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8.1 INTRODUCTION

In this chapter we study the mathematical properties of two linear aBn-Wnncnbnw

analysis methods. The first is the familiar windowed Fourier transform,
o

() = \ dt AT g~ ) (O, (81)

and the second is the wavelet transform,

Counl ) = a5 ™" % at b(as™t — nbo) (1. (82)

In both cases the function fis characterized by 2 sequence of numbers labeled by 7%
the first index in ¢,,,,; Or Cpyyy labels the frequency or scale information; the second
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. .index -the .instant in time around which the frequency annonﬁoﬂme: is made.
Transforms such as (8.1).or (8.2) give the frequency content of the function f

_locaily in time, In this they are similar to music notation, which tells the music
player the notes (= frequency information) to play at any given moment. The usual
moc.—.ﬁn.ﬁ.»am».oﬂ:* (without a moving window),

FO) = [ dee™ I p(n), (8.3)

also gives the frequency content of f(#), but information concerning time localization
of, for.example; ‘high-frequency bursts cannot be read off casily from Fv). In this
sense, (8.3) lacks the time localization that both (8.1) and (8.2) possess.

The transfotms (8.1)and (8.2) can be viewed as discretizations of the following
“continuous” versions: , .

by, D) = % dt 2TV g - RIS (8.4)
ad,

@Q«Su ‘aibw&. Amumv .\8_ B _ .ﬁm.mv

noﬁnmvon&:m to the discrete lattices:

V= vy, E = nil in the windowed Fourier transform case,

(8.6)

M

a=af, b= nby a’ in the wavelet case.

Note that (8.4) and (8.5) are Hnear in the signal f(#), as opposed to another
very useful time-localization method, the Wigner transform, + which is quadratic in f
Because of this linearity, the windowed Fourier transform and the wavelet trans-
Jorm do not exhibit the interference patterns typical for the Wigner transform of
most functions f(t). On the other hand, both (8.1) and (8.2) select a window Junc-
tion g ora wavelet b as the basic analyzing tool; no such basic function is built into
the Wigner transform. Another difference is that the Wigner distribution is always
real, whether the signal to be analyzed is real or complex. The windowed Fourier
transform (8.4) is never a real function on the time-frequency plané, regardless of the
choice of g, even for real signals f(£). The wavelet transform (8.5) is real if the signal
JSis real and'if the basic wivelet b is chosen to be real as well. In some applications it
may, however, be useful to choose b complex, even for the analysis of real signals
(see Section 8.3). ) . . S

*In this chapter, we use the symbol f(¢) for denoting a time function, and the symbo! F(v) for

denoting its Fourier transform, with v denoting m.nn:mnnw_
1The Wigner distribution is discussed in detail in Chapter 9.
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Here, we shall discuss in some detail the ' mathematical properties of both
windowed Fourier transform arid the wavelet transform, We start by iaking a q
itative comparison between. thie two transforms in‘Section 8.2. We show that by

' construction the wavelet transform is particularly well suited for signals with she
lived high-frequency phenomena superposed on much lower frequencies. Tfi Sect
8.3 we study the continuous transforms (8.4) and (8.5). They have very easy im
sion formulas, also in the form of an integral transform, We show how these tra
forms can be used to build a particular set of time-frequency filtering operators w
explicit and easily computable eigenfunciions and cigenvalues.. In Section 8.4 -
turn to the discrete transforms (8.1) and.(8.2). ‘Since there exist integral transfor
inverting the continuous versions (8.4) and (8.5), it is to be expected that for s
ficiently dense meshes of type (8.6), the discrete transforms have'inverses as w
This turns out to be true, For fairly general functions & or b, one can find pairs
threshold values i, I or dg, b such that there €xists a numerically stable proced:
to recover f from the coefficients Comn (f) OF Cppppy (), provided the mesh paramet
are smaller than the threshold values, We also show that the resulting decompic
tion + reconstruction procedure really provides time-frequency localization in t
following sense: if fis essentially localized in the time interval {—7, T') and its Four
transform F is essentially localized in [}, 0], then ordy those coefficients con
%o.:&:m to time-frequency points within or close to the region [—1; T] X | -0,
are needed to reconstruct f .m@vnowmamﬁn_w. In many cases, the transforms (81)a
(8.2) are “redundant™ the functions Zmnt) (M, 1 € Z) or D) (m, n € ]
where . ,

