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Abstract 

Orthonormal bases of compactly supported wavelet bases correspond to subband coding 
schemes with exact reconstruction in which the analysis and synthesis filters coincide. We show 
here that under fairly general conditions, exact reconstruction schemes with synthesis filters 
different from the analysis filters give rise: to two dual Riesz bases of compactly supported 
wavelets. We give necessary and sufficient conditions for biorthogonality of the corresponding 
scaling functions, and we present a sufficient condition for the decay of their Fourier transforms. 
We study the regularity of these biorthogonal bases. We provide several families of examples, 
all symmetric (corresponding to “linear phase” filters). In particular we can construct symmetric 
biorthogonal wavelet bases with arbitrarily high preassigned regularity; we also show how to 
construct symmetric biorthogonal wavelet bases “close” to a (nonsymmetric) orthonormal basis. 

1. Introduction 

Wavelets are functions generated from one basic function by dilations and 
translations. They are used as analyzing tools, by both pure mathematicians 
(in harmonic analysis, for the study of Calderon-Zygmund operators) and 
electrical engineers (in signal analysis). A particularly interesting develop- 
ment is the recent discovery of orthonormal bases of wavelets. For particular 
functions y E L2(W), the family 

V,~(X)  = 2-JI2 tp(2- i~  - k ) ,  j ,  k E Z , 

constitutes an orthonormal basis for L2(W). The oldest example of such a 
basis is the Haar basis; smoother choices for y were constructed by Stromberg 
in [32], Meyer in [26], Lemarie in [24], Battle in [3], and Daubechies in [ 101. 
There exist generalizations of ( 1.1) with dilation factors a different from 2 
(a rational; for a = p/q > 1 one needs p - q different functions tp, see [2]). 
Higher-dimensional extensions also exist (see, e.g., [2], [27]), in general the 
dilation factor can then be replaced by a matrix with integer entries and with 
eigenvalues strictly larger than 1 in absolute value; see [27]. 
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l.A. Multiresolution Analysis 
In all the interesting examples, the orthonormal wavelet bases can be as- 

sociated with a multiresolution analysis framework. The concept of multires- 
olution analysis was introduced by S. Mallat in [ 2 5 ] .  For the purposes of this 
paper, the following brief summary will suffice; for proofs, more details, and 
examples the reader should consult [ 2 5 ] ,  [ 2 7 ] ,  or [ 2 8 ] .  

A multiresolution analysis consists of a ladder of spaces, 

with U I E Z V ,  = L2(R) ,  nlEzv, = {0}, which satisfy the following two condi- 
tions: 

(Cl) f E v, * f ( 2 1 x )  E vo 
((22) there exists Cp E VO such that the q50n(x) = Cp(x - n )  constitute an or- 
thonormal basis of V,. 

The spaces V ,  can be considered as different approximation spaces: for 
a given f, the successive projections Proj v,f describe approximations of f 
with resolution 21. 

If we define $ J k ( X )  = 2- l l2  4 ( 2 - J x  - k ) ,  then it follows that, for every j ,  
the ( # J k ) k E Z  constitute an orthonormal basis for V,,  

Proj5(f)  = CCf, C p J k M J k  . 
k E Z  

Note that, since q5 E V, c V-, = Span{CpVl,; n E Z}, the function q5 necessar- 
ily satisfies an equation of the type 

The c,, in ( 1 . 2 )  cannot be any arbitrary sequence. Orthogonality of the & ) k  
immediately implies 

CnCn+2k = 2 d k O  * 

n 

The orthonormal wavelet basis associated to this multiresolution analysis is 
then defined by 

where the c, are given by ( 1 . 2 ) .  (Note that we have assumed that the c, are 
real. The whole analysis carries through, modulo some complex conjugations, 
for complex c,. In particular, the in ( 1 . 3 )  should be replaced by c-n+l 
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if the c, are complex. For the sake of convenience, we shall stick to real c,, 
which corresponds to real functions 4 and I,Y, as in most interesting exam- 
ples.) It is proved in [25], [27] that the yjk(x) = 2-JI2 ~ ( 2 - i ~  - k ) ,  j ,  k E P, 
then constitute an orthonormal basis for L2(R). Moreover, for every fixed j ,  
the { ( f ,  yjk); k E Z} express the difference between the approximations of f 
with resolutions 2J and 2J- ’ ,  

1 .B. Subband Coding Scheme Corresponding to a Multiresolution 
Analysis 

The multiresolution ladder leads to a hierarchical scheme for the compu- 
tation of the wavelet coefficients ( f :  yjk). From ( 1.2), (1.3) one finds 

where he = C e / J z ,  ge = (-l)[ ~ - ~ . + 1 / f i .  Note that both formulas in (1.5) 
have the structure of a convolution, followed by a “down-sampling” (only 
one out of every two entries of the convolution is retained). The expressions 
( 1.5) show how to compute a coarser approximation from a finer one, as well 
as the difference in information between the two successive approximations. 
Recovering the finer approximation from the coarser one together with the 
difference information is just as easy. From ( 1.2), ( 1.3), and ( 1.4) we obtain 

The right-hand side of (1.7) can be read as a succession of three steps: 

0 “upsample” the ( f , 4 j k ) ,  i.e., consider them as the even entries of a se- 

0 convolve this upsampled sequence with the filter coefficients h, 
0 do the same with (f,yjk), with convolution with g,, and add the two 

The whole decomposition + reconstruction scheme ( 1.5) + ( 1.7) is therefore, 
in electrical engineering terms, a subband coding scheme with exact recon- 
struction, represented by Figure 1.1. 

quence whose odd entries are zero 

results. 
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+ 
decomposition 
- 

reconstruction 

Figure 1 . 1 .  Diagram representing (1.5) and (1.7). The symbols H ,  stand 
stand for the for convolution with hn,h+ respectively; the symbols 2 1 and 2 

downsampling and upsampling described in the text. 

For many orthonormal wavelet bases, the functions # and v/ are supported 
on the whole line, and infinitely many c, are different from zero. If 4 and 
v /  have compact support (as in [lo]), then all but finitely many Cn vanish, 
and the “filters” h and g have a finite number of “taps” (i.e., nonzero entries 
h,, g , ) .  For every orthonormal basis of compactly supported wavelets there 
exists therefore an associated pair of finite filters for subband coding with 
exact reconstruction. The converse is not generally true. 

One easily checks that exact reconstruction by the scheme represented in 
Figure 1.1 is only possible if 

C [ h m - Z k h n - Z k  -k gm-Zkgn-Zkl  = d m n  * 

k 

For gn = (-1)“ h-,+l this reduces to 

1 .C. Orthonormal Wavelet Bases from Subband Coding Schemes 
A function v/  can be a candidate for a “mother wavelet” (i.e., generating 

an orthonormal basis of wavelets) only if 

where @ denotes the Fourier transform of v / ,  
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Note that this condition is also necessary if the v/ ik  are merely a Riesz (rather 
than orthonormal) basis. (For a proof, see, e.g., Section 2.2.2.B in [ 1 1 I.) For 
w E L1(R), @ is continuous and (1.9) implies 

p x  y ( x )  = (241'2 @(O) = 0 . 

Since the function q!J in a multiresolution analysis has to satisfy 1 J d x  q5(x)l = 
1 (see [25]; note that if Jdxq!J(x) = 0, then # L2(R)), it follows from 
( 1.3) that necessarily 

n 

hence (see (1.6)) 

(1.10) 

There exist many pairs of exact reconstruction subband coding filters for 
which En gn is close to but not quite zero (see, e.g., [34]). Such pairs cannot 
possibly correspond to an orthononnal wavelet basis. If C,, g,, = 0, then all 
but a few pathological pairs do lead to an orthmormal basis. The following 
argument of W. Lawton (see [22]) shows why. Let us start from a subband 
coding scheme with exact reconstruction and with finite filters hn, g,,, with 
g,, = (-l)n h - , + ~  satisfying (1. lo), and try to construct the corresponding 
$, v / .  Once this is done, we can then ask whether the u/ik do indeed constitute 
an orthonormal wavelet basis. By ( 1.2), ( 1.6) we have 

By applying the Fourier transform, we find 

where rno is the periodic function 

In terms of mo, the condition (1.8) can be rewritten as 
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while ( 1.10) becomes 
rno(7r)  = 0 .  

If ( 1.10) holds we have therefore Irno(0) I = 1 ,  or I C,  hn 1 = a. By changing, 
if necessary, the sign of the filter coefficients h,, we can therefore assume 

(1.13) rno(0) = 1 . 

It then follows from ( 1 . 1  1 ) that 

05 

(1.14) &<) = (27r-112 n rno(2-q) , 
; = I  

where we have used $(O) = ( 2 7 ~ ) - ' / ~  (because J d x # ( x )  = 1 )  and where 
the infinite product converges uniformly on compact sets because of ( 1.12). 
Using Fatou's lemma, one can show that this pointwise convergence, together 
with (1.12), implies that the right-hand side of (1.14) defines an element of 
L2(R) with norm bounded by 1 (see, e.g., [25]). By standard Paley-Wiener 
arguments (see Lemma 3.1 below) one sees that # is compactly supported if 
only finitely many h, are nonzero. We can also define 

which is again compactly supported. One can show (see [22]) that, for all 
f E L2(% 

f = c(f, y j k ) v j k  . 
i .k  

If ( ( y / ( (  = [ J d ~ ( y ( x ) ( ~ ] * / ~  = 1 ,  then this implies that the Yjk are an orthonor- 
ma1 basis, and that # characterizes the associated multiresolution analysis. 
To show 1)vII = 1 ,  it is sufficient to prove 1 1 # 1 1  = 1 ,  which turns out to be 
equivalent with 

(Even though (1.16) seems stronger than merely 1 1 # 1 1  = 1 ,  it really is not, 
because of the special structure of #.) The following argument by Lawton 
shows that ( 1 . 1  5) holds for almost all choices of the h n .  Define 
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Then 

49 1 

m,n e 

where A is the matrix defined by 

In other words, a is an eigenvector of A with eigenvalue 1, 

/la = (Y . 

One can moreover show that ck a k  = 1. By (1.8) the vector p defined by 
= St, is another such eigenvector, A P  = p, and x k  p k  = 1 .  It follows 

that (Y # p is only possible if the eigenvalue 1 of A is degenerate. Among 
all the possible choices for the h n  (assuming we impose a fixed filter length) 
satisfying (1.8), this degeneracy is only possibly for a set of measure zero. 
Consequently for almost all choices of h,, 

and the y ; k  constructed from y ,  4 as given by (1.14), (1.15) constitute an 
orthonormal basis. Note that the above argument gives only a sufficient con- 
dition ensuring that the v ; k  are an orthonormal basis. It is conceivable that 
the eigenvalue I of A is degenerate, but that ( 1.16) would hold nevertheless. 
At the end of his paper (see [ 2 2 ] } ,  Lawton raises the question whether this 
can be excluded, i.e., whether his condition might be necessary. There also 
exists another characterization, due to one of us (see [8]), slightly more tech- 
nical to formulate than Lawton’s condition, which does give a necessary and 
sufficient condition on the hn ensuring orthonormality of the y;k. In a very 
recent paper (see [ 2 3 ] ) ,  Lawton uses the theorem proved in [ 8 ]  to show that 
his own sufficient condition is also necessary, thereby answering the question 
he raised in [ 2 2 ] .  We shall come back below to this question; in particular we 
prove a generalization of [8] for the biorthogonal case which also provides 
an independent proof of the necessity of Lawton’s condition. (See Section 
4.A below.) 
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l.D. Subband Coding Schemes with Different Synthesis and Analysis 

The subband coding schemes we have discussed so far use the same filters 
hn, gfi (or rather their mirror images h-n, g - n )  for the reconstruction as for 
the decomposition. Such filter banks are well-known in the ASSP (Acoustics, 
Sound and Signal Processing) literature, where they were developed (see [ 301, 
[35]) a little earlier than multiresolution analysis was discovered in mathe- 
matics. In the same context, there have also been constructions of exact re- 
construction filter banks in which the synthesis filters are different from the 
decomposition filters; see [35], [31]. Such filter banks have more flexibility, 
and are therefore easier to design. Moreover, they have the advantage that 
symmetric filters can be used, which is impossible in the case where synthesis 
and analysis filters are the same; see [30], [lo]. It is natural to wonder what 
these generalizations on the filter bank side mean for wavelet bases and mul- 
tiresolution analysis. This paper provides an answer to this question. We 
generalize orthonormal wavelet bases by constructing biorthogonul wavelet 
buses, i.e., two dual bases v m n ,  vmn, each given by the dilates and translates 
of one single function, ty or W. One such pair of dual (non-orthonormal) 
bases was already constructed a few years ago by Ph. Tchamitchian (see 
[33]); we shall find back his construction as a special case in one of our ex- 
amples. The multiresolution analysis for biorthogonal wavelet bases becomes 
a little more complicated than in the orthonormal case. Basically we will have 
two hierarchies of approximation spaces, 

Filters - Biorthogonal Wavelet Bases 

- 

c v, c v, c v, c v-1 c v-2 c 
c & c F, c i7j c v-1 c v - 2  c ... . 

Every space Wj will be a complement to V,  in & - I ,  but not the orthogonal 
complement as before. In the orthonormal case we had 

Because W, )! 6 now, we have 

k k 

k 

with A < 1 < B .  It is clear that bounds like these are not sufficient to establish 
that the v / j k  constitute a Riesz basis: repeating them many times leads to a 
blowup of the constants. This is where the dual hierarchy steps in. We have 
complement spaces 6 there as well, and it turns out that q l b ,  W , l & .  
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The two multiresolution scales fit together like a giant zipper, and this allows 
us to control expressions like C k [(f, W j k ) I 2 .  

