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Abstract

We aim to provide time-frequency representations of a one-dimensional signal where the window
is locally adapted to the signal, thus providing a better readability of the representation.
 2002 Elsevier Science (USA). All rights reserved.
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Introduction

All the linear transforms which allow to depict a signal in phase space (time-frequency
plane) have a blurring effect, because they typically introduce an auxiliary function which
can be chosen arbitrarily and which serves as a “template:” the window for a Gabor trans-
form, the wavelet for a wavelet transform. Various attempts have been made to correct such
blurring artifacts while retaining the interesting properties of such transforms. Let us cite
reallocation methods [11], or squeezing [6]. On the other hand, bilinear transform such
as the Wigner transform don’t introduce extraneous “templates,” and have less blurring
for some classes of signals. In particular, the Wigner transform is well-localized for linear
chirps. However, for more complicated signals, interferences appear due to the quadratic
nature of the transform; often these are difficult to separate from the interesting components
in the representation. Adaptive methods exist in this context to correct such problems [4,
10], but they usually suffer from a high-computational cost when compared to linear trans-
forms. We aim at providing various adaptive Gabor representations that behave well on
simple signals, and can be computed at reasonable cost. Techniques of this type have also
been developed in [1], where they introduce the so-called warped-Gabor representation.
Other adaptive methods are presented in [13], which are based on an adaptive Wigner–
Ville transform (using different windows). This later approach however does not solve the
problem of cross-term effects.

1. Wigner–Ville transform and Gabor transform

We recall that, given a one-dimensional signalf (x), its Wigner–Ville transform is given
by

W(f )(x, ξ) =
∫
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Fig. 1. Real part of signalgβ0,δ0.

Let’s define a family of Gaussian windows,

gβ,δ(x) = δ
1
4 ei(β/2)x2−δx2

, (2)

and the collection

gβ,δ
p,q(x) = eipx−pq/2gβ,δ(x − q). (3)

Then, for fixedβ andδ, the Gabor transform w.r.t.gβ,δ reads

Gβ,δ(f )(p, q) =
∫

gβ̄,δ
p,q(x)f (x)dx. (4)

We will call such a transform the(β, δ)-Gabor transform; for the(0,1)-Gabor transform
we often drop the label(0,1), calling it simply the Gabor transform. The Wigner–Ville
transform of such a window reads

W
(
gβ,δ

)
(x, ξ) = Ce−(2δ+β2/2δ)x2−(1/2δ)ξ2+(β/δ)xξ . (5)

It is well known that we can obtain the energy of the Gabor transform by convolving the
Wigner–Ville transform off with the GaussianW(gβ,δ) [8]∣∣Gβ,δ(f )(p, q)

∣∣2 = W
(
gβ,δ

) ∗ W(f ). (6)

This explains why|Gβ,δ(f )|2 shows blurring when compared toW(f ). On very simple
signals like linear chirps, the Wigner–Ville transform is perfectly localized as a Dirac along
the instantaneous frequency, while the “sharpness” of the Gabor transform depends a lot
on the choice of windows. Let us illustrate this on a simple signal, say one of our(β, δ)

windows, i.e., takef = gβ0,δ0, with β0 �= 0 andδ0 > 1. The (real part of) the signal appears
in Fig. 1 (notice that we chose a non-zeroβ value, therefore we get a chirped Gaussian) and
its Wigner–Ville transform and(0,1)-Gabor transform (for which we plot the modulus)
are in Figs. 2 and 3, respectively. However, otherGβ,δ transforms of thisf can look much
better or worse thanG0,1. For instance, choosingβ = β0, δ = δ0 leads to Fig. 4, while the
choiceβ = −β0, δ = δ0 gives Fig. 5 which clearly looks different. To understand how these
differences are caused, let us look more specifically at the role played byβ andδ. For any
(β, δ), the Wigner transformW(gβ,δ) is an elliptically concentrated Gaussian (5). To this
ellipsoid we can associate a couple(θ, λ), whereλ is the eccentricity of the ellipse andθ is
the angle of the largest axis with the time axis. Switching the sign ofβ means switching the
sign ofθ . This explains why in our previous example changing the choice ofβ had such
a marked effect on the Gabor transform representation, and why the choiceβ = −β0 gave
misleading results, caused by the mismatch betweenf and the templategβ,δ . Because
the choice of(β, δ) that will bring out features best will depend on the time-frequency
content of the signal itself, it is therefore natural to adapt the choice of parameters(β, δ) to
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Fig. 2. Wigner–Ville transform ofgβ0,δ0. Note that this plot was obtained via a numerical implementation that
uses the FFT to speed up computations, which effectively periodizes in the same time-frequency plane. The
“ghost” terms noticeable near the edges result from interference between the signal at the center and the periodized
copies.