Bmn(t) = ™20 g(r — )
and
Drn(2) = a5 blag ™t — nby) :
-are not linearly independent. For some applications, this is an advantage: In oth
- applications, we like to reduce Emm.nmncnn_w:n% as much as possible, In Section 8
we discuss the extreme case, where the &mn O By, constitute an orthonofmal basi
It turns out that in the windowed Fourier transform case, the associated functios
&mn €an only constitute an orthonormal basis if g is badly localized in either time ¢
frequency. No such restriction holds for the wavelet transform’ case. There exi
“nice” functions # such that the By constitute an orthonormal basis for L% (R
These orthonormal wayelet bases turn out to be related to a special class of filte)
- used in subband coding. We shall give a few examples of orthonormal wavelet base
and briefly explain one application. of them to image analysis, _
~ The material preserited in this chapter is a synthesis of several papers on th
wavelet transform. The wavelet transform was first proposed as a tool for signi
analysis by the geophysicist Morlet (1), [2]. The numerical success of Morlet’s mett
od prompted Grossmann to make a detailed mathematical study of the wavelet tran:
form in its “continuous form” (85)(3],[4},[5]: This resulted in an inversion formul
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for (8.5) (based on the “resolution of the identity,” see Section 8.3} and interpolation
formulas [6]. The mathematical study of the discrete case started with the introduc-
tion of “frames” (see Section 8.4) in [7] and was carried out in greater detail in [8]. In
the meantime orthonormal bases of wavelets were discovered (see Section 8.5). A
first construction made by Stromberg [9] went unfortunately largely unnoticed. A
few years later Y. Meyer nozmnnc.nﬁnm_ a different basis [10], which was extended to
more than one dimension in {11]. Other bases, numerically more useful because
they were more concentrated, were conistructed by Lemartié [12] and Battle {13]. It
was then realized by Mallat and Meyer that orthofiormal bases of wavelets could be
constructed systematically from a general framework called “multiresolution analy-
sis,” {14], {15]. This framework was applied by Mallat to vision analysis [16], [17]. It
also provided the inspiration for the construction of compactly supported orthonor-
mal wavelets in [18].
‘ It is the goal of this chapter to present some of the flavor of these different and
.« “exciting results on wavelets. Wherever the techniques that we discuss can be
" applied to the windowed Fourier transform as well, we present the two cases in
 parallel, pointing out the analogies and the differences. In most cases we shall not go
iinto the technical details of the proofs, which the interested reader can find in the
‘references. ,

8.2 Oc>r_ﬁ>..._<m.nog.1>_~_m02 OF THE WINDOWED FOURIER
TRANSFORM AND THE WAVELET TRANSFORM

To illustrate this comparison we give graphs of typical g, and b,,,,, in Fig. 8.1. We
also show their corresponding time-frequency localization lattices in Fig. 8.2, repre-
senting each g,,, or b,,, by the points in time-frequency space around which that
function is mostly concentrated. In-the windowed Fourier transform case, assuming
that [dflg()]* = 1,and [dt dg(t)>? =0 = [av v|G(v)?, the lattice points are giv-
en by

Aaﬂo, u\wﬁvoV = —‘.‘. dt H_waaﬁnvhm, .‘. dv .c_hwﬁzm.cv“nw.

In the wavelet case we again associate to every 4,,, the space localization point

I at by, (D) = nb, alff (assuming that | atflb(t)* = 1 and [ at 4b(OF = 0).

Since the function |H|, and consequently all the |H an, is even in many applications,

the choice [ dv vH,,,(V)? is not appropriate for the frequency localization, since

this integral is zero. This is due to the fact that the H,n have two peaks, one for

positive and one for negative frequencies. We therefore represent the frequency
® 0

_content of b,,, by 200 points, namely, g.&c YHyp(W)|* and g. av viH,,..(v)|?. The

4] . . —oz
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m.»msu.o 8.1 (a)A typical choice for the window fanction g = gopand a Jﬁ.n& Emn-
In this case, g(t) = =~ " exp(~¥/2), vo = m, t, = 1; the figure shows Re gy3(¢) =
7 eos (4t exp [ (¢ — 3)%/2].(b) A typical choice for the basic waveleth = by,
and z few typical ?; In this case b(1) = 2/V3 17V (1 — ) exp (—1%2)i2,'= 2,
bo = 1. .

two lattice points corresponding to the positive and negative m.mc:nnnw locali:
of .wia are thus

(nbo af’, 5™ ) = A R dt §b,n(DP, % dv __\E?S@_

O0=s*p<ex

where w, = % “dv v|H(»)|?. Figure 8.1 shows one very basic differen:

0==xv A oc
tween the windowed Fourier transform and the wivelet transform: while the s
the support of the g,,,, is fixed, the support of the b,,,,, is essentially proportio
@3’ As a result the b,,,, corresponding to high frequencies, that is, with m <
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Figure 8.2 (a) The phase space lattice
corresponding to the short-time Fourier
transform (see text). (b) The phase space
lattice corresponding to the wavelet
transform (see text). The constant &, is

given by & = %&c v H(V)]% we

A o
have assumed K to be even, and we have
chosen ag = 2.

very much concentrated. This means of course that the time-translation step has to
be smaller for high-frequency h,.., as is borne out by the phase space lattice in Fig,
8.2(b). It also means, however, that the wavelet transform will be able to “zoom in”
on singularities, using more and more concentrated By corresponding to higher and
higher frequencics.

We illustrate this by the following simple example, taken from a grossly sim-
plified problem in the synthesis of music. Typically, we need to be able to handle
relatively low frequencies, corresponding to the lowest notes, and very high frequen-
cies, corresponding to high harmonics. Suppose we want to be able to represent
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tones with frequency of the order of 2w/T. Suppose also that we want to be able to
render faithfully the “attack” of notes. This “attack” consists of very high harmonics,
at the start of the note, that die out very quickly, typically in-a time £ < 7. We have
represented one componént of such dn “attack,” very schematically, in Fig. 8.3.
Intuitively, the function f(#) in Fig. 8.3 seems to correspond to 2 signal with “fre-
quency” 2m(3/t,) = 6w/ty during the time interval [0, £}, while its amplitude on [¢,,
T]is zero. Let us compare the performances of the windowed Fourier transform and
the wavelet transform for this problem. In the first case, the support of g, and hence
that of all the g, needs to have a width of at ieast 7. The high-frequency 6m/t,
corresponds to a value for » of more or less 6m#; ! pg . In practice, however, since
' T > t,, much higher values of » than 6sp5’ #5* will be needed to reproduce, by
meadns of the g, sketched in Figure 8.1(2) (and that all have width T'), a function f
which is nonzero only in the interval [0, z,]. This is not the case if wavelets are used.
The high-frequency wavelets have very small suppott, so that the foregoing problem
(having to bring in much higher frequencies than intuitively needed) does not occur.
Moreover, even for the high frequencies corresponding to f, which correspond, in
the wavelet transform, to very negative values of 7z, and a very small time transkation
step.(see Fig. 8.2(b)), only a few of the many time steps necessary to cover [0, T]
would be needed, namely only those corresponding to [0, #;]. This is what is meant
by the “zooming in” property of the wavelets. For this kind of problem, wavelets
thus provide a more efficient way (needing fewer coefficients) for the representation
of the signal.

