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Orthonormal Bases of Wavelets with Finite Support -
Connection with Discrete Filters

I. Daubechies*

AT & T Bell Laboratories, 600 Mountain Avenue,
Murray Hill, NJ07974, U.S.A.

Abstract: We define wavelets and the wavelet transform. After discussing their basic

properties, we focus on orthonormal bases of wavelets, in particular bases of
wavelets with finite support.

Confeﬁts: 1. The wavelet transform: continuous and discrete versions — frames.
2. Orthonormal bases of wavelets and multiresolution analysis.
3. S. Mallat’s algorithm: the connection with discrete filters.
4. Orthonormal bases of wavelets with finite support.

5. Fractal properties.

1. The wavelet transform: Continuous and discrete versions.

As proposed by J. Morlet [1], the wavelet transform of a function f is given by

1 —
dwav,r(a, b) = -—)T/_z' Jaxn [xab]f(x), (1.1

la

where h is the basic “wavelet”. The parameters a, b can be chosen to vary either continuously
(a,b € R, with'a #0), or in a discrete way (a = aff, b = nbgall, with m, n € Z, and
ag >1, bo > 0 fixed). J. Morlet proposed the discrete version of (1.1) as an alternative to
the windowed Fourier transform, which computes, for a given function f,

dwind F.T..f P> @) = fdx e P g(x — q) f(x), 1.2)

where g is a fixed window function. In Gabor’s approach, the function g is chosen to be
Gau‘ssikan, g = 7~ 4 exp (—x2/2), but many other window functions can be (and are) used.
The parameters p,q can again vary either continuously (p, ¢ € R), or discretely
(p = mpo, 9 = ngo, with m, n € Z, and pg,qo > 0 fixed). The wavelet transform (1.1) and
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the windowed Fourier transform (1.2) have many features in common. Provided the basic
functions h, g and their Fourier transforms are reasonably well concentrated, the two
transforms analyze the frequency content of the signal f, locally in time (if the variable x is to
be understood as ‘‘time”). This is clear from the fact that (1.1), (1.2) are scalar products of f

x—b
a

with h, 5(x) = |a|"h[ ], 8p.q(x) = eP*g(x — q) respectively. If g and its Fourier

transform g are both concentrated around O (as for g Gaussian), then 8p,q is concentrated
around g, while g, g is concentrated around p. The scalar product (8p,q» [} therefore analyzes f
in a neighborhood of the time-frequency point (g, p). A similar argument holds for the scalar
products (h, ;, f); note however that the frequency analysis performed by the wavelet

transform is different from the windowed Fourier transform (see also below).

Another feature that (1.1) and (1.2) have in common is the reconstruction formula for f

from ¢ (continuous version). We have

f(x) = El; J [ dpdg dwinar1.r(0, 9)ePg(x — q) (1.3)

and

1 da db - —b
fx) = 77C, IN) 22 dwav.T,f(a, b) |al mh[xa ] (1.4

In (1.4) the constant Cj, is defined by
Cy = fdt |R®? g7, (1.5

where A(£) = (2m) V2 [dxe™%h(x) is the Fourier transform of h. We assume that
|iz(§)| = |h(=¢)| for all £ (otherwise (1.4) has to be replaced by a more complicated
formula), and that C, < . For reasonably nice & (e.g. [h(x)| = C(1 + |x|)™%, a > 1), this

amounts to requiring [ dx h(x) = 0.

The similarity between (1.3) and (1.4) is due to the fact that (1.1)-(1.4) and (1.2)-(1.3) are
both special cases of square integrable representations, as pointed out by A. Grossmann. The
reconstruction formula (1.4) and the associated reproducing kernel Hilbert space enabled

A. Grossmann and J. Morlet to analyze in detail the continuous wavelet transform [2].

The paragraphs above list a few analogies between wavelet transform and windowed

Fourier transform. Even more interesting are their crucial differences. They can easily be

illustrated by looking at the graphs for  gm,(x) = e *g(x — ngy) and
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Figure 1. Examples of functions gun, Amn correspondmg to resp. the windowed Fourier
transform and the wavelet transform.

h,,,,,(xV)k"= ag ;"’zh(aa Mx - nbo), éorresponding to the discrete versions of both transforms.
Fxgurel shows gmn, Amm for a few values of m, n, for the choices g(x) = A PR
h(x) = 2/V3 718 - xB) e~ 12,

In both cases different values of m correspond to different frequency ranges. The high '
frequency g, are high frequency oscillations with an amplitude modulation given by
g(x — ngg). The envelope function of all the g, is therefore always the same function g,
translated to the relevant time interval (indexed by n). The high frequency h,,, look very
different, however. As contracted (and translated) versions of the basic function h they have
variable width, adapted to their frequency range: the higher that range, the more narrow they
are. This difference in time-resolution for high versus low frequency wavelets, in contrast to
the fixed time resolution for all frequency components of the sliding windowed Fourier
_transform, is illustrated very clearly by Fig. 2. For both transforms, the centers of localization
in the time-frequency plane are plotted, corresponding to the gmn Or Ann, respectively. For the
- wavelet transform, this discrete lattice shows the differences in time-resolution as the frequency
bounds change. Note that while for higher frequencies the time resolution becomes better, the
frequency resolution becomes worse, as was to be expected from the Heisenberg uncertainty
principle. The better time resolution for high frequency components enables the wavelet
transform to perform better than the sliding window Fourier transform for signals which
. typically have short-lived high frequency components superposed on longer-lived lower

- frequency parts, as in e.g. music, or speech. The exponential rather than linear treatment of
E frequéncy is also more closely related to our auditory perception.