This paper is organized as folfows. In Section 2 we discuss subband coding 
schemes with exact reconstruction; we derive necessary and sufficient condi- 
tions on the four filters (two for analysis, two for synthesis) to lead to exact 
reconstruction. In Section 3 we mimic the construction given in Section 1 .C 
to construct 4, 4, ty and @. We prove that with some minimal conditions on 
these functions, the V/ lk ,  @jk are indeed two dual Riesz bases. In Section 4 
we relate the conditions on 4, 4 necessary for Section 3 to conditions on the 
filters themselves. This involves a generalization of the arguments in [ 8 ]  and 
[22] .  In Section 5 we discuss the regularity of iy, @, and finally, in Section 
6 we construct several families of examples. The discussion of biorthogonal 
wavelet bases in this paper starts from the filter coefficients, from which every- 
thing else is constructed. In this it parallels the construction of orthonormal 
bases of wavelets as done in [ l o ]  rather than the construction from a mul- 
tiresolution analysis framework as in [25] .  One of us (J.-C. Feauveau in [ 2 0 ] )  
also developed an approach to biorthogonal bases which is closer in spirit to 
Mallat’s original paper. 

The biorthogonal bases constructed in this paper are a special case of 
wavelet “frames”, as defined in [ 1 81, [ 1 1 1 ,  or the “qbtransform”, developed 
independently and around the same time in [21] .  While we were completing 
this work, we became aware of similar results, obtained independently and 
simultaneously by other groups. In particular, M. Vetterli and C. Herley 
constructed linear phase filters with vanishing moments which are identical 
to our examples in Sections 6.A and 6.B. Their approach is complementary 
to ours, in that we are here concerned mainly with mathematical proofs that 
the wavelets do indeed constitute Riesz bases, etc., while they explore more 
the signal analysis applications of these filters; see [36]. In a less direct way 
our work is also related to a recent paper by De Vore, Jawerth, and Popov; 
see [19] .  The examples in Section 6.A lead to expansions of the form f = 
x , , k ( f ,  @,k) v/lk where y~ is a finite linear combination of &splines, 

with $ a B-spline. They can therefore be rewritten as expansions in B-splines, 

with $ , k ( X )  = 2 - J / 2  +(2- jx  - k ) ,  a,k(f) = Em gk-&(f ,  @,+I m). In this 
sense, the two dual filters and the associated biorthogonal wavelet bases per- 
mit another way of attaining the spline decompositions featured in [ 191. 
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2. Necessary and Sufficient Conditions for Exact Reconstruction 

We want to construct four sequences h = (hn)nEz ,  g = (gn)nEz, h = 
( h n ) n E ~  and g = (gn)nEz,  two of which will be used for decomposition ( h ,  g )  
and two for reconstruction ( h ,  g ) .  Starting from a data sequence co = (C ,O)nEZ,  

we convolve with h , g  and retain only one sample out of every two for the 
decomposition (see (1.5)), 

k 
db = C g2n-kil ' k  0 9 

k 

where we have introduced a shift of 1 in the indices of g for later convenience. 
On each sequence c l ,  d' we then perform a converse operation (we interleave 
zeros and convolve with the mirror images of respectively h ,  g )  and we add 
the two results, 

where the shift in the index of g is again for convenience' sake. Requiring 
exact reconstruction means imposing to = co, or 

[h2n-! h2n-k + g2n-!+l g2n-k+l] = d t k  a 

n 

This condition can be rewritten via the z-notation. In this notation we rep- 
resent every sequence by a formal power series in z, 

h ( z )  = c h, z" , co(z )  = c," z" , etc. . . . 
n n 

We can then rewrite (2.1 ) as 

~ ' ( 2 ~ )  = - 1 [h(z )c0(z )  + ~ ( - z ) c ' ( - z ) ]  
2 
1 z d ' ( z 2 )  = 7 [g(z)cO(z) - g(-z)cO(-z)] ; 

(2.2) becomes 
@(z) = K(z)c'(z2) + H ( z ) z d ' ( z 2 )  . 

Here we use the notation 

u ( z ) = ~ a - , z " = ~ a , z - ~ ;  
n n 
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for ( z I  = 1 and an E R we have u ( z )  = u(z) .  It then follows that (2.3) is 
equivalent to 

- 1 [h( -Z) i (Z)  - g ( - z ) g ( z ) ]  = 0 .  
(2.5) 2 

In practice we shall want h,  h ,  g ,  sg to be finite sequences; with z = exp{i<} 
their z-notations then correspond to trigonometric polynomials. In other 
words, h,  h, g, g can all be written as a product of a polynomial in z with an 
integer (possibly negative) power of z .  Because of (2.4), h(-z) and g ( - z )  
have no zeros in common. It follows from (2.5) that x(z) = 0 whenever 
g ( - z )  = 0, and g(z)  = 0 whenever h ( - z )  = 0 (including multiplicity). 
Consequently 

K(z)  := g ( - z ) p ( z )  

i ( z )  = h(-z)p(z) , 
where p is again an integer power of z multiplying a polynomial in z .  Sub- 
stituting this into (2.4) leads to 

The only possible solutions to this are 

(2.6a) 
k p ( z )  = a z  

h ( z ) g ( - z )  + h ( - z ) g ( z )  = 2 a - ' r k  

where a E 43 \ { 0 } ,  k E Z. This amounts to 
- 

(2.6b) h ( z )  = a z k g(-z), g ( z )  = a zkh( -z )  . 

Conditions (2.6a) and (2.6b) are necessary and sufficient to ensure exact re- 
construction for the decomposition + synthesis scheme (2.1) + (2.2). For 
the sake of definiteness we choose k = 0 and Q = - 1, i.e. 

gn = (-1) m + I h  -n,gn - = ( - ~ ) ~ + ' h - n  . (2.7) 

In terms of h and h,  (2.4) and (2.6a) becomes then 

(2.8) h ( z ) K ( z )  + h(-z)K(-z)  = 2 
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or 

(2.9) 

Remarks. 
1. If the same filters are used for synthesis as for decomposition, h = h,  

g = g, then (2.7), (2.9) are, as was to be expected, identical to the conditions 
in [lo]. 

2. 
3. 

In many of our examples, h and h will be symmetric, so that h = h. 
Assume that h and h are of the form 

- 
N2 

h ( z )  = c hn zn  = zs2 q(z-1) , 
- 

n=N,  

where p and q are two polynomials, and where we suppose hNI # 0 # hN2 
and hs, # 0 # h i z .  Then (2.8) can be rewritten as 

(2.10) zN1-$2 [ p ( z ) q ( z )  + (-1)"1-"2p(-z)q(-z)] = 2 .  

It follows that N I  5 &. If N I  = &, then bothp and q are constants, and the 
sequences (hn)n, ( h n ) n  each have only one nonvanishing entry. This solution 
is uninteresting for both signal analysis and wavelets. We therefore assume 
N1 < &. A similar argument shows that < N2 if more than one hn or hn 
are different from zero. Suppose that N2 - is even, N2 - f i 1  = 2k > 0, 
and let us compute the coefficient of z - ~ "  in (2.10); we find 

2;, hE2 = 0 ,  

which is a contradiction with hNI # 0 # h ~ ~ .  It follows that N2 - k1 is odd. 
Similarly 3 2  - N1 is odd. In the case where h n  = h,, this reduces to the 
well-known fact that N2 - Nl has to be odd for nontrivial hn. 

3. Construction of the Two Multiresolution Hierarchies 

We start by mimicking the construction of 4, w in the orthonormal case 
(see [25] or the summary in Section 1). Define 

mo(<) = 2-1/2 hn exp{-in<} 
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(For simplicity, we assume that only finitely many ha, h, are nonzero. Several 
of our results can, however, be extended to infinite sequences which have 
sufficient decay for (nl + 00.) Then we define 4, 3 by 

00 

$(<) = (22r)-"2 n rno(2-q) 
j =  1 

h 00 

$(<) = (2n)-"2 J-J f i o  ( 2 - q )  . 
j =  I 

These infinite products can only converge if 

(3 .3)  mo(0) = 1 = rno(0) , 

i.e., if 

(3 .4)  
n n 

If (3 .3)  is satisfied, then the infinite products in (3.2) converge uniformly and 
absolutely on compact sets, so that $ and 4 are well-defined C" functions. 
Clearly 

h 

( 3 . 5 )  

or, equivalently, 

at least in the sense of distributions. By the following lemma, borrowed from 
Deslauriers and Dubuc (see [ 1 5 ] ) ,  # and 8 have compact support. 

LEMMA 3.1. Zfr(<) = xf&, Y n  exp{-in<}, with N2 Yn  = 1 ,  then 
nj"=, r(2-J<) is an entire function of exponential type. In particular, it is the 
Fourier transform of a distribution with support in [ N1, N2]. 
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Proof: By the Paley-Wiener theorem for distributions, it is sufficient to 
prove that nj”=, r (2- j t )  is an entire function of exponential type with bounds 

for some CI, C2, M I ,  M2. We shall only prove the first bound; the second is 
entirely analogous. Define 

so we only need to prove a polynomial bound for 
For Im [ 2 0 we have 

rl (2-jt) for Im t 2 0. 

2 C min( 1, “1) . 

Take 4 arbitrary, with Im t 2 0. If 5 1, then 
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If 2 1, then there exists j o  2 0 so that 2'0 5 < 2jo+', and 

I - ( I  + c ) ~ o + ~  exp{ C }  

5 exp{C}(l + C) exp(ln(1 + C) lnltl/ln2) 

2 ( I  + C) exp{C} ~tl '"(~+~)'*~' . 

Combining (3.7) for 
polynomial bound. 

5 1 and (3.8) for 2 1 establishes the desired 

Continuing to mimic the construction in the orthonormal case, we also 
define 

n n 

or, equivalently, 

(3.10) 

a t)  = exp{i5/2} mo (; + .) k / 2 )  . 

Note that, because of (2.7), the relationship between ?(<) and 4(</2) is 
given by %0(5/2 + n), and not by mo itself. The functions w, W can only be 
candidates for generating Riesz bases of wavelets if they satisfy (1.9), i.e., if 

(3.1 1) %to(.) = 0 = mf)(n) , 

or 

Note that by (2.8), (3.12) necessarily implies 
- 

h(l) j l ( l )  = 2 ,  
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which means that a suitable normalization of the hn, h n  automatically satisfies 
(3.4). 

Having constructed our candidate functions v ,  6, we can go about the 
business of proving that they generate Riesz bases of wavelets. A first obstruc- 
tion is that there is no a priori estimate ensuring that 7 or 4 are square in- 
tegrable or bounded. This is unlike the orthonormal case, where Imo(<)l 2 1 
because of (1.12), so that [&({)I 2 1 automatically followed, without extra 
assumptions on mo. Equation (1.12) for mo was even sufficient, in the or- 
thonormal case, to ensure 4 E L2(W) (see Section l.C). In the present case, 
we have to impose extra restrictions on mo, &O in order to ensure that 4, 
7 E L2(R).  For the time being, we shall not state any explicit conditions (we 
shall be more explicit in Section 4), and merely assume that mo, &o are such 
that 6, 4 have sufficient decay to ensure square integrability. This turns out 
to be sufficient to prove a large chunk of what we want. 

h 

h 

THEOREM 3.2.  Suppose that 4, 4, as defined by (3.2), satisJL 

(3.13) 

Define 
v j k ( X )  = -J l2  v/ ( 2 - J x  - k )  , 
F j k ( x )  = - j / 2 v /  ( 2 - J x  - k) , 

with v / ,  W E L2(W) dejned as in (3 .9) .  Then, for all f E L2(R),  

(3.14) f = (f, @ j k )  v j k  = (f, v j k )  ‘?jk 
j , k E 2  j , k E 2  

where the sequences converge strongly. 

We shall prove this theorem by a succession of lemmas. As in Section 1, 
we use the notation 

$ j k ( X )  = 2-J12 4 ( 2 - J X  - k )  , 

with i$,k defined analogously. 

LEMMA 3.3. Under the assumptions of Theorem 3.2, we have, for all 
fl, fi E L2(W 
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Proof: 
1 .  The. following argument shows that all the sums are well-defined. By 

the Poisson summation formula 

since is bounded uniformly in <. 
Similarly E k  1 (f, 3 Ok ) 1 2 < = m. Convergence of the y/-term follows immedi- 
ately from the $-estimates, because y/ and @ are finite linear combinations 
of 4-lb 6 - l k .  

I&(< + 2a1)I2 5 C Ce ( I + I< + 27cC 

2. Using (3.6), (3.9) we obtain 

Since only finitely many n,  rn contribute, we can change this to 

Telescoping (3.15) leads to 

LEMMA 3.4. Under the assurnptions of Theorem 3.2, we have, for all 
A, 52 E L2(R)> 
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Proof: 

1. We first show that the left-hand side of (3.16) makes sense by proving 
that Cj,k 1 (ht V j k )  l 2  < 00, C j , k  1 ( @ j k ?  f 2 )  l2 < 03- We have 

By Cauchy-Schwartz on the summation over t this leads to 

oc 
2(  1-6) 

= 271 1 d< lA(t)12 I @  (2j<)(26 c ( @  ( Z i t  + 2nm)(  3 

tn -02 

where 6 E ( 0 , l )  will be fixed below. 
From (3.10) and (3.13) we have 

112-& (3.17) I@(t)l 5 C(1 + 151)- * 

It follows that Em I@(( + 2 7 ~ r n ) 1 ~ ( ~ - ~ )  is bounded uniformly in < if 2( 1 - 6) 
x (  1/2 + E )  > 1, or 6 < 2 ~ (  1 + 2 ~ ) - l .  For 6 < 2 ~ (  1 + 2e)-l we find therefore 

r 
c (w^ (2J<)126 
i 

Since I @ l  is bounded and @(O) = 0, we have l@(()l 5 C(<( (remember that 
@ extends to an entire function), hence, for 1 5 5 2, 
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On the other hand, by (3.17) 

503 

This completes the proof tha 

(3.18) c 
j .k 

for some C 2 0. Similarly 

2. A simple dilation argument shows that (3.15) still holds true if we 
replace the indexes - 1 by j - 1, 0 by j ,  

Summing (3.20) for all the j-values between - J and J, we obtain 

By the bounds proved in point 1, we know that the first term in the right-hand 
side of (3.21) converges to the left-hand side of (3.16) as J + 00. 