The foregoing example is so much simptlified that it is rather unrealistic. The
“zooming-in” faculty of the wavelets, illustrated by this example, does however play
an important role in more realistic applications. It makes the wavelets a useful tool in
the areas of signal analysis where they have been or are being tried out. These
include seismic apalysis [2], [ 1] and music analysis and synthesis [19], [20]. This same
property also makes the wavelets a choice too! for the detection of singularities [21],

flt}

tp

Figure 8.3 One component of the attack
of a note (see text). We take, as a model,

- [sin (6mtity), o=t=t
HQVIT. t=0ort=tly

The lowest frequency of interest is 273

typically 2o<<7.
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[22], which is of great interest to the' analysis of vision [16], [14], [17], and for the
study of fractals [23]. Asa final remark we note that the wavelet transform, unlike the
shiort-time Fourier transform, treats frequency in 4 Jogarithmic way (as clearly shown
by Fig. 8.2), which is similar to our acoustic perception. This is another argument for
the use of wavelets for the analysis dnd/or synthesis of acoustic signals,

8.3 THE CONTINUOUS TRANSFORMS

The mathematical aspects of the continuous versions of the windowed Fourier trans-
form (8.4) and the wavelet transform (8.5) are very similar. We shall therefore dis-
cuss both transforms here. We start with the more familiar windowed Fourier trans-
form.

- 8.3.1 The Windowed Fourier Transform: Continuous Version

‘Given a window function g8 we anmzw:ﬁ windowed Fourier transform ¢, of a func-
tion f(¢) by

ool

bV, ©) = _Te, G GED N ()

—00

The function ¢, can be considered as the scalar product of f with translated and
modulated versions g, , of the window fanction g:

AV\A.F NV = AWC._? .\.v
with .
&ui(s) = &2V g(s — ),

Here we use the notation {,) for the standard 12 scalar product, as shown by

g = R dx £*(x) g(x),

where the asterisk denotes the complex conjugate. ‘We shall denote the associated
norm by || ||, o

e

711 = [ [ast o]
The window function g may be chosen arbitrarily in L? (R). In practice, we. prefer of
course window functions that are well concentrated in both time and frequency, so

that (v, £) corresponds effectively to the “content” of S near time ¢ and around
frequency v. A special choice is the Gaussian window,
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o) = 2V e (8.7)

‘the resulting g3, are .mm_._ma 830&.&% ¢coberent states in the wgﬁnm. literature (see
for example, [24]) or Gabor wave functions in the engineering literature (after
Gabor [25]). The g3, are localized, in time-frequency space, around (v,2); that is,

.Tw. slgl s> = ¢

% AN NGYAM|? =,

where & denotes the Fourier transform of g as defined in (8.3).
The g5, also minimize the uncertainty relation inequality:

[J ds|g8, (s — D2 [J aNGd OO — v)?l = 1/(4m)>2.

In this sense the function g%, is the L*-function that achieves, of all Z2-functions, the
best phase space localization around the phase space point (v, £).

A very important, if not the most important, property of the functions g, is the
resolution of identity {24). This states that any function f € L*(R™) can be recon-
structed easily from the scalar products .

| (Guu /)= [ ds gus) [(s)
One has indeced :
Jav [ dt g,£s) @ur. f)
[avf atf ds' 96~ g(s — £) g’ — D f(s)
= Jarf as' 8(s — ") gs — ) g*(s’ = D f(s"

= f(s) [ atlg(s — O = f(s) ] alg®F* |
If therefore g is normalized, that is, if [ dlig(DH* = 1, then we find that for all
FeLHR™ ,

f=lav]dtg.{g ) (88)

The “resolution of the identity,” as given by (8.8), is valid for any choice of
g € L*(R™). However, if we make the “canonical chioce” g = g° then (8.8) has the
following nice physical interpretation. For all phase space points (v, 2), we first
project f onto the best localized function around (v, £), by means of the operation

Ww.mA WW.: .\.vu

integrating over all of phase space then regenerates I
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Remarks : ‘ . _
1. Note that the map f —>d(v, #) = { &y, f) sends a function of one variable into a
function of two. This new function is square integrable,

fav]adoG, 0 = [ ax| ) <
(this wsB.m&m,ﬂm_w follows from m_.m..mvv.. gnwn is of wo_.._nm.n alot of redundancy in
¢, and, the range of this map is a subspace much smaller than Z2(R?), For

special choices of & this subspace has been explicitly characterized. For g =
g°, for instance, we find that any such.¢ can be written in the form

1) = .”i. -0+ i V(o + 1),

where ¥ is an entire analytic function on C*, Conversely, any square integrable
& of this form lies in the range of the map f — & (see [24] for more details, and
for the original references). ;

2. The choice g = g° is special in more than one respect. Since (g% = g°,
hence

| Gor (N = ¥ Mg, (0,
we find ,
(&nf) = € 2 W(gl, , F).