It should be noted that techniques related to the wavelet transform, based on the use of

dilations and translations, have been used in many different fields. Written in a different way,

the reconstruction formula (1.4) appears in the pioneering work of A. Calderdn in harmonic
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Figure 2. The centers of localization in the time-frequency plane (x = time, k = frequency)
corresponding to the g,, (windowed  Fourier transform), resp. h,, (wavelet

transform).

analysis [3]. In this field also, the possibility to zoom in on short-lived high frequency
phenomena was important, for applications to the study of singular integral operators (see, e.g.
[4D). Both the wavelet transform and the windowed Fourier transform, with their respectiyé -

reconstruction formulas (1.3), (1.4), are examples of coherent state decompositions ‘used in

quantum physics (for a review, see [5]). The affine coherent states; as the wavelets are called

in this framework, were first introduced in [6]. They are shown to pl‘ay\ a pafiicuiaf rolc‘for‘ L

the hydrogen atom in [7]. The idea of decomposing into building blocks of constant “sh\ape”,f:w

but different size (and this is essentially what the wavelet transform does) is also central to the

renormalization group theory, important in statistical mechanics and qugntgm'field the’ory'[S].‘

It is therefore not altogether surprising that new deVéldpments in wavelets have led to a‘n\y,f‘
elegant application in quantum field theory [9]. Finally, the same ideas are also relafed to

certain filter banks used in acoustic signal analysis. We shall come back to this later.”

The reconstruction formulas (1.3), (1.4) use the continuously labelled windowed Fourier
transform or wavelet transform of f in order to reconstruct f. When discretely labelled g, or

hmn are used, different reconstruction algorithms apply. In both cases, we define the map
C:LAR) ~ €4(ZH)

by
(‘Cf)m.n = (¢mmf)’

where ¢, is either g, (windowed Fourier transform) or h,, (wavelet transform), and where
(, ) denotes the standard L2-inner product
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(f,8)= [dr f0Ig(x) .

The map C depends of course on the chosen function & or g, and on the parameters agp, by or
Po»qo Wwhich determine the density of the lattices in Figure 2. If A or g and its Fouier
transform are reasonably well concentrated (i.e. in all the cases of practical interest), then the
operator C is bounded. In order to have a “good” characterization of signals f by their
coefficients (Cf)n, We require that

1. Cis one-to-one: if f| # f,, then Cfy # Cf;

2. Chasa bounded inverse on its range: if Cf; and Cf, are ‘‘close”, then so are f; and f5.
This rheans that there exist A > 0, B < o such that, for all f € L¥(Ry,
Afdx fol? = P Kbmns N> = B [ax [f )] (1.6)
.
The set of vectors {dpm;m,n € Z} is then called a “frame” for L2(R). Note that a frame is not

necessarily a basis; in many cases it is “overcomplete”. A simple example in R? (not related to

wavelets or windowed Fourier transform) illustrates this. Define, in RZ, ey = (1,0),

ey = -l,—\/—?- , e3 = -—l-, ——\/—3:-. It is easy to check that for all v € R?,
2 2 2 2
E l(e,,v)l =3 Hvll2 The {e;; j = 1, 2, 3} constitute therefore a frame for R?, while they

are clearly not a basis, since they are not linearly independent.

If the two frame bounds A, B in (1.5) are equal, then we call the frame “tight”. For a
tight frame we have

(f; [ME ¢mn <¢mmﬂ]) = 2 Kd’mn,ﬁ[z = A(f,f),

hence
f=4a"! z S C Van -

For nght f:ames, thls is the desired inversion formula, allowing to reconstruct f from the
(Cf)mi:" For general non-txght frames, one can still write

F=2A 4B 'S &,u(CHm + RS, W)
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where the remainder term Rf is bounded by

BA™! —1

2
AT 1 Jax|lfx)*.

Jax |RAO®|? =

Since (BA™! — 1)/(BA~™! + 1) <1, it is clear that (1.6) can be iterated to obtain a
reconstruction formula for f from the (Cf),, with any desired accuracy. For a given precision,
the number of terms required depends on BA™! — 1. The closer the two frame bounds are to
each other, the more “snugly” the frame fits, and the fewer iterations are required. It is
therefore important to have good estimates for A, B. Such estimates can be computed by
means of the Poisson sum formula. The following table lists values of the frame bounds for

the wavelet transform, for various choices of ag and by.

Frame bounds for the wavelet transform,
with h(x) = 2/V3 m~ V41 - xY)e~*'2,

ap | bo A B | BATI -1
2. S| 6.546 | 7.092 0.083
1. 3.223 | 3.596 0.116
V2 | 5| 13.637 | 13.639 0.0002
1. 6.768 | 6.870 0.015

It is clear that even for relatively large values of ag, bo the frame constants can be so close
that one can drop the remainder term Rf in (1.6) to obtain an approximate reconstruction
formula that is extremely accurate. For other examples, variations on the same theme, and
more details, we refer the reader to [10]. Note that other inversion formulas than (1.6) may

be used. One easily checks that
Jdaa=? (hop, fy = f(b) - [dr £71h(r) .

For values of ag, by close to 1,0 respectively, one can then use a discrete approximation of this
formula as a reconstruction algorithm for f. Regardless of which algorithm is used, the

condition (1.5) is necessary to ensure that the inversion is numerically stable.

The concepts of frame and frame bounds, and formula (1.6) can also be applied to the
windowed Fourier transform. In fact, frames are essential in windowed Fourier transform
analysis if one is also interested in good time-frequency localization. This is due to the
following theorem, first stated, in a more restricted version, by Balian [11) and Low {12], and
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extended and rigorously proved by Coifman and Semmes [10]. A simpler and much more

elegant proof for bases was subsequently found by Battle [13].

Theorem: 1f g € L*(R), po.qo > 0 are such that the g, constitute a frame, and
Po * go = 2, then either xg or g’ £ L3(R).

