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Abstract

Orthonormal bases of compactly supported wavelet bases correspond to subband coding
schemes with exact reconstruction in which the analysis and synthesis filters coincide. We show
here that under fairly general conditions, exact reconstruction schemes with synthesis filters
different from the analysis filters give rise to two dual Riesz bases of compactly supported
wavelets. We give necessary and sufficient conditions for biorthogonality of the corresponding
scaling functions, and we present a sufficient condition for the decay of their Fourier transforms.
We study the regularity of these biorthogonal bases. We provide several families of examples,
all symmetric (corresponding to “linear phase” filters). In particular we can construct symmetric
biorthogonal wavelet bases with arbitrarily high preassigned regularity; we also show how to
construct symmetric biorthogonal wavelet bases “close” to a (nonsymmetric) orthonormal basis.

1. Introduction

Wavelets are functions generated from one basic function by dilations and
translations. They are used as analyzing tools, by both pure mathematicians
(in harmonic analysis, for the study of Calderén-Zygmund operators) and
electrical engineers (in signal analysis). A particularly interesting develop-
ment is the recent discovery of orthonormal bases of wavelets. For particular
functions ¥ € L%(R), the family

(1.1) Wie(x) =27y x - k), jkel,

constitutes an orthonormal basis for L2(R). The oldest example of such a
basis is the Haar basis; smoother choices for i were constructed by Stromberg
in [32], Meyer in [26], Lemarié in [24], Battle in [3], and Daubechies in [10].
There exist generalizations of (1.1) with dilation factors o different from 2
(a rational; for @ = p/q > 1 one needs p — g different functions y, see [2]).
Higher-dimensional extensions also exist (see, e.g., [2], {27]), in general the
dilation factor can then be replaced by a matrix with integer entries and with
eigenvalues strictly larger than 1 in absolute value; see [27].

Communications on Pure and Applied Mathematics, Vol. XLV, 485-560 (1992)
© 1992 John Wiley & Sons, Inc. CCC 0010-3640/92/040485-76$04.00



486 A. COHEN, 1. DAUBECHIES, AND J.-C. FEAUVEAU

1.A. Multiresolution Analysis

In all the interesting examples, the orthonormal wavelet bases can be as-
sociated with a multiresolution analysis framework. The concept of multires-
olution analysis was introduced by S. Mallat in {25]. For the purposes of this
paper, the following brief summary will suffice; for proofs, more details, and
examples the reader should consult [25], [27], or [28].

A multiresolution analysis consists of a ladder of spaces,

chorcheVo,cVa,c...,

with UjezV; = L*(R), NjezV; = {0}, which satisfy the following two condi-
tions:

(CH feVie f(Ux)eh

(C2) there exists ¢ € ¥ such that the ¢o,(x) = ¢(x — n) constitute an or-
thonormal basis of V5.

The spaces V; can be considered as different approximation spaces: for
a given f, the successive projections Proj,,j f describe approximations of f
with resolution 2/.

If we define ¢, (x) = 27//2¢(27/x — k), then it follows that, for every j,
the (¢;x)kez constitute an orthonormal basis for Vj,

Projy, (/) = D (/> dix)djk -

kez

Note that, since ¢ € V5 C V_| = Span{¢_,,; n € Z}, the function ¢ necessar-
ily satisfies an equation of the type

(12) b(x) =Y crd(2x—n).

nez

The ¢, in (1.2) cannot be any arbitrary sequence. Orthogonality of the ¢
immediately implies

chcn+2k = 20y -
hn

The orthonormal wavelet basis associated to this multiresolution analysis is
then defined by

(1.3) w(x) =D (=1)"conir 6(2x ~ 1),

nez

where the ¢, are given by (1.2). (Note that we have assumed that the ¢, are
real. The whole analysis carries through, modulo some complex conjugations,
for complex c,. In particular, the ¢_,,; in (1.3) should be replaced by ¢_,1;
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if the ¢, are complex. For the sake of convenience, we shall stick to real ¢,
which corresponds to real functions ¢ and y, as in most interesting exam-
ples.) It is proved in [25], [27] that the y (x) = 27/2w(27/x — k), j,k € Z,
then constitute an orthonormal basis for L2(R). Moreover, for every fixed j,
the {(f, w;x);k € Z} express the difference between the approximations of f
with resolutions 2/ and 2/7!,

(1.4) Proj,._ f =Proiy f+ Y (/s W) Wi -
k€Z

1.B. Subband Coding Scheme Corresponding to a Multiresolution
Analysis

The multiresolution ladder leads to a hierarchical scheme for the compu-
tation of the wavelet coefficients (f, ;). From (1.2), (1.3) one finds

ijk Zgn 2k f¢] in) >

(1.5)
f¢jk Zhn 2k f¢j 1n>’

where #; = ¢;/v2, g = (=1)! c_g41/V2. Note that both formulas in (1.5)
have the structure of a convolution, followed by a “down-sampling” (only
one out of every two entries of the convolution is retained). The expressions
(1.5) show how to compute a coarser approximation from a finer one, as well
as the difference in information between the two successive approximations.
Recovering the finer approximation from the coarser one together with the
difference information is just as easy. From (1.2}, (1.3), and (1.4) we obtain

frdimim) =3 [(Fr i) (i Bjcrm) + (s Wik (Wiks b1 m)]

(1.7) ‘
=5 ek {fr 1) + 82t wii)] -
k

The right-hand side of (1.7) can be read as a succession of three steps:

e “upsample” the (f, ¢;i), i.c., consider them as the even entries of a se-
quence whose odd entries are zero

o convolve this upsampled sequence with the filter coefficients 4,

¢ do the same with (f, ), with convolution with g,, and add the two
results.

The whole decomposition + reconstruction scheme (1.5) + (1.7) is therefore,
in electrical engineering terms, a subband coding scheme with exact recon-
struction, represented by Figure 1.1.
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H 24 2T H
G 24 27 G
N~ — N~
decomposition reconstruction

Figure 1.1. Diagram representing (1.5) and (1.7). The symbols H, H stand
for convolution with Ay, A_, respectively; the symbols 2 | and 2 1 stand for the
downsampling and upsampling described in the text.

For many orthonormal wavelet bases, the functions ¢ and y are supported
on the whole line, and infinitely many ¢, are different from zero. If ¢ and
v have compact support (as in [10]), then all but finitely many ¢, vanish,
and the “filters” 4 and g have a finite number of “taps” (i.e., nonzero entries
hn, &). For every orthonormal basis of compactly supported wavelets there
exists therefore an associated pair of finite filters for subband coding with
exact reconstruction. The converse is not generally true.

One easily checks that exact reconstruction by the scheme represented in
Figure 1.1 is only possible if

> [hm—2ichn-2k + &m-2k8n-2k) = Smn -
k

For g, = (-1)" h_,,, this reduces to

(1.8) Z hehgiom = Omo -
4

1.C. Orthonormal Wavelet Bases from Subband Coding Schemes

A function ¥ can be a candidate for a “mother wavelet” (i.e., generating
an orthonormal basis of wavelets) only if

(1.9) [t w@r <o,
where  denotes the Fourier transform of y,

P(E) = (2r)™ 12 / dx exp{—i&x} p(x) .
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Note that this condition is also necessary if the y;; are merely a Riesz (rather

than orthonormal) basis. (For a proof, see, e.g., Section 2.2.2.B in [11].) For
w € L(R), ¥ is continuous and (1.9) implies

/ dx y(x) = 2m)' §(0) = 0.

Since the function ¢ in a multiresolution analysis has to satisfy | f dx ¢(x)| =
1 (see [25); note that if [dx ¢(x) = 0, then U;¥; # L%(R)), it follows from
(1.3) that necessarily
> e(-1)"=0,
n

hence (see (1.6))

(1.10) S en=0.

There exist many pairs of exact reconstruction subband coding filters for
which Y, g, is close to but not quite zero (see, €.g., [34]). Such pairs cannot
possibly correspond to an orthonormal wavelet basis. If ), g, = 0, then all
but a few pathological pairs do lead to an orthonormal basis. The following
argument of W. Lawton (see [22]) shows why. Let us start from a subband
coding scheme with exact reconstruction and with finite filters 4,, g,, with
gn = (=1)® h_,,, satisfying (1.10), and try to construct the corresponding
#, y. Once this is done, we can then ask whether the y;k do indeed constitute
an orthonormal wavelet basis. By (1.2), (1.6) we have

$(x)=vV2Y hp(2x —n).

By applying the Fourier transform, we find

(1.11) B(&) = mo(€/2) $(£/2)

where my is the periodic function

mo(&) = 27123 " hy exp{—ing} .

In terms of my, the condition (1.8) can be rewritten as

(1.12) Imo(&)1* + ImoC +mP =1,
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while (1.10) becomes
mo(n)=0.

If (1.10) holds we have therefore |mg(0)| = 1, or | 3., hs| = V2. By changing,
if necessary, the sign of the filter coefficients 4,, we can therefore assume

(1.13) mo(0) =1 .

It then follows from (1.11) that

(1.14) $(&) = 2m)~ 2 [ mo(277¢)

J=1

where we have used ¢(0) = (27)~1/2 (because [dx ¢(x) = 1) and where
the infinite product converges uniformly on compact sets because of (1.12).
Using Fatou’s lemma, one can show that this pointwise convergence, together
with (1.12), implies that the right-hand side of (1.14) defines an element of
L*(R) with norm bounded by 1 (see, e.g., [25]). By standard Paley-Wiener
arguments (see Lemma 3.1 below) one sees that ¢ is compactly supported if
only finitely many 4, are nonzero. We can also define

(1.15) fz )" h i1 (2x — 1),

which is again compactly supported. One can show (see [22]) that, for all
feL*R),
VED IR
ik

If [yl = [ dx|w(x)|?]'/? = 1, then this implies that the ¥, are an orthonor-
mal basis, and that ¢ characterizes the associated multiresolution analysis.
To show ||y| = 1, it is sufficient to prove ||¢|| = 1, which turns out to be
equivalent with

(1.16) /dxqb(x)q&(x —k) =00 .

(Even though (1.16) seems stronger than merely ||¢|| = 1, it really is not,
because of the special structure of ¢.) The following argument by Lawton
shows that (1.15) holds for almost all choices of the #,. Define

o = [ dxplx)otx— k).
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Then

ak =23 hmhy /dxqb(zx — m)¢p(2x — 2k — n)

= Z hon B 02k —paom = Z Ao
¢

m,n

where A is the matrix defined by

Ao =Y o bz -
m

In other words, o is an eigenvector of 4 with eigenvalue 1,
Aa=a.

One can moreover show that 3, o = 1. By (1.8) the vector f defined by
B: = Jyo is another such eigenvector, A8 = B, and >, B = 1. It follows
that o # B is only possible if the eigenvalue 1 of A4 is degenerate. Among
all the possible choices for the 4, (assuming we impose a fixed filter length)
satisfying (1.8), this degeneracy is only possibly for a set of measure zero.
Consequently for almost all choices of A,

/ dx (x)b(x — k) = 8¢ »

and the y;; constructed from v, ¢ as given by (1.14), (1.15) constitute an
orthonormal basis. Note that the above argument gives only a sufficient con-
dition ensuring that the y;; are an orthonormal basis. It is conceivable that
the eigenvalue 1 of A is degenerate, but that (1.16) would hold nevertheless.
At the end of his paper (see [22]), Lawton raises the question whether this
can be excluded, i.e., whether his condition might be necessary. There also
exists another characterization, due to one of us (see [8]), slightly more tech-
nical to formulate than Lawton’s condition, which does give a necessary and
sufficient condition on the /4, ensuring orthonormality of the . In a very
recent paper (see [23]), Lawton uses the theorem proved in [8] to show that
his own sufficient condition is also necessary, thereby answering the question
he raised in [22]. We shall come back below to this question; in particular we
prove a generalization of [8] for the biorthogonal case which also provides
an independent proof of the necessity of Lawton’s condition. (See Section
4.A below.)
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1.D. Subband Coding Schemes with Different Synthesis and Analysis
Filters — Biorthogonal Wavelet Bases

The subband coding schemes we have discussed so far use the same filters
hn, gn (or rather their mirror images #_,, g_,) for the reconstruction as for
the decomposition. Such filter banks are well-known in the ASSP (Acoustics,
Sound and Signal Processing) literature, where they were developed (see {30],
[35]) a little earlier than multiresolution analysis was discovered in mathe-
matics. In the same context, there have also been constructions of exact re-
construction filter banks in which the synthesis filters are different from the
decomposition filters; see [35], [31]. Such filter banks have more flexibility,
and are therefore easier to design. Moreover, they have the advantage that
symmetric filters can be used, which is impossible in the case where synthesis
and analysis filters are the same; see [30], [10]. It is natural to wonder what
these generalizations on the filter bank side mean for wavelet bases and mui-
tiresolution analysis. This paper provides an answer to this question. We
generalize orthonormal wavelet bases by constructing biorthogonal wavelet
bases, i.e., two dual bases W, Wmn, €ach given by the dilates and translates
of one single function, ¥ or ¥. One such pair of dual (non-orthonormal)
bases was already constructed a few years ago by Ph. Tchamitchian (see
[33]); we shall find back his construction as a special case in one of our ex-
amples. The multiresolution analysis for biorthogonal wavelet bases becomes
a little more complicated than in the orthonormal case. Basically we will have
two hierarchies of approximation spaces,

~chcVicWwecVvV,,cV,C. -
checVicVycVoycV,C---

Every space W; will be a complement to ¥} in ¥;_,, but not the orthogonal
complement as before. In the orthonormal case we had

PICAEBIEDD [, @30 2+ 1 w2 -
Because W, £ V; now, we have
AZ[ (f, 50+ 1F, W) ]gg (f85-18)]
<B zkj[ S+ [ vl

with A < 1 < B. Tt is clear that bounds like these are not sufficient to establish
that the y;, constitute a Riesz basis: repeating them many times leads to a
blowup of the constants. This is where the dual hierarchy steps in. We have
complement spaces W there as well, and it turns out that 7 LV, Wi _LV
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The two multiresolution scales fit together like a giant zipper, and this allows
us to control expressions like >, [{f, wjk) )2

This paper is organized as foll]ows In Section 2 we discuss subband coding
schemes with exact reconstruction; we derive necessary and sufficient condi-
tions on the four filters (two for analysis, two for synthesis) to lead to exact
reconstruction. In Section 3 we mimic the construction given in Section 1.C
to construct ¢, ¢, w and . We prove that with some minimal conditions on
these functions, the i, ¥ are indeed two dual Riesz bases. In Section 4

we relate the conditions on ¢, ¢ necessary for Section 3 to conditions on the
filters themselves. This involves a generalization of the arguments in [8] and
[22]. In Section 5 we discuss the regularity of v, ¥, and finally, in Section
6 we construct several families of examples. The discussion of biorthogonal
wavelet bases in this paper starts from the filter coefficients, from which every-
thing else is constructed. In this it parallels the construction of orthonormal
bases of wavelets as done in [10] rather than the construction from a mul-
tiresolution analysis framework as in [25]. One of us (J.-C. Feauveau in [20])
also developed an approach to biorthogonal bases which is closer in spirit to
Mallat’s original paper.