This means that the windowed Fourier transforms of a function f and its Fourier

transform F can be obtained from each other by a simple 90° rotation in time-
frequency space (except for an unimportant phase factor).

It is now clear, from (8.8), that there exists a very easy inversion formula for the
windowed Fourier transform:

S=favarg, b, (89)
or _ _ .
S = favfar e™¥™ a(s — 1) br(y, b, (8.10)

Note that this is not the only inversion formula possible. This is because, as we
pointed out, the &,OE% span a subspace of L2(R?). Formulas (8.9) or (8.10) provide,
however, the “optimal” reconstruction. The same phenomenon will occur in the
discrete “frame” case; see Section 8,4, where we shall give a more detailed discus-
sion. ;

An interesting application of the above interpretation of formula (8.8) is the
following construction of time-frequency localization filters, first presented in [26].
These “filters” are analogous to the U»:Q..:BEH_W_ nEm._mBmﬂm:m operators
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T

Bosf O = [at

T

sin[W(t — t')]
-t I...N;v :

GO (8.11)

that effectively project f onto the time interval {—T, T] and then project the Fourier
transform of this restriction onto the @nnsnnnw.msﬁnﬁa [-W, W]. The function
Bwrf corresponds therefore to the “contént” of f in the time-frequency region
[—7, 1] % [-W, W). The operators B,z have been extensively studied [27], {28},

[29]; their eigenfunctions are the Slepian functions ot prolate spheroidal wave
Sfunctions, used by D. Thomson in spectrum analysis [30}. Our interpretation of
formula (8.8), as a projection onto the best possible localization around (v, 1), fol-
lowed by an integration over v, £.10 regenerate the original signal, allows us to con-
struct “time-frequency localization operators” which are similar to but different from
Bwr. For any subset § of time-frequency space we define the localization operator Py
by . . b , .

Psf= fav [dt g0: {gun ) , @.5
(e § .

These operators Ps are positive and bounded by 1,

hpsfyz0,  Ipsrll = il

There is no restriction on the shape of 5, apart from the fact that S should be mea-
surable. This contrasts with the operators Bw,r that focus on rectangles [—T, T} %
[~W, W]. Note that the cutoff defined by Ps is not “sharp” at the edges of S, in the
sense that the function Pgf will have some time-frequency content outside the set S,
illustrated by (g% , Psf) # 0 for at least some (v', ') £ S. Such a “tail” is unavoid-
able: for a bounded subset S of nan-mnnaunn@, space, no “sharp” localization operator
(sharp in both time and frequency) exists. With our choice of the Gaussian window
2% in (8.12), the tail of Psf outside’ f has very fast (Gaussian) decay, however.

For gencral sets § the operator Ps, as givén by (8.12), is well defined, but its
eigenfunctions and eigenvalues may be hard to characterize. In the special case
where $ has rotational symmetry in time-frequency space, things become much eas-

jer. In patticular, if § is the disk Sz,
Se = {(v, ) v* + £ = R,

then the eigenfunctions of Ps, are Hermite Sfunctions, and the associated eigenvalues.
are given by incomplete gamma-functions, .

Psg Hy = M(R) Hi, o (8.13)
with :

. . 1 d\*
Ho (1) = Nm...\m R/ Kl —-1/2 AN — v — il
& v e (R 2% dt €
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ke

1 . .
A(RY = m\_.&h & e,
o

This drastic simplification occurs when § has rotational symmetry because then Pg
commutes with the second order differential operator — d*/df? + 4 w2£; details can
be found in [26]. Note that the R-dependence in (8.13) is completely concentrated
in the eigenvalues A, (R); the eigenfunctions Hy, are independent of R. The eigen-
values A, (R) are monotone mnn_..mwmmnm functions of & (for fixed R); for small &, they
are close to 1 and. for large & they are close to zero. The “plunge” from 1 to 0
happens in an interval of width proportional to VR argund the threshold value n R?
that is exactly the area of the time-frequency region Sg. All these features are rem-
iniscent of what happens for the By operators [29],

'8.3.2 The Wavelet Transform: Continuous <2_mmo=

 Given a “basic wavelet” b, we define the wavelet transform @, of a function f(¢)
by

(=]

@r(a, b) = |a] 2 g‘ dt b mn = J ().

(2

—_—05

As in the windowed Fottrier transform case, the function @ can be considered as the
scalar product of f with a two-parameter family of functions Bgp

®p(a6) = (ba, 1)

t—b
Bap(t) =la| =2 b Aimlv

The parameter set for (a®) is (RM0}) X R. Again, there exists an associated “reso-
. lution of the identity”. Its proof is as simplée as in the windowed Fourier transform
case; ,

| H Z ? (8. 5 )t )

taa T T T ) .
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PP : ,
= % Mw & db ;m Ay | A @2 Eiayy By GRLy L
Taa T o
- [ o % dy [H(@))GH() F(p)
- Bd&a . i o . . .
= (] fateca [ @R =6

.00 —o0

1t follows, therefore, that

oS % W % b bap Op(ab) =, (8.14)
provided that
= % dy || T H()? < . (8.15)

We shall only consider “admissible” wavelets, that is, functions & that satisfy the
admissibility condition (8.15). If the function b(#) decays at least as fast as lf =2~
(in practice we shall assume much faster decay of b, to have good localization), then
H is continuous, and (8.15) is equivalent to requiring that » has mean zero, s shown
by . S

H(0) = % dy b(y) = 0.