In practical applications, good time and frequency localization of g is required (in fact,
much stronger conditions than xg, g’ € L? are usually satisfied). In order to have numerically
stable inversion formulas recovering f from the (g,.., f), one is therefore forced to consider
time-frequency lattices with mesh size pg * o < 2w. Lattices with py - gog = 2w correspond
to “sampling” with the Nyquist density, which is the reason why such lattices have been
proposed for windowed Fourier transform analysis (starting with Gabor [14], who proposed
g(‘x’)ﬁ= ?xﬂr"”‘ié”‘zlz,‘ Po = 2w, go = 1). The above theorem tells us that for reasonable g,
Po qo = 21rk alwayé leads to numerically unstable inversion algorithms. This confirms the
fact ‘that the Gabor t;ansform has no bounded inverse (15] [16]. Figure 3 illustrates this fact in

a dramatic way. For the windowed Fourier transform (1.6) can be written as

f= 2 émn <gmn’ﬁ’ (1.8)

whgre gmn(x) = "% g(x — ngo), and £ is a “dual” function, completely determined by g,
po-and go, § =2A + B)"'g + O(BA™! — 1). Figure 3 shows this dual function g, for
~ 174, -x12

g(k») =q" "% and po = go = V2, for the different values N\ = .25, .5, .75, .95 and

: 1. .aqur )\ =1, the gu, d9 not constitute a frame, which is expressed by the singularities of g;

34— - k .4

o 2t
0 L 0.
' ] 3 1
0. -
T .6
4.4
4 .2
0.
1 ) 1 1 1 1 -5. 1 ] 1

Figure 3. The dual function 3 corresponding  to  the lattice  g,,, with

g(x) = ™V exp(=x2/2), and pg = qo = (@mN)Y2, for N = .25, .375, .5, .75
.95 and the singular case \ = 1, T '
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(1.7) has to be understood in a distributional sense in this case. In fact g is not even in L?
for A = 1 [16]. For the four smaller values of X\, g is still C*, with gaussian decay; it is clear

how g evolves, for increasing \, from a gaussian profile to the singular function for A = 1.

On the other hand, one can easily show that a family of g,, can only constitute an
orthonormal basis if pg - g9 = 2. The Balian-Low theorem excludes therefore the existence
of any orthonormal basis for the windowed Fourier transform with reasonable localization
properties. This leads us to another fundamental difference between the windowed Fourier
transform and the wavelet transform: there do exist suitably chosen functions # and constants
ag, bo such that both h and its Fourier transform have fast decay (e.g. faster than any inverse
polynomial power) and such that the corresponding h,, constitute an orthonormal basis of
L2(R). The first example of such an orthonormal basis was constructed by Y. Meyer [17], and
extended to higher dimensions by P. G. Lemari€ and Y. Meyer [18]. Other examples were
constructed shortly after by G. Battle [19] and P. G. Lemari€ [20]. These first constructions
were rather mysterious, and relied on ‘“‘miraculous” cancellations. The introduction of

multiresolution analysis by S. Mallat and Y. Meyer led to a deeper understanding of these

bases.

2. Orthonormal bases of wavelets and multiresolution analysis.

The papers by S. Mallat and Y. Meyer in this same volume no doubt discuss
multiresolution analysis in greater detail than possible here. This paragraph is therefore

restricted to a short review.

A “multiresolution analysis” of a function f consists in a hierarchy of approximations of f,
defined as averages on different scales. The finer the scale, the better the approximation.

More precisely, one has a hierarchy of subspaces of L2(R)
L.CV,,CcvVv,CVeCVyCV,C - .1

such that

NV, ={}, UV =L ®.
jez j€z

The “‘scaling” aspect is translated by the condition

g € Vj <> g(2) € Vj+1 . Q.2)

The space Vg thus determines the whole ladder of spaces. A typical but not very sophisticated

example is the case where V), consists of piecewise constant functions,
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Vo = {g € L%(R); g is constant on every half open interval 2.3)

ik, k + 1[, forall k € Z}.

The spaces V; then contain functions which are piecewise constant on the intervals
[k2/, (k + 1)2/[; they clearly satisfy (2.1).

We also impose some translation invariance:
8€Vy<=>g(—~k)€Vy forall k€Z. 2.4)

The final requirement is that there exists ¢ € V such that its integer translates are an

orthonormal basis for Vg, i.e.
forallg € Vo, fdx|gn]* =3 [[dx d(x — g . (2.5)
k

(In fact, it is sufficient to require that the &(- —k) constitute a Riesz basis for V; one can
prove that this entails the existence of <I> € Vg satisfying (2.5) [21]). In the example (2.3)

above, one can choose $(x) = 1if 0 = x < 1, 0 otherwise; this clearly satisfies (2.5).

For a given function f the successive multiresolution approximations are defined as the
orthogonal projections onto the V;

Pif = 3 duldp. N,
Kez

where‘ Gplx) = 2j/2¢(2fx — k); the &j constitute an orthonormal basis for V; by (2.5)
and (2.2).

The “difference in information” between two successive approximations P;f and Pj4yf is

given by the orthogonal projection Q;f of f onto the orthogonal complement Wjof Viin Vjyy,
Wj ES Vj
Vj @ Wj = j+1

Qif = Pjsif — Pif .

The four requiremepts 2.1, 22), 2.9, 2.5 imply that the spaces W; are also scaled
versions of one space Wy,

g8 EW; =227 e W, (2.6

that they are translation invariant for the discrete translations 27/2Z,
46



g EWo <> g(-—k) €W,
and that they are mutually orthogonal spaces generating all of L2(R),

Wj.LWj' forj # j'
2.7
W; = L*(R) .
,-g f (R)

Moreover [21] there exists a function ¢ € Wq such that the y(- —k) constitute an orthonormal

basis for Wy,

forall g € Wo, [ax|e)|?= 3 [[fax bx-kg(x)|*. (2.8)
keZ

By (2.6) it follows that the Yu(x) = 272 Y(2/x — k), for fixed j, constitute an orthonormal
basis for W;. Hence by (2.7), the {{ix, j, k¥ € Z} are an orthonormal basis of wavelets for

L¥R).