The biorthogonal bases constructed in this paper are a special case of
wavelet “frames”, as defined in [18], [11], or the “¢-transform™, developed
independently and around the same time in [21]. While we were completing
this work, we became aware of similar results, obtained independently and
simultaneously by other groups. In particular, M. Vetterli and C. Herley
constructed linear phase filters with vanishing moments which are identical
to our examples in Sections 6.A and 6.B. Their approach is complementary
to ours, in that we are here concerned mainly with mathematical proofs that
the wavelets do indeed constitute Riesz bases, etc., while they explore more
the signal analysis applications of these filters; see [36]. In a less direct way
our work is also related to a recent paper by De Vore, Jawerth, and Popov;
see [19]. The examples in Section 6.A lead to expansions of the form f =
> kel S, Wik) wjx where y is a finite linear combination of B-splines,

wx)=Y_ g¢(x—1t),
£

with ¢ a B-spline. They can therefore be rewritten as expansions in B-splines,

[=Y"aulf) i
ik

with ¢ (x) = 272 ¢27x — k), aj(f) = X, 8k—2m(fs Vjs+im). In this
sense, the two dual filters and the associated biorthogonal wavelet bases per-
mit another way of attaining the spline decompositions featured in [19].
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2. Necessary and Sufficient Conditions for Exact Reconstruction

We want to construct four sequences 2 = (Mp)nez, & = (&n)necz, h =
(hp)nez and & = (&n)nez, two of which will be used for decomposition (4, g)
and two for reconstruction (k, ). Starting from a data sequence c® = (%) ez,
we convolve with A, g and retain only one sample out of every two for the
decomposition (see (1.5)),

i 0
c, = Z h2n—k Ck
k

2.1)
drll = Z 82n—k+1 02 ’
k

where we have introduced a shift of 1 in the indices of g for later convenience.
On each sequence ¢!, d! we then perform a converse operation (we interleave

zeros and convolve with the mirror images of respectively /4, £) and we add
the two results,

(22) & =3 [fan-rch+ 2m-endy] ,

n

where the shift in the index of g is again for convenience’ sake. Requiring
exact reconstruction means imposing & = ¢9, or

(2.3) Z [ilZn—/f Man—k + &2n—e41 g2n—k+1] = gk -

n

This condition can be rewritten via the z-noration. In this notation we rep-
resent every sequence by a formal power series in z,

h(z) =Y hyz", O(z) =) chz", etc. ...
We can then rewrite (2.1) as
[h(z)co(z) + h(—z)co(—z)]
[2(2)¢°(2) — g(=2)e%(=2)] 5

(2.2) becomes B
&O(z) = h(z)c' (22 + &(z)zd"(2?) .

Here we use the notation

a(z) = Za_,, " = Zan z™ "
n n
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for |z] = 1 and a, € R we have a(z) = a(z). It then follows that (2.3) is
equivalent to

(2.4) 2 @) + g(2)7(2)] = 1

(2.5) L P2k - s-27(2)] = 0.

In practice we shall want k, &, g, & to be finite sequences; with z = exp{i¢}
their z-notations then correspond to trigonometric polynomials. In other
words, A, A, g, £ can all be written as a product of a polynomial in z with an
integer (possibly negative) power of z. Because of (2.4), h(—z) and g(—2z)

have no zeros in common. It follows from (2.5) that A(z) = 0 whenever
g(—z) = 0, and 2(z) = 0 whenever A(—z) = 0 (including multiplicity).
Consequently

h(z) = g(~z) p(2)
&(z) = h(-2)p(z)

where p is again an integer power of z multiplying a polynomial in z. Sub-
stituting this into (2.4) leads to

p(2)[h(z) g(~z) + h(-z) g(2)] = 2.
The only possible solutions to this are
p(z)= azk

(2.62) h(z)g(-z)+ h(-2)g(z) =22~ 1z7%

where a € C\ {0}, k € Z. This amounts to

bl

(2.6b) (z)=azkg(-2), B(z)=azfh(-z).

Conditions (2.6a) and (2.6b) are necessary and sufficient to ensure exact re-
construction for the decomposition + synthesis scheme (2.1) + (2.2). For
the sake of definiteness we choose k =0 and a = —1, i.e.

(2.7) 8n = (_1)m+1 il—n, &n = (‘1)n+]h—n .

In terms of 4 and A, (2.4) and (2.6a) becomes then

(2.8) h(z2)h(z) + h(—2)h(~z) = 2
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or
(2.9) S hm bk = 6ko -

Remarks.

1. If the same filters are used for synthesis as for decomposition, # = A,
& = g, then (2.7), (2.9) are, as was to be expected, identical to the conditions
in [10].

2. In many of our examples, 4 and h will be symmetric, so that h=h.
3. Assume that 4 and £ are of the form

Ny
h(z)= Y hyz" = zMp(z)

H=N1

B B
= Z hpz" = 2% q(z71),

n=N1
where p and g are two polynomials, and where we suppose Ay, # 0 # hy,
and h | F 0+# h~ Then (2.8) can be rewritten as

(210) MR p(z)g(2) + (~)M N p(-2)g(~2)] = 2.

It follows that Ny < ]Vz. If Ny = ﬁz, then both p and g are constants, and the

sequences (A,)n, (F,), €ach have only one nonvanishing entry. This solution
is uninteresting for both signal analysis and wavelets. We therefore assume
Ny < N». A similar argument shows that N, < N, if more than one s, or hn

are different from zero. Suppose that N, — N, is even, N, — N; = 2k > 0,
and let us compute the coefficient of z=2¢ in (2.10); we find

Y
2Nl hﬁz = 0 )
which is a contradiction with y, # 0 # A . It follows that N, — N, is odd.

Similarly N, — N, is odd. In the case where %, = h,, this reduces to the
well-known fact that N, — N, has to be odd for nontrivial 4,.

3. Construction of the Two Multiresolution Hierarchies

We start by mimicking the construction of ¢, y in the orthonormal case
(see [25] or the summary in Section 1). Define

mo(&) = 27/* 3" hy exp{—in&}
3.1 "
(3.1) mo(&) = 2“/2271,, exp{—iné} .
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(For simplicity, we assume that only finitely many 4,, A, are nonzero. Several
of our results can, however, be extended to infinite sequences which have
sufficient decay for |n| — oo.) Then we define ¢, ¢ by

$(&) = (2m)~1/? [T mo(277¢)
(3.2) =
$(&) = 2m)" 12 I o (2778) .

j=1

These infinite products can only converge if

(3.3) mp(0) = 1 = myp(0) ,
ie., if
(3.4) Y hn=h()=V2=h(1)=) hy.

If (3.3) is satisfied, then the infinite products in (3.2) converge uniformly and

absolutely on compact sets, so that $ and 55 are well-defined C* functions.
Clearly

$(&) = mo(&/2) 4(&/2)
(3.5) ~ ~

(&) = mo(§/2) 9(£/2) ,

or, equivalently,

$(x)=V2> hnd(2x - n)

(3.6) N i N
d(x)=v2Y h¢(2x—n),

at least in the sense of distributions. By the following lemma, borrowed from
Deslauriers and Dubuc (see [15]), ¢ and ¢ have compact support.

Lemma 3.1 IfT(&) = S22y vn exp{—iné}, with 02y yn = 1, then
I'I;’.Zl (277 &) is an entire function of exponential type. In particular, it is the
Fourier transform of a distribution with support in [Ny, N].
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By the Paley-Wiener theorem for distributions, it is sufficient to

Proof:
I'(2-/&) is an entire function of exponential type with bounds

prove that []72,

Q=) < Ci(1 + |ENM exp{N[Im ¢} for Im¢&20),

=

-
Il

FQ277¢) < G(1+ D™ exp{M[Im &[} for Im&SO,

n";:]g

for some C, C;, M,, M,. We shall only prove the first bound; the second is

entirely analogous. Define

N,—N;
T1(&) = exp{~iNE}YT(E) = Y ynsn, exp{—iné}.
n=0
Then - -
[[re-te) =ew{-ime [[ 270,
j=t

so we only need to prove a polynomial bound for H;’Zl I'(2=7&) forlIm £ >0

For Im { > 0 we have

No—N;
IO = 1S D vnemllexp{—in} - 1]
n=0

N—N,
<2 Y |ymen ] min(l, njg))

< C min(1, [¢])

Take ¢ arbitrary, with Im & > 0. If |£] £ 1, then

gﬁ 1+C277]

[[ri e

J=1

< [I exp{27C} < exp{(C} .

w
-

-~
l
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If |£| > 1, then there exists jo > 0 so that 2/0 < |&] < 2/o+! and

oo Jot+1
H o < [[1+cl Hrl(z == 15)‘
j=1 Jj=1 j=1

(3.8) S (1+ )+ exp{C}

Sexp{C}!l + C) exp{In(l + C) In|¢|/In 2}
g (1 + C') exp{c} lglln(H-C)/an .

Combining (3.7) for |£] £ 1 and (3.8) for |£] = 1 establishes the desired
polynomial bound. =

Continuing to mimic the construction in the orthonormal case, we also
define

=VZY guid(2x—n) = \/_Z )" h_n_1 $(2x — 1)

3.9 ~
B ) VISt Bx—m) = VIS (1 Bx )

or, equivalently,

P& = explig/2} o (5 + 1) 3/2)
(3.10)

510 = explie/2hmo (5 +1) 62

Note that, because of (2.7), the relationship between (&) and 5(5/2) is
given by mo(&/2 + ), and not by my itself. The functions ¥, ¥ can only be
candidates for generating Riesz bases of wavelets if they satisfy (1.9), i.e,, if

(3.11) mo(n) = 0= mp(n) ,
or

(3.12) Y (—D)hy=h(-1)=0=h(-1)=> (-1)"h

n

Note that by {2.8), (3.12) necessarily implies

h(1yh(1) =2,
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which means that a suitable normalization of the A, hn automatically satisfies
(3.4).

Having constructed our candidate functions y, ¥, we can go about the
business of proving that they generate Riesz bases of wavelets. A first obstruc-

tion is that there is no a priori estimate ensuring that 5 or 5 are square in-
tegrable or bounded. This is unlike the orthonormal case, where |my(&)| < 1

because of (1.12), so that |$(é)| < 1 automatically followed, without extra

assumptions on mg. Equation (1.12) for mgy was even sufficient, in the or-
thonormal case, to ensure ¢ € L?(R) (see Section 1.C). In the present case,
we have to impose extra restrictions on myg, Mg in order to ensure that ¢,

5 € L*(R). For the time being, we shall not state any explicit conditions (we
shall be more explicit in Section 4), and merely assume that mg, my are such

that $, 5 have sufficient decay to ensure square integrability. This turns out
to be sufficient to prove a large chunk of what we want.

THEOREM 3.2. Suppose that ¢, q~5 as defined by (3.2), satisfy
16(E)] £ C(1 + |g])~V2*

(3.13) -
(&) £ C(1+ |€])~12e .

Define .
Wik(x) =271y (27 x - k),
Pi(x) =271 27/ x - k),
with y, ¥ € L*(R) defined as in (3.9). Then, for all f € L*(R),

(3.14) =Y (o= > (i wi) Wi

JkeZ J.k€EZ

where the sequences converge strongly.

We shall prove this theorem by a succession of lemmas. As in Section 1,
we use the notation

$iu(x) =272 p(27Ix — k),

with $ jk defined analogously.

LEMMA 3.3.  Under the assumptions of Theorem 3.2, we have, for all

fis fr € L*(R),
> <f|, ¢-1k> <‘$—lk, f2>

(3.15) €7 ~
= [<f1 ¢0¢> <¢Og, f2> + <f1, w} (Woe, fz>]

tezZ
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Proof:

1. The following argument shows that all the sums are well-defined. By
the Poisson summation formula

I b P =Y [ deF@) 7 +220) 3@ 3E + 220)

ke leZ

= Z [/dé ‘f l |¢(¢+2n€ ]1/2 [/d{ ‘f(f+27t£)(2 ia(é)’z]lﬂ

tel

<3 [az|i@)] [pe+2m0f <cinr,

teZ

since 3, |@(E+2m8)[2 £ C 3,(1+[¢+2n£])~1=2 is bounded uniformly in &.

Similarly ), | < 5, $Ok> |2 £ oo. Convergence of the w-term follows immedi-

ately from the ¢-estimates, because y and w are finite linear combinations
of _1x, d_1k-
2. Using (3.6), (3.9) we obtain

3 [( s o) (Boes £5) + (i, wor ) (e, 12)]

ez

=5y [h,, B + gn+1§m+1] (fis B~1204n) <$-12¢+’"’ fz> .

{2 nm

Since only finitely many s, m contribute, we can change this to

Y <f1,¢—1n> <$—1m, f2> > [hn—2£ hm—2 + Ene1-2 §m+1—2e]
nm £

=3 <f1,¢—1,.> <$—1m f2> by (2.3). »

Telescoping (3.15) leads to

LEMMA 3.4. Under the assumptions of Theorem 3.2, we have, for all

fi, e LRy,

ik
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Proof:

1. We first show that the left-hand side of (3.16) makes sense by proving
that 37, [ (fi, wik) 1? <00, 354 1{Wk» f2) | < c0. We have

=2J’Z

2n2~/
=27z/ dé
0

By Cauchy-Schwartz on the summation over £ this leads to

2

(ﬂa ¢0k>

/ dE i) T @)

2

2n277
/ dEexp{-ik2/¢} Y Fi(& + 200270 G(IE + 270)
0 ¢

2

3" A +2me27) §(2IE + 2me)
V4

2n2/

S [(howa) s2n [ de (] 2mef 15 e 2m0))

0
(Z 7 (27¢+ 27:6’)[2“_5))
7
=2n / a¢ !fl(é)‘z I'Z/\(2Jf)[26 Z [l/7(2jf+27tm)|2(l"s) ’

— 00

o

where J € (0, 1) will be fixed below.
From (3.10) and (3.13) we have

(3.17) (E L C(L+ e~

It follows that 3", |@(¢ + 2am)[>1=9 is bounded uniformly in & if 2(1 - 9)
x(1/2+¢&)>1,0rd < 2¢(1+2¢)~". Ford < 2¢(1 +2¢)~! we find therefore

Z ‘<f‘ ‘//jk>‘2 <C /dé ‘fi(f)!z Z ly?(zjé)'za

<c { sup 3|7 (917 1A

182 5

Since || is bounded and ¥(0) = 0, we have |y(&)| £ C|é| (remember that
¥ extends to an entire function), hence, for 1 < |£] < 2,

> [ £ 0 S 2 g < oy (1-27)"

j:—oo j=0
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On the other hand, by (3.17)

[«9]

i GO <c? S 1+ 2

j=1

0o ) 1
< Cc¥ Z 2—Jé < c¥ (1 _ 2—6) .

j=1

This completes the proof that

(3.18) 1 wi) P S CIAIR

ik

for some C = 0. Similarly

(3.19) 3 [ Fd) S CIAIP
Jk

2. A simple dilation argument shows that (3.15) still holds true if we
replace the indexes —1 by j — 1, 0 by J,

Z <f1:¢j—lk> <$j—-1k, f2>

kez
= Z [<fl’¢’f€> <<$jl, f2> + <f1, Wje> (Wje, fz)] .

fez

(3.20)

Summing (3.20) for all the j-values between —J and J, we obtain

> <fls¢—J—lk> <$—J—lka fz>

kez

= XJ: > "o wie) (Fie, ) + Y <ﬁ»¢Je><$Juf2> .

j=—J teZ tez

(3.21)

By the bounds proved in point 1, we know that the first term in the right-hand
side of (3.21) converges to the left-hand side of (3.16) as J — oo.