3. The second term in the right-hand side of (3.21) is bounded by 
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The same estimates as in point 1 show that, for 6 < 2c( 1 + 2c)-l, 

By (3.13) this becomes 

which tends to 0 for J --t 00, by dominated convergence. 

hand side of (3.21) as 
4. Using again the same manipulations as in point 1 ,  we rewrite the left- 

( h , # - J - l k )  ( & - J - l k ,  h) 
k 

h h 

Since $(<), $(<) are bounded and continuous, and &(O) = ( 2 ~ ) - ' / ~  = &(O), 
the first term converges to {J, A) for J -, 00, by dominated convergence. It 
remains therefore to show that the second term converges to zero for J + 00 

to complete the proof. 

5.  Using again (3.13), estimates similar to those in points 1 and 3 show 
that 

so that it suffices to prove convergence to zero for J --$ 00 for f l l  in the 
dense set of compactly supported L2-functions. Assume support f i  , support 

c { r ,  151 5 R}, and take J 2 In R/ln 2. Then 12n rn 2J+11 2 4n R > 2R 
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5 R and J t + 2 ~ m 2 ~ + ' l  5 R are incompatible, for all m E Z, m # 0, so that 
and the second term in (3.22) vanishes identically. 

The next lemma shows how the bounds (3.18), (3.19) suffice to turn this 
weak convergence into strong convergence. 

LEMMA 3.5. Under the assumptions of Theorem 3.2, we have, for all f E 
L2(W 

l k l i K  I k lsK 

where the limits are in the strong L,2-topology. 

Proof: 

by (3.19). Consequently 

The other limit is entirely similar. 
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We have now proved all the assertions in Theorem 3.2. Note that (3.16) 
is not sufficient to prove that the yjk and F j k  constitute two dual Riesz bases. 
A Riesz basis can be defined in several ways. Two useful characterizations 
are the following: 

1. ( U , ) , ~ N  is a Riesz basis in a Hilbert space ;Ft if and only if 
0 The closure of the finite linear span of the un is 3-1, and 

3 A  > 0, B < 00 so that 

for all c = ( C n ) n E N  E c~ (N) .  

2. ( U n ) n c N  is a Riesz basis if and only if 
0 The un are independent, i.e., no u,, lies within the closure of the 

finite linear span of the other U n ,  and 
0 3 A  > 0, B < cc so that 

for all f E 'FI. 
It is easy to show that these two characterizations are equivalent (see, e.g., 
[37]); the first definition seems to be used more frequently. Note that (3.23) 
automatically implies linear independency of the u,; (3.24), on the contrary, 
implies that the u, span 3-1. A collection of un for which (3.24) holds, regard- 
less of whether they are independent or not, is called a frame ([16], [37]). 
Because of (3.14) and (3.18), (3.19), the V j k ,  p j k  constitute a frame: the 
upper bound is immediate from (3.18), (3.19) and the lower bound follows 
from the following argument: 
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In order to show that the v j k ,  F j k  constitute dual Riesz bases, we therefore 
only need to establish linear independence. 

LEMMA 3.6. Let $, 3, v / ,  3 be as in Theorem 3.2. Then the v j k ,  respec- 
tively @ j k ,  are linearly independent i fand only if 

(3.25) ( v j k ,  @ j t k r )  = a j j i a k k t  

Proof 

1 .  If (3.25) is satisfied, then any f in the closed linear span of the V/jk  

with ( j , k )  # ( j o ,  ko) satisfies (f, p i o k 0 )  = 0. It follows that v j o k o  is not in this 
closed linear span. 

2. By (3.14), 
v j o k o  = x: ( Y j o b r  W j k )  v j k  > 

j , k  

hence 
L 1  - ( v j o b ,  v / joko)]  ~ j o l q j  = ( v j o k o ,  P j k )  v j k  . 

( j k ) # ( j o . b )  

If the v j k  are linearly independent, then this implies 

( v j o b ,  p j k )  = ~ j j o ~ k ~  * 

Because of the special structure of the t y j k ,  g j k ,  (3.25) reduces to a con- 
dition on the &k,  &Ok (i.e., one fixed dilation level). 

LEMMA 3.7. Let 4, 3, v / ,  u/ be as in Theorem 3.2. A necessary and sufi- 
cient condition for (3.25) to hold is 

(3.26) ( Q O i i ,  J O L )  = a k t  

Proof 

1. We first prove (3.26)+(3.25). 
BY (3.9), 

(3.27)) 
n 
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Similarly 

n 

Upon substituting n' = 1 - n - 2( l  - k), this last expression becomes its 
own negative, so that 

(3.28) ( W o k ,  6Ot) = 0 

Similarly 

By a simple dilation, (3.27), (3.28), and (3.29) imply, for arbitrary j ,  

- 
( V / j k ,  p j e )  = dkt  7 ( V j k ,  4 j e )  = 0 = ( $ j k ,  F j e )  

Since, for j < j ' ,  F j t k f  can be written as a linear combination of the &je,  

it follows that 
( V j k ,  u / i l k l )  = 0 if j < j' . 

A similar argument proves (3.25) for j > j ' .  
2. Next we prove (3.25)+(3.26). We have 

40 = ( V i e ,  60) 

(3.30) n,m 

where 'Yk = d x  4(x - k) &x). 
If we define a ( z )  = En an zn ,  then (3.30) is exactly the coefficient of z2! 

in h(-z )h( -z )a(z )  (using the notation of Section 2). Since this coefficient is 
equal to &, we have 

h(-z )h( -z )a(z )  + h(z )h ( z )a ( - z )  = 2 . 

Combined with (2.8), this becomes 

(3.31) h ( z ) i ( z ) P ( - z )  + h ( - z ) i ( - z ) P ( z )  = 0 ,  

where P(z) = 6 ( z )  - 1. 
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We know that only finitely marly hn, hn are different from zero. Let us 
assume (as in Remark 3 in Section 2) 

hn = O  for n < Nl,  n >N2 

h n  = O  for n < N l ,  n >N2.  

Then h( z )  has N2 - Nl zeros in the complex plane, and h( z )  has - f i ~  zeros 
(counting multiplicity). On the other hand, support q5 c [Nl ,  N2] and support 
$ c [A,, N2 J by Lemma 3.1. Consequently a k  can only be nonvanishing if 
f i1  - N2 < k < & - N1. It follows that a( z )  can be written as the product of 
zfil-N2+1 with a polynomial of degree (& - Nl) + (N2 - N , )  - 2. By Remark 
3 at the end of Section 2, f i l  - N2 < 0 < N2 - Nl,  so that p ( z )  is of the 
same form as &(z) .  Because of (2.8), h ( z ) K ( z )  and h ( - z ) & ( - z )  have no 
common zeros. From (3.31) we see therefore that p ( z )  is zero whenever 
h ( z )  & ( z )  vanishes, so that j? has at least N2 - N1 + & - zeros (counting 
multiplicity). Since p ( i : )  is a polynomial of degree strictly less 
than N2 - Nl + f i 2  - #I, it follows that p ( z )  = 0, hence a ( z )  = 1 or ak = &o. 
This proves (3.26). 

Putting everything together, we have therefore the following theorem. 

THEOREM 3.8. Let (hn)n, (hn)n be finite real sequences satisbing 

Define 

mo(t)  = 2-'12 C hn exp{-in<} 
n 

n 

j =  1 

Suppose that, for some C,  E > 0, 

(3.32) 
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DeJine 
Y ( X )  = Jz C ( - - I ) ~  h - n + 1 $ ( 2 ~  + n )  

n 

@ ( x )  = ( - l ) n  h- ,+ l$ (2x  + n )  . 
n 

Then the v J k ( X )  = 2-JI2 y ( 2 - J ~  - k ) ,  j , k  E Z, constitute aframe in L 2 ( R ) .  
Their dualframe is given by the V / J k ( X )  = 2-Jf2  w ( 2 - J ~  - k ) ,  j ,  k E Z; for any 
f E L2(R), 

f = (f, @ J k )  vjk = (f, YJk)  @ J k  > 

J k E Z  J k E Z  

where the series converge strongly. 
Moreover, the YJk ,  @jk  constitute two dual Riesz bases, with 

- 
(vjk, vj'k') = djj'dkk) 

ifand only if 

(3 .33 )  / d x  4 ( x )  $(x - k )  = &O . 

In the next section we shall see several strategies to ensure that the se- 
quences ( h n ) n ,  ( A n ) ,  lead to functions $, 5 satisfying ( 3 . 3 2 )  and ( 3 . 3 3 ) .  

4. A Closer Look at the Conditions 

We have two conditions: (3 .32 )  demands decay of 3 and 5, whereas (3 .33 )  
is a biorthogonality condition. Decay of 3 and 5 will correspond to divisibil- 
ity of mo, 60 by (1 +e't), while the biorthogonality follows from the structure 
of the set of zeros of mo, %zo. We first concentrate on biorthogonality. 

h 

h 

4.A. Biorthogonality 
In the orthonormal case there exist two strategies to ensure orthonormality 

of the $Ok (see Section 1.C): a sufficient condition due to Lawton (see [22])  
and a different, necessary, and sufficient condition due to one of us (see [8]). 
We shall generalize both here to the nonorthonormal case, and discuss their 
relationship. We start with a generalization of [8]. 

DEFINITION 4.1. 

(1) for every x E [-n,  n] ,  there exists k E Z so that x + 271k E K and 
(2) the total Lebesgue measure of K is 271. 

A compact set K is said to be congruent to [-n, n] 
modulo 271 if 
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Such a set K will consist of a union of disjoint closed intervals, which, by 
means of translations by multiples of 2a, can be puzzled together to constitute 
exactly [-a, a], with no overlaps (except for the endpoints of the translated 
intervals). Such compact sets were first introduced by one of us (see [8]) in 
the study of the orthonormal case. They can be used to formulate a neces- 
sary and sufficient condition on mo guaranteeing that the associated f$Ok are 
orthonormal. (Recall that for some rare choices of mo satisfying (1.12) the 
associated f$Ok may fail to be orthonormal - see [22] or Section 1.C.) More 
precisely, the following theorem was proved in [8]: 

THEOREM 4.2. Let mo, 3 be as in ( 1-12), ( 1.14) respectively. Then the 
functions f$Ok(X) = f$(x - k) form an orthonormal set of L2-functzons ifand 
only if there exists a compact set K ,  congruent to [-a, n] modulo 2a, so that 

(1) K contains a neighborhood of0, 
(2) inf{Imo(2-k()l; k 2 I, ( E K }  > O . 

Note that the orthonormality of the 4Ok is necessary and sufficient for the 
associated v j k  to constitute an orthonormal basis (see Section 1 .C or Lemma 

In our present, nonorthonormal case, matters are more complicated, and 
to generalize Theorem 4.2 to the ‘biorthogonal setting we shall have to in- 
troduce an additional condition. This condition turns out to be related to 
Lawton’s condition (see [22]), generalized to a biorthogonal framework. We 
define two operators Po and PO, acting on 2a-periodic functions f by 

3.7). 

Expanding mo, f into their trigonometric series shows that 

with 

Similar formulas hold for PO. Note the similarity between the entries Pkl  of 
the infinite matrix corresponding to PO and the entries of Lawton’s matrix 
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Ake in Section l.C (see also Remark 1 below). We are now all set to state 
the generalization of Theorem 4.2 to the biorthogonal setting. Without any 
assumptions of decay on 4 or 6 we have the following theorem: 

- 

THEOREM 4.3. Let hn, A,, be Jinite real sequences satisfying (2.9) and 
(3.4). DeJine mo, GO, 4, 6 as in (3.1), (3.2). Then the following three state- 
ments are equivalent: 

Cl. 4, I$ E L2(W) and J d x  4(x - k )  &(x - C )  = &. 
C2. There exist strictly positive trigonometric polynomials fo, & and a 

compact set K congruent to [-n, n] modulo 2n so that 
Pofo=fo and P o & = &  
0 E interior of K 
for all t E K ,  all k E N \ {0},  and some strictly positive C (independent 

of r and kf 

(4.3) 

C3. There exist strictly positive trigonometric polynomials fo, j b  so that 
Pofo = fo, Po& = & and these are the only trigonometric polynomials (up to 
normalization) invariant under PO, PO respectively. 

Remarks. 
1. Suppose the trigonometric polynomial mo is of the type 

so that lm&)I2 and Imo(r + a)I2 are both trigonometric polynomials with fre- 
quencies ranging from -N to N. It is then easy to check that any trigonomet- 
ric polynomial f which is also an eigenfunction of PO, PO f = A f ,  is necessarily 
also of the type Ct=-, fn exp{ -inr},  i.e., it contains no “frequencies” larger 
than N. This means that the discussion of invariant trigonometric polynomi- 
als is restricted to the finite-dimensional space of trigonometric polynomials 
f with f n  = 0 for In1 > N. This space is invariant under PO; the restriction 
of PO to this invariant space is a (2N + 1) x (2N + 1) matrix with matrix 
elements given by (4.2) (which is essentially Lawton’s matrix). 

In the orthonormal case, mo satisfies ( 1.12), so that the constant func- 
tions are automatically invariant for PO = PO in this case. Condition C3 in 
Theorem 4.3 is then only a rephrasing of Lawton’s condition (the eigenvalue 
1 of the matrix A in Section 1.C should be nondegenerate). It is therefore a 

2. 
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consequence of Theorem 4.3 that, when specialized to the orthonormal case, 
both Lawton's and Cohen's conditions are necessary and sufficient. This 
answers the question raised by Lawton at the end of his paper (see [22]). 
After this work was completed, we learned that W. Lawton independently 
also proved his own conjecture, using the results in [8] (see [23]). 