In the example (2.3) it is easy to guess ¢. The space Wy is constituted by those functions
that are piecewise constant on the intervals [k/2, (k + 1)/2[, and are orthogonal to the
functions constant on [€, £ + 1[. It is easy to convince oneself that Wy, is therefore spanned by
the function Y(x) =1 for 0 < x < 1/2, —1 for 1/2 = x < 1, 0 otherwise, and its integer
translates. Since the integer translates of { are mutually orthogonal, s satisfies (2.8), and the
Uj are the orthonormal wavelet basis associated with the multiresolution analysis defined by
(2.3). This basis was in fact well-known long before wavelets existed: it is called the Haar
basis, and is known to be an unconditional basis for all LP-spaces, 1 <p <,
Multiresolution analysis allows one to construct orthonormal bases, such as the Battle-Lemarié
bases, which generalize the Haar basis, but are smoother (the Battle-Lemari€ bases are C* and
have exponential decay). They are therefore suitable for other spaces (Sobolev, Besov, ...)

than only the LP-spaces.

There exists an explicit algorithm for the construction of ¥, once ¢ is known. Since

& € Vo C Vy, there exist ¢, such that
d(x) = F c,d(2x — n) . (2.9)

(Since the ¢, are an orthonormal basis in V;, one has ¢, = V2 (b1, 4)). Then [21]

Yx) = (1" eas1d(2x + n) . ’ (2.10)
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3. Stéphane Mallat’s algorithm: the connection with discrete filters.

S. Mallat uses multiresolution analysis and orthonormal bases of wavelets in a discrete
algorithm applied to vision analysis [22]. In fact the concept of multiresolution analysis owes it
existence to inspiration drawn from concrete schemes for analysis and reconstruction of vision
data. To illustrate how related ideas were being used in vision analysis, we sketch one such

scheme, the “Laplacian pyramid” of Burt and Adelson [23].

While visual data are of course 2-dimensional, we shall restrict our discussion to
1 dimension; the generalization to higher dimensions is easy. The initial data are a sequence of
numbers (c,) ez, indicating the grey levels at different, equally spaced grid points. We shall
identify the original data with the subscript 0, (c2),¢z. The idea behind the Laplacian pyramid
scheme is to define successively more and more blurred versions c¢f of the data ¢°
(corresponding to low-pass filters applied to ¢°), and to encode the “difference in information”

¢

between successive ¢®. The scheme proposed by Burt and Adelson [23] achieves this goal in

the following elegant way. Define
ck =S wn -2k, 3.1
n

where the w(j) are weighting factors satisfying S w(j) = 1. Typically only a small number of
J

w(j) are different from zero; an example used in [23] is

w(0) = a, w(l) = w(—1) = .25, w(2) = w(~2) = .25 — a/2, w(j) = 0 otherwise ,(3.2)
with a € ].125, .625] (see [24)).

The operation (3.1) consists in a convolution and a decimation; the resulting c! “lives” on

a larger scale than c?, containing less information. To encode the “difference in information”
0 1 . ~ ;

between ¢* and ¢*, we first compute, from ¢!, a sequence &% that lives on the same scale as

¢®, using the same weight coefficients,

cn =3 w(n — 2k)c}k, (see Figure 4b) (3.3)
k

and we subtract,

dd = -2%, (3.4)

The information in ¢” is thus split up into d® and ¢!, and is fully recoverable from these two
new sequences. The same process, using the sequence ¢! as starting point rather than ¢?, can

be repeated, leading to sequences c? and d!. After L iterations we have decomposed ¢ into
d%, dt, ..., dL and cLt1,
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Figure 4. Schematic representation of the operations (3.1) (a) and (3.3) (b).

Let us introduce the filter operator F: €2(Z) -~ £%(Z) defined by

(Fa)y =3Sw(n — 2k)a, . (3.5

F consists of a convolution, followed by a decimation (only one out of every two samples is

retained after the convolution). We also define the dual operation F~ by
S(F by = 3 by (Fa)y,
n n

where a, b are arbitrary sequences in €2(Z). Since the w(n) are real, this leads to

(F*b)y = S w(n — 2k) by . (3.6)
k

The equations (3.1), (3.3) and (3.4) and their iterates can then be rewritten as

ct =Fct !, et = pret
dél =4 - = (d - F'R) !

The filters F, F* are extremely easy to implement numerically, and the decomposition of c?

L+1

into the “difference” sequences d°, ... , dL and a much smoothed out version ¢ can be
q

computed as fast as an FFT (fast Fourier transform). Reconstruction of c® from the

d®,..., d& and ct™*! is just as easy, since one only needs to iterate

et = gt 4 F*et, (3.7

starting from € = L.
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One last remark concerning the Laplacian pyramid scheme. The reconstruction formula

0

(3.7) effectively writes ¢* as

O =F'a' + FH:+ -+ (FOHRaL + FHEILM

Since the filter operator F' is iterated, it is worthwhile to ensure that it does not look “messy”
when applied to, e.g., a sequence with only one non-zero entry. The filters (3.2) satisfy this
requirement, as shown in Figure 5. In this figure we visualize the successive sequences e (with
eqg = 1, e, = 0 otherwise), F ‘e, (F')ze,... by piecewise constant functions, with levels given
by the entries of the sequence. The stepwidth of the intervals is adapted to the iteration level £
in (F™)%e, since b and F*b “live” on different scales (see Fig. 4b). It is clear that the (F")%e
" converge to a “nice” function in Fig. 5; for a mathematical proof of this convergence we refer
" to [24]

S. Mallat’s algorithm defines “‘averages” ¢¢ and “differences” d®, from an initial sequence

- ¢%, via multiresolution analysis in the following way. From ¢°, he defines Jo € Vo by

fo= Ek', cf dok - ' (3.8

As an element of Vo = V_ @ W_,, fcan be decomposed into f_; € V_yand gy € W,

fo=f-1+g-1= %C}c‘b—lk + Sdig_y,, (3.9)
k

- where we have used that the ¢, by are orthonormal bases for V;j, W; respectively (see §2).
- Here f-; corresponds to an “averaged” version of fo, and g_; to the difference in information

nyr\be’twg‘en fo and this average. Since (3.8), (3.9) are expansions with respect to orthonormal