For such admissible b, the resolution of the identity holds, and (8,14) provides
a reconstruction formula for f from its wavelet transform @, The analogy between
formulas (8.14) and (8.9) is no accident, In fact, both the widowed Fourier trans-
form and the wavelet transform, in their continuous versions, are special cases of
square integrable group 3&%@33&6:& corresponding to the Weyl-Heisenberg
group and the ax + b-group, respectively. It is typical for such representations to
have a resolution of the identity. Details about this general framework, and its spe-
cialization to the two cases at hand; can be found in [6]). ‘This reference also explains
why (8.9) is true for any choice of the window function g, without restrictions on g,
whereas (8.14) only holds for “admissible” wavelets b.
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For special functions b, we can restrict the integration over « in (8.14) to
positive values only. The derivation is entirely analogous, and (8.14) follows again,
provided

o O

5 dy |H)P |~ = H dy |[H()P|y| ™! < .

[¢] -

‘This is the case if, for example, |H(—y)| = |H(y)|. This is particularly so if 4 is a real

function. The constant Cj, has to be replaced by % dy |H(»)P|¥| ! in this case.

0
Another variation arises if # is chosen so that H is a real function supported
entirely on the positive half line R.. If the parameter a takes both positive and
negative values, then we still find, even if support # C [0, «),

-on w %

‘ﬁ | mm % ab by ea@,s = ﬁ % _aE-_EQV_NT @.5

—co —oo 8]

We can however also restrict « to the @8_56 half line; this is especially usefu} if the
signal f is real. Rewrite the complex basic wavelet » as

B(8) = b (2) + jba (D),

where by, b, are real functions. Because support H C [0, %), we find that b, is equal
to the Hilbert transform of by, as shown by the frequency-domain relation:

Hz(v) = ~j sgn(v) Hy(v)
where sgn( ) Is the signum function. Equivalently, we may write the time-domain

relation:

bat) = — fim % ds —— by(s),
Nﬁ.mlo:v t—s
h m . .

We then find that

% W % a5 1(g, (Bas) (B am ) + (8 B2das) (B2)asr 1]
0 Zeo

B % W % ay 1| (@) + |Hz (@)1 653 F(p)
J _
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8

\ _ um %animﬁaul (&

=3

which mB_uznm.Emﬁ
1T -1
f= W%&Q, ;vai

¢

[ 5 [ @ 1Be0 0 @) + @232 93 a2

0 e

For real functions f this can be rewritten as
o , >~ =1

f= m%&cﬁ H_EEL Re M =

O

- R\ b by @S_i.

ot

A complex wavelet transform of this type can be very useful. The decomposition of
the transform ®,(a,b) into its modulus and its phase is used intensively by Gross-
mann, Kronland-Martinet, and Morlet to detect small singularities in sound signals,
Discontinuities in for one of its derivatives (corresponding, for example, to a scratch
on a record, or the addition of a higher harmonic in a chord) result in very striking
patterns in the phase of @\ma. b), with lines in the ab-plane converging so as to
pinpoint the exact time at which the discontinuity occurred. These patterns persist
even if the signal is rather noisy. The interested reader should consult [31], [32],
[22], and [19] for these and other applications, . .

Let us return to (8.16). This can be rewritten in a form that is even closer to
(8.9). The time localization center of the By is given by

.ﬁ dt tb, s (D) = b % datlp(H* + “ dr tp()f?
= W.

oo

where we have assumed that b is normalized, % afp()|* = 1 and where we have
used b(—t) = b*(¢), since H is supposed to be real. The frequency localization is
. given by : :

L=l oz

1
\. Ay YHeop (DI = — g\ dy y|H()2

—on [+




Sec. 8.3 The Continuous Transforms , : 381

We can therefore define the functions -
Bevsy () = Buye (8) | (8.17)
with v, = ‘ﬁ dy y|H(p)|? and rewrite (8.16) as

o

=6 % av s dt By ¥, (v, B), (8.18)
where
. = —-1r% -1
Cp = ﬁ % %it@i ﬁ % ayy~ H_mc%_
Q 0
and

(v, 1) = By @ Hv.

Again (8.18) can be interpreted as an integral over all of time-frequency space of the
time-frequency localized functions b, ), weighted by coefficients expressing the
content of fnear the time-frequency point (v, £). The difference with (8.9) is that the
building blocks wo_ ) are generated by dilations and transiations, as shown by (8.17),
resulting in better time resolution at high frequencies, as discussed in Section 8.2. If
we restrict the integration in (8.18) to a subset S of the time-frequency plane, then
this defines again a QBn-m..mn:nnn% localization operator Pg, as in the windowed
Fourier case.
Psf= n.i.ﬁa_mm._,m&n Bovsy Ve (v, ).

It turns outt that there exist again special choices of & msa S for which nrn cigenvalues
and eigenfunctions of P can be given explicitly, Thesc special sets are different from
the disks in the windowed Fourier transform case; typically they cut off low as well as
high frequencies, corresponding to a _um:n_-wm.mm rather than a low-pass filter (sec Fig,
8.4).

Details of this construction can be found in [33]. The shape o.m the domain in
Fig. 8.4(b) can be changed by the choice of b, for every possible choice of b, its size
can be changed as well (see Fig. 8.5). One example of a “good” b is the choice

2pe™ y=0
EEHT& WMO.
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Figure 8.4 The difference between the
explicit filters in the windowed Fourier
transform case and the wavelet case. (a)
Formula (8.12) leads to 4 simple ,
time-frequency localization operator for
disks in time-frequency space; (b)
Formula (8.19) simplifies for special
domains cutting off low and high
frequencies. '

Figure 8.5 (a) _.uﬁnannn shapes of § corresponding to different choices for » (see
[34]). (b) The sét S, defined by (8.20) for different values of C

The sets S for which P, becomes particularly simple for this choice of » are
2y 2
(A 2D+ 94 &
(3v) .