3. The second term in the right-hand side of (3.21) is bounded by

S lenl] [ o]

172
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The same estimates as in point 1 show that, for & < 2¢(1 + 2¢)~"
> [(fs)[ s [ae|relf peaf” .
By (3.13) this becomes
2; (A sc fdé \ﬁ(é)}z (1+27k)~"

which tends to 0 for J/ — oo, by dominated convergence.

4. Using again the same manipulations as in point 1, we rewrite the left-
hand side of (3.21) as

> <f1,¢—1—1k> <$—J—lk’ f2>

k

=Y [ deqi@ B+ 2 )3T 627 + 2m)

(3.22) 00 ) -
= 2z / de 11&) @) 32718 (277 18)

—00

+21 S / de (&) o + 2mm2i+1) §(2-1-18) $(2/ 1 + 2mm)

m#0 _

Since $(&), ¢(&) are bounded and continuous, and ¢(0) = (27)~1/2 = $(0),
the first term converges to {f}, f2) for J — co, by dominated convergence. It
remains therefore to show that the second term converges to zero for J — oo
to complete the proof.

5. Using again (3.13), estimates similar to those in points 1 and 3 show
that

2 /dé 7@ |7 (¢ +22m27+1)] |3 (27771¢) |]$(2-’-15+2nm)j

m#0 "%,

s ClialliAl,

so that it suffices to prove convergence to zero for J — oo for f,, f> in the
dense set of compactly supported L*-functions. Assume support f1, support
f» c {& |£| £ R}, and take J > In R/In 2. Then |2zm2/*!| > 47 R > 2R
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forall m € Z, m # 0, so that J¢| £ R and |€+2nm2/+!| < R are incompatible,
and the second term in (3.22) vanishes identically. »

The next lemma shows how the bounds (3.18), (3.19) suffice to turn this
weak convergence into strong convergence.

LEMMA 3.5.  Under the assumptions of Theorem 3.2, we have, for all f €
L*(R),

im Y {fiWu) Vi = J,}(ifj}oo YL =1

JK—o00 X
’ iy isd

Ikl <K 1klSK

where the limits are in the strong L?-topology.

Proof:

F=>"{frwix) Ui = sup (f, )= (v (T 1)
sy Lli= lilgs
lkIgk kiSK

= sup | > (fiwie) (¥ik> o)
iLal=1 | ;5s

or |k|>K

Ssup Y KA e £)

Irzll=1 1j]+)k)>min(J.K)

1/2 1/2
< sup (El(w,k,fz)l2) ( > '(f"/’jk>|2)

ILAl=1 1j]4+1k{>min(J,K)

172
s sup Clllel( > |<f,wjk>12) :

1£211=1 j |+ |k >min(J,K)

by (3.19). Consequently

, 1/2
f= 3 (fvn) O §C( > l<f’%-k>|2) i O

bss \|J|+|k|>min(J,K)
lkI<K

The other limit is entirely similar. m
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We have now proved all the assertions in Theorem 3.2. Note that (3.16)
is not sufficient to prove that the y;; and yj; constitute two dual Riesz bases.
A Riesz basis can be defined in several ways. Two useful characterizations
are the following:

1. (4,)nen is @ Riesz basis in a Hilbert space H if and only if

o The closure of the finite linear span of the u, is H, and
e 34> 0, B < oo so that

2
(3.23) A enl* £ <BY feal?

2 Cntl
n

for all ¢ = (Cp)nen € £2(N).

2. (Un)nen is a Riesz basis if and only if
e The u, are independent, i.e., no u,, lies within the closure of the
finite linear span of the other u,, and
e 34 >0, B < oo so that

(3.24) AP £ 1 ua) P < BIAIP

for all f e H.

It is easy to show that these two characterizations are equivalent (see, €.8.,
[371); the first definition seems to be used more frequently. Note that (3.23)
automatically implies linear independency of the u,; (3.24), on the contrary,
implies that the u, span H. A collection of u, for which (3.24) holds, regard-
less of whether they are independent or not, is called a frame ([16], [37]).
Because of (3.14) and (3.18), (3.19), the yj, yj; constitute a frame: the
upper bound is immediate from (3.18), (3.19) and the lower bound follows
from the following argument:

I/l = sup [(f, &)
lgli=1

< sup Y (v s €] (by (3.14)

llgli=1 jk

1/2

1/2
< (Zk (/. V/jk>|2) sup (E;, l(%k,g)lz)

1/2
<C (Z (S, w,k>|2> (by (3.19)) .
ik
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In order to show that the y, v, constitute dual Riesz bases, we therefore
only need to establish linear independence.

LEMMA 3.6. Let ¢, 5, w, ¥ be as in Theorem 3.2. Then the i, respec-
tively y ., are linearly independent if and only if

(3.25) (Wjks Wjrkr) = 0o Sk

Proof:

1. If (3.25) is satisfied, then any f in the closed linear span of the
with (j, k) # (jo, ko) satisfies (f, W;x,) = 0. It follows that y, 4 is not in this
closed linear span.

2. By (3.14),

Wiks = D (Wiokor Vi) Wik »
ik
hence

(1= Wiokor Tioka) 1 Wioks = D (Wioko» Wjkc) Wi -
(i) Uorko)

If the y; are linearly independent, then this implies

(Wisko> ¥ik) = 9jjyOrk, - ®

Because of the special structure of the y, ¥k, (3.25) reduces to a con-
dition on the ¢g, ¢dox (i.e., one fixed dilation level).

LEMMA 3.7. Let ¢, &5, W, ¥ be as in Theorem 3.2. A necessary and suffi-
cient condition for (3.25) to hold is

(3.26) (Bokr doe ) = e
Proof:
1. We first prove (3.26)=(3.25).
By (3.9),

(o Wor) = D 8ot Ema <¢—1 2k—n> ¢—12e—m>
n.m

(3.27)) = Z 8n+1 82(1—k)+n+1
n

=" hm Pmiag—ry = Oke (by (2.7), (2.9)) .
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Similarly

<'//0k, <l~5oz> = Z 8n+1 i12(1—k)+n
n
= Z (=" Aot Bag_gyen -
n

Upon substituting n’ = 1 — n — 2(¢ — k), this last expression becomes its
own negative, so that

(3.28) <'//0k, $05> =0.
Similarly
(3.29) (bok» Woe) =0.

By a simple dilation, (3.27), (3.28), and (3.29) imply, for arbitrary j,
(Wi, Wje) = Oke, <ij, <J~5je> =0={(jk, Wje) .

Since, for j < j', ¥ can be written as a linear combination of the $ e
it follows that

(Wik» W)y =0 if  j<j .
A similar argument proves (3.25) for j > j'.
2. Next we prove (3.25)=(3.26). We have

00 = (W12, Wio)

(3.30) = ;; 8n+1 &m—1 <¢oze-n, $0—m>

= Z (- 1)n+m hm iin A2 +n—m

nm

where oy = [dx ¢(x - k) H(x).
If we define a(z) = 3, a, z", then (3.30) is exactly the coefficient of z2

in A(—2)h(—z)a(z) (using the notation of Section 2). Since this coefficient is
equal to dyg, we have

h(-2)h(-2)a(z) + h(2)h(2)a(-2) =2 .
Combined with (2.8), this becomes
(3.31) h(z)h(z)B(~2) + h(—z) h(-2)B(z) =0,
where 8(z) = a(z) - 1.
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We know that only finitely many h,, %, are different from zero. Let us
assume (as in Remark 3 in Section 2)

h,=0 for n<N,n>N;
hy=0 for n<N,n>N,.

Then A(z) has N,— N, zeros in the complex plane, and 4(z) has N, — N; zeros
(countmg multiplicity). On the other hand, support ¢ C [N;, N2] and support

d> C [Ny, Mo by Lemma 3.1. Consequently a; can only be nonvanishing if
Ni{— N, < k < Ny — Ny. It follows that a(z) can be written as the product of

zM—MN:+1 with a polynomial of degree (N, — Nl) (N, — Ny) — 2. By Remark
3 at the end of Section 2, Ny — N, < 0 < N2 — Ni, so that ﬂ(z) is of the

same form as a(z). Because of (2.8), h(z) #(z) and h(— z)h( z) have no
common zeros. From (3.31) we see therefore that f(z) is zero whenever
h(z) 71(2) vanishes, so that 8 has at least N, — N; + N, — N; zeros (counting
multiplicity). Since z=M+¥=1 8(z) is a polynomial of degree strictly less
than N; — N| + N, — Ny, it follows that #(z) = 0, hence a(z) = 1 or ay = do.
This proves (3.26). n

Putting everything together, we have therefore the following theorem.

THEOREM 3.8. Let (hy)n, (hy), be finite real sequences satisfying

> hnhy+ 2k = 8o -

Define
mo(&) =272 3" hy, exp{~iné}
g(€) = 2712 }: h, exp{—in&}

(&) = @n)~ 12 [ mo(279¢)

Jj=1

::18

5 = @)~ 2 ] io(278) .

-,
i
—

Suppose that, for some C, & > 0,

1BE) £ C(1+ 112

(3.32) -
Bl S C(1+ N1
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Define X
p(x)=V2Y (=) hoper (2% + 1)

F(x) = V2 Y (=1)" hops1 $(2x + 1) .

Then the wj(x) = 27712 y(2=/x — k), j,k € Z, constitute a frame in L*(R).
Their dual frame is given by the W (x) =271 y(2~/x — k), j,k € Z; for any

f e L*R),
f= Z <fa l/7jk> Vik = Z <f, ij) 'I7jk s

Jk€EZ JkEZ

where the series converge strongly.
Moreover, the wji., Wji constitute two dual Riesz bases, with

(Wik» Wjrkr) = 0 Ok
if and only if

(3.33) / dx $(x) Fx — k) = o .

In the next s~ection we shall see several strategies to ensure that the se-
quences (/,)n, (hn)n lead to functions ¢, ¢ satisfying (3.32) and (3.33).

4. A Closer Look at the Conditions

We have two conditions: (3.32) demands decay of $ and 5, whereas (3.33)

is a biorthogonality condition. Decay of <$ and 5 will correspond to divisibil-
ity of myg, mg by (1+€%), while the biorthogonality follows from the structure
of the set of zeros of my, my. We first concentrate on biorthogonality.

4.A. Biorthogonality

In the orthonormal case there exist two strategies to ensure orthonormality
of the ¢ (see Section 1.C): a sufficient condition due to Lawton (see [22])
and a different, necessary, and sufficient condition due to one of us (see [8]).
We shall generalize both here to the nonorthonormal case, and discuss their
relationship. We start with a generalization of [8].

DEeFINITION 4.1. A compact set K is said to be congruent to [—x, 7]
modulo 27 if

(1) for every x € [-=, =], there exists k € Z so that x + 27k € K and

(2) the total Lebesgue measure of K is 2x.
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Such a set K will consist of a union of disjoint closed intervals, which, by
means of translations by multiples of 2z, can be puzzled together to constitute
exactly [—=, ], with no overlaps (except for the endpoints of the translated
intervals). Such compact sets were first introduced by one of us (see [8]) in
the study of the orthonormal case. They can be used to formulate a neces-
sary and sufficient condition on m1, guaranteeing that the associated ¢, are
orthonormal. (Recall that for some rare choices of my satisfying (1.12) the
associated ¢q, may fail to be orthonormal — see [22] or Section 1.C.) More
precisely, the following theorem was proved in [8]:

THEOREM 4.2. Let mg, ¢ be as in (1.12),(1.14) respectively. Then the
Sunctions ¢oi(x) = ¢(x — k) form an orthonormal set of L*-functions if and
only if there exists a compact set K, congruent to [—n, n] modulo 2x, so that

(1) K contains a neighborhood of 0,

(2) inf{|mo(27 %), k21, £ €K} > 0.

Note that the orthonormality of the ¢ is necessary and sufficient for the
associated i to constitute an orthonormal basis (see Section 1.C or Lemma
3.7).

In our present, nonorthonormal case, matters are more complicated, and
to generalize Theorem 4.2 to the biorthogonal setting we shall have to in-
troduce an additional condition. This condition turns out to be related to
Lawton’s condition (see [22]), generalized to a biorthogonal framework. We

define two operators Py and Py, acting on 2x-periodic functions f by
Por@ = |mo ()] 1 (4) +|mo (§+5)] 7(§+a

0 —10\2 2 °\2 2
_(ENP (€Y L s (€ 2o(E
m0<—2—) f E + (mo E'f‘ﬂ f —2'+7t .
Expanding my, f into their trigonometric series shows that

(Pof)(&) =Y (Pof i exp{-2mik&}

k

¢

(Pof)(&) =

with

(Pof Vi =Y, Pue fo

(4.2) ¢
Diy = Z A hm+£—2k .

Similar formulas hold for P,. Note the similarity between the entries py; of
the infinite matrix corresponding to Py and the entries of Lawton’s matrix
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Ay, 1n Section 1.C (see also Remark 1 below). We are now all set to state
the generalization of TheoremA4.2 to the biorthogonal setting. Without any

assumptions of decay on 5 or (E we have the following theorem:

THEOREM 4.3. Let h~,,, h, be finite real sequences satisfying (2.9) and

(3.4). Define mg, my, @, ¢ as in (3.1),(3.2). Then the following three state-
ments are equivalent:

Cl. ¢, ¢ € LA(R) and [ dx ¢(x — k) (x — £) = b¢,.

C2. There exist strictly positive trigonometric polynomials fo, fo and a
compact set K congruent to [-n, n] modulo 2n so that

0P0f£)=fb and Poﬁ)=f()

e 0 € interior of K

o for all & € K, all k € N\ {0}, and some strictly positive C (independent
of & and k)

(4.3) Imo(27%¢)|,  1mo(274)1 2 C

C3. There exist strictly positive trigonometric polynomials f,, fo so that
Pofo = fo, Pofo = fo and these are the only trigonometric polynomials (up to
normalization) invariant under Py, Py respectively.

Remarks.