. basis, the coefficients ¢, di are easy to compute,

e

(F%e
-4 0 1
1 - i
(F*1% e 0
1 1 1
- o0 1

' Figure 5. Representation of the sequences e, F'e, (F*)%e by piccewise constant functions
and the limit function, The stepwidth for each (F‘)‘e is 27¢. The ﬁlte;
coefficients for this figure are given by (3.2), with g = 375, )
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ck = (P16 ) =3 O (d_1i, don) = Sh(n = 2k)c?
di = W1 ) =3 ¢S Wop, don) = 3 gln — 2k) 2,

where h(n) = (b-10, bor) = 2712 fdx &/ d(x = n), g(n) = 27 fdx Y(x/2) 6(x — n).
Consequently both ¢! and d! are derived from ¢ by the application of filters H, G of type
(3.9,

¢! =H, d'=Gc°. (3.10)
On the other hand
n = {bon, fo) = (bon, f-1 + &-1)
=3 ck {bon d-14) + b di (ons Y-1,)

k

S [h(n — 2k)ct + g(n — 2k)d}],
k

or
=H'! + ¢g"dt, (3.1D)

with H*,G" defined analogously to (3.6). The whole decomposition process can of course be
iterated: f_ decomposes into f_, + g-», corresponding to sequences c? = He! and

d* = Gc!,
Schematically, decomposition and reconstruction can be represented as in Figure 6.

*
i C<——c

\\\l \\e* K

Figure 6. Schematic representation of the tree-algorithms for the decomposmon and
reconstruction in S. Mallat’s scheme.

AH H

The tree-structure, together with the easy convolution and decimation structure of H, G, makes
that this algorithm works very fast; the whole decomposition can be done as fast as an FFT.
Note that at every level ¢t is replaced by a roughly equivalent number of entries: if the ct are
zero except for N consecutive entries, then, apart from edge effects, only N/2 entries of
ct*1, d¢*! will be non-vanishing. The total number of relevant entries in d?, d2, ..., d~, c*

0

is therefore essentially the same as in the original sequence ¢-. This is in opposition to the
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Laplacian pyramid scheme, where the total number of entries after L iterations is essentially
Q- 2~ky times the original number. The multiresolution-based algorithm of S. Mallat is thus
more efficient than the Laplacian pyramid scheme. Moreover, when generalized to
2 dimensions, it also turns out to be orientation selective, at no extra cost, which is another

advantage over the Laplacian pyramid scheme [22].

In fact, for the implementation of S. Mallat’s algorithm, one only needs the two filters
G, H; their multiresolution analysis origins are not used explicitly. One may therefore try to
isolate the relevant properties of the filters, and design filters satisfying all these properties
directly, without multiresolutioh‘ analysis. From (3.10) and (3.11) a first condition can be
derived.
() ; H'H+G'G=1d.
The orthogonality of V- and W, results in

»*

(€2) . R HG = 0;.

this expresses the fact that the two terms in the decomposition (3.11) of c® are always
orthogonal sequences. A third condition'exprgsses the fact that H is an ‘“‘averaging operator”’,
‘i.e. a low pass filter, while G meéstires the difference between a sequence and its average, and

, is therefore 2 band pass filter. This x{esults in

«©3) - Sem=o0

T n R

S S () = VT
~ where the V/2 -normalization is'due to the decimation 2:1 in the definition of the filter H
(see [24)), Finally, we also ’impose"?a’ rggula;ity condition, similar to the condition on the
Laplacian pyramid scheme. " The- ‘cbmplete reconstruction formula for ¢® from
dl,d?, ..., d* ctis "
®=G"d' +H'G"d® + - - + HTIG AL + (HHECE .
‘We shall therefore require that thg: operator H™ which is iterated satisfies
(C4) the .piecewisé, cohstént functions representing (H")%e

(where ¢, = O for n # 0,eq = 1) converge to a “‘nice” function as £ -,
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For a more precise formulation of this condition, see [24]. Filters H, G which are derived
from a multiresolution analysis automatically satisfy conditions C1-C3. Moreover, one can
show that in this case the piecewise constant functions representing (H ")ee converge to the
averaging function ¢ itself [24], so that C4 is also satisfied. It is possible to construct filters
H, G of type (3.5) which satisfy C1-C3, but not C4. An example is given in Figure 7. In this
case the (H")%e converge, for £ - », to a distribution which is singular at every dyadic rational
between 0 and 3, i.e. every point of the form k27", with 0 = k < 3 2™. This example shows
that condition C4 is necessary to avoid “messy’ iterations. It turns out [24] that conditions
C1-C4 ensure that the filters H, G are associated to a multiresolution analysis. The ‘“‘averaging
function” ¢ of that multiresolution analysis is exactly the ‘“nice” function to which the
(H *)ee-piecewise constant functions converge. The proof in [24] of this equivalence between
filters and orthonormal bases of wavelets essentially uses this “‘graphical” construction of ¢ as
a limit of piecewise constant functions representing sequences. The orthogonality of the
&(- —k) e.g. can easily be proved in the following way. Let T be the translation by one unit

step for sequences, (Ta), = a,~;. Then e and T%e are obviously orthogonal if £ # 0,

S e (Tée) =0.
k

On the other hand, the special structure (3.5) of the filters H, G together with the conditions
C1-C2 imply HH" = Id = GG". Tt follows that (H")"e and (H")"T*e are orthogonal for all

{HMS e

Figure 7. An example of a pair of filters H, G which do not satisfy the regularity condition
C4. In this case h(0) = 15/(13V2), k(1) = 10/(13V2), h(2) = ~2/(13V2),
h(3) = 3/(13V2), with all the other 2(n) = 0. The g(n) are defined by (3.12),
g(n) = (=1)"*h(—n + 1). One readily checks that C1-C3 are satisfied.
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m = 0. The piecewise constant functions representing them are therefore also orthogonal for
all m, and so are their limits &(x) and ¢(x — e). Defining Y(x) = V2 S g(n)d(2x = n),
n

one proves similarly that the y(- ~k) are orthogonal, and that the ¢(: —k) are orthogonal to
the Y(- —¢€). The property

dx) = V2 3 h(n) &(2x — n)

follows immediately from the construction, while C1 implies that for all f € L*(R), and all
J>0

> £, 7+ 1md |2 = >: l(f b+ S S IG P

j==1k

It is not hard to prove that s |(f,¢_,‘k)l2 -0, while S |, dsx1m 2 ~ [dx [f@)? for
; R p

J = . It then follows that the {; are an orthonormal basisro»f wavelets [24].