Se= ,Ts t); (8.20)

corresponding to values of @, b satisfying
(a—-CPF+p2=c?-1
or ,

hN+wN.+th+HMO.
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Here C cantake any value =1. Figure 8.5b shows a few sets S, corresponding to
different values of C, The special role played by these particular sets S is again due
to the fact that the Ps..commute with a second-order differential operator (sec [33]).
The eigenfunctions of the Pg.turn out to be Fourier transforrns of Laguerre functions,
and ‘the associated cigenvalues are given by

@ (S (2 ).

8.4 THE DISCRETE TRANSFORMS: FRAMES

The resolutions of the identity (8.9) or (8.14) show that a signal f can be completely
and easily reconstructed from either ¢ (v, ) = {8y s, [) or p(a b) = Ba bs 1),
provided these transforms are known for all values of the parameters v, tora, b In
practice, however, the values of these parameters are restricted to discrete Jattices,
described in Section 8.1. It is not a priori obvious that f can be reconstructed from
these discretized window Fourier transforms or. wavelet mnmbmmcnam. We would
expect that reconstruction is still possible if the discrete lattice hias a very fine mesh,
and is therefore very close to the continuous-case; for very coarse meshes it seems

* clear that the coefficients will not contain enough information, rendering reconstfuc-
tion impossible. This suggests the existence of threshold values for the lattice param-
eters. In what follows we shall introduce the concept of “frames,” to study the exis-
tence of 2 numerically stable inversion procedure of the transforms (8.1) and (8.2).
We start by some generalities concerning frames,

8.4.1 Frames

Frames were introduced by Duffin and Schaeffer [34] in a framework of nonharmonic
Fourier amalysis; see also [35]. Proofs for all the assertions in this subsection can be
found in the original paper [34]; they are also reviewed in [8]: .

Let ($ ;);¢ rbe a set of elements of a Hilbert space . (In practice this set will. be
€ither (nndmn ¢ 2 OT Prndmn € 7, in H = 12 (R).) We shall call () ¢ r2 frame if
there exist A > 0, B <  such that, for all § € %,

AllFIP = 3 Ky, £FF = Bl 7|~ - (8.21)
FAN

We shall call 4 and B frame bounds for the frame (b ey IfA = B, that is, if
2. Ko 31 = 4] £112,

then we say that the (¢;), ¢ ; constitute a tight frame. 1f we define the linear oper-
ation 7' from 3 to €* (J), the square summable sequences indexed by J, by

(IF); = {dy, [, B (8.22)
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then (8.21) ensures that

H.ﬂmmnosngcozmumh\_B.n:n_omn:Qh..:\l\.__vauﬁnnﬁnmnacnnnnm dndz
will be “close” as-well, . T :
IZF = Tf 12 = 3 Kbs S — (b fIE = B
Fei
2. T is one-to-one: If = Tf"' implies f = f'.
3. T has a continuous inverse: if the sequences If and Tf' are close, then this
means that f and f'were close in the first place, [| f — f'|* < A~ Y17 - IF'|12.

Conversely, these three requirements imply (8.21). Note that although point 2/
means that f can be characterized completely by the sequence of inner products
(s )Y < 5» the stronger requirement under 3 is needed for the existence of a
numerically stable reconstruction algorithm for f from the (s, /1) ¢ » We shall see
below that the Gabor transform satisfies 2 but not 3, which explains why it suffers
from numerical instabilities. : .

~ We shall call the operator Tdefined by (8.22) the “frame opetator” of the frame
(47)s < - The adjoint operator T* of 7, from €2 (J) to ¥, is given by

T c= 3¢ b, _ (8.23)
fér

for any ¢ = {¢;); ¢ j € €2 (J). Using the standard notation 7; = 7, for two operators
N..H. N..N‘ if . . .
LT =T0
for all f € ¥, we may easily check that (8.21) can be rewritten as
.  Al=TET=B1, _ (8.24)
where 1 stands for the unit operator, 1f = f. Since A > 0, (8.24) implies that the
operator T'* T'is invertible. Let us define _ ‘
S &= (T*T)" & |
The Qw.b 7 ¢ 7 also constitute a frame; with frame bounds B~ ', A71. We shall call this
the dual frame of (b)), ¢ Moreover, we have
S= (1Y
(r+ 1)t M (Z); ¢,
_ JEJ
Fer
> {bs ) &y (8.25)

FeJ

l
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In the last equality we have commuted the sum over f with (7% T)~ 1. it is not hard to
check that this is justified if (8.21) holds. Similarly one can show that

xu.M@S@._Q;,a.ws

e .
Formulas (8.25) and (8.26) show dual mmﬁmnnm of the concept “frame.” Formula
(8.25) shows how to reconstruct f, given its inner products (b, f) with all the
elements of 2 frame, whereas (8.26) indicates a way a computing the coefficients for
an expansion of fwith respect to the &;. We shall concentrate on the reconstruction
of f from the (¢, f), but it is important to bear in mind that all the results we present
can be applied as well to expansions with respect to-the &

