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20.1 Introduction

The approach presented in this chapter resulted from a concrete problem
in speaker identification. Our goal was to incorporate the wavelet transform
and auditory nerve-based models into a tool that could be used for speaker
identification (among other applications}, in the hope that the results would
be more robust to noise than the standard methods.

This chapter is organized as follows. Sections 20.2 to 20.4 present back-

ground material, 86555@ respectively, (1) how the (continuous) wavelet

transform comes up “naturally” in our auditory system; (2) a heuristic ap-
proach (the ensemble interval histogram of O. Ghitza [1]) based on auditory
nerve models, which eliminates much of the redundancy in the first-stage
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transform; and (3) the modulation model, valid for large portions of (voiced)
speech, and which is used for speaker identification.! In Section 20.5 we put
all this background material to use in our own synthesis, an approach that
we call “squeezing” the wavelet’ transform; with an extra refinement this
becomes “synchrosqueezing.” The main idea is that the wavelet transform
itself has “smeared” out different harmonic components, and that we need
to “refocus” the resulting time-frequency or timescale picture. How this is
done is explained in Section 20.5. Section 20.6 deals with various imple-
mentation issues, which are touched upon rather than explained in detail;
for details, we refer to the various articles [2-6}. Finally, Section 20.7 shows
some results: the “untreated” wavelet transform of a speech segment, its
squeezed and synchrosqueezed versions, and the extraction of the param-
eters used for speaker identification. We conclude with some pointers to
and comparisons with similar work in the Emamﬁnﬂm. and with sketching
possible future directions.

20.2 The Wavelet Transform as an Approach to
Cochlear Filtering

When a sound wave hits our eardrum, the ostillations are transmitted
to the basilar membrane in the cochlea. The cochlea is rolled up like a
“spiral; imagine unrolling it (and with it the basilar membrane), and putting
an axis ¥y onto it, so that points on the basilar membrang are labeled by
‘their distance to one end. (For simplicity, we use a one-dimensional model,
neglecting any influence of the transverse direction on the membrane, or its
thickness.) If a pure tone, i.e., an excitation of the form e** (or its real part)
hits the eardrum, then the response at the level of the basilar membrane,
as observed experimentally or computed via detailed models, is in first
approximation given by eXF, (y) -— a temporal oscillation with the same
frequency as the input, but with an amplitude localized within a mwmﬁmn
region in y by the function F,(y). In a first approximation, the dependence
of F,, on w can be modeled by a logarithmic shift: F,(y) = F(y — logw).
(Strictly speaking, this model is only good for frequencies above say, 500
Hz; for low frequencies, the dependence of F,, on w is approximately linear.}
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Some of our descriptions of the auditory system may well look naive and distorted o
the more informed reader. They are in no way meant as an accurate description of what
we realize is a very complex system. Rather, they are snapshots that motivated our

mathematical construction further on, and they should be taken only as such.




The response to a more complicated f (t) can then be computed as follows:
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{Note that we are assuming linearity here — a superposition of inputs
leading to the same superposition of the respective responses. This is again
only a first approximation; richer and more realistic auditory models con-
tain significant nonlinearities [7].) If we relabel the axis along the basilar
membrane by defining y := —loga with ¢ > 0 and B'{t,a) = ,mAP —loga),

and if we moreover define a function G by putting F(z) =: G(e™"), then
the response can be rewritten as -

mf,&umw \ \ F(t)e =G (aw) dt' dw (20.1)

\.8 F(t) w G hﬁwwv d’.