Remarks. -

1. The conditions C1-C2 are, in a different form, the *“unitarity conditions” imposed by

Y. Meyer (see e.g. [25], or his paper in this volume).

2. A different proof of the equivalence filters — wavelet bases can be found in [22], where

* the regularity condition C4 is replaced by the condition

h in§ >0.
£€R, Iﬁ]s'n'/Z |2 (n) e |

- This positivity condition is sufficient to ensure that the V,,, are an orthonormal basis; it
- does not guarantee any regularity for ¢ or ¢, however. The “messy” example in Fig. 7,

" e.g., satisfies this positivity condition.

3. Using the special form (3.5) of H and G one can show [24] that C2 is already implied by
Cl.

4, The condition C1 can easily be rewritten in z-transform-language. Let us associate, to

_any sequence ¢ = (Cn)ncz, the function ¢(z) = 3 ¢,z”. Then the definition of the

o ,ﬂ, operator H as a convolution followed by a decimation implies
(HOG?) = > [ @) + H(-2e(=2)],

where #(z) = 3 h(—n)z".
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Similarly the z-transform of H"¢c is

(H'c)(2) = H(2) c(z?) .

We also define §(z) = 3 g(—n)z". Condition C1 gives then
n

or

c(z) = (H'Hc + G*Ge)(z)

%H%(z)l2 + [42)|[2e @) + [H() H(—2) + G2)U-]c(-2),

%) |2 + |9@)|? =2, H()H(—z) + 4z)%(—2) = 0.

This amounts to requiring that the 2 X 2 matrix

Ly w2

) Vi
! L g
3 4(z) 3 4(~2)

is unitary. Note that this implies #(z)%(z) + #(—z)%(—z) = 0, which can easily be
shown to be equivalent with C2. This is another way of proving that C1 implies C2.

Filters satisfying conditions C1-C3 had been constructed before by Smith ‘and
Barnwell [26]. They call these filters “‘conjugate quadrature filters” (CQF) as a special
case of the ‘‘quadrature mirror filters” (QMF) of Esteban and Galand [27]. CQF give
exact reconstruction, without any aliasing, as all QMF do, but also without any
amplitude or phase distortion. For their purposes, they do not impose the regularity
condition C4, and their filters are therefore not equivalent to an orthonormal wavelet

basis in general.

While other solutions to C1 exist, it is convenient to choose the g (n) such that
gm)y = (=1)"h(=n+1). (3.12)

This choice reduces condition C1 to an equation for Eh(n)e""e [24]. It is the analog of
n

the correspondence (2.9)-(2.10) between ¢ and .
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7. One way to ensure that the regularity condition C4 is satisfied is to impose that, for some
N =2,

N
) ink
S h(n)e™ = [—1—1—{—-—) (8, (3.13)

where glélg |Q®)] < 2V712, In order for (3.12) to satisfy C1-C3 it is necessary and

sufficient that

N-1 - ; )
el =3 [N bt ’] (sin? &/2) + (sin? &/2)Y R(—;-cosg), (3.14)
j=0 J
where R is a real, odd function (see [24]). In order to derive (3.14) we assume that the
g (n) are defined by (3.12).

4, Orthonormal bases of wavelets with finite support.

In the preceding paragraph we saw that every CQF, i.e. every pair of filters satisfying C1-
C3, which also satisfies the regularity condition C4, automatically defines an associated
orthonormal wavelet basis for LZ(IR); where the function ¢ is the limit of the piecewise

constant functions representing the (4 ‘)ee, for € - oo,

On the other hand, it is clear from Figure 5 that ¢ will have a compact support, i.e. will
vanish outside a finite interval, if only finitely many A(n) are different from zero. More
concretely, if the h(n) are #0 only for 0 = n =< N, then the piecewise constant function
representing H'e will be concentrated on [—1/4, N/2 + 1/4], the piecewise constant function
for '(H“)ze on [~1/8,N/2 + N/4 + 1/8],.... In general (H')ee corresponds to a piecewise
‘constén:i function on [~27¢"1, N(1 = 2% + 27¢"!}; the limit function ¢ is therefore
coﬁcentrated on [0, N] (see Fig. 5). If we define the g(n) by (3.12), then only finitely many
'g(n) will be 4nonvanishing as well, implying that {, as a finite linear combination of the
compactly supported ¢(2x — n), has compact support too. One checks that if h(n) # O only
for 0 = n =< N, then ¢ is concentrated on [(1 ~ N)/2, (1 + N)/2] (see [24]).

In order to construct orthonormal bases of wavelets with finite support, it is therefore
sufficient to construct filters with only finitely many coefficients or ‘“‘taps” which satisfy the
conditions C1-C4. A family of examples is given by the h(n) defined by (3.13), with R = 0 in
o (3.14). One also needs a procedure to determine the polynomial Q(£) from its squared

~ modulus |Q(£)|? (3.14); this procedure is given by a lemma of Riesz’ [28]{24].

Figure 8 shows a few examples of compactly supported wavelet bases obtained in this way.

In each case both ¢ and  are plotted. The figure shows clearly that ¢,y become more
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0. 5. 10. 15, -5, 0. 5. 10.