Fig. 3. Gabor transform ofgβ0,δ0.

Fig. 4.(β0, δ0)-Gabor transform ofgβ0,δ0.
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Fig. 5.(−β0, δ0)-Gabor transform ofgβ0,δ0.

the phase point(p, q). However, there are several difficulties with this approach. First of
all, it is not clear what would be good criteria for choosing appropriate(β, δ). Adaptivity
also means that, unlike for the linear transforms, there is no a priori way to recover the
signal from the transform. While reconstruction is not always a priority, it certainly is
useful in some circumstances, since it enables one to extract separate components from
complex signals. Computational costs are also a problem, since the complexity for linear
representations is proportional to (if, for the sake of simplicity, we look only at squared
representations)N2 logN , while a naive way to implement the aforementioned adaptive
transform would costN3. Note that several approaches in order to “improve” the Wigner
transform exist in the literature, for example, [2] and the references given in the book by
Flandrin [8] which presents a comprehensible survey of time-frequency representations.

2. Picking the right window

In this section we present different methods to optimize the window choice, depending
on the location in the time-frequency plane. We remark that in order to keep the
computational cost reasonable, we should not compute too many Gabor transforms with
different parameters. In effect, in [13], only two Wigner transforms are computed and then
a choice is performed. On the other hand, the second method presented in [1], called the
energy method, can be compared to the curvature approach we present in Section 2.2.
Though different by the criterion which is used to perform the window choice, both
methods use a local grid around a given point in the time-frequency plane, arising from
a set of precomputed transforms. By contrast, the so-called masking method from [1] is
computationally more expensive.

2.1. Maximizing the modulus of the Gabor transform

It is apparent on the chirp example above that choosing a window with phase orientation
in the same direction as the chirp will give a better localized representation. This is because
convolving with an elongated Gaussian which points in a different direction causes more
broadening than if its direction is “matched” to that of the signal. On the other hand, in
regions of the time-frequency domain where the signal has little energy, convolving with a
wide range of Gaussian will consistently give negligible results.

Consider

s(j) = exp

(
2πij

(
2+ 4 cos

(
2π

j

n

)/
n

))
,

where 1� j � 128. Then its Gabor transform appears in Fig. 6. By maximizing pointwise
over a set of twelve Gabor transforms corresponding to all pairings of six differentβ
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Fig. 6. Gabor transform ofs(j).

Fig. 7. Max–Gabor transform ofs(j).

Fig. 8. Wigner–Ville transform ofs(j). The interference terms at top and bottom are caused by the numerical
implementation, unlike the interference at the center.

values with two possibleλ values, we obtain Fig. 7. For the same signal, the Wigner–Ville
transform is given by Fig. 8 (we used the numerical implementation proposed in [12]).

We note how the numerical Wigner–Ville transform, while well-localized on the chirp,
shows not only the interference terms expected in a quadratic transform, but suffers
moreover from aliasing (due to the use of the FFT in the numerical implementation),
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Fig. 9. Gabor transform of noisys(j).

which is non-existent in the two other transforms (even though they use the FFT as well).
Maximizing the modulus of the Gabor transform adaptively has the following benefits:

1. As we shall see below, it gives good localization for several types of simple signals
rather well, such as chirps or signals with an instantaneous frequency law with
slow variation (note that only very simple signals have a perfectly localized Wigner
transform, see [9]);

2. It is reasonably fast to compute, since we can compute several Gabor transforms and
take the maximum;

3. It seems to be resistant to noise. For instance, if we add white noise to our previous
example, with a signal-to-noise (SNR) ratio of−3 dB then the usual Gabor transform
of the noisy signal (in Fig. 9) is much less “clear” than its Max–Gabor transform (in
Fig. 10). This can be explained heuristically by the observation that the phase space
representation of the noise doesn’t have a lot of coherence, so that averaging it in any
direction will tend to give a relatively small result; the maximum of all these smoothed
out versions will be significantly smaller than the maximum of the Gabor transforms
of a true “component” of the signal.