The proof of Theorem 4.3 consists for a large part of the study of the op- 
erators PO, PO. We shall borrow several lemmas of J. P. Conze and A. Raugi, 
who in their recent paper (see [9]) proved many interesting results for the 
operators 

defined on continuous functions f on [0, 11. In their study they assume that u 
is non-negative, continuous, and u ( x ) + u ( x +  1/2) = 1, for 0 5 x 2 1/2. This 
last condition is not satisfied in our present case (with u ( x )  = lm0(2nx)1~ or 
u ( x )  = (%o(2nx)12), but nevertheless several of their lemmas turn out to be 
useful. 

The following lemmas are needed to prove Theorem 4.3. Lemmas 4.4 to 
4.6 are borrowed from [9]; Lemma 4.7 from [8]. We include their proofs for 
the sake of completeness. 

LEMMA 4.4. For any 2n-periodic function f and any n E N, 

Proof: By induction. For n = 0 the statement is trivial. If the statement 
is true for n = j, then 

1 2 + mo(2-j-'< + n)J  f(2-'-1< + a )  I 
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where we have repeatedly used the periodicity of both mo and f. This proves 
(4.4) for n = j + 1, and the lemma is proved. w 

The next lemma shows how trigonometric polynomials invariant under 
PO PO can be used to prove 4, $ E L2 (R). 

LEMMA 4.5. Suppose that there exists a strictly positive trigonometric 
polynomial fo invariant under PO. Then 4 E L2(R). 

Proof: 

1. Since f o  is strictly positive, periodic with period 27r, and continuous, 

2. Define 

there exists C > 0 so that f o ( < )  2 C for all 5 E R. 

where ~ ( 5 )  = 1 if 151 j R ,  0 otherwise. Then F, -+ 8 pointwise. By Fatou's 
lemma, 8 E L2(R)  if J d< IF,({)[' is uniformly bounded. 

3. By Lemma 4.4, 

Hence 

which finishes the proof. w 
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The next lemma explores the structure of the set of zeros of a non-negative 
function invariant under PO. First we define a "shift" operation z on [0, 2n[. 
For x E [0, 2a[, we define zx E [0, 2n[ by z x  = 2x modulo 2n (i.e., T X  = 2x 
for x < n, zx = 2x - 2n for x 2 n).  Then the following lemma holds. 

LEMMA 4.6. Let f be a non-negative trigonometric polynomial invariant 
under PO. Then the set of zeros off can be written as a disjoint union of cyclic 
sets for z. Moreover, iff (t) = 0, then mo(t + n )  = 0. 

Proof: 

1. If f has no zeros, or if the only zero of f is < = 0, then we have 
nothing to prove (since mo(n) = 0; see (3.1 1)). Without loss of generality we 
can therefore assume f(t) = 0, for 0 # t E [0, 2n[. Then 

Since (use (3.1) and (2.8)) 

Imo (it) l 2  and Imo( it +n)I2 cannot vanish simultaneously. Since f 2 0, this 
implies either f(it) = 0 or f(i< + n)  = 0. 

2. It follows that if we pick one zero 0 # tl E [0, 2n[ off ,  we can associate 
to it a chain of zeros in [O, 2n[, (2 ,... ,&,. .., with the property that tJ+l 
equals either itJ or itJ + K, or, equivalently, tJ = t tJ+l. As a trigonometric 
polynomial f has only finitely many zeros, so that this chain cannot go on 
ad infinitum. Note that the chain has at least two elements, since t 2  = 
would imply = 0. Let r be the first index for which recurrence occurs, i.e., 
tr = t k  for some k < r. Then necessarily k = 1, because k > 1 would lead 

not be the first index for recurrence. It follows that we have a cycle of zeros, 
tl,. . . ,&-I ,  with ztJ+l = t, for j == 1,. . . , r  - 2, and z t l  = G-1.  Note that 
PicJ = tJ for every zero in this cycle. 

3. If this cycle of zeros does not exhaust the set of zeros different from 
0, then we can find 0 # [I # tJ, j := 1,. . . , r - 1, for which f ( [ I )  = 0. This 
can again be taken as a seed for a chain of zeros, [I, (2 , .  . . , [ l ,  . . . . Every 
element of this new chain is necessarily different from all the tJ, since [ t  = tJ 
would imply = zp-'cp = ze-'y,, x.e., cl would equal some t k .  By the same 
argument as above, [I generates therefore a cycle of zeros for f, invariant 
under 7, and disjoint from the first cycle. We can keep on constructing such 
cycles until exhaustion of the finite set of zeros of f. This proves the first 
part of the lemma. 

to = Tk- '  t k  = Tk- '  tr = t , - k + l  with 1 < r - k + 1 < r ,  SO that r would 
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4. To prove the second part, we first note that if f (t) = 0, then necessarily 
f (< + n)  # 0. Indeed, since r< = r(< + n), both < and t + n would belong 
to the same cycle of zeros if f ( < )  = 0 = f(< + n). If this cycle has length n,  
then it would follow that < = 7°C = T"-~T< = ~ " - ~ r ( <  + w )  = < + a, which is 
impossible. 

5 .  Take now any & so that f ( < )  = 0. Then r< is also a zero for f, and 

Since f ( < )  = 0 and f(< + n) # 0, this implies mo(< + n) = 0. n 

Finally we prove a technical lemma, borrowed from [8], which we will use 
to construct the compact set K of C2 if the functions 4, 6 satisfy a technical 
condition. 

LEMMA 4.7. Suppose that F(<)  = nj"=, Im~(2-'<)l ,  where mF is a trigo- 
nometric polynomial satisjjing mF (0)  = 1. Assume that 

(4.5) 

for some C > 0. Then there exists a compact set K ,  congruent to [-lt, n] 
modulo 2a, containing a neighborhood of 0, so that 

Proof: 

1. Note that Lemma 3.1 applies to nj"=, mF (2-'(); in particular F is 
continuous. We first want to show that there exists l o  E N so that 

for all < in [-n, a]. By (4.5) there exists, for almost all < in [-a, n], lt; so 
that 
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Since F is continuous, the finite sum Clelle, F ( . + 2 a C )  is continuous as well. 
Therefore there exists, for every < in [-a, a ] ,  a neighborhood { C ;  [(-<I 5 Rc} 
so that, for all C in this neighborhood, 

- 

Since [-a, a ]  is compact, there exists a finite subset of the collection of 
intervals { c ;  lc - <I 2 Rc} which still covers [ -a,  a]. Take 10 to be the 
maximum of the Ct; associated to this finite covering; (4.7) holds for that l o .  

2. We can now use (4.7) to construct a compact set K ,  congruent to 
[-a,  a] modulo 2 a ,  on which F is bounded below away from zero. From 
(4.7) we know that for any < E [-.a, a], there exists C between CO and -40 
so that F ( <  + 2nC) 2 C/[2(210 + l)]. It follows that if we define sets Se, 
-10 5 C 5 l o ,  by 

and, for C # 0, 

S k  US0 ; F ( <  + 2 a e )  2 C / [ 2 ( 2 l 0  I)] 7 1 Se = t E [-a, a1 \ { (k!eo ) 
then the Se, -10 5 1 5 CO form a partition of [-n, a]. Since F ( 0 )  = 0, and 
since F is continuous, SO contains a neighborhood of 0. Define now 

e0 

e=-eo 
K = u (Se + 2 a C )  . 

The set K is clearly compact and congruent to [-a, a ]  modulo 2n. By con- 
struction, F 2 C/[2(2Co + l)] on K .  Moreover K contains a neighborhood 
of 0. 

3. Next we show that K satisfies (4.6). We need only check (4.6) for a finite 
number of k .  Indeed, mF is continuous, and m ~ ( 0 )  = 1. It follows that there 
exists r so that lrn~(I;)I  2 1/2  for lCl 5 r .  Consequently I r n ~ ( 2 - ~ c ) l  2 1/2  
for < E K if 2-kl<l 5 2-k(2Co + 1)a 5 r or k 2 /GI = [log, (2C0 + l)~/rl. Let 
us now treat 1 5 k 5 /GI. For < E K ,  we have that 
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is bounded below away from zero. Consequently the first factor has no zeros 
on the compact set K .  As a finite product of continuous functions it is itself 
continuous, whence 

Since mF is uniformly bounded by, say, C2, we find therefore, for any k ,  
1 z k s k o ,  

1mF(2-~<)l 2 CI c;'Q+' > 0 ,  

which proves (4.6). 

We are now ready to attack the proof of Theorem 4.3. 

Proof of Theorem 4.3: 

1. We start by proving C 1 + C2. We therefore assume C1 holds, and we 

Since 4, hence $ E L2(R), the function 
construct fo and fo. 

ti(<) = c lR< + 2nl)I2 
P € Z  

is in L'([-n,  721). One has 
R i m 

/d<ji(<)exp{-in<} = 1 d< I$(<)j' exp{-in<) = d x ~ x ~ x  - n )  . 
-R -cc -m 

Since 4 has compact support, this vanishes for large 1121, so that fo is a trigono- 
metric polynomial. We define & entirely analogously. 

A 

2. Since &, 4 are in L2(R), the sum 

e a  
converges absolutely for almost all <. It defines again an L'-function on 
[-n, n], with Fourier coefficients 

1 d< exp{-in<} 
-pi e a  

R 

$(< + 2111) ;(< + 2nl) 

-m -cc 
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so that 
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h 

(4.8) c 3(r + 2nC) $({ + 2nC) = 1 
e ~ 2  

This implies 

a.e. 

a.e. , 

whence, by Cauchy-Schwarz, 

(4.10) 

Since both fo, 
implies that they are bounded below away from zero. 

are bounded (they are trigonometric polynomials), (4.10) 

3. We have moreover 

so that fo is invariant under PO. Similarly 

Points 1 to 3 prove the first part of C2. By (4.9), the function 

F ( < )  = 2n I&(<)l l$(<)l satisfies all the conditions of Lemma 4.7. There ex- 
ists therefore a compact set K congruent to [-n, n] modulo 2n, containing 
a neighborhood of the origin, so that Irn0(2-~t) l  1%0(2-~<)l 2 C > 0 for all 
k 2 1, all E K .  Since both mo and 60 are bounded by, say, C’, it follows 
that 

is invariant under PO. 
4. 

( rn0(2-~<)1 ,  1%0(2-~<)l 2; C/C’ for all { E K ,  k 2 1 . 

This proves the second part of C2, and ends the proof C1 + C2. 
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5. We now tackle C 2  + C3. 
Assume C2 holds. We only need to prove that fo, j b  are the unique 

trigonometric polynomials (up to normalization) invariant for PO, Po respec- 
tively. We shall do this by showing that the existence of another invariant 
trigonometric polynomial for either PO or PO contradicts the existence of the 
compact set K in ~ 2 .  Suppose $ is an invariant trigonometric polynomia1 
for PO, with 4 # yfo. Define fi = fo + t#. For some value tl of t ,  this 
function takes strictly negative as well as strictly positive values. Consider 
then ff = fo + tfi,. Since f f = O  = fo 2 C > 0, since ft, (<) < 0 for some <, and 
since f f (<)  is continuous in t as well as in <, there exist t- < 0 < t+ so that 
ff- , ff+ have zeros, but are non-negative. Since fo(0) # 0, at least one of the 
two functions f f - ,  ff+ does not vanish in < = 0; we denote this function by 
f. By construction, f is a non-negative trigonometric polynomial, invariant 
for PO, which has at least one zero, and which satisfies f(0) # 0. By Lemma 
4.6, the existence of f implies the existence of a cyclic set <I , .  . . , <n for T, 
with <j = T<j+l,  j = 1,. . . , n - 1, < l  = T<n, SO that mo(<j + a )  = 0 for all j .  
Since f(0) # 0, we have <j # 0. 

existence of K .  

where the x, E [0, 1[ have the following representations in binary: 

6. We now show how these zeros <j + n for rno are incompatible with the 

Since T<j+l = < j ,  T<n = < I ,  and in particular <j = Tn<j ,  we have <, = 2a x,, 

Since < I  # 0, not all the d, are zero. Let us, for this point only, define 
d = 1 - d for d = 0 or 1. Then <, + a = 2ayj modulo 2 ~ ,  with y j  given by 

yl  = .dld2d3... dndl ... dndl ... dn ... 
y2 = .d2d3... dndl ... dndl ... d, ... 

Y n  = .dndl... dndl ... dn ... . 
We have rno(2ayj) = 0, j = 1,. . . , n. Suppose a compact set K existed with 
all the properties listed in C2. Then there would be an integer C ,  with a 
binary expansion with at most a certain preassigned number L of digits ( L  
depends only on the size of K ) ,  so that 2ay = 2n(2y1 + C )  has the property 
that rn0(2a2-~y )  # 0 for all k 2 0. We have 

y = e L . .  .egl .d2d3.. . dndl. . .dndl.. .d, . . . 
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with ej = 1 or 0 for j = 1,. . . , L. We can also rewrite this by inserting n 
extra zeros at the front end, i.e., 

y = eL+n . . . eL+leL. , . ezel .d2d3.. . dndl . . . dndl . . . dn 

where ej = 1 or 0 for j = 1,. . . , L and ej = 0 if j > L. The 2-ky  are obtained 
by shifting the decimal point to the left. Since mo is 2~-periodic, only the 
“tail”, i.e., the part of the expansion of 2-ky to the right of the decimal point, 
decides whether r n o ( 2 ~ 2 - ~ y )  vanishes or not. If el = dl, then y / 2  would 
have the same decimal part as y l ,  hence mo(2wy/2)  = 0 would follow. Since 
m o ( 2 ~ y / 2 )  # 0, we have therefore el = dl.  Similarly we conclude e2 = dn, 
e3 = dn-1, etc. It follows that eL+], . . . , eL+n are also successively equal to 
dk, dk-1,. . . , dl,  dn, . . . , dk + 1 for some k E { 1, 2 , .  . . , n } .  Since the d,  are 
not all equal to 0, whereas eL+l = . . . = eL+,, = 0, this is a contradiction. 
This finishes the proof of C 2  + CJ. 