I.  Suppose the trigonometric polynomial mq is of the type
1 N
m = — h, exp{—iné} ,
0(¢) 73 nz=0 n exp{—ing}

so that |m&)|? and |mo(¢ + )|? are both trigonometric polynomials with fre-
quencies ranging from —N to N. It is then easy to check that any trigonomet-
ric polynomial f which is also an eigenfunction of Py, Py f = Af, is necessarily
also of the type EnN=_ ~ Jn exp{—in}, i.e., it contains no “frequencies” larger
than N. This means that the discussion of invariant trigonometric polynomi-
als is restricted to the finite-dimensional space of trigonometric polynomials
S with f, = 0 for |n| > N. This space is invariant under Pg; the restriction
of Py to this invariant space is a (2N + 1) x (2N + 1) matrix with matrix
elements given by (4.2) (which is essentially Lawton’s matrix).

2. In the orthonormal case, my satisfies (1.12), so that the constant func-
tions are automatically invariant for P, = P, in this case. Condition C3 in
Theorem 4.3 is then only a rephrasing of Lawton’s condition (the eigenvalue
1 of the matrix A4 in Section 1.C should be nondegenerate). It is therefore a
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consequence of Theorem 4.3 that, when specialized to the orthonormal case,
both Lawton’s and Cohen’s conditions are necessary and sufficient. This
answers the question raised by Lawton at the end of his paper (see [22]).
After this work was completed, we learned that W. Lawton independently
also proved his own conjecture, using the results in [8] (see {23]).

The proof of Theorem 4.3 consists for a large part of the study of the op-
erators Py, Py. We shall borrow several lemmas of J. P. Conze and A. Raugi,
who in their recent paper (see [9]) proved many interesting results for the

operators
Puf(x)=u(%) f(%) +u(x+%> f(x+%) ,

defined on continuous functions f on [0, 1]. In their study they assume that u
is non-negative, continuous, and u(x)+u(x+1/2) =1, for 0 £ x £ 1/2. This
last condition is not satisfied in our present case (with u(x) = |mo(27x)|* or
u(x) = |mo(2nx)|?), but nevertheless several of their lemmas turn out to be
useful.

The following lemmas are needed to prove Theorem 4.3. Lemmas 4.4 to
4.6 are borrowed from [9]; Lemma 4.7 from [8]. We include their proofs for
the sake of completeness.

LEMMA 4.4. For any 2r-periodic function [ and any n € N,

n

n 2"n n
@9 [awne- [ {H |mo<z—k:)\2] ).
-n -2"n k=1

Proof: By induction. For n = 0 the statement is trivial. If the statement
is true for n = j, then

[J
/ dg (F*' )(€) = / a¢ I |mota- "é)l] (Pof)(277¢)

~2in

Yn rj 2
- [« mmo ké)i”lmo(z—f-‘:>| fm1e)

—2in

, 2 ,
+ |mo@ e 4w f2 e+ n)]
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2 (n+2m)

j+1
de [H ‘mO(T"é)(z} f27=1e)
k=1

—2ir

2741y n
- [ a [ﬁ 1'"0(2"‘5)\2} S,
~2i+lg k=1

where we have repeatedly used the periodicity of both »iy and f. This proves
(4.4) for n = j + 1, and the lemma is proved. =

The next lemma shows how trigonometric polynomials invariant under
Py Py can be used to prove ¢, ¢ € L(R).

LemMAa 4.5, Suppose that there exists a strictly positive trigonometric
polynomial fy invariant under Py. Then ¢ € L*(R).

Proof:

1. Since fj is strictly positive, periodic with period 2z, and continuous,
there exists C > 0 so that fp(&) > C for all € € R.

2. Define
Fy(&) = [H mo@"f)} x(27"8),

j=1
where (&) = 1 if |¢| < n, 0 otherwise. Then F, — $ pointwise. By Fatou’s
lemma, ¢ € LA(R) if [ d& |F,(&)[? is uniformly bounded.

3. By Lemma 4.4,

/ dE |Fy (&) fo(278) = / dz (P fo)(©)

Hence

/dé |Fa(&)* < /dlen(f)lle_'fo(T"é)]

<! / dE fo(&) |

which finishes the proof. =
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The next lemma explores the structure of the set of zeros of a non-negative
function invariant under Py. First we define a “shift” operation 7 on [0, 2x|[.
For x € [0, 2xn[, we define tx € [0, 2x[ by Tx = 2x modulo 27 (i.e., Tx = 2x
for x < m, x = 2x — 2xn for x 2 n). Then the following lemma holds.

LEMMA 4.6. Let [ be a non-negative trigonometric polynomial invariant
under Py. Then the set of zeros of f can be written as a disjoint union of cyclic
sets for 1. Moreover, if f(&) =0, then my(¢ + =) = 0.

Proof:

1. If f has no zeros, or if the only zero of f is £ = 0, then we have
nothing to prove (since my(n) = 0; see (3.11)). Without loss of generality we
can therefore assume f(&) =0, for 0 # ¢ € [0, 2x[. Then

2
¢
f (5 +xT .

mo(§) 1)+l (5 +7)

Since (use (3.1) and (2.8))
mo({) mo({) + mo({ +m)ymo({ + ) =1,

0=/ =)=

|mo (3€) |> and |mg(4& +m)|? cannot vanish simultaneously. Since f > 0, this
implies either f(1&) =0or f(§¢+7) =0.

2. It follows that if we pick one zero 0 # &; € [0, 2x[ of f, we can associate
to it a chain of zeros in [0, 2x[, &,...,&, ..., with the property that ;.
equals either 1¢; or 1&; + =, or, equivalently, &; = 7&;.1. As a trigonometric
polynomial f has only finitely many zeros, so that this chain cannot go on
ad infinitum. Note that the chain has at least two elements, since & = &
would imply &, = 0. Let r be the first index for which recurrence occurs, i.e.,
& = & for some k < r. Then necessarily k = 1, because k > 1 would lead
toé =11 =8V =&, with 1 < r—k+1 < r, so that 7 would
not be the first index for recurrence. It follows that we have a cycle of zeros,
&,... &, with Tfj.H = fj for j=1,...,r—2,and ¢, = &,_,. Note that
1~ 1E; = &; for every zero in this cycle.

3. If this cycle of zeros does not exhaust the set of zeros different from
0, then we can find 0 # {; # &, j=1,...,r — 1, for which f({;) = 0. This
can again be taken as a seed for a chain of zeros, {;, {5,...,{, ... . Every
element of this new chain is necessarily different from all the &;, since ¢ = ¢;
would imply {; = 7671, = t¢71¢;, i.e., {; would equal some &,. By the same
argument as above, {; generates therefore a cycle of zeros for f, invariant
under 7, and disjoint from the first cycle. We can keep on constructing such
cycles until exhaustion of the finite set of zeros of f. This proves the first
part of the lemma.
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4. To prove the second part, we first note that if f(£) = 0, then necessarily
f(& + r) # 0. Indeed, since ©¢€ = 7(& + n), both & and ¢ + 7 would belong
to the same cycle of zeros if f({) = 0 = f(¢ + =). If this cycle has length n,
then it would follow that ¢ = "¢ = 1"~ 117¢ = "~ 1¢(€ + n) = ¢ + @, which is
impaossible.

5. Take now any & so that f(£) = 0. Then 7¢£ is also a zero for f, and

0= f(t&) = (Pf)(t&) = mo(&)* £(&) + Imo(& + m)* f(§ +7) .
Since f(€) =0 and f(& + n) # O, this implies mo(l +n) =0. =

Finally we prove a technical lemma, borrowed from [8], which we will use

to construct the compact set K of C2 if the functions ¢, ¢ satisfy a technical
condition.

LemMMaA 4.7.  Suppose that F($) = []72, |mp(27/&)|, where mp is a trigo-
nometric polynomial satisfying mg(0) = 1. Assume that

(4.5) SN FE+2mt)2C ae
lez

Jor some C > 0. Then there exists a compact set K, congruent to [—-=n, n]
modulo 2x, containing a neighborhood of 0, so that

: —k
(4.6) kgllr}&]( Imp(275)1 > 0.

Remark. We shall apply this lemma several times, for different choices

of F: F(&) = 2n13@)18()], F(&) = 22 |3, and F(&) = 27 |$(&) %

Proof:
1. Note that Lemma 3.1 applies to H;’Zl mp (27/&); in particular F is
continuous. We first want to show that there exists £; € N so that

(4.7) > F+2a8)2CJ2

[e} <o
for all £ in [-m&, m]. By (4.5) there exists, for almost all ¢ in [-=, n], £ so
that

> FE+2me)2 %C.
114
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Since F is continuous, the finite sum 3, ., F(-+2n¢) is continuous as well.

Therefore there exists, for every £ in [—7, x], a neighborhood {{; |{-¢| £ Ry}
so that, for all { in this neighborhood,

S F({+2m)2CJ2.

(€124

Since [—=, 7] is compact, there exists a finite subset of the collection of
intervals {{; |{ — &| £ R} which still covers [-z, n]. Take £y to be the
maximum of the £ associated to this finite covering; (4.7) holds for that /.

2. We can now use (4.7) to construct a compact set K, congruent to
[-7®, n] modulo 2z, on which F is bounded below away from zero. From

(4.7) we know that for any & € [—n, %], there exists £ between ¢y and —¥p
so that F(& + 2n8) =2 C/[2(24p + 1)). It follows that if we define sets .S,

—fo S £ < fo, by
So={¢el-nz]; F()2C/[2246+ 1]}

and, for £ #0,

-1
S, = {c e[-n, 7] \ ( U SkUSo) . F(E+2me) 2 C/[2(26 + 1)]} :

k=—t,

then the S;, —¢y £ £ < ¢, form a partition of [—=, n]. Since F(0) = 0, and
since F is continuous, Sy contains a neighborhood of 0. Define now
b

K= |J G +2=a0).

t=—1g

The set K is clearly compact and congruent to [—n, 7] modulo 2z. By con-

struction, F > C/[2(24, + 1)] on K. Moreover K contains a neighborhood
of 0.

3. Next we show that K satisfies (4.6). We need only check (4.6) for a finite

number of k. Indeed, mF is continuous, and mz(0) = 1. It follows that there
exists r so that [mg({)| = 1/2 for [{| £ r. Consequently |mg(27%&)| > 1/2

for & € K if 27%|€| < 2%(2¢p + )m < r or k 2 ko = [log, (2¢0 + 1) /r]. Let
us now treat 1 £ k < ky. For £ € K, we have that

ko
F@)= [H lmf(z-kc)[} F(27%¢)
k=1
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is bounded below away from zero. Consequently the first factor has no zeros

on the compact set K. As a finite product of continuous functions it is itself
continuous, whence

ko
k=1
Since mp is uniformly bounded by, say, C,, we find therefore, for any k,
1<k < ko,

m,c(z-kc)‘gclm for feK.

Imp(27%E)| = ¢, C % >0,
which proves (4.6). u

We are now ready to attack the proof of Theorem 4.3.

Proof of Theorem 4.3:

1. We start by proving C1 = C2. We therefore assume C; holds, and we
construct fy and fq.

Since ¢, hence ¢ € L2(R), the function

5@ = 3 |6 + 2m0)|

ltez

is in L'([-x, n]). One has

] de fo(&) exp{-ing} = 7 dz |3(@)| expi-ing} = 7 dx p(x)p(x — ).

Since ¢ has compact support, this vanishes for large |n|, so that f; is a trigono-
metric polynomial. We define f; entirely analogously.

2. Since ¢, ¢ are in L2(R), the sum

S B +278) (& + 270)

teZ

converges absolutely for almost all £, It defines again an L'-function on
{—n, ], with Fourier coefficients

=

[ d& exp(-ing} 3 8+ 2n8) 6 + 2m0)

i tez

- / dE exp{—in&} 3(&) 3(&) = / dx $(x)P(x — 1) = bno
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so that

(4.8) 3" (& +2me) oE+ ) =1 ae.

tez

This implies

(4.9) >

tez

b + 2n0)

B+ 27:4)‘ >1 ae ,

whence, by Cauchy-Schwarz,

(4.10) 5@]" [he] " 21

Since both f;, fp are bounded (they are trigonometric polynomials), (4.10)
implies that they are bounded below away from zero.

)5 B G )
o () B e
SRS (T

= Y [fe + 2km)| = 56©).

kez

3. We have moreover

2

(Po/0)(S)

2

so that f; is invariant under Py. Similarly f; is invariant under B,.
4. Points 1 to 3 prove the first part of C2. By (4.9), the function

F(&) = 2m|p(&)||B(&)| satisfies all the conditions of Lemma 4.7. There ex-
ists therefore a compact set K congruent to [—7, #] modulo 27, containing
a neighborhood of the origin, so that |my(27%&)| |me(27%E)| = C > 0 for all

k 2 1, all £ € K. Since both mg and my are bounded by, say, C’, it follows
that

|m0(2-k¢)}, ymo(z-kc)] >C/C" forall EeK, k>1.

This proves the second part of C2, and ends the proof C1 = C2.
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5. We now tackle C2 = C3. N

Assume C2 holds. We only need to prove that f,, fo are the unique
trigonometric polynomials (up to normalization) invariant for Py, P, respec-
tively. We shall do this by showing that the existence of another invariant
trigonometric polynomial for either P, or P, contradicts the existence of the
compact set X in C2. Suppose jg is an invariant trigonometric polynomial

for Py, with fg # vfo. Define f; = fo + tfa'. For some value ¢; of ¢, this
function takes strictly negative as well as strictly positive values. Consider
then f' = fo+¢f;,. Since /=0 = f5, > C > 0, since f;,(¢) < O for some &, and
since f*(£) is continuous in ¢ as well as in &, there exist 1_ < 0 < ¢, so that
f*-, f* have zeros, but are non-negative. Since f5(0) # 0, at least one of the
two functions f’-, f’+ does not vanish in & = 0; we denote this function by
/. By construction, f is a non-negative trigonometric polynomial, invariant
for Py, which has at least one zero, and which satisfies f(0) # 0. By Lemma
4.6, the existence of f implies the existence of a cyclic set &,,... ,&, for 7,
with; =1, j=1,...,n—1,& = 1&, so that my(; + ) = 0 for all j.
Since f(0) # 0, we have £; # 0.

6. We now show how these zeros £; + n for mg are incompatible with the
existence of K.

Since ¢, = &), 1€y = &4, and in particular ; = "¢}, we have &; = 2n x;,
where the x; € [0, 1[ have the following representations in binary:

X1 = .d;dz... dndl... d,,d]... d,,

= Ao, dydi... dpdy... dj...
xz. 2 né1 n@1 n (d; =0or 1)
Xn = dody ... dodi... dy....