Fig. 10. Max–Gabor transform of noisys(j). This should be compared with Fig. 9; note that the dynamic range
(indicated by the scaling on the gray level bar) is more extended here than in Fig. 9.
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The method also has drawbacks, however:

1. There is no way to recover the signal;
2. It tends to raise the values of the representation everywhere (which is not seen on the

pictures here because we renormalized the displays);
3. It has artifacts, when components cross or when the “instantaneous” frequency varies

too fast (as can be observed in both Figs. 7 and 10, or, below, in Fig. 18, showing the
artifacts produced by this method for a clean signal with crossing components, and in
Fig. 19, showing similar artifacts for a noisy version of the same signal).

Several variations on this method can be considered. For instance, one could argue that
it would be useful to use theminimum, instead of the maximum, of the different local
Gabor transforms, for the following reason. Next to a “ridge” in the signal, the maximal
Gabor transform uses an elliptical orientation that will be orthogonal to the ridge, thereby
capturing as much as possible of the ridge contribution. This will lead to some broadening
of the representation. Choosing the minimal Gabor contribution in such a point would lead
to lining up the ellipse parallel to the ridge, avoiding “contamination” by the ridge; the
resulting representation would be better focused. On the other hand, a similar argument
holds if we place ourselves on the ridge: the maximal Gabor transform will line up with
the ridge; the minimal Gabor transform will select an ellipse orthogonal to the ridge. The
contribution of the minimal Gabor transform will therefore be much smaller. Whether one
or the other representation is more useful depends on a comparison of the dynamical range
of the two proposals on and near components; in practice it turns out that this is much
better for the maximal Gabor transform than for the minimal Gabor transform.

One can also set thresholds, to eliminate artifacts. Figures 11 and 12 give thresholded
versions of the standard Gabor transform, and the Max–Gabor transform, respectively,
of our earlier noisy signal. (The thresholding is done rather brutally: only coefficients
that exceed 0.75 times the maximum of the representation are kept in each case.) It is

Fig. 11. Thresholding of the Gabor transform.

Fig. 12. Thresholding of the Max–Gabor transform.
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clear that this works better for the sharper Max–Gabor representation than for the standard
Gabor representation; again, this expresses the heuristic that the Max–Gabor representation
provides a better “focusing” on the signal, without amplifying the noise.

Although the Max–Gabor transform does therefore a reasonably good job of presenting
a sharper picture for the signal than standard Gabor transforms, it is, to say the least, a
very ad-hoc procedure. In the next section we propose a different approach that has a more
“physical” intuition.

2.2. Curvature and Wigner–Ville

In this section, we carry out an adaptive smoothing, still by computing windowed
Fourier transforms with different chirped Gaussians at different phase space locations, but
we propose to select the parameters for this adaptive smoothing based on the information in
the Wigner–Ville transformWf of the signalf . It is tempting to suggest that the parameter
choices at(p, q) for the best ellipsoidal localization of the convolving Gaussian at that
point should be linked to the curvature at(p, q) of the graph ofWf ; intuitively, this would
ensure the convolution does “not spread out things too much.” If we admit that the Wigner–
Ville transform localizes very well the kind of signals in which we are interested (modulo
interferences), then this suggests that on any ridge, we use its Hessian to compute adapted
(β, δ). If we use this strategy where interference terms dominate, then the sign changes
near the interference terms will lead to near cancellation after convolution, so that these
terms get attenuated. Practically, we can separate two components as long as their own
width (as measured by their separate Wigner–Ville representations) does not exceed the
distance between them.

The orientationθ of the ellipsoidal localization of the adaptiveGβ,δ will be chosen to
line up with the orientation of the principal axis of the Hessian ofW(f ) at (p, q). It then
remains to determine the eccentricityλ; this will be given by the ratio of long and short
axes. It is easy to see how to do this in a coordinate system where the two axis are simply
vertical and horizontal. A simple computation shows that to optimize∫

e−µx2/2−νξ2/2−λ2x2−λ2x2−ξ2/λ2
dx dξ,

where the first two factors of the integrand stand for the local behavior of the Wigner
transform (whereµ and ν can be computed from the local Hessian ofWf ), and the
second two factors give the eccentricity of the elliptical convolution, we have to choose
λ2 = √

µ/ν. In practice, this may not always be the best choice forλ; we shall come back
to variations on this theme below.

