] R. Laterveer: *On the tautological ring of Humbert curves*, [arXiv:2211.15291]
- [14] D. Lear: *Extensions of normal functions and asymptotics of the height pairing*. Ph.D. Thesis, University of Washington, 1990, 90 pp.
- [15] A. Moriwaki: *A sharp slope inequality for general stable fibrations of curves*, J. Reine Angew. Math. 480 (1996), 177–195.
- [16] G. Pearlstein: SL₂-orbits and degenerations of mixed Hodge structure, J. Diff. Geom. 74 (2006), 1–67.
- [17] Congling Qiu, Wei Zhang: *Vanishing results in Chow groups for the modified diagonal cycles*, [arXiv:2209.09736]
- [18] C. Schnell: *Complex analytic Néron models for arbitrary families of intermediate Jacobians*, Invent. Math. 188 (2012), 1–81.