Since &; # 0, not all the d; are zero. Let us, for this point only, define

d=1-dford=0orl. Then¢; + n = 2ny; modulo 2x, with y; given by
V1 = .Jld_zdg,... dndl... dndl... d,,

V= .d2d3... dndl... d,,d[... dn
Yn= .Jndl... dndl... dn
We have mo(2ny;) =0, j = 1,...,n. Suppose a compact set K existed with

all the properties listed in C2. Then there would be an integer £, with a
binary expansion with at most a certain preassigned number L of digits (L
depends only on the size of K), so that 2ny = 2xn(2y, + £) has the property
that mo(2n2=%y) # 0 for all k > 0. We have

y=€L...6€ .dzd:;...dndl...d,;dl...d,;...
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with ¢; = 1 or O for j = 1,...,L. We can also rewrite this by inserting n
extra zeros at the front end, i.e.,

Y=€ryn...€L41€6L...62€1 .d2d3...dnd1 ...d,,dl d,,

wheree; = lorOforj=1,...,Land¢; = 0if j > L. The 2%y are obtained
by shifting the decimal point to the left. Since myq is 2n-periodic, only the
“tail”, i.e., the part of the expansion of 2~%y to the right of the decimal point,
decides whether mg(2n2-*y) vanishes or not. If e, = dj, then y/2 would
have the same decimal part as y;, hence mo(2ny/2) = 0 would follow. Since
mp(2my/2) # 0, we have therefore e, = d;. Similarly we conclude e, = d,,,

e3 = dy—, etc. It follows that e;,,,...,eL,, are also successively equal to
di, di—1,...,d1, dn, ... ,di + 1 for some k € {1, 2,... ,n}. Since the d; are
not all equal to 0, whereas ez, = ... = e, = 0, this is a contradiction.

This finishes the proof of C2 = C3.

7. We now attack C3 = C1.
Assume C3 holds. By Lemma 4.5, the existence of strictly positive in-
varlant trigonometric polynomials fj, fo for Py, By respectively implies ¢,

¢ € L*(R). We only need to prove that [dx ¢(x — k)¢(x -0 = 6. We
shall do this by proving that ¢, ¢ are the L2-limits of functions that have this
biorthogonality property.

Since ¢, ¢ € L%(R), we can repeat tl}g argument in point 1 of this proof,
showing that }°,, |(E+278))2, Yicz |p(E+2m2)|? are trigonometric polyno-

mials, invariant for Py, P, respectively. Since P,, P, each have only invariant
trigonometric polynomial, which is moreover strictly positive, it follows that

2

>c, I

L

2

3(& +270) 3 +2m0)| >cC

>

£

for some C > 0. We can therefore apply Lemma 4.7 to F({) = 2n |$(§)|2
or F({)=2n |$(é)|2. It follows that there exist compact sets K and K, both
congruent to [—#z, 7] modulo 27, and both containing a neighborhood of the
origin, so that

Imo(27kE)| 2 C forall ¢eK, k21

|me(27 %)= C forall ek, k=1

for some C > 0. Note that K and K need not be the same set here (unlike
C2).
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8. Define now F, (&) = (21)~/2 [T}, mo(2778)] 1k (27¢),

Fy() = (2m)7'7 [H mo(2” f:] (2778,

where xx({) = 1if { € K, xx ({) = 0 otherwise (x is defined analogously).

In this step of the proof we show that ||F,, — $l|Lz, | En — $||Lz — 0 asn— oo.
For ¢ € K we have |mg(27%&)| 2 C > 0. On the other hand, we also have,

for any &, |mo(&)] = 1 — {mo(&) — me(0)] =2 1 — C’|¢|. Since K is compact

and therefore bounded, we can find kq so that 2=%C’|¢| < 1/2 if £ € K and
k > ky. Using 1 —x > e=2* for 0 £ x £1/2, we find

|$(é>\=<2n>—‘/2ﬁ\mo<2—ké>| [T |me*e)
k=1 k=ko+1

> (2m)~ V2 Cho ﬁ exp {-2C' 2-k;¢|}
k=kg+1

> (2m)~ Y2 Cho exp{—C’Z_""+l max |C|} =C">0,

or |$(é)/C”| > 1 for & € K, which we can also rewrite as |$(é)| 2 C" xx (E).
Consequently

|Fa(&)] = 20) 72 I Imo(277&)| xx (277¢)

j=1
< (") ] Imo(278)] 162778
j=t

< e/ Cc".

Since F, — $ pointwise as n — oo, and since $ € L2, it follows by dominated

convergence that || F, — $]l 12 — 0 for n — oo. Similarly lim,_.. ||F, — 5]] 2=
0.

9. The compact set K contains a neighborhood {¢&; |£| £ a} of 0. Define
An(&) = @m) 12 [Ty Mo(279E)] H(-a,e (277€), Where 2o, (§) = 1 if
] € @, 0 otherwise. Clearly [44(&)] < [Fa(8)| < [$(&)|/C", while also 4, — ¢
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pointwise as n — co. Consequently we have again |4, — $|| 2 —0asn — oo.
This implies that B, = F, — A, tends to 0, in L?-sense, as n — oo. We have

2

1Ball2: = (22)"! / dé

2-nek
12718120

= 2n)"! / dé

agi2=mE<n

fl o(2798)

(4.11)
2

b

IT otz

where we have used the 2m-periodicity of my and the congruence of K to
[=m, 7] modulo 2x, which since [—a, ] C K, implies the congruence of K \
[—a, a]to [-nr, ] \ [~a, a]. We introduce one more sequence of functions,

J=1

n
itn(E) = (2m)7112 [H m0(2_j¢)} Xi-2,7(277¢) .
Clearly @, € L*(R), hence u, € L*(R). Moreover

i1n(&) = An(&) + (2m) 712 [H mo(z"f@} Xl-n.x\—a,a] 27"E) .

je=1

By (4.11) the L2-norm of the second term is exactly equal to By,
which tends to 0 as n — co. Since lim,_ ||4; — ¢|| 2 = 0, it follows that

liMp_so0 ||itn—llz2 = 0, O L2-liMmp 0o U = ¢. Similarly L2-limy_e0 ity = @,
where

(&) = 2m)~1/2 [H mg(2 ’f] -2 (2778) .

Note that
Un1(§) = mo($/2) #a(£/2) ,
or equivalently

Uns1(x) = V2 Z hun(2x ~ k) .
k

Similarly

fpy1(x) = V2 Z b i,(2x — k) .
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10. We have

/a’x uo(x) itg(x — k) = /dé ﬂo(ﬁ)meikf
- / de (2m) e = 5, .

On the other hand, if [ dx u,(x)it,(x — k) = do, then, by (2.9),

/dx o (0) T (=K = 2 5 By /dx Uy (2% — 1) Tin(2x = 2k —3)
= Z’hr hy 3k = bko -
By induction this proves
/dx Un(X) @n(X — k) = Oko

for all n. Since L2-lim,_o, 4n = ¢, L2-liMy_ o0 iln = &, this implies (¢ is
real)

/ dx p(x) B(x — k) = &y

which proves C1.
This proves C3 = C1, thereby establishing the desired equivalence C1 &
2C2&C3. »

Theorem 4.3 gives a satisfactory (since necessary and sufficient) as well as
easy criterium for biorthogonality of the ¢(x — k) and ¢(x — £) : it suffices to
check that the matrices corresponding to Py, P, have 1 as an eigenvalue, that
this eigenvalue is nondegenerate in both cases, and that the trigonometric
polynomials having the entries of the corresponding eigenvectors as their
Fourier coefficients are strictly positive.

Remark. 1t seems quite striking that the equivalent conditions C2, C3
already imply ¢, ¢ € L2(R), without any assumptions of decay for the infinite
products [[72) mo(27/¢) or [I72; mo(27/¢). (In the orthonormal case, as
noted in the Introduction, (1.12) is already sufficient to ensure ¢ € L%(R).
The biorthogonal equivalent, mo(&) mo(£) + mo( + @) mo( + ) = 1, is no
longer sufficient to ensure ¢, ¢ € L*(R). An example is mp(£) = —1/2 +
e~%/2 + 2% my(£) = 3e¥/2 4+ 1/2+ e, In this case Py and P, have each
only one invariant trigonometric polynomial, given by 1 —4cos&, 1 —12cos¢
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respectively. As point 1 in the proof of Theorem 4.3 shows, ¢ € L%(R) would
imply the existence of a non-negative invariant trigonometric polynomial. It
follows that neither ¢ or ¢ are square integrable in this example. With the
extraAcondition C2 or C3, square integrability is restored.) The fact that $

and 5 can both be in L%(R) and yet not satisfy the decay condition (3.13)
is due to the lacunarity of these functions: they often have narrow bumps,
recurring infinitely often, but tending to be less frequent when & goes to oo.

These mar the decay of ¢ and ¢, but not their square integrability. In fact, we
already know that the decay condition (3.13) is not necessary for the strong
convergence of (3.14) or to have dual Riesz bases {w;r}, {wjx}: there exist
orthonormal wavelet bases for which (3.13) is not satisfied.

Using a different approach, involving a further study of the operators P,
and B and their eigenvalues, two of us have derived recently (see [7]) (after
completion of the present work — this “Remark” was added a year later) a
set of necessary and sufficient conditions on mg and 71y under which the same
results as in Theorem 3.8 can be obtained, side stepping the decay condition
(3.13). (This new technique in [7] was developed more specifically for higher
dimensions, but applies also to one dimension.)

For many practical purposes, however, decay of $ and $ is desirable, even
if not strictly necessary to make the theorem work.

4.B. Decay at Infinity

The following proposition gives a family of sufficient conditions ensuring
that (3.13) holds. It was already stated (with proof) in [10]; see Lemmas 3.2
and 4.6 there. The argument is due to Ph, Tchamitchian; it is very short, so
we repeat it here for the reader’s convenience.

PROPOSITION 4.8. Suppose mg can be factored as

L sien L
(412 mo(@) = (L) F@.

\

where F is again a trigonometric polynomial. Suppose that, for some k 2 0,

(4.13) By = max |F(&) FQE)... FQk-1e)|Vk < 287172

Then |$(&)| < C(1 +|€)~17¢, withe =L — 1 — lg B > 0.

Note that since mg(n) = 0 (see (3.11), we have always L 2 1.
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Proof:
1. Since {mp(&)| £ 1+ C|¢| £ exp{C|&|}, we have

[62)| < TTex {27 Clél} S exp{CLI}
j=1

which is uniformly bounded for |£] £ 1. We therefore need to concern our-
selves only with |&| > 1.

2. Since

[e¢]

g [1 + exp {2—i2‘j€}] =jlj [exp{—iz—iﬂé} - cos (2‘1—15)]

= exp(~i%/2) ][ 5oz = exp{i¢/2) S‘Z,‘fz/ 2,
Jj=1

we have

(4.14) 3@ = [] mo(277¢) = exp{—iLt/2) (Sigfz/z) [[oe9),
j41 =0

with G(&) = F(£/2) F(§/4)--- F(27X).
3. Since [¢| > 1, there exists £y 2> 0 so that 2k < |&| < 2k(6+]) By the
same argument as in point 1,

I1 lo(a)] - [T o (22
£=by+1 j=0

is bounded independently of &, since |2~ (%+1k¢| < 1. On the other hand

o
H g (2—klé), § B[/:(lo+l) g B]I(c+log|{|/log2
£=0

< C(l + lél)IOEBk/IOQZ .
Putting all this together with (4.14), we find

'5(6)’ < C(1 + [¢])~LHoBu/log2 | o
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In [10] it was proved, for the orthonormal case, that B, < 2L-1/2 implies
not only decay of ¢, but also orthonormality of the ¢(x — £). This proof used
the auxiliary functions #,, which are piecewise constant functions defined by

n(x)=1 for —1/2<x<1/2
( 4.1 5) 0 OiheI'WiSC
= \/izd hk nn_1(2x - k) .
k

With this definition the 7, are piecewise constant on the intervals [27"(¢ —
1/2),27"(1 4+ 1/2)[, £ € Z. If By < 2L~1/2_ then the 5, converge to ¢ in L2-
sense. This can then be used to prove orthonormality of the ¢(x—£) by an ar-
gument similar to point 10 in the proof of Theorem 4.3: [ dx #,(x) n,(x — £)
= d,0 by induction (it is trivial for # = 0, and the induction step follows from
(1.12)), and L2-convergence carries this over to ¢. The following proposition
uses a similar argument to prove that if both my and my satisfy a condition
of type (4.13), then the ¢(x — £) and ¢(x — £’) are biorthogonal.

PROPOSITION 4.9. Assume that both my and mg can be factored as in
(4.12),

mie) = (S5) Fe), o = (! *;’_if)i 7o),

and suppose that, for some k, k > 0,

By = max |F(&) - F (2% 5)‘”" < 2L-12
¢
(4.10) > = = (k-1 1k L-1/2
B,;=mgx}]—'(é)---]—'(2 é)} <2 }
Then ¢, ¢ € LX(R) and [ dx ¢(x) p(x — n) = 8o

Proof:

1. We introduce again the functions u,, i, of point 9 in the proof of
Theorem 4.3,

in(§) = (2m)~'/? —[ mo(27/8) | Aj-nm (277E)
J=1 J

K

(&) = @n) 2 [T Ao(2” fc Ki-nm (277E) .

=1
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It was already established in point 10 of the proof of Theorem 4.3 that
/a’x Un(x)ity(x — 1) = dyp -

To prove [ dx ¢(x) $(x—£) = dp, it suffices therefore to prove L2-lim,_.o. @y
= ¢, L2-1iMy_ o0 fin = ¢.

2. Because of the factorization (4.12), we have

L n

117 27%6)| tiemm 277€) .

£=0

sin (/2)

|81 (&)) = (2m)~ "2 3 sin (2715}

To bound this we use several ingredients. On the one hand, |sin {| > 2 [{|
for |{| £ n/2, hence

sin (2718)| " eam @O S 22
which implies
sin §/2 . 2 |sin &/2 ~
2” sin(z—n—l {)‘ X[—n,n] (2 é) é ;l'— 6/2 ‘ é C(l + |é|) 1 .

On the other hand, writing n =kn' + g with0 < g < k,

n i 149 n
I17(2 é)’ < [sup 17(0)1 I1 ‘g (2"‘":)]
=0 L 1 =0
- k-1
§ sup |_7:'(§)| C(1+ 'él)logBk}’logz
L c J

by the same argument as in point 3 of the proof of Proposition 4.8. Putting
it all together, we have

|i12(&)] € C(1 + |£|)~LHloeBrlog2

where C is independent of n. Since &, converges pointwise that $, the
Lebesgue dominated convergence theorem implies that &, tends to ¢ in L?(R).
The L?-convergence of i, is proved analogously. =
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Remarks.

1. This proof is considerably simpler than the proofs in [10], mainly
because the i, are compactly supported; considerable effort in [10] was spent
in dealing with the “tail” of the #, (», as defined by (4.15) has compact
support, so that #, is supported on the whole real line).

2. Exactly the same arguments can be used to prove

Ll'limn_.oo fl,, = ¢, Ll'limn_.oo an = ¢

(4.17) i 3 .
if B, <2t By <281 for some k, k .