7. We now attack C3 + Cl. 
Assume C3 holds. By Lemma 4.5, the existence of strictly positive in- 

variant trigonometric polynomials &, & for PO, Po respectively implies 4, 
& E L 2 ( R ) .  We only need to prove that d x  +(x - k )  &(x - 1 )  = &. We 
shall do this by proving that 4, 4 are the L2-limits of functions that have this 
biorthogonality property. 

Since 4, & E L2(W), we can repeat the argument in point 1 of this proof, 
showing that CeEz 1 & ( t + 2 ~ t ) 1 ~ ,  CeEz l~&c+2nt)1~ are trigonometric polyno- 
mials, invariant for PO, PO respectively. Since PO, PO each have only invariant 
trigonometric polynomial, which is moreover strictly positive, it follows that 

h 

for some C > 0. We can therefore apply Lemma 4.7 to F ( t )  = 2 ~ l $ ( t ) 1 ~  
or F ( c )  = 27r It follows that there exist compact sets K and k, both 
congruent to [ - A ,  A ]  modulo 2n, and both containing a neighborhood of the 
origin, so that 

h 

for some C > 0. Note that K and k need not be the same set here (unlike 
C2) .  
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8. Define now Fn(<) = ( 2 ~ ) - ’ / ~  

r -l 

where x K (  c )  = 1 if c E K, X K  ( c )  = 0 otherwise ( X K  is defined analogously). 
In this step of the proof we show that [IF, - $ 1 1 ~ 2 ,  llpn - & 1 1 ~ *  + 0 as n -+ 00. 

For < E K we have Im0(2-~<)1 2 C > 0. On the other hand, we also have, 
for any <, Irno(<)l 2 1 - Irno(<) - rno(0)I 2 1 - C’l<l. Since K is compact 
and therefore bounded, we can find /Q so that 2-kC’l<l < 1/2  if < E K and 
k 2 - /Q. Using 1 - x 2 e-2x for 0 2 x 

A 

1 / 2 ,  we find 

k = l  k = b + l  

or I&(<)/C”l 2 1 for < E K, which we can also rewrite as @(<)I 2 C ” X K  (0. 
Consequently 

Since Fn + 4 pointwise as n + 00, and since & E L2, it follows by dominated 
convergence that [IF,, - 4 / I L 2  + 0 for n + 00. Similarly IIF, - $ 1 1 ~ 2  = 
0. 

9. The compact set K contains a neighborhood {c ;  [<I 5 a} of 0. Define 

lc l  4 a,  0 otherwise. Clearly IAn(<)l 5 IF,(<)I 6 l$(<)l/C”, while also A, + $ 

h 
A I 

A, (<)  = (27r)-’/2 [nl=1 m0(2-j<)]  x[-o,a]  (2-”<) ,  where ~ [ - a , a ]  (0 = 1 if 
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pointwise as n + 00. Consequently we have again llAn - 41IL2 + 0 as n -+ CQ. 

This implies that B,, = F,, - A, tends to 0, in L2-sense, as n -+ 00. We have 

(4.1 1) 

where we have used the 2n-periodicity of rno and the congruence of K to 
[-n, a ]  modulo 2n, which since [--a, a] c K, implies the congruence of K \ 
[-a, a ]  to [-n, n] \ [-a, a] .  We introduce one more sequence of functions, 

Clearly d,, E L2(R), hence u,, E L 2 ( R ) .  Moreover 

By (4.1 1) the L2-norm of the second term 
which tends 
limn+m IlC, 

is exactly equal to IIBnllL*, 

to 0 as n 4 00. Since llAn - 4llLz = 0, it follows that 
- 4 1 1 ~ 2  = 0, or L2-lim,.,, u,, = 4. Similarly L2-limn+m ii,, = 4, 

h 

h - 
where 

r 1 

Note that 

or equivalently 

Similarly 
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10. We have 

-n 

On the other hand, if J d x  u , (x )  n,(x - k )  = &, then, by (2.9),  

/ d x u , + l ( x ) i i f l + 1 ( x - k ) = 2  C h r h s  / d X u , ( 2 x - r ) i i n ( 2 x - 2 k - s )  
r,s 

= C h r  h r - 2 k  = dkO . 
r 

By induction this proves 

d x  u , (x )  6 , (x  - k )  = dk0 

- - 
s 

for all n. Since L2-lim,,, ufl = 4, L2-lim,,, ii, = 4, this implies (4 is 
real) 

1 d x  $ ( x )  $(x  - k )  = dkO 3 

which proves C 1 .  

2 c 2  H c3. rn 
This proves C3 3 C 1 ,  thereby establishing the desired equivalence C 1 H 

Theorem 4.3  gives a satisfactory (since necessary and sufficient) as well as 
easy criterium for biorthogonality of the + ( x  - k)  and $(x  - C )  : it suffices to 
check that the matrices corresponding to PO, have 1 as an eigenvalue, that 
this eigenvalue is nondegenerate in both cases, and that the trigonometric 
polynomials having the entries of the corresponding eigenvectors as their 
Fourier coefficients are strictly positive. 

Remark. It seems quite striking that the equivalent conditions C 2 ,  C3 
already imply 4, 8 E L2(R) ,  without any assumptions of decay for the infinite 
products n,"=, mo(2- j t )  or n,"=, & 0 ( 2 - j < ) .  (In the orthonormal case, as 
noted in the Introduction, (1.12) is already sufficient to ensure 4 E L2(R) .  
The biorthogonal equivalent, rno({) &o(<) + mo(t + n) g o ( {  + n) = 1, is no 
longer sufficient to ensure 4, & E L2(R). An example is mo(<) = - 1 / 2  + 
e- ' t /2  + e-2it ,  %&({) = 3eit/2 + 1/2 + e-'C. In this case PO and PO have each 
only one invariant trigonometric polynomial, given by 1 - 4 cos t, 1 - 12 cost 
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respectively. As point 1 in the proof of Theorem 4.3 shows, 4 E L2(W) would 
imply the existence of a non-negative invariant trigonometric polynomial. It 
follows that neither 4 or 6 are square integrable in this example. With the 
extra condition C2 or C3, square integrability is restored.) The fact that 6 
and 6 can both be in L2(R) and yet not satisfy the decay condition (3.13) 
is due to the lacunarity of these functions: they often have narrow bumps, 
recurring infinitely often, but tending to be less frequent when < goes to 00. 

These mar the decay of 8 and $, but not their square integrability. In fact, we 
already know that the decay condition (3.13) is not necessary for the strong 
convergence of (3.14) or to have dual Riesz bases { V j k } ,  { V/jk}: there exist 
orthonormal wavelet bases for which (3.13) is not satisfied. 

Using a different approach, involving a further study of the operators PO 
and and their eigenvalues, two of us have derived recently (see [7]) (after 
completion of the present work -- this "Remark" was added a year later) a 
set of necessary and sufficient conditions on mo and l i t0 under which the same 
results as in Theorem 3.8 can be obtained, side stepping the decay condition 
(3.1 3). (This new technique in [7] was developed more specifically for higher 
dimensions, but applies also to one dimension.) 

For many practical purposes, however, decay of 6 and 4 is desirable, even 
if not strictly necessary to make the theorem work. 

h 

h 

h 

4.B. Decay at Infinity 
The following proposition gives a family of sufficient conditions ensuring 

that (3.13) holds. It was already stated (with proof) in [lo]; see Lemmas 3.2 
and 4.6 there. The argument is due to Ph. Tchamitchian; it is very short, so 
we repeat it here for the reader's convenience. 

PROPOSITION 4.8. Suppose mo can be factored as 

(4.12) 

where 3 is again a trigonometric polynomial. Suppose that, for some k 2 0, 

Then 1$(<)l 5 C( 1 + l<l)-i-e, with E = L - 4 - !W!k log 2 > 0. 

Note that since mg(n) = 0 (see (3.1 l ) ,  we have always L 2 1 .  
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Proof: 

1. Since Irno(<)l 5 1 + Cl<l 2 exp{CI<I), we have 

which is uniformly bounded for \<I 5 1. We therefore need to concern our- 
selves only with 2 1. 

2. Since 

we have 

with G(<) = F(</2) F(</4) . . . F(2-k<). 

same argument as in point 1, 
3. Since > 1, there exists l o  2 0 so that 2keo 5 < 2k(eo+1). By the 

is bounded independently of <, since 12-(eo+1)k<l 5 1. On the other hand 
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In [ 101 it was proved, for the orthonormal case, that B1 < 2L-1/2 implies 
not only decay of &, but also orthonormality of the #(x  - t ) .  This proof used 
the auxiliary functions qn, which are piecewise constant functions defined by 

(4.15) 

With t i s  definition the qn are piecewise constant on the interva-, [2-"(t - 
1/2) ,  2-"(1 + 1 /2 ) [ ,  t E Z. If B1 .: 2L-1/2,  then the qfl converge to # in L2- 
sense. This can then be used to prove orthonormality of the #(x - t )  by an ar- 
gument similar to point 10 in the proof of Theorem 4.3: J d x  q n ( x )  qn (x  - t )  
= 6e0 by induction (it is trivial for n = 0, and the induction step follows from 
( 1.12)), and L2-convergence carries this over to 4. The following proposition 
uses a similar argument to prove that if both mo and $0 satisfy a condition 
of type (4.13), then the #(x  - t )  and $(x - t ' )  are biorthogonal. 

PROPOSITION 4.9. Assume that both mo and h o  can be factored as in 
(4.1% 

and suppose that, for some k ,  k > 0, 

Then 4, 1 E L 2 ( R )  and J d x  # (x )  I$(X - n )  = 6,o. 

Proof 

1. We introduce again the functions uf l ,  iin of point 9 in the proof of 
Theorem 4.3, 
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It was already established in point 10 of the proof of Theorem 4.3 that 

J d x  u,(x) ii,(x - l )  = seo . 

To prove J d x  $(x) & ( x - l )  = deo, it suffices therefore to prove L2- limfl-+m ii, 
= 4, L2-limn+oo i n  = 4. 

A 
A - 

2 .  Because of the factorization (4.12), we have 

To bound this we use several ingredients. On the one hand, I sin [I 2 
for I(\ I ~ / 2 ,  hence 

/(I 

which implies 

On the other hand, writing n = k n' + q with 0 I q < k ,  

r -, k-I 

by the same argument as in point 3 of the proof of Proposition 4.8. Putting 
it all together, we have 

L+log Bk log 2 I G n ( 0 l  i C(1 + 151)- 7 

where C is independent of n. Since f i n  converges pointwise that 6, the 
Lebesgue dominated convergence theorem implies that ii, tends to 6 in L 2 ( R ) .  
The L2-convergence of h,, is proved analogously. D 



BIORTHOGONAL BASES 529 

Remarks. 
1. This proof is considerably simpler than the proofs in [lo], mainly 

because the 2, are compactly supported; considerable effort in [ 101 was spent 
in dealing with the "tail" of the fj, (q, as defined by (4.15) has compact 
support, so that tj, is supported on the whole real line). 

2. Exactly the same arguments can be used to prove 

h I 

L1-limn+m 6 ,  = 4 ,  Ll-Iim,,+m h, = 4 (4.17) 
if Bk < 2L-', Bk < 9 - 1  for some k, k . 

This leads to the uniform convergence of u, (x)  to 4(x) and &(x) to &x). 
In fact one even has uniform convergence in a Holder space CE(R) since 

and 

for 0 I - E < min ( L  - 1 -log2 B k ,  - 1 - log, Bk). This can be used to prove 
pointwise convergence of the q,, ij,: since uo(rn) = 6mO = qo(rn), it easily 
follows from the recurrence relations for both u, and qn that u,(2-"L) = 
qn(2-"L) for all L E Z. The argument in point 7 of the proof of Proposi- 
tion 3.3. in [lo] then proves pointwise convergence of qn(x) to 4(x). The qn 
have one advantage that the u, do not have: they are compactly supported; 
in fact support q,, = support 4 .t [-2-"-', 2-"-' 1. Moreover, for the qn 
the recursion relation (4.15), relating q,(x) with the qn-1(2x - L ) ,  can be 
rewritten as a "local" recursion, where qn (x) is completely determined by 
qn-t(y) with x + 2-"N1 6 y j x + 2-"Nz (if we assume that mo is of the 
form mo(5) = 2-'/2 xfIN, h, e-ln{).  This translates into a graphical algo- 
rithm for the construction of the q,, explained at length in [lo], also called 
the "cascade algorithm" in [ 131. It is akin to subdivision algorithms in CAD, 
which have the same "zoom-in" quality. The convergence of the q, to 4 is 
extremely (exponentially) fast; in fact, all the graphs of 4, 6 given in the ex- 
amples in this paper and in [ lo], [ 121 are graphs of some q,, 0, rather than 
4, 4, with n = 6, 7, or 8. 

- 
3. If Bk, B k  satisfy even more stringent bounds, 

, with m, 6 E N Bk < 2L-1-m , Bk < 2i-I-tG 

then one has 4 E C", & E CG, implying v/ E C", @ E C'. In this case it is 
useful to define q? to be the interpolating spline of order m, i.e., the spline 
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function of order m with nodes at the integers if m is odd, at the integers 
+ 1/2 if rn is even, and satisfying yo"([) = &. (For m = 1, for instance, 
qA(x) = 1 - 1x1 if 1x1 2 1, 0 otherwise.) Again we define q," recursively by 
q,"(x) = f i  Ce he qr-l (2x - I) (q," are defined analogously). Arguments 
similar to those above show then that, for any rn' 2 rn, (dm' / (dx" ' )  q," - 
( d m ' ) / ( d x m ' )  q!~ uniformly as n -+ 00. 

4. It may seem artificial to impose a factorization of type (4.12) on mo 
and 60. As noted above, mo(7c) = 0 = %o(n) implies that rno and %o are 
always divisible by 1 + e't. Moreover, we shall see in the next section that 
more regularity ( y ,  @ E C" with rn 2 1) can only be attained if rno, %o are 
both divisible by ( 1 + eiOm+l. 