Formulas (8.25) and (8.26) look very much like decompositions of ¥ with
respect to biorthogonal bases. It should be noted, however, that in general, frames
are not bases: they contain “too many” vectors. Let us illustrate this by an example in
the finite-dimensional space ¥ = C2 Define &, = e;, ¢ = ~1/2 &; + V3/2 e,
day = —1/2¢e, — V372 e,, where e; = (1,0) and e, = (0, 1) constitute the standard
basis for C2. We can easily check that, for all v € C2, :

3 2
M _Ah_v.\“ <V_N = MIA\__N.

j=1

so that the ,Eu\“ 7 =1, 2, 3} constitute a tight frame, with the inversion formula

b
1]

V= 3 M JACTIA
. Pi=

The {¢ # 7= 1,2, 3} do not constitute a basis because they are not linearly indepen-
dent. In the infinite-dimensional frames we shall consider in this chapter, any finite
number of vectors will be linearly independent in genéral, but there will still be “too
many” vectors in the sense that any of them lies in the closed linear span of ail the
others. Since the vectors constituting a frame are not linearly independent, it follows
that (8.25) is not the only possible reconstruction formula for f from the coefficients
(b, f): there exist other choices W; # &, such that

F= b 1y Vs (8.27)
FA¥

In the two-dimensional example we can take, for example, ¥, = 24 ¢, + a,/ = 1,2, 3,
" where a is any vector in C2. The &g are however optimal in the sense that they are
the only choice for which one automatically has

S, =0if D 3«5 forall f € %,
JET jer

This “optimality” of the nv\ means that if we attempt to apply the reconstruction
formula (8.25) to a sequence (¢;); ¢ ; obtained from {¢;, f); ¢ ; by some adulteration,
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as a result of roundoff or other errors, then the reconstruction automatically projects
to zero any comporient in the sequence (¢y)y ¢ s that is-orthogonal to the'range of T.
This does not happen with any other choice ¥, that satisfies (8.27).

This @wn:oanoa occurs of course also for the dual formula (8.26). The linear
dependence of the ¢, implies here that there exist other choices ¢; (f) such that

.xH_.. M @CJ&... Am.wmv
R |
We can however prove that for any such sequence of nOnmmnmmEm
DIGHR = S b2 + T leg (N = by NI
feJ S A F€J

showing.that the E@. f) have the BE_BE norm of all ﬁOmQEw sequences satisfying
(8.28).
In the case where the frame is tight, (8.25) and (8.26) EBE_@ to

F2ATS G0 b (829)

PN

If the frame is not tight, then the m&.mana to be computed before (8.25) or (8.26) can
be used., From {8.24) we may construct-a converging algorithm for the inversion of

T T, | |
o =22 (- 20
| . (8.30)
nmwmaMnU.o T lwwﬂwv»

where the series converges vnnnc_mn Asmn,‘,ﬁm.mﬁuv

B-~A 2T B—A
——=1- ==

B+A = A+B B+A

hence

< 1.

T B+ A

__H 2T
A+B

_ B—A
=T

The series Am 30) no=<nnmnm &uaanmo_.n at _mwmﬂ as fast as S the mnoEmn:n series
Mn (B — \C\Qw + A 1t mo__oﬂm _..E: it is advantageous to have frame bounds
A, B that are close to each other. In many cases of ?.mnﬂnw_ interest,
(B — AY/(B + A) = BA™! — 1'is so small that only the first few terms of (8.30), or
even only the first 8_.8. suffice to compute m_.u\ with sufficient, precision,

. 2 N _
%= a+8% a8 T@ A+ m»me? {ds &L + ocms -1
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_ 2
A+ B

d; + O(BA™' — 1).

m<n= if B/A is not very close to 1, then Av\ can still be noBmEaQ by a m_BEn ;chdn
process,

- 2 -
.= imS
b; >+m.¢m_lmwn x,/
where
So,s = ¢;
Se+1,;=¢;F Sy~ o > delde, S -

éej

We are now ready to apply the frame noanﬁum to the windowed Fourier trans-
form and the wavelet transform. -

8.4.2 Frames and the Windowed Fourier Transform

As pointed out in the previous subsection, requiring that the (g,,,, f}, With g,,,,(£) =
> 0la(t — nt,), can be used for a complete characterization arid a stable recon-
struction of £ is equivalent to requiring that the (8. )m .« ¢ z cOnstitute a frame. In
this subsection we shall see that for all practical purposes, this implies votp < 1. We
shall also indicate how to find moon estimates for 4, B, and how to construct the dual
frame g, For vty > 1, there is no hope of even mpzm@_nm the basic requirements 1
and 2 of Section 8.4.1.

Theorem 4.1 Let g be any element in L2(R). Ifvy - to > 1, then there exists
FE€ LAR) such that {gun, ) =0 forall mn € Z.

In [27] an explicit construction of f is given for rational values of vy - 4. The
theorem holds also for v - #, irrational, but the proof is mote complicated (using von
Neumann algebras) and nonconstructive. If g and its Fourier transform G decay
faster than'(1 + |x{)~¢! * €, then a beautiful and much simpler argument of Landau
[36] shows that the g,,,, nm:so" constitute a frame if vole > 1.

For the critical value vof, = 1, we can-find a function g such that the g,
constitute a frame. For vo = fo = 1, an example is given by g(£) = 1 for0 = ¢ = 1,

g() = 0 otherwisc. This function g is well localized in time, but its Fourier trans-
form has very bad localization. The following thebrem shows one cannot do much
better.