This leads to the uniform convergence of u,(x) to ¢(x) and il,(x) to $(x).
In fact one even has uniform convergence in a Hélder space C¢(R) since

[ dea i 3@ - mo)| = 0

and

/ dE (1 +1€)° |8(E) = fa(®)

— 0,
n-=00

for 0 < e <min(L—1-~log, By, L-1—log, B;). This can be used to prove
pointwise convergence of the #n,, fji,: since ug(m) = d,0 = no(m), it easily
follows from the recurrence relations for both u, and 7, that u,(27"¢) =
Na(277¢) for all £ € Z. The argument in point 7 of the proof of Proposi-
tion 3.3. in [10] then proves pointwise convergence of #,(x) to ¢(x). The 7,
have one advantage that the u, do not have: they are compactly supported;
in fact support 1, = support ¢ + [-27""!, 27"~!], Moreover, for the 7,
the recursion relation (4.15), relating #,(x) with the #,_,(2x — £), can be
rewritten as a “local” recursion, where 1,(x) is completely determined by
Nn—1(y) with x +27"N; £ y £ x + 27"N, (if we assume that my is of the
form my(&) = 2712 3N v, hne™). This translates into a graphical algo-
rithm for the construction of the #,, explained at length in [10], also called
the “cascade algorithm” in [13). It is akin to subdivision algorithms in CAD,
which have the same “zoom-in” quality. The convergence~of the », to ¢ is

extremely (exponentially) fast; in fact, all the graphs of ¢, ¢ given in the ex-
amples in this paper and in [10], [12] are graphs of some #,, fi, rather than

@, ¢, withn =6, 7, or 8.

3.If By, Bf( satisfy even more stringent bounds,
B <2L1mm B < 2L71M with m, i€ N

then one has ¢ € C™, ¢ € C'A;', implying w € C™, y € C™. In this case it is
useful to define #{" to be the interpolating spline of order m, i.e., the spline
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function of order m with nodes at the integers if m is odd, at the integers
+1/2 if m is even, and satisfying nJ'(£) = Jy0. (For m = 1, for instance,
nd(x) = 1 — x| if |x| £ 1, 0 otherwise.) Again we define #) recursively by

nr(x) = V2 Y, hen™, (2x — I) (4 are defined analogously). Arguments
similar to those above show then that, for any m’ < m, (d™' /(dx™' ) nit —

(d™')/(dx™) ¢ uniformly as n — oo.

4. It may seem artificial to impose a factorization of type (4.12) on my
and mg. As noted above, mo(n) = 0 = mo(n) implies that my and my are
always divisible by 1 + ¢’¢. Moreover, we shall see in the next section that
more regularity (y, ¥ € C™ with m > 1) can only be attained if my, mg are

both divisible by (1 + e%)m+!,

5. It is quite striking that the condition we imposed to ensure (3.13),
namely (4.16), is also sufficient to prove (3.26). It looks like we might have
dispensed altogether with all the technicalities in Section 4.A! Recall, how-
ever, that (3.13) is not strictly necessary to obtain dual Riesz bases (see [7]).

5. Regularity

Remark 3 at the end of the previous section showed that if myg can
be factorized as in (4.12), with (4.13) replaced by the stronger condition
B, <25-1-m then ¢ € C™. In [13] and [14] a more detailed study was made

of general (not necessarily wavelet-related) functions satisfying a “two-scale
difference equation” (i.e., an equation of the type f(x) =3, ¢, f(2x — n)).
Again, special sum rules on the ¢,, which are equivalent to the factorization
(4.12), played an important role. For general solutions of two-scale differ-
ence equations, regularity is possible without these sum rules (see, e.g., [29]),
although it has been proved (see [17]) that the cascade algorithm (with higher
order splines replacing the piecewise constant #, — see the end of Section
4.B or [10]) converges in C™ only if the associated trigonometric polyno-
mial 1 ¥, ¢, e (generalizing mq to the non-wavelet case) can be factored
as in (4.12), with L > m + 1. In the case of orthonormal or biorthogonal

wavelet bases, however, regularity of , w forces factorization of type (4.12)
for mg, mg. Proofs of this fact for the orthonormal case can be found in
[4] or in [27]. Both proofs work “in the Fourier domain” (i.e., they involve
v, $ rather than y, ¢ directly). We present here an approach suitably gener-
alized to accommodate the biorthogonal case, and our proof will not use the
Fourier transform. It is similar to Battle’s proof in that it does not even use
multiresolution analysis or the fact that the wj,, ¥ constitute Riesz bases:
biorthogonality is the only ingredient used.
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PROPOSITION 5.1.  Suppose f, f are two functions, not identically con-
stant, such that

<f,k, f;’k'> 01Ok

with fir(x) = 2792 f27Ix — k), fix(x) = 27912 f(27Ix — k). Suppose that
|f(x)] £ C(1+|x|)~®, with a < m + 1, and suppose that f € C™, with f©
bounded for £ < m. Then

(5.1) /dxx‘f(x)=0 for £=0,1...m

Proof:

1. The idea of the proof is very simple. Choose j, k, j’, k' so that f is
rather spread out, and f, 1 very much concentrated. (For this expository
point only, we assume that f has compact support.) On the tiny support of
fj '« the slice of f; “seen” by f},k, can be replaced by its Taylor series, with
as many terms as are well-defined. Since, however, [dx f]k( ) fjlk, (x)=0,
this implies that the integral of the product of ~f and a polynomial of order
m is zero. We can then vary the locations of f;, as given by k’. For each
location the argument can be repeated, leading to a whole family of different

polynomials of order m which all give zero integral when multiplied with f.
This leads to the desired moment condition. But let us be more precise.

2. We prove (5.1) by induction on £. The following argument works for
both the initial step and the inductive step. Assume [ dx x" f(x) = 0 for
neN, n < (If £ =0, then this amounts to no assumption at all.) Since
f® is continuous (¢ < m), and since the dyadic rationals 2~k (j,k € Z)
are dense in R, there exist J, K so that f(©)(2=/K) # 0. (Otherwise f¢) =0
would follow, implying f = constant if £ = 0 or 1, which we know not to
be the case, or, if £ > 2, f = polynomial of order £ — 1 > 1, which would
imply that f is not bounded and is therefore also excluded.) Moreover, for
any ¢ > 0 there exists 6 > 0 so that

f(x)— Z(n' J27'K) (x-277K)"| Se |x - 2JK|
n=0
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if |x - 27/K| < 6. Take now j > J, j > 0. Then

0= / dx f(x) f (2 x - 2/-7K)
£
=Y ()~ fM(277K) /dx (x-277K)" f(2ix - 2-7K)

£

+ / dx [ Z WK (x - 2"K)"}

x f(2x~2-TK).

Since [dx x" f(x) =0 for n < ¢, the first term is equal to
(5.3) (€)~! fO (2~ K) 27+D) / dxx Tix) .
Using the boundedness of the f(, the second term can be bounded by

[y it |7 @) + € [ay (14 11) |7 @29)]
ly|<d 1y[>8

(5.4) 2

' < 2eC27/¢+D /dtt’ 1+~ +2C’C/dt Ht(1+2

<27/ L G 27T (1 +6)

where we replaced the upper integration bound by oo in the first term, and

; =1 146 ~1
where we used in the second term that (1 +2/¢)7" £ {551+ 2

27749 (1 +1)~! for ¢t 2 5. Note that C;, C; only depend on C, o and

£; they are independent of ¢, 4, and j. Combining (5.2), (5.3), and (5.4)
leads to

l/dxx ’g )[f“’(Z"K)]_l [scl+(5-a(1+(5)f+12—f<°-f-1>cz].

Here & can be made arbitrarily small, and for the corresponding § we can
choose j sufficiently large to make the second term arbitrarily small as well,
It follows that [ dx x¢f(x) =0

When specialized to our compactly supported y, 7 as given by Theo-
rem 3.8, this leads immediately to
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COROLLARY 5.2. Let y, ¥ be as defined in Section 3. If (Wjx, ¥jix') =
Ok, in particular if the y i, Wy constitute dual Riesz bases, then

v e CL = mo(&) s divisible by (1 + e )E+!
¥eCl= (&) isdivisible by (1+e %)+,

Proof:

1. Since y is compactly supported, ¥ € CL immediately implies that all
the w®, £ < L, are bounded. Since ¥ is also compactly supported, obviously
|#(x)] £ C(1 + |x])~L-!1-¢, Moreover ¥ # 0 # y. All the conditions of
Proposition 5.1 are thus satisfied, leading to

/dxxf Gx)=0 £=01,...,L,

or, equivalently,

dt =~
(55) a—é—gl//‘é=0=0 Z=0, 1,...,L.

Since (&) = e~/ mo(§ + n)Z(é/iZ), and ;(0) =1, (5.5) implies

dt
—=5 My =0 ¢£=0,1,...,L.

But this is exactly the same as saying that the trigonometric polynomial m(&)
is divisible by (1 +e~%)L+1, u

Remarks.

1. If y, ¥ are merely continuous, then Corollary 5.2 does not lead to
anything new, since mg and i1y are always divisible by (1 +e%), even if v, ¥
are not continuous. (See (3.11).)

2. If some minimum regularity is required for both y, ¥, then Corol-
lary 5.2 implies a lower bound for their supportwidths. If

1

N2 NZ
mo@) =75 3 hme ™, M) = 5 Y. hne™,
n=N1 h=N|

S

with . .
hy, #0# hy,, hy #0#hy
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then
support ¢ = [Ni, N2 ,

Support $= [Nla NZ] )

(see Lemma 3.1). Together with (3.9) this implies

N-N—-1 N,—N, -1
supponw:[ 1 — Ny 2 — N ],

2 ’ 2
N Ni-N,-1 Ny—N, =1
support ¥ = ) s D) >

hence [support | = |support | = 1 (N;+N,— N, —N;). On the other hand,
weCkye Ck implies that mo(resp. 7o) is divisible by (1 +e=%)k+! (resp.
(1+e~%)k+1), This implies, in particular, Ny — Ny 2 k+ 1, Ny - Ny > k + 1.

It follows that w € Ck, ¥ ¢ ck implies that |support y| = |support y| >
btk yq.

3. Regularity for y implies zero moments for ¥. No regularity for y is re-
quired, however. In fact there exist examples (see Section 7) of biorthogonal
wavelet bases in which one of the two wavelets, say y, is much more regular
than the other, ¥. In the orthonormal case it is known that if v € C” then
it is possible to decide whether or not f € C* (0 £ s < r) by looking only
at the wavelet coefficients (f, ;). (See [27]. More precisely: f € C5(R) if
and only if | {f, w;)| £ C27/6+1/2)_ Note that here s need not be integer:
f € C** with 0 < 1 < 1 means that f is n times continuously differentiable,
and that the n-th derivative of f is A-Lipschitz, | /") (x) — f®(p)| £ C|x —y|*.
For integer s, the characterization by means of wavelet coefficients is not re-
ally correct: a slightly larger class than the n-times continuously differentiable
functions is obtained if A = 0; see [27].) This is no longer true in the biorthog-
onal case: if y € C", y € C’, with r > 7, then the wavelet coefficients (f, y;;)
can certainly not be used to characterize C*-spaces with s > 7, even if s < 7,
since for the special choice f = ¥, the wavelet coefficients (¥, ¥ ) = djodko
would satisfy any candidate for such a criterium. Another way of seeing this
is to consider the formula

F=>"f wik) Wi -

gk

It tells us that when we use the coefficients (f, ;¢ ), we are implicitly expand-
ing f into the elementary building blocks . It is clear that any condition
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of a general nature on the (f, t//jk> cannot guarantee more regularity than the
1/71;( themselves have. We can, however, also write

f=z (f, Vik) Wik -
ik

If ¥ is much more regular than y, then this means that the wavelet coefficients
(f, w;x) with the less regular wavelets can be used to characterize / @ C* with
0 < s < r,even if s > 7 regular functions can be characterized by their inner
products with much less regular wavelets.

6. Examples

Unlike the orthonormal case, it is possible, in the biorthogonal case, to
choose my so that it corresponds to a “linear phase” filter, or to a symmetric
function ¢. The filter associated with my is linear phase if

(6.1) mo(&) = e [mo(&)]

for some A € R. The 2xn-periodicity of mg then forces A € Z; by introducing a
suitable integer translation in the indices of the A, we can therefore assume
A =0. For real 4,, (6.1) reduces to

(6.2) mo(—&) = mo(&) ,
or, equivalently, to
(6.3) mo(&) = polynomial in cosé .

It follows that ¢(&) = @(~&), which implies ¢(x) = ¢(—x) since ¢ is real.
Note that this excludes the Haar case: the Haar scaling function ¢ is symmet-
ric around x = 1/2 rather than around x = 0, i.e., @Haar {1 ~ X) = PHaar (X}.
Scaling functions ¢ with symmetry around x = 1/2 correspond to trigono-
metric polynomials mg satisfying

(6.4) mo(~¢) = e mo(¢)

rather than (6.2). It follows from (6.4) that e’*/2 my(¢) is invariant under the
substitution £ — —¢&; since this function is also 4z-periodic, it is therefore
a polynomial in cosé/2. Since multiplication of this polynomial by e—%/2
reduces it to a trigonometric polynomial in £ (rather than £/2), only odd
powers of cos&/2 are allowed. It follows that (6.4) is equivalent to

(6.5) mo(&) = e~*/2cos¢/2 - polynomial in cosé .
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In all our examples we shall concentrate on my satisfying either (6.2) or (6.4).
Given my, we need to determine mg so that (see Sections 2 and 3)

(6.6) mo(§) mo(&) + mo(& + ) mo(€ +7) =1 .

The following proposition shows that we only need to concern ourselves with
symmetric my.

PROPOSITION 6.1. Let mq be fixed. Suppose myq is a solution to (6.6). If
mo(—&) = my(&), then r?z”o(é) = L [Mo(&) + mo(—¢&)] is also a solution to (6.6)
which moreover satisfies r710( &) = my(&). If on the other hand mo(—¢) =

eX mo(&), then my(&) = 1 [Mmo(€) + e~ mo(—&)] is also a solution to (6.6)
which moreover satisfies i o(=&) = e’ ﬁ(é).

Proof: Trivial (substitute 77} into (6.6)). =

We shall therefore always assume that 715 has the same symmetry property
(either (6.2) or (6.4)) as my.

On the other hand, our analysis in Sections 4 and 5 indicates that my, myg
should be divisible by (1 +e~%)F, (1+e* )L, respectively, with L, L certainly
> 1, but even larger if we want y, ¥ to be reasonably regular. It turns out

that m satisfying (6.2), respectively (6.4) can only be divisible by an even,
respectively odd number of factors cosé/2:

PROPOSITION 6.2. Assume myq is a trigonometric polynomial with real
coefficients. If my satisfies (6.2), then it can be rewritten as

(6.7) my(&) = (cos&/2)* po(cos¢)

where pg is a polynomial such that po(—1) # 0, and £ € N.
If my satisfies (6.4), then it can be rewritten as

(6.8) mo(&) = e="/2 (cos&/2)**! py(cos &)
where py is a polynomial such that po(—1) #0, and £ € N.