By taking %{t) := G{~t), we find that B'(t,a) = |a|~¥ (W, f)(a, t), where
Wy is the continuous wavelet transform as defined by formula (1.23) in
Chapter 1. In this sense, the cochlea can be seen as a “natural” wavelet
transformer; all this is of course a direct consequence (and nothing but a
reformulation) of the logarithmic dependence on w of F,. .
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20.3 A Model for the Information Compression after
the Cochlear Filters

The cochlear fltering, or the continuous wavelet transform that approxi-
mates it, transforms the one-dimensional signal f(t) into a two-dimensional
quantity. If we were to sample this two-dimensional transform like an im-
age, then we would end up with an enormous number of data, far more than
can in fact be handled by the auditory nerve. Some compression therefore
has to take place immediately. The ensemble interval histogram (EIH).
method of Odeld Ghitza [1] gives such a compression, inspired by auditory
nerve models. We describe it here in a nutshell, with its motivation.
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Figure 20,1

Displacement of the bastlar membrane, at one fixed point y, as
a function of time., The horizontal lines o and B represent the
thresholds for bristles of different stiffness.

Near the basilar membrane, and over its whole length, one finds series
of bristles of different stiffness. As the membrane moves near g particular
bristle, it can, if the displacement is sufficiently large, “bend” the bristie.
For different degrees of stiffness, this happens for different thresholds of
displacement. Every time a bristle is bent, we think of this as an “event”:
we also imagine that events only count when the bristle is bent away from its
equilibrium position, not when it moves back. Figure 20.1 gives a schematic
Tepresentation of what this means. The curve represents the movement of
the membrane, as a function of time, at one particular location y.

The two horizontal lines, labeled by & and B, represent two different bris-
tle thresholds, and the dots and crosses mark the corregsponding “events”
in the timespan Tepresented in the figure. Replacing the information con-
tained in all the curves (for different y) by only the coordinates (level, time,
location) of these events would already be a formidable compression. Yet
the EIH model reduces the information even more, by another transforma-
tion. Start by setting a certain resolution level AT, and a “window width”
to.. Then, for a given t, look back in time and count within the interval
[t ~to, ¢, the number N, ,(T) of successive events (for the bristle at posi-
tion ¥ and with stiffness @) that were spaced apart by an interval between
T and T + AT. Next, compute S(t,T), the sum over all @ and y of these
Nay{T). This new representation (¢, .m.,u of the original signal is still two-
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dimensional, like the original cochlear or wavelet filtering output; it is, how-
ever, often sampled more coarsely than the continuous wavelet transform.
More important, from our point of view, than the compression that this
represents, is the very nonlinear and adaptive transformation represented
by S(t,T), which can again be viewed as a time-frequency representation
{a second lock at the construction of § (t, T) shows that T~ plays the role
of an instantaneous frequency). O. Ghitza [1] compared the performance
of EIH-based tools for several types of discrimination tests (such as word
spotting) with the results obtained from LPC (linear predictive coding, a
hidden Markov model for speech); for clean speech, LPC performed better,
but the EIH-based schemes were, like the human auditory system itself,
much more robust when the noise level was raised, and provided still useful
results at noise levels where LPC could no longer be trusted. The nonlinear
squeezing of the continuous wavelet transform that we deseribe in Section
20.5 is inspired by the EIH-construction.

O
20.4 The Modulation Model for Speech

The modulation model represents speech signals as a linear combination
of amplitude and phase modulated components,