5 .  It is quite striking that the condition we imposed to ensure (3.13), 
namely (4.16), is also sufficient to prove (3.26). It looks like we might have 
dispensed altogether with all the technicalities in Section 4.A! Recall, how- 
ever, that (3.13) is not strictly necessary to obtain dual Riesz bases (see [ 71). 

n 

5. Regularity 

Remark 3 at the end of the previous section showed that if mo can 
be factorized as in (4.12), with (4.13) replaced by the stronger condition 
Bk 2 2L-1-m, then q5 E C". In [13] and [14] a more detailed study was made 
of general (not necessarily wavelet-related) functions satisfying a "two-scale 
difference equation" (i.e., an equation of the type f(x) = C,, c,, f(2x - n ) ) .  
Again, special sum rules on the c,,, which are equivalent to the factorization 
(4.12), played an important role. For general solutions of two-scale differ- 
ence equations, regularity is possible without these sum rules (see, e.g., [29]), 
although it has been proved (see [ 171) that the cascade algorithm (with higher 
order splines replacing the piecewise constant q,, - see the end of Section 
4.B or [lo]) converges in Cm only if the associated trigonometric polyno- 
mial 1 C,, c,, cine (generalizing mo to the non-wavelet case) can be factored 
as in (4.12), with L 2 m + 1. In the case of orthonormal or biorthogonal 
wavelet bases, however, regularity of y ,  @ forces factorization of type (4.12) 
for mo, 60. Proofs of this fact for the orthonormal case can be found in 
[4] or in [27]. Both proofs work "in the Fourier domain" (i.e., they involve 
$?, & rather than y ,  q5 directly). We present here an approach suitably gener- 
alized to accommodate the biorthogonal case, and our proof will not use the 
Fourier transform. It is similar to Battle's proof in that it does not even use 
multiresolution analysis or the fact that the yjk, @jk constitute Riesz bases: 
biorthogonality is the only ingredient used. 
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PROPOSITION 5.1. Suppose f ,  f are two functions, not identically con- 
stant, such that 

with f J k ( X )  = 2-JI2 f ( 2 - j x  - k ) ,  &(x) = 2 - J I 2 f ( 2 - J x  - k ) .  Suppose that 
lf(x)l C( 1 + Ixl)-”, with a < m + 1, and suppose that f E C”, with f ( [ )  
bounded for C 2 m. Then 

Proof: 

1. The idea of the proof is very simple. Choose j ,  k, j’, k’ so that f i k  is 
rather spread out, and &kl  very much concentrated. (For this expository 
point only, we assume that f has compact support.) On the tiny support of 
$ , k r  the slice of f / k  “seen” by $.tkr can be replaced by its Taylor series, with 
as many terms as are well-defined. Since, however, s d x  & ( X )  fjlk‘(x) = 0, 
this implies that the integral of th.e product of f and a polynomial of order 
m is zero. We can then vary the locations of X ‘ k ’ ,  as given by k’. For each 
location the argument can be repeated, leading to a whole family of different 
polynomials of order m which all give zero integral when multiplied with f. 
This leads to the desired moment condition. But let us be more precise. 

2. We prove (5.1) by induction on 1. The following argument works for 
both the initial step and the inductive step. Assume s d x  x n  f ( x )  = 0 for 
n E la], n < C. (If C = 0, then this amounts to no assumption at all.) Since 
f ( l )  is continuous (C 5 m), and since the dyadic rationals 2-Jk (j, k E Z) 
are dense in R, there exist J ,K sc) that f ( e ) ( 2 - J K )  # 0. (Otherwise f(l) = 0 
would follow, implying f s constant if C = 0 or 1, which we know not to 
be the case, or, if C 2 2, f = polynomial of order C - 1 2 1, which would 
imply that f is not bounded and is therefore also excluded.) Moreover, for 
any E > 0 there exists 6 > 0 so that 

-,. 
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if Ix - 2--'KI 5 6.  Take now j > J ,  j > 0. Then 

0 = d x  f ( x )  f ( 2 j x  - 21-JK) I 
e 

= c @ ! ) - I  f ' " ' ( 2 - J K )  p x  ( x  - 2-JK)" f ( 2 J x  - 2 J - J K )  
n=O 

e 
(5.2) 

(n!)-' f ( " ) ( 2 - J K )  ( X  - 2-JK 

Since J d x  x" f ( x )  = 0 for n < l ,  the first term is equal to 

Using the boundedness of the f ( n ) ,  the second term can be bounded by 

where we replaced the upper integration bound by 03 in the first term, and 
where we used in the second term that (1 + 2jt)-I 5 & ( 1  + t ) - l  5 
2-J (1 + t)-' for t 2 6. Note that CI, C2 only depend on C, a and 
t ;  they are independent of E ,  6, and J .  Combining (5.2), (5.3), and (5.4) 
leads to 

Here e can be made arbitrarily small, and for the corresponding 6 we can 
choose J sufficiently large to make the second term arbitrarily small as well. 
It follows that J d x  x e f ( x )  = 0. rn 

When specialized to our compactly supported v / ,  y j  as given by Theo- 
rem 3.8, this leads immediately to 
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COROLLARY 5.2. Let y, @ be as defined in Section 3. If (yjk, @ j ! k ' )  = 
d j j ldkk ' ,  in particular ifthe V j k ,  @ j t p  constitute dual Riesz bases, then 

y E CL + rno(<) 
@ E Ci + &o(c) 

is divisible by 
is divisible by 

( 1  + e-jt)'+' 
(1  + e-ic)i+l . 

Proof: 

1. Since y is compactly supported, y E CL immediately implies that all 
the y(!), C 5 L ,  are bounded. Since @ is also compactly supported, obviously 
I@(x)l _I C(l + I X ~ ) - ~ - ' - & .  Moreover y # 0 # @. All the conditions of 
Proposition 5.1 are thus satisfied, leading to 

dxx'  @(x) ==0 C = 0 ,  1 ,... , L ,  J 
or, equivalently, 

(5.5) 

h h - 
Since @(<) = e-ic/2 mo($ + n) $(c/:2), and J(0) = 1, (5.5) implies 

But this is exactly the same as saying that the trigonometric polynomial mo(<) 
is divisible by (1 + e-ic)L+l.  w 

Remarks. 
1. If y, @ are merely continuous, then Corollary 5.2 does not lead to 

anything new, since rno and iiZ0 are always divisible by (1 + e'c), even if v / ,  @ 
are not continuous. (See (3.1 I).)  

2. If some minimum regularity is required for both v / ,  9, then Corol- 
lary 5.2 implies a lower bound for their supportwidths. If 

with 
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then 

support 4 = "1 , N2 J 3 

support $ = [A$, &] , 

(see Lemma 3.1). Together with (3.9) this implies 

hence [support yI = lsupport @I = $ (N2+&-Nl -Nl).  On the other hand, 
y E C k ,  @ E C' implies that rno(resp. m o )  is divisible by (1  (resp. 
(1  + c i c ) ' + l ) .  This implies, in particular, N2 - N1 2 k + 1, R2 - f i 1  2 k + 1. 

It follows that y E C k ,  @ E Ck implies that /support yj = jsupport @ I  2 
7 + 1 .  k + k  

3. Regularity for y implies zero moments for @. No regularity for @ is re- 
quired, however. In fact there exist examples (see Section 7) of biorthogonal 
wavelet bases in which one of the two wavelets, say y ,  is much more regular 
than the other, @. In the orthonormal case it is known that if y E C' then 
it is possible to decide whether or not f E Cs (0  2 s < Y) by looking only 
at the wavelet coefficients (f, y j k ) .  (See [27] .  More precisely: f E Cs@) if 
and only if 1 (f, Y,k) 1 $ C 2- j ( s+1/2) .  Note that here s need not be integer: 
f E Cn+l, with 0 < I < 1 means that f is n times continuously differentiable, 
and that the n-th derivative o f f  is I-Lipschitz, If(")(x) -f(")(y)l Clx-y lA.  
For integer s, the characterization by means of wavelet coefficients is not re- 
ally correct: a slightly larger class than the n-times continuously differentiable 
functions is obtained if A = 0; see [27] . )  This is no longer true in the biorthog- 
onal case: if y E C', @ E C', with r > F, then the wavelet coefficients (f, Yjk)  
can certainly not be used to characterize Cs-spaces with s 2 F, even if s < r ,  
since for the special choice f = @, the wavelet coefficients (@, yjk) = dj()dkO 
would satisfy any candidate for such a criterium. Another way of seeing this 
is to consider the formula 

f = (f, yjk) @jk 

It tells us that when we use the coefficients (f, yjk), we are implicitly expand- 
ing f into the elementary building blocks @$. It is clear that any condition 
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of a general nature on the ( f ,  V / j k )  cannot guarantee more regularity than the 
@jk themselves have. We can, however, also write 

f = (f, @ j k )  V / jk  * 

j , k  

If V /  is much more regular than @, then this means that the wavelet coefficients 
(f ,  p , k )  with the less regular wavelets can be used to characterize f Cs with 
0 < s < r ,  even if s > i.: regular functions can be characterized by their inner 
products with much less regular wavelets. 

6.  Examples 
Unlike the orthonormal case, it is possible, in the biorthogonal case, to 

choose rno so that it corresponds to a “linear phase” filter, or to a symmetric 
function 4. The filter associated with rno is linear phase if 

for some A E R. The 2n-periodicity of rno then forces A E Z; by introducing a 
suitable integer translation in the indices of the h, we can therefore assume 
3, = 0. For real h,, (6.1) reduces to 

or, equivalently, to 

(6.3) rno(t) = polynomial in cost . 

It follows that $(<) = $(-{), which implies $(x) = $(-x) since 4 is real. 
Note that this excludes the Haar case: the Haar scaling function 4 is symmet- 
ric around x = 1/2 rather than around X = 0, i.e., 4Haar (1 - X) = 4Haar (X). 
Scaling functions 4 with symmetry around x = 1/2 correspond to trigono- 
metric polynomials rno satisfying 

rather than (6.2). It follows from (86.4) that eitl2 rno(t) is invariant under the 
substitution { + -(; since this function is also 4a-periodic, it is therefore 
a polynomial in cosC/2. Since multiplication of this polynomial by e-’C/* 
reduces it to a trigonometric polynomial in t (rather than </2), only odd 
powers of cos</2 are allowed. It follows that (6.4) is equivalent to 
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In all our examples we shall concentrate on mo satisfying either (6.2) or (6.4). 
Given mo, we need to determine 50 so that (see Sections 2 and 3) 

The following proposition shows that we only need to concern ourselves with 
symmetric Go. 

PROPOSITION 6.1. Let mo be f ied .  Suppose Go is a solution to (6.6). I f  
mo(-t) = mo(t), then Ez!(t) = 4 [ i i i o ( t )  + 50(-<)] is also a solution to (6.6) 
which moreover satisfies 5!(-<) = %zfj(t). If on the other hand mo(-t) = 
eic mo(t[), then 5:(<) = 4 [GO({) + Go(--tJ] is also a solution to (6.6) 
which moreover satisfies %i(-t) = eic mi(<). 

Proof: Trivial (substitute 5; into (6.6)). 

We shall therefore always assume that ZO has the same symmetry property 
(either (6.2) or (6.4)) as mo. 

On the other hand, our analysis in Sections 4 and 5 indicates that mo, Fzo 
should be divisible by (1 +e-ic)L, (1 +e-ic)L, respectively, with L, E certainly 
2 1, but even larger if we want w ,  @ to be reasonably regular. It turns out 
that mo satisfying (6.2), respectively (6.4) can only be divisible by an even, 
respectively odd number of factors cos t/2: 

PROPOSITION 6.2. Assume mo is a trigonometric polynomial with real 
coeficients. If mo satisfies (6.2), then it can be rewritten as 

(6.7) mo(5) = (COSt /2)2e  P O ( C 0 S t )  

where po is a polynomial such that PO( - 1) # 0, and C E N. 
If mo satisfies (6.4), then it can be rewritten as 

where po is a polynomial such that PO( - 1) # 0, and C E N. 

Proof: 

1. If mo satisfies (6.2), then (see (6.3)) mo can be written as a polynomial 
in cost, mo(t)  = ~ ( c o s ~ ) .  This polynomial can be written as 

P ( X )  = (1  + x )e4 (x )  9 

with q ( - l )  # 0, and I E N (possibly C = 0 for general q; in our case mo(n) = 
0, orp(-1) = 0 hence i! 2 1). Since 1 +cos t  = 2c0s2t/2, (6.7) follows. 
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2. The same argument, applied to (6.5), leads to (6.8). I 

Whether mo and %o are both of type (6.2) or of type (6.4), substituting 
their factorizations (6.7), (6.8) into (6.6) leads in both cases to the following 
equation: 

with k = C + f? in the first case, k = C + t? + 1 in the second case. If we 
rewrite the product of po and do as a polynomial in = sin2(/2, then 
(6.9) reduces to 

( c o s ~ / 2 ) ~ ~  P(sin2 </2) + ( ~ i n t / 2 ) ~ ~  p(cos2 t / 2 )  = 1 

(1 - X)k P ( x )  + X k P (  1 - x) = 1 , 
(6.10) or 

where x = sin2 t /2 .  All our examples correspond therefore to: (1) a choice 
for C, t! or equivalently for C,  k; (2) a choice of P solving (6.10) for that k; 
(3) a choice for the factorization of P(sin2 </2) into p ~ ( c o s ~ ) ~ ~ ( c o s ~ ) .  To 
solve (6.10) we use 

THEOREM 6.3. If p1, p2 are two polynomials of degree nl, n2 respectively, 
and $pl, p2 have no common zeros, then there exist unique polynomials 41, 42 
of degree at most n2 - 1, nl - 1 respectively, so that 

This theorem is known as Bezout's theorem. It can be proved by expand- 
ing the equation (6.1 1) into its Taylor series around every zero of p1 or p2. 
This leads to a constructive algorithm for 41, q2, for which we first have to 
find all the zeros of p1, p2. On the other hand (6.1 1) can also be viewed as a 
consequence of the fact that the polynomials constitute a Euclidean ring, and 
41, q2 can then be constructed by means of Euclid's algorithm. This algorithm 
only requires the division of polynomials, i.e., solving linear systems of equa- 
tions; as a result it is easier and more accurate than the zero-based algorithm if 
PI ,  p2 are large polynomials that cannot be factored straightforwardly. More- 
over, the method immediately shows that if all the coefficients of p1, p2 are 
rational, then the same is true for 41, q2. In the examples presented later in 
this section, we use either Euclid's algorithm or the factorization algorithm, 
depending on which is easier. 