Proof:

1. If my satisfies (6.2}, then (see (6.3)) my can be written as a polynomial
in cosé&, my(&) = p(cos&). This polynomial can be written as

p(x) = (1+x)*q(x),

with g(~1) # 0, and £ € N (possibly £ = 0 for general g; in our case my(n) =
0, or p(—1) = 0 hence £ 2 1). Since 1 +cos& = 2cos? &/2, (6.7) follows.
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2. The same argument, applied to (6.5), leads to (6.8). =

Whether mg and m are both of type (6.2) or of type (6.4), substituting
their factorizations (6.7}, (6.8) into (6.6) leads in both cases to the following
equation:

2% 2%
(6.9) (cos g) po(cos &) po(cosé) + (sin %) po{—cosé) pp(—cosé) =1,

with k = ¢ + 7 in the first case, k = £ + £ + 1 in the second case. If we
rewrite the product of py and g as a polynomial in I—"Eﬁ{ = sin? £/2, then
(6.9) reduces to

(cos&/2)% P(sin?&/2) + (sin&/2)% P(cos?&/2) = 1
(6.10) or
(1-x)Px)+xkP1-x)=1,

where x = sin?¢ /2. All our examples correspond therefore to: (1) a choice
for £, ¢ or equivalently for ¢, k; (2) a choice of P solving (6.10) for that k;
(3) a choice for the factorization of P(sin&/2) into po(cos&) po(cos&). To
solve (6.10) we use

THEOREM 6.3. If py, p; are two polynomials of degree n,, n, respectively,
and if p,, p, have no common zeros, then there exist unique polynomials q;, q»
of degree at most n, — 1, ny — 1 respectively, so that

(6.11) pi(x) @i (x) +pa(x)qa(x) =1.

This theorem is known as Bezout’s theorem. It can be proved by expand-
ing the equation (6.11) into its Taylor series around every zero of p; or ps.
This leads to a constructive algorithm for ¢;, ¢,, for which we first have to
find all the zeros of p;, p>. On the other hand (6.11) can also be viewed as a
consequence of the fact that the polynomials constitute a Euclidean ring, and
g1, 2 can then be constructed by means of Euclid’s algorithm. This algorithm
only requires the division of polynomials, i.e., solving linear systems of equa-
tions; as a result it is easier and more accurate than the zero-based algorithm if
D1, P> are large polynomials that cannot be factored straightforwardly. More-
over, the method immediately shows that if all the coefficients of p;, p, are
rational, then the same is true for g;, ¢;. In the examples presented later in
this section, we use either Euclid’s algorithm or the factorization algorithm,
depending on which is easier.

We now apply Theorem 6.3 to the choice p(u) = (1 — u)¥, pa(u) = uF.
Since p; (1 —u) = p,(u) in this case, substitution of 1 —u for & in (6.11) shows
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that §(u) = q2(1 — u) and §(u) = q,(1 — u) are polynomials satisfying the
same equation and degree restriction. By the uniqueness of g, ¢; it follows
that g,(#) = q,(1 - u), so that the choice P(u) = q,{(u) is indeed a solution
of (6.11). In this case the equation is so simple that once the existence and
uniqueness of a polynomial P of degree at most kK — 1, solving (6.10), is
established, we do not even need Euclid’s algorithm to determine P. Rewrite
(6.10) as

(6.12) P)=(1—uw)*—u*(1 —u) P -u),
and expand the right-hand side in its Taylor series. Since we know that P is

of degree k — 1, we only need to compute the first k terms. Only the first part
of the right-hand side of (6.12) contributes to this, leading to

k—1
k+n-1Y\ ,
(6.13) Pu)=Y" ( " )u .
n=0
This is therefore the unique lowest degree solution to (6.10). There also exist

solutions of a higher degree. By the Taylor expansion argument above, their
first k terms coincide with (6.13), so that a general solution can be written as

k=1
_ k+n-1\ ,
Pu)=>Y" ( " )u +ukr(u) .
n=0
Substitution into (6.10) leads then to
r(u)+r(l—-u)=90

or r(u) = R(% — u) where R is an odd polynomial.

Remark. Equation (6.10) was already encountered in [10], where it was
solved by means of two combinatorial lemmas. The method used here is

much simpler.

Putting everything together, we see that we have proved the following
proposition:

PROPOSITION 6.4. Let my be a trigonometric polynomial (with real coef-
ficients) satisfying either (6.2) or (6.4), i.e., mg can be written as either

(a) mo(&) = (cos&/2)* polcost)
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or
(b) mo(&) = e~/ (cos£/2)* ! py(cosé) ,
with po(—1) # 0, £ € N,

If there exist any solutions myq for (6.6) at all, then there exist solutions mg
which have the same form as my, i.e.,

Mo(€) = (cosé/2)% Po(cos&) in case (a)
or
o(E) = e~ /2 (cos &/2) X! fo(cos&) in case (b)

with po(—1) # 0, £ €N.
Moreover, py and py are constrained by

(6.14)
k=1 AN 2\ K
potcosd) aceost) = Y- (7, ") (S"‘z ‘f) v (S“; 5) R(cos¢)
n=0

where k = £ + £ in case (a), k = £ + £ + 1 in case (b), and where R is an odd
polynomial.

Note that since mg(n) = 0 = mg(n), we shall need £, £ > 1 in case (a).
Let us now look at some specific examples.

6.A. The Spline Case

In this case y¢ is a B-spline function of order N, translated so that its
nodes are at the integers, regardless of whether N is even or odd. The first
few cases are

piecewise constant:  (@(x) = 1 0<x<1
0 otherwise

piecewise linear: 20(x) = 1+x -1<x<0
1—x 0<x<l1

0 otherwise

piecewise quadratic: 3¢(x) = (x+1)?2/2 -1£x50
(x—=1/22+3/4 0<x<1

(x —2)2/2 1£x<2

0 otherwise.
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The Fourier transform of y¢ is given by

VB0 = e (S082Y_ ey (126"

where k = 0 if N 1s even, k = 1 if N is odd. An alternative characterization
of n¢ is given by

N N
o) =3 (V) (1o —n+ V72D
n=0

together with the restriction that [ dx y¢(x) = 1. (As usual, |y]| denotes the
largest integer not exceeding y.) One easily checks that

wP(=x) = 20P(x), 2a10(1 —Xx) = 20110(x) .

The corresponding ymy are given by a binomial formula:

—i N
No(E) = (1 +2e lf) N e€IN2] _ p—ix¢/2 (E)és_é)

N—|N/2]

= 32 )

n=—|Ny/2|
one finds
2wmo(—=€) = umo(€) ,  arvimo(—&) = € ypme(&) .
In terms of the parameters in Proposition 6.5, this choice for my amounts to

¢ =L, and py = 1. It follows that for these my, the possible solutions 7, to
(6.6), with the same symmetry as ymy, are given by

nAMo(§) =
k=1

e~*¢/2 (cosE[2)N k= lan (sing/2)?" + (sin&/2)* R(cos{)
n=0 n

where N > 1, N+ N = 2k is even, R is an odd polynomial, and x = 1
if N is odd, 0 if N is even, as above. We shall restrict ourselves here to
the choice R = 0. In this case, the “spline pairs” myg, mg constructed here
have the remarkable property that all their coefficients are dyadic fractions
(i.e., rational numbers whose denominator is a power of 2), whatever choice
is made for N or N. (See also Table 6.1 below.) This makes these filters
particularly easy to implement on a computer.
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So far, the filters my, m, satisfy (6.6) as well as mo(0) = 1 = my(0)
and my(n) = 0 = my(m) (this is the reason why N is restricted to N > 1).

This is, however, not sufficient to ensure that the corresponding v, ¥ define
biorthogonal Riesz bases: we also need to ascertain that (3.13) and (3.26)

are satisfied. The decay condition on $ is no problem: even for N = 1,
| v@(&)] < C|¢]~1. What about decay of ¢? We can use a result from [10] to

see what happens for large N, N. It was proved in [10], pages 981-983, that,
for R=0,and N + N large
(6.15)

log, [sgp ]f,m(f)f,m(zé)f,vﬂ(«:)fw(&:)lm] ~ 8064 (N + N) .

Consequently $ has sufficient decay at oo if .8064 (N + N ) < N - 1/2, or
(6.16) N > (.8064 N +.5)/.1936 ~ 4.1653 N + 2.5826 .

If we requlre some regularity for qS as well, e.g., d) € C™, then we impose
.8064(N + N ) < N — 1 - m. It follows that the spline examples provide us
with an infinite family of pairs of biorthogonal bases with arbitrarily high
regularity:

(6.17) NpECN? e C™ if N>41653N +5.1653(m + 1)
and
(6.18) support N’ﬁwl = ‘support N,ﬁ‘/7 =N+N-1.

Note that if we require the same regularity for ,, 5{5 as for y¢, then we need

(6.19) N > 1.8064 N/.1936 =~ 9.3306 N

resulting in [support N, V| = [support N, Nl//| > 18.6612 N — 1. The esti-

mates (6.15)-(6.19) are all asymptotic for large N. For small values of N,
the left-hand side of (6.15) can be estimated explicitly. Even sharper esti-

mates for the regularity of N ﬁa can be obtained via the techniques of [14],
when feasible.

In Table 6.1 we have listed the coefficients of ymg and Nﬁﬁm for the
first few values of N, N. Graphs of the corresponding y@, N, N(E, N, N!//, and

N, NW are given in Figures 6.1 t0 6.3. For N = 3, N = 1, the dlsmbutlon
is not square integrable. (We prove this by checking the eigenvector for the
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Table 6.1. We list ymy, Nﬁrﬁo for the first few values of N, f\;, with z = e~ ¥,

The corresponding filter coefficients y#y, N ﬁizk are obtained by multiplying v/2 with

the coefficient of z* in ymq, N ﬁ?ﬁo, respectively. We also give an estimate for « such

that | Nng(é)l < C{1 + &)~ when we can prove a > .5. Note that the coefficients
of Nﬁffzo are always symmetric; for very long N;WEO we only list about half the
coefficients (the others can be deduced by symmetry).

N

N NI N,N’%O Decay of ,
1 11+ 2) 1 (1 +z) Haar basis
a=1
3 S N | a > 1.6584
2 3
iR
3 -4 -3 _ 1 -2
5 5562~ g2~ 2 a> 22777
+ iz v i+ i+ %t
11 .3 3 _4 3 .5
~ 1287 T 2% T e’
2 H{z'+2+z) 2 —§z7 i+ iz 48 a > 0.6584
1 1.2
+—Z—§Z
4 AR AR V- a>1.2777
19 ,~1 45 ,—1 45 19
+§Z +HZ +m+az
1,2 _ 3.3, 3 .4
— 32 &2t e
6 -z ttspz+ 5t a> 1.7542
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Table 6.1 (continued).

N NMg N v Mo Decay of , ~¢

271%(3527% — 70277 - 300z ° a > 2.2550

[> -]

+670z7° + 1228274 - 3126273
~3796z7% +10718z~" 4 22050

+ 10718z — 37962%-.+)

3 HzT'+3+43z+2Y) 1 —3z 434342 Not in L*(R)
3 Hz 3 -Fz - Lz See footnote*

5 — ez Bty 13 a>.7542

7 2735277 - 105z7% - 195z° a > 1.2550
+865z7* + 336273 — 348922

—307z7"+ 11025 + 11025z - - -)

9 277(-63z7% + 189278 + 4692~ a > 1.7384
— 1911275~ 1308275 +9188z~*
+ 1140273 = 29676272 + 190z !

+87318 + 87318z -+)

* 3,343 does not satisfy (3.13), but 33y and 331 nevertheless generate Riesz bases; one can
prove [ d&(1 + [E))*A(E)I < oo for A < .35026.
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(nondegenerate) eigenvalue 1 of the operator 17130 corresponding to ﬁﬁlo,

as defined by (4.1). If $ € L%(R), then the entries of this eigenvector are the
coeﬂicients of a non-negative trigonometric polynomial; see Section 4. For

= 3, N = 1, one finds that this trigonometric polynomial takes strictly
negatlve values.) For N = 3, N = 3, we can prove that qb € L?(R); in fact

the techniques of the Appendix in [10] can be used to show that fd&(1+
IEN* 133 <$(C)|2 < oo for 4 < .35026. Nevertheless, 3,35 does not satisfy (3.13);

using log,(3°2_, ("12)(3/4)") = 2.727920..., one finds that |33¢ (2 22)|
2 n=0\ 2 B 3

> C2k=3+272120.) > C [2k 221" With the techniques developed in

[7], however, one can prove that ;3 and 33y nevertheless generate dual
Riesz bases. Anyway, it can be readily seen from Figure 6.3 that 3,35 is
much more photogenic than regular. For all the other pairs listed in Ta-
ble 6.1, » NqS satisfies (3.13); we list an estimate for its decay rate. Note

that , ~¢ is symmetric around O for N even, around 1/2 for N odd. The
symmetry axis for both Y and N, Ny/ lies at x = 1/2 in all cases; for N
even, they are symmetric, for N odd, antisymmetric.

A striking feature in Figures 6.2 and 6.3 is that from some point on,
increasing N (for fixed N) does not alter the shape of N Y very much; one

sees the “wrinkles” in the corresponding Nﬁqb and N,]Vé; get ironed out as N
increases.

The functions ;3 and | ;¥ were first constructed by Ph. Tchamitchian
(see [33]) as an example of two dual wavelet bases with very different reg-
ularity properties. In our present construction they constitute the first non-
orthonormal example. (N = | = N gives the Haar basis.)

The different regularity properties of | -y and Nﬁy7 may be useful in
some applications. If all that is wanted is a fast algorithm of decomposing
f into reasonably smooth wavelet building blocks, then decomposition by
means of N, ﬁﬁzo and reconstruction via ymg may be a perfectly good answer,

even if Nﬁ‘ﬁ is not very regular. In fact, experiments with images have shown
that such a scheme leads to a much better compression rate than a scheme
that would use the same filters, but reverse the role of decomposition and
reconstruction filters; see [5]. In image analysis, one prefers to use filters of
comparable length, which is not the case here: the filter pairs of the spline
examples typically have very dissimilar lengths. For small values of N, N
this is apparent from Table 6.1. For large N, the asymptotic estimate shows
that f {coefficients in N, Mo} = N+ 2N —1 2 9.3306 N. This is without

any regularity for N, N¢ if we require that ¢ and n¢ are of comparable
regularity, then we find § {coefficients in mo} 2 18.6612 N, which is much
larger than f {coefficients in ymg} = N + 1. The next subsection gives a
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1.5
19
1_
0.5}
0
-05 . , ,
-0.5 0 0.5 1 1.5
1t 1,3w ] 1t 1,5¢
0 — 0
-1 -1
-1 0 1 2
1.5
1 1,3¢
0.5
0 |
-0.5

1 L
— 0
-1t
-1 0 1 2 -2 -1 0 1 2 3
Flgure 6.1. The functions y¢, il N,17¢ and g ~for N=1N=35.
For N = 1 (not plotted) one finds the Haar basis, i.e., 146 = 19, Wy = v,

and j p(x)=1for0 S x<1/2, ~1forl/2Sx<1,0 otherwise. We have
Zvju]
3.