‘ K
F&) = Axlt) cos[Bx ()] + n(t),

k=1
where A,(t} is the instantaneous amplitude and

E#Auv = .wm"mx Q.u

the instantaneous frequency of component (or formant) k; n(t) takes into
account the errors of modeling (8, 9]. In a, slightly more sophisticated model,
the components are viewed as “ribbons” in the time-frequency plane rather
than “curves,” and one also associates instantaneous bandwidths Awg(t)
to each component. The parameters Ar(t), wi(t), and Awy(t) are all as-
sumed to vary in time (as the notation indicates), but we assume that this
variation is slow when compared with the oscillation time of each compo-
nent, measured by [wy(t))~'. For large parts of speech, the modulation
model is very satisfactory, and one can take n(t} = 0; for other parts (e.g.,
fricative sounds) it is completely inadequate. The parameters Ag(t), wy(t),
and Awg(t) (for those portions of speech where they are meaningful} can
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be used for speaker recognition. The basic idea is as follows. Imagine that
the speech signal can be well represented by, say, K = 8 components. For
each component, we have 3 parameters that vary in time. The signal can
thus be viewed as a path in an 8 x 3 = 24-dimensional space. This path
depends-of course on both the speaker and the utterance. During certain
portions (such as within one vowel), the 24 parameters remain in the same
neighborhood, after which they make a rapid transition to another neigh-
borhood, where they then dwell for a while, and so on. The order in which
these “islands” appear depends on the utterance, but their location in our .
24-dimensional space is believed to be independent of the utterance, and
can be used to characterize the speaker. To use this for a speaker identifi-
cation project, one must thus do two things: (1) extract the Ag(t), wi(t),
Awy(t) (or a subset of these parameters) from the speech signal; and (2)
process this information in a classification scheme in order to identify the
speaker. When LPC methods are used for this purpose [10~12], one deter-
mines in fact only the wi(t) and Awg(t), not the amplitudes Ax(f). They
are incorporated into one complex number;

z,(t) = ilwn it (t),

the zx(t) are the poles of the vocal tract transfer function

K

. 1
x@_anmg@.

It is not always straightforward to label the z(t) correctly with the LPC
method, i.e., to decide which of the poles, determined separately, belongs
to which component. To circumvent this, one works not with the zx(t)
themselves, but with the so-called LPC-derived cepstrum,

K

eal®) = = S L (t)]7,

n k=1

., for which the exact attribution of the z;(t) does not matter; this formula is
due to Schroeder [16]. This speaker identification program was developed
at CAIP (Center for Aids to Industrial Productivity) at Rutgers Univer-
sity, by K. Assaleh, R. Mammone, and J. Flanagan [10-12]. Once the
cepstrum is extracted, they use a neural network to do the classification
and identification part. They fine-tuned it until it performed so well that it
could perfectly distinguish identical twins, when starting from clean speech
signals, thus outperforming most humans!
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__
20.5 Squeezing the Continuous Wavelet Transform

Our goal is to use the continuous wavelet transform to extract reliably the
different components of the modulation model (when it is applicable) and
the parameters characterizing them. Our first problem is that the wavelet
transform gives a somewhat “blurted” time-frequency picture. Let us take,
for instance, a purely harmonic signal,

f(t) = Acosit.

We compute its continous wavelet transform (W, f){a, b), using a wavelet
o that is concentrated on the positive frequency axis (i.e., support (¥} C
[0, 00), or H(€) = 0 for £ < 0; note that E:m means that 9 is ooEmev

Woran) = [ 10 Z (0)ar @)

a

1 [ —
= 5= [ F€)Varh(ag) e® dg

o [ 5166~ )+ 5(6 + )] Va Plag) e e

= N\W Va %m%

I §5(€) is concentrated mmozsam = 1, then (Wy f}(a, b) will be concentrated
around a = Q! as expected. m:ﬁ it will be spread out over a region
around this value (see Figure 20.2), and not give a sharp picture of what
was a signal very sharply localized in frequency.

In order to remedy this blurring, the “Marseilles group” developed the
so-called “ridge and skeleton” method [13]. In this method, special curves
(the ridges) are singled out in the (a,b)-plane, depending on the wavelet
transform (Wy f)(a, b) itself (for each b, one finds the values of & where the
oscillatory integrand in (Wy f)(a, b) has “stationary phase”; for the signals
considered here, this amounts to dy[phase of (W, f){(a,b)] = wg/a, where
wq is the center frequency for ¥). From the restriction of Wy, f to these
ridges (the “skeleton” of the wavelet transform), one can then read off the
important parameters, such as the instantaneous frequency. This method
has been used with great success for various anplications: such as reliahlv
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Figure 20.2 _
Absolute value |W,, f(a,b)| of the wavelet transform of a pure tone

f.

identifying and extracting spectral lines of widely different strengths [13].
In our speech signals, we have many components, some of which can remain
very close for a while, to separate later again; components can also die or
new components can suddenly appear out of nowhere. For these signals,
the ridge and skeleton method does not perform as well. For this reason, we
developed a different approach, where we try to squeeze back the defocused
information in order to gain a sharper picture; in so doing, we try to use
the whole wavelet transform instead of concentrating on special curves.