We now apply Theorem 6.3 to the choice pl(u) = (1 - u ) ~ ,  pz(u) = uk. 
Since pl(1- u) = p2( u )  in this case, substitution of 1 - u for u in (6.1 1) shows 
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that ql (u)  = q2( 1 - u )  and 42(u) = q1( 1 - u )  are polynomials satisfying the 
same equation and degree restriction. By the uniqueness of 41, 42 it follows 
that q2(u) = q1( 1 - u) ,  so that the choice P(u) = qI(u)  is indeed a solution 
of (6.1 1 ) .  In this case the equation is so simple that once the existence and 
uniqueness of a polynomial P of degree at most k - 1 ,  solving (6.10), is 
established, we do not even need Euclid’s algorithm to determine P. Rewrite 
(6.10) as 

(6.12) P ( u )  = ( 1  - u ) - k  - U k  ( 1  - u ) - k  P(l - u )  , 

and expand the right-hand side in its Taylor series. Since we know that P is 
of degree k - 1 ,  we only need to compute the first k terms. Only the first part 
of the right-hand side of (6.12) contributes to this, leading to 

(6.13) 
k-1 k + n - 1  

n=O 

This is therefore the unique lowest degree solution to (6.10). There also exist 
solutions of a higher degree. By the Taylor expansion argument above, their 
first k terms coincide with (6.13), so that a general solution can be written as 

) u n  + u k  r(u) . k + n - 1  k -  I 

n=O 

Substitution into (6.10) leads then to 

r(u) + r (  1 - u )  = 0 

or r(u) = R( 4 - u )  where R is an odd polynomial. 

Remark. Equation (6.10) was already encountered in [lo], where it was 
solved by means of two combinatorial lemmas. The method used here is 
much simpler. 

Putting everything together, we see that we have proved the following 
proposition: 

PROPOSITION 6.4. Let mo be a trigonometric polynomial (with real coef- 
ficients) satisfying either (6.2) or (6.4), i.e., mo can be written as either 
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with po(-i) # 0, e E N. 

which have the same form as mo, i.e., 
I f  there exist any solutions GO j b r  (6 .6)  at all, then there exist solutions i i o  

or 

f i o ( 5 )  = e-iC/2(cosC/2)2i+1 do(cos<) in case (b) , 

with po(-l) # 0, e" E N. 

(6.14) 
Moreover, po and 80 are constrained by 

k- 1 sin2 < sin2 < 
n =o 

where k = e + e" in case (a), k = C -t- e" + 1 in case (b), and where R is an odd 
polynomial. 

Note that since mo(a)  = 0 = f ig(a), we shall need C,  e" 2 1 in case (a). 
Let us now look at some specific examples. 

6.A. The Spline Case 
In this case ~4 is a B-spline function of order N, translated so that its 

nodes are at the integers, regardless of whether N is even or odd. The first 
few cases are 

piecewise constant: 14(x) = 1 O S X < l  
0 otherwise 

piecewise linear: 244x1 = l + x  - 1 l x S O  
1-x  O S X 5 l  

0 otherwise 

piecewise quadratic: &(x) = (x + 1)2/2 -1Sx_IO 

(x - 2)2/2 1 6 x 5 2  
-(x - 1/2)2 + 3/4 0 6 x 2 1 

0 otherwise. 
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The Fourier transform of N $ J  is given by 

where u = 0 if N is even, K = 1 if N is odd. An alternative characterization 
of N$J is given by 

together with the restriction that J d x  N # ( x )  = 1. (As usual, ly] denotes the 
largest integer not exceeding y.) One easily checks that 

The corresponding N ~ O  are given by a binomial formula: 

one finds 

In terms of the parameters in Proposition 6.5, this choice for rno amounts to 
C = L, and po = 1. It follows that for these mo, the possible solutions 60 to 
(6 .6) ,  with the same symmetry as N ~ O ,  are given by 

where 2 1, N + fi = 2k is even, R is an odd polynomial, and K = 1 
if N is odd, 0 if N is even, as above. We shall restrict ourselves here to 
the choice R = 0. In this case, the "spline pairs" mo, %O constructed here 
have the remarkable property that all their coefficients are dyadic fractions 
(i.e., rational numbers whose denominator is a power of 2), whatever choice 
is made for N or fi. (See also Table 6.1 below.) This makes these filters 
particularly easy to implement on a computer. 
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So far, the filters mo, GO satisfy (6.6) as well as mo(0) = 1 = &(O) 
and ~ o ( R )  = 0 = Go(a) (this is the reason why fi is restricted to fi 2 1 ) .  
This is, however, not sufficient to ensure that the corresponding y ,  6 define 
biorthogonal Riesz bases: we also need to ascertain that (3.13) and (3.26) 
are satisfied. The decay condition on 8 is no problem: even for N = 1, 
I d ' ( C ) l  < = C1Cl-l. What about decay of J? We can use a result from [lo] to 
see what happens for large fi, N. It was proved in [lo], pages 981-983, that, 
for R = 0, and N + fi large 
(6.15) 

h - 

h 

Consequently 6 has sufficient decay at 00 if A064 (N + fi) < fi - 1/2, or 

(6.16) fi> ( .8064N+.5)/ .1936- 4 .1653N+2.5826.  

If we require some regularity for J as well, e.g., 6 E CM, then we impose 
.8064(N + fi) < fi - 1 - m. It fallows that the spline examples provide us 
with an infinite family of pairs of biorthogonal bases with arbitrarily high 
regularity: 

(6.17) N C # J  E CN-2 N , f i ?  E C"' if fi > 4.1653 N + 5.1653(m + 1 )  

I 

Note that if we require the same regularity for N,aq.5 as for N C # J ,  then we need 

(6.19) fi > 1.8064N/.1936 N 9.3306 N 

resulting in lsupport N,iyI = lsupport -PI > 18.6612N - 1 .  The esti- 
mates (6.15)-(6.19) are all asymptotic for large N. For small values of N, 
the left-hand side of (6.1 5) can be estimated explicitly. Even sharper esti- 
mates for the regularity of N , ~ C # J  can be obtained via the techniques of [14], 
when feasible. 

In Table 6.1 we have listed the coefficients of N ~ O  and N , g f i ~  for the 
first few values of N, fi. Graphs of the corresponding ~ q . 5 ,  N , ~ q . 5 ,  N , i y ,  and 

-6 are given in Figures 6.1 to 6.31. For N = 3, k = 1 ,  the distribution N,iq.5 
N,N 
is not square integrable. (We prove this by checking the eigenvector for the 

N,N 

- 

- 
- 
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- 
Table 6.1. We list N m O ,  N , ; % ~  for the first few values of N, N ,  with z = e-it. 

The corresponding filter coefficients N h k ,  N,;i;k are obtained by multiplying Jz with 
the coefficient of zk in N m O ,  N,;%o, respectively. We also give an estimate for cy such 

that 1 N , g & ( ) l  5 C(l + when we can prove a > .5. Note that the coefficients 
of N,g%o are always symmetric; for very long -60 we only list about half the 
coefficients (the others can be deduced by symmetry). 

A - 

N,N 

- 
N N m0 N N , F O  Decay of N , ; ~  

1 f ( 1  + 2 )  1 f ( 1  + z)  Haar basis 

3 - 1 - 2 + 2 + I  16 16 2 a > 1.6584 

f f = l  

2 3  

2 16 16 
+ Z + L - L  

cy > 2.2777 

2 + ( z - l + 2 + z )  2 - t 2 - 2  + + f a > 0.6584 

+ f z  - ; z 2  

4 - l ;8z -4  - +-3 - g z - 2  cy > 1.2777 

+ Z z - I +  g z - '  + g + g z  
1 2  3 3  3 4  - g z  - a z  +mz 

6 -- l;24z-6 + i z - 5  512 + D , - 4  512 cy > 1.7542 

- $+-3 - X L z - 2  + a z - 1  
256 

+ 111 + 8'2 - 1 2 3 2 2  ... 
256 256 1024 
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Table 6.1 (continued). 

3 $ ( z - l + 3 + 3 z + z 2 )  1 

3 

8 2-15(35z-8 - 702-' - ~ O O Z - ~  

+ 6 7 0 ~ - ~  + 1 2 2 8 ~ - ~  - 3 1 2 6 ~ - ~  

- 3 7 9 6 ~ ~ ~  + 10718~-I  + 22050 

+- 1 0 7 1 8 ~  - 3796z2.. .)  

-- z z  I - I  + 1 + 12 - 122 

L z - 3  - - ;4z-2 - hz-1 

4 4  4 

+ 45 + 4sz - LZ2 

- a z  + g z  

64 64 64 

9 3  3 4  

- L z - 5  + f i z - 4  + x z - 3  

- 2Lz-2 - - ;;6z-1 + 111 

512 512 5 

256 

+ r n z - B z 2 . . .  

2-14(35z-' - 10Sz-6 - 1 9 5 ~ - ~  

256 256 

7 

+ 865zP4 + 3 3 6 ~ ~  - 3 4 8 9 ~ ~ ~  

- 307z-l + 11025 + 1 1 0 2 5 ~ . . . )  

9 2-17( - - 6 3 ~ - ~  + 189z-* + 4 6 9 ~ - ~  

- 1 9 1 1 ~ - ~  - 1 3 0 8 ~ ~ ~  + 9 1 8 8 ~ ~ ~  

+ 11410~-~ - 2 9 6 7 6 ~ ~ ~  + 19Oz-' 

+ 87318+ 8 7 3 1 8 ~ . . . )  

a > 2.2550 

Not in L2(R) 

See footnote* 

a > .7542 

a! > 1.2550 

a! > 1.7384 

* 3,34 does not satisfy (3.13), but 3 , 3 ~  and 3,3@ nevertheless generate Riesz bases; one can 
prove s d t ( 1  + ltl)"~$(()1~ < 00 for 1 < .3!5026. 
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(nondegenerate) eigenvalue 1 of the operator N , $ ~  corresponding to N , ~ K z ~ ,  
as defined by (4.1). If 8 E L2(R),  then the entries of this eigenvector are the 
coefficients of a non-negative trigonometric polynomial; see Section 4. For 
N = 3, fi = 1 ,  one finds that this trigonometric polynomial - takes strictly 
negative values.) For N = 3, = 3, we can prove that N , ~ 4  E L2(W); in fact 
the techniques of the Appendix in [ 101 can be used to show that J d< (1 + 
I<l)’ I3,3 $(r)l2 < 00 for I < .35026. Nevertheless, 3,3& does not satisfy h (3.13); 
using log2(C2,=, (“i2)(3/4)”)  = 2.727920. .  . , one finds that I3,3& (2“ F) I 
> - - c 2/((-3+2.727920 ...) > - - c [2k 27r].272079- 3 . With the techniques developed in 
[7], however, one can prove that 3,3v/ and 3,3v/  nevertheless generate dual 
Riesz bases. Anyway, it can be readily seen from Figure 6.3 that 3 , 3 &  is 
much more - photogenic than regular. For all the other pairs listed in Ta- 
ble 6.1, N,p5 satisfies (3.13); we list an estimate for its decay rate. Note 
that N , ~ 4  is symmetric around 0 for N even, around 1/2 for N odd. The 
symmetry axis for both N , ~ v /  and N , ~ v /  lies at x = 1/2 in all cases; for N 
even, they are symmetric, for N odd, antisymmetric. 

A striking feature in Figures 6.2 and 6.3 is that from some point on, 
increasing fi (for fixed N) does not alter the shape of N , ~ v /  very much; one 
sees the “wrinkles” in the corresponding N , ~ c #  and N , ~ v /  get ironed out as 3 
increases. 

The functions 1,3v/ and 1 , 3 v /  were first constructed by Ph. Tchamitchian 
(see [33]) as an example of two dual wavelet bases with very different reg- 
ularity properties. In our present construction they constitute the first non- 
orthonormal example. (N = 1 = fi gives the Haar basis.) 

The different regularity properties of N , ~ v /  and N,;v/ may be useful in 
some applications. If all that is wanted is a fast algorithm of decomposing 
f into reasonably smooth wavelet building blocks, then decomposition by 
means of N , ~ & ,  and reconstruction via NWZO may be a perfectly good answer, 

even if N , G ~  is not very regular. In fact, experiments with images have shown 
that such a scheme leads to a much better compression rate than a scheme 
that would use the same filters, but reverse the role of decomposition and 
reconstruction filters; see [5]. In image analysis, one prefers to use filters of 
comparable length, which is not the case here: the filter pairs of the spline 
examples typically have very dissimilar lengths. For small values of N , N  
this is apparent from Table 6.1. For large - N, the asymptotic estimate shows 
that # {coefficients in N , ~ K z ~ }  = N + 2 N  - 1 2 9.3306 N. This is without 
any regularity for N , ~ q 5 ;  if we require that -4 and ~4 are of comparable 
regularity, then we find # {coefficients in N , z % ~ }  2 18.6612 N, which is much 
larger than #{coefficients in NWZO}  = N + 1 .  The next subsection gives a 

h 

- 

- 

- 

- 
N , N  
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Figure 6.1. The functions ~ 4 ,  N,;y, N,z4 and N,;F for N = 1,  N = 3, 5. 