BN+ 1L N = = [ N=L
support LN¢_[ N + 1, N], support l,NW support l’Nl/I [ T
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15—
o2
05}
0
_15 A
1 0 1
2
22V
1l
0
-1 ‘
i 0 1 2

-1 0 1 2 -2 -1 0 1 2 3

Figure 6.2. The functions y¢, MY~ and Nﬁ&; for I,Y =2 N =
2, 4, 6, and 8. Notice how little ;g differs from ;4. Support 5 ﬁ¢ =[-N, N],
SUPpPOrt  ~y = support  ~y = [(-N/2, N/2+1].
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1.5
1 2¢
0.5}
0——/
-0.5 L

2 2
2,69 2,89
1 1}
0 - 0
~5 0 5 5 0 5

-4 -2 0 2 4

Figure 6.2 (continued).
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1
39
0.5

-05 . .
-1 0 1 2

]
-2 -1 0 1 2 3 -2 0 2 4

Figure 6.3;The functii)ns NO, NV N,;v«qﬁ and Nﬁ'; for N=3,N=3,5,7,
and 9. For N = 1, 3,¢ (not plotted) is not square integrable. For N = 3,
336 € L2(R), but supg(1 + [€)/2|3,36(¢)| = oo. Support ,=§ = [-N, N + 1],

oy = = [Nzl Ni3
support 3,NW support 3,Nw [ 3y 3 ]



BIORTHOGONAL BASES 549

3¢

0.5 /
0

-0.5 . ,

-1 0 1 2

1 -057

-2t
-5 0 5

Figure 6.3 (continued).
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variation on these spline examples which results in filters of less dissimilar
lengths.

6.B. A Variation on the Spline Case: Filters with less Dissimilar Lengths

In the examples in this subsection we still choose R = 0 in (6.14), as
in the spline examples, but we shall determine the factors py and py so
that the lengths of mg and myg are very close, unlike the spline examples.
For a fixed k, there is a limited number of possible factorizations. To find
them, we determine the zeros (real and pairs of conjugated complex zeros)

of Y575 (*~1+m) x7, so that we can write this polynomial as a product of real

first and second order polynomials,

k-1 k—1+n jl j2
(6.20) Z( " )x”:AH(x—xj) [T x*-2Rezpx+]z:%).

n=0 Jj=1 J'=1

Regrouping of these factors leads to all the possibilities for pg and pg. Ta-
ble 6.2 gives the coefficients of myg, m, for three examples of this kind, for
k =4 and 5.

Note that k = 4 is the smallest vaiue for which a nontrivial factorization
of type (6.20) is possible, with real polynomials p; and p;. For k = 4, the
factorization of (6.20) is unique, for k = 5 there are two possibilities. In
both cases we have then chosen N so as to obtain mg and 1, as filters with
an odd number of taps (leading to symmetric 4, 4) and a difference in length
as small as possible. The corresponding functions ¢, ¥, ¢ and y are given
in Figures 6.4 and 6.5. In all cases we can prove an estimate of type (4.16),
proving that we do indeed have biorthogonal wavelet bases.

Remark. While it is important for many applications that the filter lengths
of my and my should be comparable, we feel that the examples in Table 6.2
have lost a very attractive feature present in Table 6.1: the entries are no
longer dyadic fractions; they are not even rational.

6.C. Biorthogonal Bases Close to an Orthonormal Basis

6.C.1. Biorthogonal Bases Associated to Burt’s Laplacian Pyramid

This first example was suggested by M. Barlaud, whose research group in
vision analysis tried out the filters in Sections 6.A and 6.B for image coding;
see [1]. Because of the popularity of the Laplacian pyramid scheme (see [6]),
Barlaud wondered whether dual systems of wavelets could be constructed,
using the Laplacian pyramid filter as either mg or mg. These filters are given
explicitly by

(6.21) —ae M 4 25¢7 % 4 (54 2a) + .25¢% —ae?* .
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Table 6.2. The coefficients of mg, mg for three cases of “variations
on the binomial case” with filters of similar length; corresponding to
k = 4 and 5 (see text). For each filter we have also given the number
of (cos&/2) factors (denoted N, N — these determine the number of
zero moments of i, ¥ — see Section 5). As in Table 6.1, multiplying
the entries below with v/2 gives the filter coefficients 4, A,.

k,N,N n Coefficient of Coefficient of
e~ in mg e~ in myg
k=4 0 .557543526229 .602949018236
N=4 1,-1 .295635881557 .266864118443
N=4 2-2 —.028771763114 —-.078223266529
3,-3 —.045635881557 —.016864118443
4,—4 0 026748757411
k=35 0 .636046869922 .520897409718
N=35 1,-1 .337150822538 244379838485
N=5 2,-2 —.066117805605 —.038511714155
3,-3 —.096666153049 .005620161515
4,—-4 —.001905629356 .028063009296
5,-5 .009515330511 0
k=35 0 .382638624101 .938348578330
N=5 1,-1 .242786343133 .333745161515
N=5 2,-2 .043244142922 —.257235611210
3,-3 .000197904543 —.083745161515
4,—-4 .015436545027 .038061322045
5,—-5 .007015752324 0
For a = —1/16, this reduces to the spline filter 47, as described in Section

6.A. For applications in vision, the choice a = .05 is especially popular: even
though the corresponding filter has less regularity than 4m,, it seems to lead
to results that are better from the point of view of visual perception. At
Barlaud’s suggestion, we chose therefore a = .05 in (6.21), or

mo(&) = .6 + .5cosé —.1cos2¢

(6.22) _ (9%5)2 (1 4 sin2%> .

Candidates for mg dual to this my have to satisfy

mo(&) mo(&) + mo(E +m)mo(E+7m)=1.
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By Proposition 6.1, we know that such 775 can be chosen to be symmetric

(since mq is symmetric); we also opt for M1, divisible by (cos&/2)2 (so that
the corresponding v, ¥ both have two zero moments). In other words,

mo(&) = (cos g) P <s1n2 é)

(1 - x)? (1+%x) P(x)+ x? (%—g—x) P(l-x)=1.

By Theorem 6.3, together with the symmetry of this equation for substi-
tution of x by 1 — x, this equation has a unique solution P of degree 2, which
is easily found to be

where

6. 24,
P(x)—1+§x~§x
This leads to
2
5 cos¢ 6 .2& 24 . 4¢
6.23 _ (cose 6 .28 24 . 4¢
(6.23) o (€) ( : ) (1+5sn S
_ 3 e 3 e 73 et L 1T T3 e
= "280° 56° t280° ‘tmtaso€

(6.24)

_3 e 3 s
56 ~280°

One can check that both (6.22) and (6.23) satisfy estimates of type (4.13).
It follows that these mg and m do indeed correspond to a pair of biorthogo-
nal wavelet bases. Figure 6.6 shows graphs of the corresponding ¢, ¢, ¢ and
w. All four functions are continuous but not differentiable. It is very striking
how similar ¢ and ¢ are, or ¥ and . This can be traced back to a similarity
of my and my, which is not immediately obvious from (6.22) and (6.23), but
becomes apparent by comparison of the explicit numerical values of the filter
coefficients, as in Table 6.3. In fact, both filters are very close to the (neces-
sarily nonsymmetric) filter corresponding to one of the orthonormal wavelet
bases constructed in [12], Section 4, listed in the third column in Table 6.3.
This proximity of mg to an orthonormal wavelet filter explains why the 71,
dual to myg is so close to my itself. A first application to image analysis of
these biorthogonal bases associated to the Laplacian pyramid is given in [1].
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1.5 T . , 2 .
L@ v

1.

057
0
0 -
-0.5 ‘ . ‘ -1 ‘
-2 0 2 -2 0 2 4
1.5 ' , 2

0.5
0
0
-0.5 . . . -1 . . .
-4 -2 0 2 4 -2 0 2 4

Figure 6.4. The functions ¢, a, v, ¥ for the less asymmetric variant on the
binomial examples, for k = 4 (see text). In this case support ¢ = [-3, 3],

support ¢ = [—4, 4], support y = support ¥ = [-3, 4], ¢ and ¢ are symmel-
ric around x = 0, ¥ and y around x = 1/2.

6.C.2. More Examples

M. Barlaud’s suggestion led to the accidental discovery that the Burt filter
is very close to an orthonormal wavelet filter. (One wonders whether this
closeness makes the filter so effective in applications?) This example suggests
that maybe other biorthogonal bases, with symmetric filters and rational filter
coeflicients, can be constructed by approximating and “symmetrizing” exist-
ing orthonormal wavelet filters, and computing the corresponding dual filter.
The coiflet coefficients listed in Table 3 in [12] were obtained via a construc-
tion method that naturally led to close to symmetric filters (the aim was to
obtain orthonormal bases for which both ¥ and ¢ would have a prescribed
number of zero moments); it is natural therefore to expect that symmetric
biorthogonal filters close to an orthonormal basis will in fact be close to these
coiflet bases. The analysis in [12], Section 4, suggests then

K1
mo(€) = (cosE /2% [Z (%70 ) siner2 + osing/2) |
k=0
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2
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-4 -2 0
b
¢
05/
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-4 -2 0

-4 -2 0

L

|

0 2 4

Figure 6.5. The functions ¢, r;, v, ¥ for the less asymmetric variant on _the
binomial examples for kK = 5. In both cases support ¢ = [—5, 5], support ¢ =
[—4, 4], and support y = support y = [—4, S].
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2 T
¢
it
0
-2 0 2
2 ——
¢
1_
0
-2 0 2 -2 -1 0 1 2 3

Figure 6.6. The functions ¢, 5, w, v if mg is the Laplacian pyramid filter. In
order to bring out the similarity between ¢, ¢ better, we haxe chosen the same scale
for their plots, even though support ¢ = [-2, 2], support ¢ = [—3, 3].

In the examples below we have chosen in particular

K-1
mo(8) = (cos /2% [Z (747" singro* + ating 2%
k=0

and we have then followed the following procedure:

1. Find a such that | [* d&[1 —|mo(&)[? — [mo(¢ + m)|?]| is minimal (zero in
the examples we looked at). This optimization criterion can of course be
replaced by other criteria (e.g., least sum of squares of all the Fourier co-
efficients of 1—|mg(&)|> —|mo(E+n)|? instead of only the coefficient of ¢
with £ = 0). We checked the cases K = 1, 2, 3, where the smallest root for
a was .861001748086, 3.328450120793, 13.113494845221 respectively.

2. Replace this (irrational) “optimal” value for a by a close value expressible
as a simple fraction. For our examples we chose a = .8 = 4/5 for K = 1,
a=32=16/5for K =2,and a = 13 for K = 3. For K = 1, this reduces
then to the example in Section 6.C.1.
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Table 6.3. Filter coefficients for (mg)aun, for the dual fil-
ter (M1g)pun computed in this section, and for a very close
filter (mg)coier cOrresponding to a special orthonormal basis
of wavelets (“coiflets™) constructed in [12].

n (Mo)pun (mMo)Bun (mM0)coifiet

-3 0. .010714285714 0

-2 -.05 —.053571428571 —.051429728471

-1 25 .260714285714 .238929728471
0 .6 .607142857143 .602859456942
1 .25 .260714285714 .272140543058
2 -.05 —.053571428571 —.051429972847
3 0. —.010714285714 —.011070271529

3. Since mg is now fixed, we can compute 71y. We require that mg be also
divisible by (cos&/2)2K, so that

(6.25) mo(&) = (c0s&/2)*K Px((sin&/2)?)

where Pk is a polynomial of degree 3K — 1. The same analysis as in [12],
Section 4, shows that

K—-1
Pen = 3 (57 )k ok,
k=0

thereby determining already K of the 3K coefficients of Px. The others
can be computed easily. For K = 1, P; was already computed in Section
6.C.1; for K = 2 and 3 we find

8024 , 3776

_ 14 , 3
(6.26) Py(x)=1+2x+ 5 X + 8x 355~ 255 %
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Table 6.4. Numerical values for the filters myg, mq for the cases K = 2 and 3
(see text). The third column lists the coefficients of an orthonormal wavelet filter to
which mg and 1 are very close. In order to compare the different coefficients more
easily, we have expressed everything in decimal notation; in fact the coefficients of
mg and my are rational (see (6.26) and (6.27)).

K n Coefficients of Coefficients of Coeflicients of (mg Yeoiflet
mg ;0 n<o0 n20

2 [} 575 575251895604 574682393857
+1 28125 .286392513736 273021046535 .294867193696
2 -.05 —.052305116758 —.047639590310 —.054085607092
+3 —.03125 —.039723557692 —.029320137980 —.042026480461
+4 0125 1015925480769 011587596739 016744410163
+5 0 1003837568681 0 003967883613
+6 0 —.001266311813 [ —.001289203356
+7 0 —.000506524725 0 -.000509505399

3 0 5634765625 .560116167736 .561285256870
+1 .29296875 296144508701 .286503335274 .302983571773
+2 —.047607421875 —.047005100329 — 0432207613560 —.050770140755
+3 —.048828125 —.055220135661 — 046507764479 —.058196250762
+4 (1904296875 021983637555 .G16583560479 024434094321
+5 005859375 010536373594 005503126709 1011229240962
+6 —.003173828125 -.005725661541 ~.002682418671 —.006369601011
+7 0 —.001774953991 0 —.001820458916
+8 0 .000736056355 0 —.000790205101
+9 [¢] 000339274308 0 --.000329665174
+10 0 —.000047015908 [} —.000050192775
+11 0 — 000025466950 0 —.000024465734

Py(x) =1+ 3x 4 6x% + 7x> + 30x* + 42x° — %%qﬂ

(6.27)
1921766 , 648908

6075 © 6075

In Table 6.4 we list the explicit numerical values of the filter coefficients
for my, my and the closest coiflet, for K = 2 and 3. We have graphed ¢, ¢,
and ¢ for both cases in Figure 6.7. In both cases, as in Section 6.C.1, the
biorthogonal wavelet filters are very close to a nonsymmetric orthonormal
filter (coefficients taken from Table 3 in [12]). It is worthwhile to note that
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Figure 6.7. The functions ¢, ¢, ¥, ¥ corresponding to the filters with rational
coefficients close 10 orthonormal wavelet filters, as constructed in Section 6.C.2, for
K =2 and 3. We have only shown the parts of the graphs where the functions are
significantly different from zero; in fact support ¢ = [—4, 4], support ¢ = [-7, 7],
and support ¥ = support ¥ = [-5, 6] for K = 2. For K = 3 these supports are
[—6, 6], [-11, 11], (—8, 9], respectively.
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the computation of the biorthogonal filters mq, 79, as explained by the above
procedure, is much simpler than the computation in [12] of the orthonormal
coiflet filters! This illustrates the greater flexibility of the construction of
biorthogonal wavelet bases versus orthonormal wavelet bases.
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