In theory, we would therefore proceed as follows:

1. We compute the Wigner–Ville transform;
2. We compute the Hessian at point(p, q). This is achieved numerically by taking the

best approximation by a paraboloid on a grid which can be 9⊗ 9 or bigger;
3. From the Hessian we get the two eigenvalues and eigenvectors, from which we get the

couple(β, δ) corresponding to orienting the Gaussian so that its curvature matches the
Hessian of the Wigner–Ville transform at(p, q) as well as possible.

4. We computeGβ,δ(p, q).

Note that this last step is the most computationally intensive. There are several alternatives
that would speed up the algorithm: we can computeG0,1 and getGβ,δ(p, q) from
G0,1(p′, q ′) for (p′, q ′) close to(p, q). Or we can compute severalGβ,δ for a set of(β, δ)

and then choose the closest one, or interpolate.
In Fig. 13 we try this strategy on our previous example; note that Fig. 13 shows how

the interference terms that are particularly strong in the center of the corresponding “pure”
Wigner–Ville transform in Fig. 8 lead to artifacts on our adaptive transform. Moreover,
in other examples, we found that aliasing effects inherent to the numerical Wigner–Ville
transform lead to artifacts as well.
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Fig. 13. Hessian–Gabor transform ofs(j).

Fig. 14. Gabor transform ofs2(j).

Let us consider a more complicated example,

s2(j) = exp
(
2πi

(
2(j − 10)

)(
2+ 15 cos(π1.2j/n)/n

))
+ exp

(
2πi

(
2(j − n − 60)

)(
2+ 15 cos(π1.2j/n)/n

))
. (7)

Figures 14, 15, 16 show the standard Gabor transform, the Wigner–Ville, and the adaptive
transforms ofs2, respectively; Fig. 17 also shows the adaptive transform of the same signal
to which white noise with SNR of 4 dB has been added. It turns out that this is very similar
to the standard Gabor signal of this noisy signal, except for a slight increase in dynamic
range.

Although the adaptive smoothing proposed here seems more “physical” than the simple
selection of a the maximal Gabor transform of the last section, it leaves much to be desired,
as shown by these examples. The main reason lies in the high-amplitude oscillation in
the Wigner–Ville transform, due to the interference terms; in addition, there is also some
instability due to the aliasing terms present in the numerical Wigner–Ville transform. As
a result, our parameter computation is unreliable for noisy signals. We therefore present a
more stable variation on this approach in the next subsection.

2.3. Variation on the curvature

We propose here to determine the parameters of the adaptive Gabor window from the
curvature of a time-frequency representation of the signal that would be more stable than
the discretized Wigner–Ville transform used above, which presents too many large local
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Fig. 15. Wigner–Ville transform ofs2(j).

Fig. 16. Hessian–Gabor transform ofs2(j).

Fig. 17. Hessian–Gabor transform of noisys2(j).
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variations, already for clean signals, and even more so for noisy signals, as shown by the
examples above. One easy choice for this more stable representation, used as a basis from
which to compute the adaptive parameters, would be the most simple Gabor transform itself
(using a regular Gaussian window). However, since we compute several Gabor transforms
anyway (for reasons of computational cost: rather than computing different convolutions
at different locations, we compute the different Gabor transforms globally, on the whole
time-frequency plane, which allows us to use the FFT), we might as well take the maximum
transform and use that as a basis for the choice of parameters. Another rationale for this
approach is the following: in a sense, we are trying to focus on possible ridges in the repre-
sentation. There exist several methods to detect such ridges in phase space representations
(see [5]), not necessarily connected to the signal but fairly general to image processing. The
difference between these approaches and ours is that our “focusing” method is inspired by
the time-frequency nature of our “images.” The Wigner–Ville based method of the last sub-
section breaks down for relatively low noise levels. We hope to achieve that the breaking
point for our technique would occur only at much higher noise levels; as observed above,
the maximum Gabor transform of the previous section resembles a Wigner transform with
reduced interference effects that holds its “shape” better when noise is added. We thus pro-
pose to use the Max–Gabor transform: at every point(p, q) of interest, we shall determine
its local curvature parameters, and then use these for an adaptive Gabor transform.

Let us illustrate this on the example we used before. Figures 18 and 19 show the Max–
Gabor transform of the example (7), first without noise (Fig. 18) and then with noise
(Fig. 19). Next, we show in Figs. 20 and 21 the adaptive transforms computed by using

Fig. 18. Max–Gabor transform ofs2(j).