Let s look back at the wavelet transform (20.2) of a pure tone. Although
it is spread out over a region in the a-variable around ¢ = §t~!, the b-
dependence still shows the original harmonic oscillations with the correct
frequency, regardless of the value of a. This suggests that we compute, for
any (a, b}, the instantaneous frequency w(a, b) by

wla,t) = —i{WyF 0, )] Wy f(a, ),

and that we transfer the information from the (a, b)-plane to a (b, w)-plane,
by taking for instance,

Sy F(bywe) = > Wy flak, b (20.3)

a such that Jwlax, b) —we| € Aw/2




We have assumed here that both the old a-variable and the new w-variable
have been discretized. {A continuous formulation would be to introduce,
for every b, a measure duy in the w-variable, which assigns to Borel sets A
the measure

po(4) = [ Was(aBixatelo, ) da,

where x4 is the indicator function of A, xa(u) =1if v € 4, xa(u) =0 if
u & A.) This has ezactly the same flavor as the EIH transform described in
Section 20.3: we transform to a different time-frequency plane by reassign-
ing contributions with the same instantaneous frequency to the same bin,
and we give a larger weight to components with large amplitude |W, f { (just
as components with large amplitude in the EIH would give rise to several
level crossings and would therefore contribute more}. Our Sy is also close
to the SBS (in-synchrony bands spectrum, a precursor of the EIH) ) [14] or
to the IFD (instantaneous frequency distribution) [15}. For good measure,
one can also sum the |ax|~%|Wy f{ax, b)| rather than the |[Wy f(ax, b)|, thus
renormalizing the fine-scale regions where often |Wy f(a, b}| is much smaller.

When this squeezing operation is performed on the wavelet transform of
a pure tone, we find a single rommouﬂm_ line in the {(b,w)-plane, at w = 2,
ag expected.

We can, however, refine the operation even further, and define a par-
ticular type of squeezing, which we call synchrosqueezing, that still allows
for reconstruction, even after the (highly nonlinear!) transformation. To
see this, we first have to observe that the reconstruction formula of f from
Wy f, given by formula (1.25) in Chapter 1, is not the only one. We also
have, again assuming support @ C 10,00}, -

\ " Wy f(a,b)a¥? da = \ \ F6) e Flat)a dade  (20.4)
0

[ e L] [ ftereas

T [ mm 7(0).

Il

Il

This suggests that we define

(Suf)(bwr) = > Wy flax,bag?  (205)

ayp such that |wiag, _5 —we| £ Aw/2

(without absolute values!); with w; spaced apart by Aw, we then still have
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Figure 20.3
Absolute value |Wy f(a,b)! of the sound /a-a—i-i/. A colored noise -
is present with SNR = 15 dB. The horizontal axis is sampled
at 8 kHz. The vertical axis represents different subbands (five :
octaves, split into eight equally spaced suboctaves); low indices

are associated to high frequencies.

(in the agsumption that the discretizations are sufficiently fine to be good
approximations to integrals)

S (S f)werb) = CF F(0)- (20.6)

2 .