For N = 1 (not plotted) one finds the Haar basis, i.e., 1,14 = 14, I , I ~  = I , I V ,  
and I,Iy(x) = 1 for 0 5 x < 1/2, - 1  for 1/2 5 x < 1 ,  0 otherwise. We have 

- - 
- - - 

support -4 = [ - N  + 1 ,  N ] ,  s~pp01-t -v/ = support -F = 1 ,N 1.N I ,N 
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I - 
Figure 6.2. The functions ~ 4 ,  N,cv/, - N,c4 and -p  for N = 2, N = 

2, 4, 6 ,  and 8. Notice how little 2,8v/ differs from 2 , 6 w .  Support *,$J = [-@, @I, 
- N,N 

support 2,gl = support -p  = [-N/2, $2 + 11. 
2 , N  
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Figure 6.2 (continued). 
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Figure 6.3 (continued). 
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variation on these spline examples which results in filters of less dissimilar 
lengths. 

6.B. A Variation on the Spline Case: Filters with less Dissimilar Lengths 
In the examples in this subsection we still choose R = 0 in (6.14), as 

in the spline examples, but we shall determine the factors po and so 
that the lengths of mo and 630 are very close, unlike the spline examples. 
For a fixed k, there is a limited number of possible factorizations. To find 
them, we determine the zeros (real and pairs of conjugated complex zeros) 
of ~~~~ (k-i+") x", so that we can write this polynomial as a product of real 
first and second order polynomials, 

J l  j2  k - l + n  
(6.20) ( ) X" = A n (x - X J )  n ( x 2  - 2 Re z,'x + lzj,I2) . 

n=O j =  1 j ' = l  

Regrouping of these factors leads to all the possibilities for po and do. Ta- 
ble 6 . 2  gives the coefficients of r n ~ ,  m~ for three examples of this kind, for 
k = 4 and 5. 

Note that k = 4 is the smallest value for which a nontrivial factorization 
of type (6.20) is possible, with real polynomials p1 and p 2 .  For k = 4, the 
factorization of (6.20) is unique, for k = 5 there are two possibilities. In 
both cases we have then chosen N so as to obtain rno and 60 as filters with 
an odd number of taps (leading to symmetric 4, 4) and a difference in length 
as small as possible. The corresponding functions 4, ty, & and v/ are given 
in Figures 6.4 and 6.5. In all cases we can prove an estimate of type (4.16), 
proving that we do indeed have biorthogonal wavelet bases. 

Remark. While it is important for many applications that the filter lengths 
of mo and 6 0  should be comparable, we feel that the examples in Table 6.2 
have lost a very attractive feature present in Table 6.1: the entries are no 
longer dyadic fractions; they are not even rational. 

6.C. Biorthogonal Bases Close to an Orthonormal Basis 

6.C.1. Biorthogonal Bases Associated to Burt's Laplacian Pyramid 

This first example was suggested by M. Barlaud, whose research group in 
vision analysis tried out the filters in Sections 6.A and 6.B for image coding; 
see [l]. Because of the popularity of the Laplacian pyramid scheme (see [ 6 ] ) ,  
Barlaud wondered whether dual systems of wavelets could be constructed, 
using the Laplacian pyramid filter as either mo or 60. These filters are given 
explicitly by 

(6.21) -a e-2X + .25e- ir  + ( . 5  + 2a) + .25eiC - a e2'r . 
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Table 6.2. The coefficients of mo, &o for three cases of “variations 
on the binomial case” with filters of similar length; corresponding to 
k = 4 and 5 (see text). For each filter we have also given the number 
of ( cos ( /2 )  factors (denoted N ,  - these determine the number of 
zero moments of w ,  @ - see Section 5). As in Table 6.1, multiplying 
the entries below with fi gives the filter coefficients h,, h n .  

k , N , N  n Coeficient of Coefficient of 
e-inC in ’ mo e-inC in Go 

k = 4  0 .557543526229 .602949018236 
N = 4  1,-1 .295635881557 .266864118443 
N = 4  2,-2 -.028771763114 -.078223266529 

- .04563 5 88 1 5 5 7 -.016864118443 3, -3 
4, -4 0 .026748757411 

k = 5  0 -636046869922 .5208974097 18 
N = 5  1,-1 .337150822538 .244379838485 

3, -3 - .096666 153049 .005620161515 
4, -4 -.001905629356 .028063009296 
5, -5 .0095 1533051 1 0 

N = 5  2,-2 -.066117805605 -.038511714155 

k = 5  0 .382638624 10 1 .938348578330 
N = 5  1,-1 .242786343133 .333745 161 5 15 
N = 5  2,-2 .043244142922 -.257235611210 

3, -3 .000197904543 -.083745161515 
4, -4 .015436545027 .038061322045 
5, -5 .007015752324 0 

For a = -1/16, this reduces to the spline filter 4 ~ ~ 0  as described in Section 
6.A. For applications in vision, the choice a = .05 is especially popular: even 
though the corresponding filter has less regularity than 41120, it seems to lead 
to results that are better from the point of view of visual perception. At 
Barlaud’s suggestion, we chose therefore a = .05 in (6.21), or 

mo(<) = .6 + .5 cos < - . 1 cos 2< 
(6.22) 4 2 

= ( T) cos < ( I  + sin2 i) 
2 .  

Candidates for %o dual to this rno :have to satisfy 

mo(<) Go(<) + mo(< + n) %o(< + n) = 1 . 
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By Proposition 6.1, we know that such 50 can be chosen to be symmetric 
(since rno is symmetric); we also opt for 6z0 divisible by (c0s5:/2)~ (so that 
the corresponding y, @ both have two zero moments). In other words, 

where 

(1 -x)2 (1 + ;x) P(x)+x2 ( 5  9 4  - 3x) P ( l  -x )  = 1 

By Theorem 6.3, together with the symmetry of this equation for substi- 
tution of x by 1 - x, this equation has a unique solution P of degree 2, which 
is easily found to be 

6 24x2 P ( x )  = 1 + -x - - 
5 35 * 

This leads to 

(6.23) 

17 73 it 3 e-3i< - -e-2it 3 73 e-it + - + - e - 
280 56 280 28 280 

- -- 
(6.24) 

One can check that both (6.22) and (6.23) satisfy estimates of type (4.13). 
It follows that these rno and ko do indeed correspond to a pair of biorthogo- 
nal wavelet bases. Figure 6.6 shows graphs of the corresponding 4, 4, y and 
@. All four functions are continuous but not differentiable. It is very striking 
how similar $ and q5 are, or y and @. This can be traced back to a similarity 
of rno and 60, which is not immediately obvious from (6.22) and (6.23), but 
becomes apparent by comparison of the explicit numerical values of the filter 
coefficients, as in Table 6.3. In fact, both filters are very close to the (neces- 
sarily nonsymmetric) filter corresponding to one of the orthonormal wavelet 
bases constructed in [12], Section 4, listed in the third column in Table 6.3. 
This proximity of rno to an orthonormal wavelet filter explains why the 6z0 
dual to rno is so close to rno itself. A first application to image analysis of 
these biorthogonal bases associated to the Laplacian pyramid is given in [I]. 
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0.5 

0 

- 0.5 

1.51 1 2 ,  I 
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4 1 -  J/ 

- 
0 

-1  

6.C.2. More Examples 

M. Barlaud’s suggestion led to the accidental discovery that the Burt filter 
is very close to an orthonormal wavelet filter. (One wonders whether this 
closeness makes the filter so effective in applications?) This example suggests 
that maybe other biorthogonal bases, with symmetric filters and rational filter 
coefficients, can be constructed by approximating and “symmetrizing” exist- 
ing orthonormal wavelet filters, and computing the corresponding dual filter. 
The coiflet coefficients listed in Table 3 in [ 121 were obtained via a construc- 
tion method that naturally led to close to symmetric filters (the aim was to 
obtain orthonormal bases for which both v/ and 4 would have a prescribed 
number of zero moments); it is natural therefore to expect that symmetric 
biorthogonal filters close to an orthonormal basis will in fact be close to these 
coiflet bases. The analysis in [ 121, Section 4, suggests then 
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Figure 6.5. The functions 4, 4, v ,  @ for the less asymmetric variant on the 

binomial examples for k = 5. In both cases support 4 = [-5, 51, support 9 = 
[-4, 41, and support v = support @ = [-4, 51. 

- 
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0 

-1  

- 2  0 2 - 2 - 1  0 1 2  3 

- 2  0 2 - 2 - 1  0 1 2  3 

Figure 6.6. The functions 4, $, y ,  @ if rno is the Laplacian pyramid filter. In 
order to bring out the similarity between 4, $better, we have chosen the same scale 
for their plots, even though support #J = [-2, 21, support#J = [-3, 31. 

- 

In the examples below we have chosen in particular 

and we have then followed the following procedure: 

1. Find a such that 1 Jf, d<[1 - Irn,~(<)1~ - Irno(<+ ~ ) 1 ~ ] 1  is minimal (zero in 
the examples we looked at). This optimization criterion can of course be 
replaced by other criteria (e.g., least sum of squares of all the Fourier co- 
effcients of 1 - lrno(<)I2 - I r n o ( < - t - ~ ) 1 ~  instead of only the coefficient of eiec 
with C = 0).  We checked the cases K = 1, 2, 3, where the smallest root for 
a was .861001748086, 3.328450120793, 13.1 13494845221 respectively. 

2. Replace this (irrational) “optima.1” value for a by a close value expressible 
as a simple fraction. For our examples we chose a = .8 = 4/5 for K = 1, 
a = 3.2 = 16/5 for K = 2, and a = 13 for K = 3. For K = 1, this reduces 
then to the example in Section 6.C. 1. 
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Table 6.3. Filter coefficients for (mO)Burt, for the dual fil- 
ter ( 2 0 ) ~ ” ~  computed in this section, and for a very close 
filter ( mo)coine, corresponding to a special orthonormal basis 
of wavelets (“coiflets”) constructed in [ 121. 

-3 0. .010714285714 0 

-2 -.05 -.05357 142857 1 -.051429728471 

-1 .25 .2607 14285714 .23892972847 1 

0 .6 .607142857143 .602859456942 

1 .25 .2607 142857 14 .272 140543058 

2 -.05 -.053571428571 -.05 1429972847 

3 0. -.O 107 142857 14 -.011070271529 

3. Since mO is now fixed, we can compute m o .  We require that &o be also 
divisible by ( ~ o s < / 2 ) ~ ~ ,  so that 

(6.25) 

where PK is a polynomial of degree 3K - 1. The same analysis as in [ 121, 
Section 4, shows that 

thereby determining already K of the 3K coefficients of PK.  The others 
can be computed easily. For K = 1, PI was already computed in Section 
6.C.1; for K = 2 and 3 we find 

(6.26) 
14 2 3 8024x4 3776x, - - 
5 455 45 5 P~(x)  = 1 + 2~ + -X + 8~ 
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Table 6.4. Numerical values for the filters mo, Go for the cases K = 2 and 3 
(see text). The third column lists the coefficients of an orthonormal wavelet filter to 
which mo and GO are very close. In order to compare the different coefficients more 
easily, we have expressed everything in decimal notation; in fact the coefficients of 
mo and GO are rational (see (6.26) and (6.27)). 

K n Coefficients of Cocficients of (mo)coi8et 
I 

Coeficlents Of 

m0 m0 n<O - "20 - 

2 0 

* I  

*2 

i 3  

i 4  

i 5  

i 6  

i 7  

,575 

,28125 

-.05 

- ,03125 

,0125 

0 

0 

0 

,575291895604 

,2863925 I3736 

-.052305116758 

-.039723557692 

,131 5925480769 

.#303831568681 

- ,0012663 I I8 I3 

- .000506524725 

574682393857 

.273021046535 ,294867193696 

-.047639590310 - .054085607092 

-.029320137980 - .04202648046 I 

.O I67444 I01 63 

0 .003967883613 

0 - ,001 289203356 

0 - .OW509505399 

.01 I587596139 

3 0 

* I  

*2 

i 3  

*4 

* S  

i 6  

i 7  

i 8  

f 9  

i 10 

i l l  

3634765625 

29296875 

- ,04760742 I875 

--.048828125 

,01904296875 

,005859375 

- .003 I738281 25 

0 

0 

0 

0 

0 

,5601 16167736 

,296144908701 

- ,047005 100329 

- 055220135661 

.021983637555 

,010536373594 

- ,00572566 I54 I 

- 001774953991 

.000736056355 

.000339274308 

- 000047015908 

- 000025466950 

.286503335274 

-.043220763560 

- ,046507764479 

,016583560979 

.005503126109 

- .XI268241867 I 

0 

0 

0 

0 

0 

,561285256870 

,302983571733 

-.050770140155 

- ,058 I96250762 

,02443409432 I 

.011229240962 

-.00636960101 I 

-.001820458916 

-.ooO790205101 

-.WO329665174 

-.Woo50192775 

- .000024465734 

1721 5 16x6 
6075 P3(x) = 1 + 3x + 6~:* + 7x3 + 30x4 + 42~' - 

(6.27) 
1921766 , 64890SX8 

-k 6075 6075 . x -___ 

In Table 6.4 we list the explicit numerical values of the filter coefficients 
for mo, f i o  and the closest coiflet, for K = 2 and 3. We have graphed 4, &, v/ 
and u/ for both cases in Figure 6.7. In both cases, as in Section 6.C.1, the 
biorthogonal wavelet filters are very close to a nonsymmetric orthonormal 
filter (coefficients taken from Table 3 in [12]). It is worthwhile to note that 
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Figure 6.7. The functions 4, g, y, corresponding to the filters with rational 
coefficients close to orthonormal wavelet filters, as constructed in Section 6.C.2, for 
K = 2 and 3. We have only shown the parts of the graphs where the functions are 
significantly different from zero; in fact support 4 = [-4, 41, support 4 = [-7, 71, 
and support y = support 6 = [-5, 61 for K = 2. For K = 3 these supports are 
[-6, 61, [ -11, 111, [-8, 91, respectively. 

- 
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the computation of the biorthogonal filters mo, Go, as explained by the above 
procedure, is much simpler than the computation in [ 121 of the orthonormal 
coiflet filters! This illustrates the greater flexibility of the construction of 
biorthogonal wavelet bases versus orthonormal wavelet bases. 
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