Fig. 19. Max–Gabor transform of noisys2(j).
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Fig. 20. Adaptive transform ofs2(j) with adaptive parameters computed from the Max–Gabor transform.

Fig. 21. Adaptive transform of noisys2(j), with adaptive parameters computed from the Max–Gabor transform.

Fig. 22. Thresholded adaptive transform of noisys2(j).

window parameters computed from the curvature of the Max–Gabor transforms, for the
“clean” and the “noisy” versions of the signal, respectively.

At this point, we can further improve the readability of the method by performing var-
ious tricks. For instance, we can threshold the adaptive transform; an example is given in
Fig. 22, which shows the effect of a simple threshold (we kept every coefficient larger than
1
4 of the maximum) on the noisy adaptive transform ofs2(j). One could also threshold the
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maximum transform (or the(1,0)-Gabor transform) from which the curvature parameters
are computed, so that when there is little energy, we do not try to adjust parameters in
parts of the time-frequency domain where there will be little variation anyway. This can be
refined by using a grid of neighbors. All these tricks make the edges more apparent, and
remove most of the “star-shaped” artifacts.

2.4. Reallocation and gradient methods

Reallocation methods have been developed by various authors: in [6], reallocation of
coefficients of a continuous wavelet transform along “vertical” lines (i.e., to differentp val-
ues, with sameq) is proposed. This method provides good results, particularly for voice
signals. One drawback is that reallocation is only performed along the scales, at fixed time.
On the other hand, such a limited transform allows for a reconstruction formula. A more
general method for reallocation in any direction of the phase space has been developed
in [11]. It starts by computing a Gabor transform; next, it determines the logarithmic gra-
dient of the transform; finally it “reallocates” the transform in the direction of this vector.
There is no direct reconstruction formula. Such a method performs very well on a clean
signal (without noise), that has several clearly separated components. It becomes less stable
for noisy signals. The use of the gradient of a time-frequency transform in these realloca-
tion methods inspired us to try out whether gradient information could be used instead of
curvature information to determine the parameters of the adaptive Gabor transform; we ex-
plore this idea in this subsection. More specifically, we first compute the Gabor transform
of the signal; then we compute its gradient at(p, q); next we use this to determine the
(β, δ) parameters adapted to(p, q), in such a way that the corresponding ellipsoid’s long
axis is perpendicular to the gradient, and its eccentricity increases as the gradient does. An-
other variation would follow the same procedure, starting from the Max–Gabor transform
rather than the Gabor transform. The next figures show the results of this approach, for the
clean signal, with parameters computed from the(1,0) gradient in Fig. 23, and then from
the Max–Gabor transform in Fig. 24. Notice that there is practically no difference between
the two. Where the gradient is zero, however (on the ridge), the selectedβ , δ is the standard
(0,1), leading to lower values than nearby, which seems counterproductive. However, all
in all, if we work with a clean one component signal, things are going well, as illustrated
on the previous figures. While this technique performs very well on clean signals, it turns
out, however, that it performs poorly as soon as we add noise. Figures 25 and 26 show
the same as Figs. 23 and 24 but for the noisy signal; Fig. 26 (using the Max–Gabor as
starting point) is not quite as bad as Fig. 25, but it is still not as good as Fig. 21 or Fig. 22.
Figures 26–29 show the same for representations (the standard Gabor transform, the adap-
tive Gabor transform with parameters computed from the gradient of the standard Gabor

Fig. 23. Gradient(0,1)-Gabor transform.
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Fig. 24. Gradient Max–Gabor transform.

Fig. 25. Gradient(0,1)-Gabor transform of noisys2(j).

Fig. 26. Gradient Max–Gabor transform of noisys2(j).
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Fig. 27. Gabor transform of really noisys2.

Fig. 28. Max–Gabor transform.

Fig. 29. Gradient Max–Gabor transform.
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Fig. 30. Adaptive Gabor transform from Hessian of the Max–Gabor transform.

Fig. 31. Thresholded-adaptive Gabor transform.

transform, the Max–Gabor transform, and the adaptive Gabor transform computed from
the gradient of the Max–Gabor transform) for the same signal, now with white noise added
with SNR 4 dB.