Having the exact reconstruction (20.6) will be useful to us later on (see
the end of this section); note that such an exact reconstruction is not avail-
able for the EIH, SBS, or IFD. There is an added bonus to éz%ﬂom@cmmﬁwm.
The process of reassigning components from the {a, b)-plane to the (b,w)-
plane is not vmp.mmnr.mmvmnwm:% when noise is present, and occasionally parts
i of components that are truly different get assigned to the same wy-bin.
When this happens, the two pieces from different components are often
out of phase with each other, and cancellation takes place in the computa-
tion of Sy (but not in Sy!). Figures 20.3 and 20.4 show the unprocessed
wavelet transform and the m%wnsHOmnsmmumm wavelet transform, respectively,
: of the speech signal consisting of the two vowels /a-a~i-i/; clearly, the dif-
E ferent components can be distinguished much more clearly after the (syn-
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Figure 20.4
m%bcruomacmmnma representation of /a-a—i-if (same signal, same

.

noise level as in Figure '20.3). The components c¢an be distin-
guished much more clearly than in Figure 20.3. (Note that be-
cause the scale @ corresponds to w~l, there is also a distortion of
the vertical axis when compared to Figure 20.3.)

chro)squeezing. The extra focusing of the synchrosqueezing over gqueezing
can be seen in an example in Section 20.7- , .

One remark is in order here. Both the squeezing and synchrosqueezing
oﬁmuwﬂo_sm can be defined with any arbitrary reassigning rule — it does
not have to be governed by the instantaneous frequency. In particular,
the reconstruction property from Syf does not depend on the physical
interpretation of the reassignment rule. This means that we should not
worry about the parts of f where the modulation model does not apply
— true, the reassignment will not be as meaningful, because Emmmﬂ.ﬂwnoozm
frequency does not make much sense there, but we still haven't “hurt” the
information that was there. In fact, as the mudowﬁoﬁﬁmmmoa representation
of “august” in Figure 20.5 shows, the “s” part is still nicely localized in
the upper frequencies, where it belongs, so in practice we don't seem t0
displace such nopmodulated parts int the time-frequency plane. Of course,
the refocusing that we see in the squeezed and mu.uowhoﬂﬁmmwma transform
does depend on the physical interpretation — an arbitrary reassignment
rule would give a messy picture.
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Figure 20.5

Synchrosqueezed representation of /ow-g-A-s-t/. A colored noise
is present with SNR of 15 dB. The “s” part is the cloud in the
upper right corner.

After synchrosqueezing, the components are well-separated and can be
identified. From the synchrosqueezed representation, we can determine the
central frequencies wy(t) and the bandwidths Awg(t). How can we find
the Ax(t)? Remember our exact reconstruction formula (20.6)! If a post-
processing step separates the different components in the synchrosqueezed
plane, then we can carve out the component under consideration in the
synchrosqueezed plane, delete all the rest, and reconstruct from only this
component; this is called the selective fusion algorithm (2, 4]. The direct
summation method (20.6) provides fast and relatively accurate results; a
slightly slower but even more accurate method uses double integrals (see
[2, 4]). This is carried out for speech signals, within the modulation model
framework, in [2, 5]. From every reconstructed single component, we can
then determine Ay (t), 6x(0) so that Ax(t) cos(fx(t)) fits this reconstructed
component, within the constraint %mw@ = wi{t).

This finishes our program of extracting the modulation model parameters
from an EIH-analog based on the wavelet transform. After a (very sum-
mary) discussion of some implementation issues, we shall return to results
in Section 20.7.

I —
20.6 Short Discussion of Some Implementation Issues _

First of all, the whole construction is based on a continuous wavelet
transform. In practice, this is of course a discrete but very redundant
transform, heavily oversampled both in time and in scale. In order to be




practical, we need a fast implementation scheme. This was achieved by
borrowing a leaf from ?oummmzbamﬁv wavelet bases, i.e., by using subband
filtering schemes. For a given profile 1)(£) (close to that of a Morlet 23.@53
we identified a function ¢ and trigonometric polynomials hognt=1,

L, so that

PEV Ly gy(w)d(w)

$(20) = hw)d(w)

This means that the Fourier coefficients of %, §; can be used for an iterated
FIR filtering scheme that gives the redundant wavelet transform in linear
time. For details on the algorithm and on the construction of the filters,
see [2, 6], or Chapter 2, Section 2.5 in this book.