Figure 8. A few examples of functions &, s giving rise to orthonormal bases of wavelets,
corresponding to (3.13), (3.14), with R = 0. It is clear that y&, y¢ become more
regular for larger values of N.

regular as N (see (3.13)) increases. The case N = 1 (not plotted) corresponds to the
discontinuous Haar basis, where Y(x) = 1 for 0 =< x < 1/2, —1 for 1/2 < x < 1, 0 otherwise.
The next case, N =2, leads to A(0) = (1 +V3)/4V2, k() =3+ V3)4V2,
h(2) =3 —V3)4V2, k@)= (- V3)/4V2, and all other h(n) =0. The
corresponding ¢ and ¢ are continuous but not C 1 ; they turn out to be Hdlder continuous with
exponent vy = In(l + V3)/In2 = .5500... (sce § below). One can prove [24] that the
regularity of ¢, ¥ in this family of examples increases linearly with N, i.e. there exists u > 0

such that yd, yb& € C* for all N = 2.

In this family of examples the size of the support of ¢, & is thus determined by the desired

regularity. It turns out that this is a general feature, and that a linear relationship between
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these two quantities (regularity and support width) is the best one can hope for, More

precisely, one can prove [29a]
Theorem:

N
If & € C*, support & C [0,N] and &(x) = 3 4,(2x — n), then N =k + 2.

n=0

The proof is so simple that we include it here.

Proof.

1. Let vg € RY-! be the vector (vg) ;= &(j). The equation for ¢ implies the existence of

a matrix A, completely determined by the a,, such that vy = Avo.
. ;
2. Since ¢&'(x) =2 S a,$'(2x ~ n), the vector v, defined by (vy); = &' (j) satisfies
n=0

vy = 24v,. Analogously one defines vs, ..., w4, each satisfying v; = 2jAvj. Moreover
none of the v; can be zero, since v; = 0 would imply dP(x) = 0 for all x of the type
k2~ (by iteration of the equation for ¢), which leads to <{>(j) = 0. This is, however,

incompatible with the finite support condition on ¢.

3. It follows that the (¥ — 1) X (N — 1) matrix A has at least the (k + 1) eigenvalues 1,
1/2,,...,27%F, Hence Nzk+2. m

5. Fractal properties.

The graph of 1 (see Figure 8) exhibits a certain “jaggedness™ that seems to repeat itself in

a self-similar way at smaller scales. This is made even clearer by the blowups in Figure 9.

1 1 1 —l L

3. .3 l. L L 1.0/

[}
o

Figure 9. The function ,¢(x) (see Fig. 8) and two successive blow-ups of its behavior
around x = 1. Analogous self-similar patterns repeat itself, on smaller and smaller

scales, near every dyadic rational point, i.e. near every x of the form k27¢,
0=x<3.
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A closer study of » reveals a very rich structure, although the function is not cl, it s
differentiable almost everywhere. In fact, if the binary expansion of x € [0, 3] contains more
than (roughly) 25% of digits 1, then & is differentiable in x. (We shall make this statement
more precise below). Since almost all numbers have 50% of the digits in their binary
expansion equal to 1, this implies that ¢ is almost everywhere differentiable. Let us see how

such properties can be derived.
We know that support & = [0, 3] and that

$(x) = apd(2x) + a;d(2x — 1) + ad(2x — 2) + a3d(2x — 4), 5.1

where a; = V2 h(j), or ag=(1+V3)4, a; =@+ V3)4, ay=(3-V3)4,
a; = (1 — V'3)/4 (see §4). It follows that

ap+ay=a; +az;=1
ay + 3a; = 2a; . (5-2)
For x € [0, 1], we define v(x) € R? by
d(x)
v(x) = [&(x + 1)
d(x + 2)
From (5.1) one easily checks that
forx =1/2: v(x) = Tov(2x) (5.3)

forx =1/2: v(x) =Tv(2x — 1),

where
ap 0 O a; ap 0
Ty = az a; ag and T, = |laz a; a;
0 as as 0 0 as

The matrices Ty, I'; have very special properties. In particular, they both have eigenvalue 1,

with a common left eigenvector,

(L1, DT =(1,1,1) = (1,1, DT, . 5.4

Similarly one computes (use (5.2))
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1237y = 21,259 + (7 + a)(L,1LD
(5.5

a1,2,3)T, = -;—(1,2, 3) + ay1, 1,1).

This implies that T, Ty both have eigenvalue 1/2, and that they have a common left invariant

subspace, associated to the eigenvalues 1 and 1/2.
Note.

The functions y¢ obtained from (3.13) with R =0 in (3.14), are associated to
(2N - 1) X (2N — 1) matrices T, T} in exactly the same way as in the case N = 2. For
general N, the martices To, T; have N common eigenvalues 1, 1/2,..., 2"¥*!. If we define
the row vectors uj,j=0,..,N—1 by wu;=(/,2,..., (2N — 1)), then the left
eigenvectors for both To,T; for- the eigenvalue 27/ always lie in the subspace

U; = span{ug, uy, ..., w;}. (Full details are given in [29b]).

These spectral properties of T, T have several consequences. It follows, e.g., that, for all
x € [0, 1],

) +dx+ D+ dx+2)=1 (5.6)

Proof.

1. We prove this only for x of the type k27¢, with k, ¢ € N. By continuity the result then
follows for all x.

2. For £ = 0, we have $(0) = &(3) = 0. Hence

() + b(x + 1)+ dlx'+ 2) = ¢(1) + &(2)
for all x = k27¢ € [0, 1], with € = 0 (k = 0, 1 are the only possibilities).
3. Take any € > 0. Then

G(x) + d(x + 1) + bx +2) = 44 .y (y)

_ {uo *Tov(2x) = uq * v(2x) if x=<1/2
uo~T1v(2x—1)=u0-v(2x— ) if x=1/2.