It appears that using the Hessian rather than the gradient (of any transform) to obtain
parameters seems to be more noise resistant. In Figs. 27–30 we double the noise level
(reaching SNR 0 dB) as compared with Figs. 25 and 26, illustrating the better stability
of the Hessian method. Finally, Fig. 29 shows a modification of Fig. 30 where we have
thresholded based on comparison between the adaptive transform and the Max–Gabor
transform from which the parameters for the adaptive transform were obtained.

2.5. A simple real life example

We present an example of our analysis on a bat sonar signal, borrowed from the Time-
Frequency Toolbox by Auger et al. [3], see also [7]. This signal was recorded with a
230.4 kHz sampling frequency, in the 8–80 kHz range. It fits nicely within the kind of
signals that can be successfully studied using the adaptive methods we introduce. The
first figure presents the clean signal, while the second figure is its Gabor transform with
the standard Gaussian window, then we add noise with an SNR of 0 dB, and compute
both the usual Gabor transform and the adaptive Gabor transform (based on the analysis
of the Max–Gabor transform). This last two transforms have been thresholded to keep
only the part relevant to the signal. We remark the adaptive transform is well-localized
despite the relatively high noise level.
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Fig. 32. Bat sonar signal.

Fig. 33. Gabor transform for the bat sonar signal.

Fig. 34. Noisy bat sonar signal.
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Fig. 35. (Thresholded) Gabor transform for the noisy bat sonar signal.

Fig. 36. (Thresholded) adaptive Gabor transform for the noisy bat sonar signal.

3. Reconstruction

It is well known that, for a fixed couple(β, δ), the Gabor transform defined by (4) can
be inverted by the following formula:

f (x) =
∫

p,q

Gβ,δ(f )(p, q)gβ̃,δ̃
p,q(x)dp dq. (8)

The choice of windows for the reconstruction being arbitrary, one can chose a Dirac
window in order to integrate only over frequencies

f (x) =
∫
p

Gβ,δ(f )(p, x)eipx−pq/2 dp. (9)

It seems very tempting to apply the same strategy to our adaptive Gabor transform.
Theoretically, this should fail, except for a few particular cases. (One such particular case
is when(β, δ) depend only onq . Then essentially the previous formula still apply.)

Another interesting remark has to do with formula (8). If we wish to use the same
formula with(β, δ) dependent on(p, q), then one essentially obtains a pseudo-differential
operator, which has the following Weyl symbol (up to constants):

σ(x, ξ) =
∫

p,q

e−(2δ+β2/2δ)(x−q)2−(1/2δ)(ξ−p)2+(β/δ)(x−q)(ξ−p) dp dq. (10)
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Fig. 37. Adaptive Gabor transform of signals3.

Fig. 38. (Real part of) signals3.

From this formula it is clear why a fixed choice of(β, δ) leads to the identity for the
associated operator. If(β, δ) varies with(p, q), then the pseudo-differential operator can
be viewed as a perturbation of the identity, but unfortunately for our needs this won’t be
sufficient.

For some signals however, which consist of well-defined components that are fairly
well-separated in the time-frequency plane, we can argue heuristically that for each
component we can apply a reconstruction formula with(β,0) depending only onq ;
because the components are well-localized in the time-frequency plane, we can do
this simultaneously for the different components, each with their ownq-varying (β, δ)

localization. This suggests a reconstruction formula that naively applies (9) even for our
adaptive(β, δ) depending on bothp andq . Let us try this out in an example. We consider
a signals3, which is the sum of two simple slowly varying chirps, as illustrated on Fig. 37,
which is its adaptive Gabor transform.

The (real part of the) signal we are considering appears on Fig. 38, along with the same
signal to which we added noise (with SNR of 6 dB).

Next, on Fig. 39 we have plotted the reconstructed signal from a thresholded Gabor
transform: we kept 3% of the coefficients. This is to be compared with Fig. 40, on which we
have the reconstructed signal from the adaptive Gabor transform, with the same threshold
for the coefficients. Notice how we still can see the generic shape of the signal. Of course
performing such a reconstruction on a clean signal, unlike for the true Gabor transform,
will not reconstruct perfectly, as illustrated on Fig. 41. Various scaling effects observed on
the reconstructions from adaptive transforms have to do with the non-conservation of the
energy by the adaptive transform. Still, it is striking that we still get close to the signal,
especially with noise.
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Fig. 39. Reconstructeds3 from noisy Gabor transform.

Fig. 40. Reconstructeds3 from noisy adaptive transform.

Fig. 41. Reconstructeds3 from clean adaptive transform.
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