Next we note that the squeezing and synchrosqueezing operations en-
tailed first the determination of the instantaneous frequency w(a,b). This
was done by a logarithmic differentiation of Wy f(a,b). This is of course
very unstable when |Wy, f(a,b)| is small; note however that these regions
will contribute very little to either Sy f or Sy f (defined by (20.3) and (20.5),
Hmmwmoﬂéqv, so that we can safely avoid this problem by putting a lower
threshold on |Wy f(a, b)|. On the other hand, differentiation itself is also &
tricky business when the data are noisy; in practice, a standard numerical
difference operator was used, involving a weighted differencing operator,
spread out over a neighborhood of samples. Again, details can be found in
(2, 4].

In the previous section, we also glossed over the extraction of the wy(t),
Awy(t) from the synchrosqueezed picture. In fact, although we can often
cléarly see the different components with our eyes, extracting them and
their parameters automatically is a different matter. For instance, in “How
are you?”, an example shown in Section 20.7, the components are much
weaker in some spots than in others, yet we want our “extractor” to bridge
those weak gaps. The approach we use, developed with Trevor Hastie [18],
views |Sy f(b,w)| as a probability distribution in w, for every value of b,
which can be modeled as a mixture of Gaussians, and which evolves as b
changes; moreover, we impose that the centers of the Gaussians follow paths
given by splines {cubic or linear). We also allow components to die or to be
born. In order to find an evolution law that fits the given 18y fb,w)|, afew
steps of an iterative scheme suffice; for details, see {2, 18]. The resulting
centers of the Gaussians in the mixture give us the frequencies wg(t), their
widths give us the Awg(t).
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Figure uc 6-

mn_c.mmwma plane representation for /h-f-w-a-r-j-u?/. A colored
noise is present with SNR = 15 dB.
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Figure 20.7

Synchrosqueezed plane representation for /h--w-a-r-j~u?/. A col-
ored noise is present with SNR = 15 dB.

20.7 Results on mﬁmmow Signals

We start by illustrating the enhanced focusing of the synchrosqueezed
representation when compared to the squeezed representation of a different
example, namely, the utterance, “How are you? or /h-§-w-a-r-j-u?/; see
Figures 20.6 and 20.7. )

Figure 20.8 shows the curves for the corresponding extracted central fre-
quencies w(t). In this case, the original signal was moBmﬁwwa uo_m%. the
(pink} noise had an SNR of m&oﬁ 15 dB. .
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Figure 20.8
Curves for the central frequencies wy(t) for /h-6-w-a-r-j-u?/. A
colored noise is present with SNR = 15 dB.

~3do

Figure 20.9

Synchrosqueezed plane representation for /- =a-a—i-i---+/. A col-
ored noise is present with SNR = 15 dB. An additional white
noise is added with SNR = 11 dB.

Next, we illustrate the robustness of our analysis under higher noise lev-
els. We return to the signal /a-a-i-i/, this time with an additional white
noise with SNR of 11 dB. Figure 20.9 shows the synchrosqueezed represen-
tation of this noisier signal; although the representation is noisier as well,
the different components can still be identified clearly, and they haven’t
moved. This is borne out by a comparison of the extracted central fre-
quency curves. Figure 20.10 shows the extracted frequency curves for the
slightly noisy original of Figure 20.4. Figure 20.11 shows the extracted
frequency curves for the much noisier version given in Figure 20.9.