Since 2x or 2xr — 1 are of the type k27¢*+! we conclude by induction that

uo * v(x) = &(1) + (2) for all x of type k27¢, By continuity ug * v(x) = &(1) + &(2)
for all x € [0, 1].
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3 1
4. It then follows that [ drd(x) = fdx[up  v(x)] = &(x) + &(2). Since [dx (x) = 1,
0 0
this implies ¢(1) + &(2) = 1, hence (5.6). W

Similarly, using (5.5) one proves, for all x € [0, 1]
o)+ 2¢(x + 1) +3d(x +2)=—x+ (1 + ay). .7

Note.

In the general case (N = 2), we find that y¢ satisfies N such sum rules, one for each
ucv@x,j=0,..,N- 1

One can also use (5.3) to study the local behavior of ¢ in the neighborhood of a point x.

For any x € [0, 1], we write the binary expansion of x, e.g.
x = ,1011001011100 - - -

Define then 7x to be given by the same binary expansion, except for the first digit, which is
dropped,
*x = .011001011100 -

It follows that 7x = 2x if x < 1/2 and =x = 2x — 1 if x > 1/2. Consequently (5.3) can be
rewritten as

v(x) = Ty v(Tx), (5.8)

where d;(x) denotes the j-th digit in the binary expansion of x. Note that the binary expansion
is not ambiguously defined for dyadic rationals x, i.e. for x of the type k27¢. For x = 1/2,
e.g., both the expansions .0111111... and .1000000... are admissible. Consequently 71/2 is
not well-defined, giving the answer 1 or O according to the chosen binary expansion. One
easily checks, however, that T;v(0) = Tyv(1) (use (5.6) and (5.7)), so that (5.8) holds, even
for x = 1/2, regardless of the choice of binary expansion. It is easy to convince oneself that

(5.8) and its iterates never lead to contradictions at dyadic rationals x.

Iterating (5.8) leads to

v(x) = T(x)v(t™x), (5.9

where

Tnx) = TaTa, * " T -
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Similarly, for ¢ small enough so that the binary expansion of x + t has the same m first digits

as the expansion for x,

vix +t) = T,x) v(@™x + 2™1) . (5.10)

In order to estimate the difference v(x + ) — v(x), we use the spectral decomposition of

T, (x). From (5.4) it follows that ug = (1, 1, 1) is a left eigenvector for T, (x), e (m, x) = ug
with eigenvalue 1,

e (m, x) Tpp(x) = ej(m, x) .

Because of (5.5) one. finds that T,(x) also has eigenvalue 2™™. The corresponding left

eigen‘/\:'ect;'o‘r ez(m, x) is a linear combination of ug and u; = (1,2, 3),
es(m, S:) Tp(x) = 27™ey(m, x),
with‘ ey i
| eaim, x) = up + [(1 =277 H(x = 27™"x) — (1 + ap)] ug .

The third eigenvalue of T,(x) can be computed from its determinant. Defining

m

Tm(x) = m~! ¥ dj(x) to be the average number of digits 1 in the first m digits of the
3 v j=1 e .

expansion for x, we find

det T,,(x) = (det T1)™™® (det T)" ™"

=19m ag"’"(x) a:)n(l—r..(x))

It follows that the third eigenvalue of Tp(x) is N,(x) = a7=® 21D - one can find

.7 explicit ‘expressions for.the corresponding left eigenvector ez(m, x), as well for the three right

< (column) eigenvectors ej(m, x) of T, (x), but these are not really necessary. It is sufficient to

know (this is proved in [29b]) that they are all uniformly bounded in m and x. For any v € R}
we have

Tu(x)V = &1(m, x) [e1(m, x) - v] + 27"&30m, 2)[ez(m, x) * V]
+ An(x)e3(m, x)[e3(m, x) - v] .

- Applying this to (5.8), (5.9), and using (5.6), (5.7) we find thus, for sufficiently small 1,

v(x) = é1(m, x) + 27™[(1 — 27" 1(x = 27M7"x) — 7"x] &,(m, x)
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+ Am(x) €3(m, x) [e3(m, x) - v(7"x)]
v(x + ) =é1(m, x) + 271 — 27™) " 1(x — 27™"Mx) — 1"x — 2™1] é,(m, x)
+ Nux) e3(m, x) [es(m, x) - v(E"x + 2"0)] .

Hence

vix + 1) — v(x) = —teyim, x) + A\y(x)esz(m, x) [ea(m, x) - (v(T"x + 2"1) — v(7"x))]

For all x € [0, 1] such that there exists a limit for the average incidence of digits 1 in the

binary expansion,

r(x) = lim r,(x)

and such that 0 < r(x) <1, one can easily show that “sufficiently small #” means
t < 27m(1+9  where € > 0 can be chosen arbitrarily small, for large enough m. Choosing ¢

such that 2~ DU+ < ¢ < 2=m(1+€) e find then

t7lv(x + 1) — v(x)] = —éa(m, x) + R(m, x), (5.11)
where the remainder term R (m, x) is bounded by

IR (m, )N = 20+ |\,(x)] .

If F(x) > (log 2ag)/(logag — log |as|) = .2368 - - -, then
2mA+9 ) (x) | ot [21%€ gd77® |a5|"®)J™ tends to zero for m - oo, if € is small enough.

The second term in (5.11) can therefore be neglected for large enough m. On the other hand
e,(m, x) tends towards a limit as m - o (see [29b]). It follows that v(x) is differentiable for
all x such that r(x) is well-defined and .2368 - - - < r(x) < 1, which implies that ¢(x),
&(x + 1), d(x + 2) are differentiable as well.

The same technique, i.e. the spectral analysis of T,(x), can be used to prove that ¢ is
Hélder continuous, with exponent 2 — In (V3 + 1)/In2 = .5500.... This exponent is the
best possible one. One can also analyze the behavior of ¢ near dyadic rational points. As
approached from below, the binary expansion near a dyadic point has a tail of only 1 — s; as
approached from above, the expansion has only 0 — s (see above). The result is that ¢ is left-
differentiable but not right-differentiable at every dyadic rational point. This can clearly be

seen of Figure 9, at x = 1.

A similar analysis can be carried out for the y¢ corresponding to higher values of N;

see [29b].
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