Finally, we also show results of a first test of the use of the synchro-
squeezed representation for speaker identification. For this first test, we
did not use the full strength of the representation, and we did not develop
our own classification either. Instead, we took our w(t), Awk(t) values,
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Figure 20.10

Curves for the central frequencies wy(t) for /a-a—i-i/, extracted
from Figure 20.4. .
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Figure 20.11

Curves for the central frequencies wy(t) for /a-a—i-i/ with addi-
tional white noise; see Figure 20.9.
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and constructed an analog to the LPC-derived cepstrum by defining

2 (t) = expliwg(t) — Awx(t)]
K

)= = O

k=1

we called this the “wastrum.” We then used the wastrum as input for the
classification scheme that had been developed at CAIP. For the experiment
we performed, the input data come from the narrowband part of the KING
database, released by ITT Aerospace/Communications Division, in April
1992. Tt is a telephone network database built with 52 American speakers,
among whom the first 26 speakers are from the San Diego region. For
each speaker, ten sessions have been recorded. The first five sessions were
recorded at intervals of 1 week. Each session is narrowband, with the
bandwidih of a telephone channel. Each session consists of roughly 50 to
75 seconds of conversational speech which contains roughly 40% of silences.
The sessions are recorded from the interlocutor’s side. The first five sessions
are within the Great Divide, which means on the West Coast. The SNR is
about 15 dB to 20 dB. This noise is introduced by the phone network. The
five remaining sessions are recorded across the Great Divide at intervals of
1 month and they are much noisier. These last sessions were not used in
this experiment. The signal is sampled at 8 kHz and quantized over 12 bits.

For the experiment, the first session of the first 26 speakers is used for
training and the following four within divide sessions are used for testing.

The classifier is a vector quantizer. Decisions are made on the basis of
the cumulated distances obtained in each frame relative to the codebooks
associated to the different speakers.

Table 20.1 summarizes the results in closed-set speaker identification ob-
tained with the LPC-derived cepstrum and the wastrum. The long-term
mean is removed from the features, in agreement with [10]. The silence
frames are removed on the basis of energy thresholds for the primary com-
ponents. The same frames are removed for the LPC approach, in order to
compare mu..hmoz% the same utterances.

The performances of the wastrum are comparable to the LPC-derived
cepstrum for the relatively clean speech, which is reassuring: we aim to ex-
tract the same cepstral-like information, albeit with very different methods,
and so we expect similar performance! The wastrum method is, however,
more robust to noise when the noise can not be considered as negligible,
since we get a lower error rate even though the noise level is significantly
higher (12 dB versus 15 dB).
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Table 20.1 :

Summary of the results obtained on KING database, within the
Great Divide, 26 speakers, first section used for training, four
other sessions used for testing. Long-term mean removal is used.

Method additional SNR | error rate
LP(C-derived cepstrum none ~ (.22

wastrum - none - 0.237
LPC-derived cepstrum 15 dB 0.33

wastrum 12.dB 0.3

- Note that we are comparing here a suboptimal version of our approach
(the Ag(t) are not taken into account, and the wy(t), Awi(t) are trans-
formed into the wastrum, that is then put through a classification scheme
not specially tailored to.our different approach) with a very much opti-
mized version of the LPC-based method. Yet even so, the wastrum method
leads to fewer errors for noisy speech than the LPC-derived cepstrum. This
indicates that we have indeed inherited (some of} the robustness that char-
acterizes true auditory systems.

The following is a short list of promising future directions to be explored:
include the amplitude information Ay(t) (obtained by selective fusion [8))
as well; develop a more direct classification scheme, without the detour
of the wastrum, and maybe even directly from the synchrosqueezed plane,
without extraction of the parameters first; and finally, use of this approach |
for other .ﬁmm.wﬁ in speech analysis.

There is some similarity between our squeezing and synchrosqueezing
methods and a technique of “résssignment” developed by Auger and Flan-
drin [17], with the same goal of “refocusing” in the time-frequency plane;
we first heard of their method after the work described here was com-
pleted. Auger and Flandrin typically work with Wigner-Ville or similar
time-frequency distributions, and their reassignment method is not limited
to one direction only (we don’t change the b variable in our scheme}; on the
other hand, their scheme is not linked to an exact reconstruction formula
such as our (20.6).
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