Theorem 4.2  Assume that
%&RH + g <  and - %&ec + ¥)|GW)|* < eo,

—0 b=
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If vy~ to = 1, then the gmy do not constitute a Jframe. . ,

This theorem was first stated by Balian [37] and Low [38], with the more nar-
row conclusion that the g,,,,, cannot be an orthonormal basis. A technical gap in their
proof was filled by Coifman and Semmes, who also extended it to cover the frame
case (see [8]). Subsequently, a beautiful simple proof for bases was found by Battle
[39] and extended to frames in [40].

It follows that a frame with good localization in both time and frequency nec-
essarily corresponds to vo - 1 < 1. The following theorem shows the advantages of a
frame based on a function with good time-frequency localization.

' Theorem 4.3 Assume p&au
Ol = c(1 + A~ 6| = +v)™,

.\o.q. some C >0, o > 1/2. Then, for any € > 0, there exist i, V. such that, for all
fEIXR) and forall T, 1> 0 ,

:.\. - _5<=“WUD + c.%%anﬁwuﬁav .\nv:
|mto] =T+ 2,
| . iz 172
=@yl [ wiror| | [ aror| sl
, Jef =@ =7
The proof for this theorem can be found in [8]. The G, are the elements of the dual
frame of omi:vi.x ¢ 7z (see also below).
Concretely, Theorem 4.3 means that if f is mostly concentrated in [T, T,

% at fOF = (1 = 8D £

=7

and if its Fourier transform is mostly concentrated in [—{2, 0],

% aolFHE = (1 - D11

b= 0

then f can be nnnosmﬂn;mnna, up to an accuracy proportional to 3, by restricting
the summation in the reconstruction formula (8.25) to only those lattice points
(mve, nto) within a neighborhood of the rectangle [—{2, Q) X [T, 71,

| l _.\N
. :.\. oy MMD + Xmu.Was:A.Wﬁ:. .\.v: = 3(BiA) m_:q__
[nto} = T+ £(3) :
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This is the mathematical translation of the intuitive idea that the coefficients (&mn, f)
capture the “local” content of f near the time-frequency point (mvg, 1ty).

To reconstruct f from the (gmn, f), we need to know the §,,,. In subsection
8.4.1 we showed how this dual frame can be computed by an iterative procedure. In
principle, this procedure would have to be applied for every index (m, n) € Z 2. For

the special case of frames associated to the windowed Fourier transform, a drastic

simplification occurs. We have

eZVTVOT T FY(t — nto)

= 2V N gt — nto) { Benf)

Py

= M e IR0 g e r b () {8t S

Bl

= MUWEQV Amxuﬁaxcoahw = [

&l
= M.m?.mwv (grr @™V [ — nitp)).
Py

it follows that 7° T commutes with multiplication by e*™™"0f and translation by nt,.
Consequently (7" 7)™ ! also commutes with these two operations, so that

Grmn(®) = [(T" 1) 7 gmal(8) = 2ot [(T" T)™1g] (¢ — nty).

We therefore need to compute only one function § = (7" 7)7g.

. Finally, it is useful to have good estimates for the frame bounds A and B, as was
pointed out in Section 8.4.1, the iterative scheme for the computation of § converges
at least as fast as a geometric series in (B/4) — 1. For functions g with good time-
frequency localization, surprisingly little work is needed to obtain such good esti-
mates. If the translates g(f ~ nt,) don't have “gaps,” in the sense that

Slg(t = nte)? >0, - forally,

n

and if g decays fast nnoamb. (e.g, faster than (1 + |{x|)73, then the g,,,(¢) =
e*"mvola(t — nty) constitute a frame for small enough vy, that is, for all vy satisfying

0 < vp < v§P™ for some threshold value v§P™ which can be explicitly computed. A

proof of this assertion can be found in [8]; it uses the Poisson summation formula.
The same argument can also be used to compute estimates for the frame bounds A
and B [8]). These frame bounds necessarily satisfy [8]

.

A=(vg-to) ' =B. (8.31)
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In Table 8.1 we list our estimates for the frame bounds for g(x) = 2V exp (—mx?)
and various choices of vg, £5. For vg : #, = 1/4'and 1/2'we can also compute A and B
exactly, via a different method. A comparison with these exact values shows that our
estimates are pretty good (see [8].) .

TABLE 8.1 Frame Bounds for g(x) = 2"exp(—mx?)

Vo'l = _.\A ; —.‘.o . uc = 1/2

to H A _ B _ BlA to _ A _ B BIA
0.4 | 24220 | 24234 | 1.00023 04 | 3.815 3,820 | 100127
0.8 | 20817 | 20817} 1.00000 08 | 9.880 10.397 1.10691
1.2 | 8884 | 8884 | 1.00000 12 | 4.437 4447 | 1.00226
16 | 2039 | 2039 | 1.00000 1.6 | 1.020 1.020 | 1.00001
vy g = 34 ’ Vo' lo = .95

fo A B BlA to A B BIA
04 | 175 | 0180 | 1.02747 04 | 0.0039 | 0.0087 | 2.20722
08 | 3663 | 7.508 | 2.04959 0.8 | 0.524 4326 | 825997
12 | 2453 | 3.470 | 141481 1.2 | 0.515 4.161 808521
1.6 | 0850 | 0.709 | 1.09123 1.6 | 0.192 0.881 458378

Figure 8.6 shows the acm_ function g for this same example, for different values of A =
Vg - fo. In each case we have chosen vp = fp = z\u For A = 1/4, the function g is
virtually indistingnishable from a Gaussian, because A and B are very close together.
As A increases, several things happen: 1) both A and B decrease, so that
5 5 : , e : _

g= R m.w + 0 F. = HH_ becomes larger; 2) the ratio B/A increasés, so that the
higher order terms in En expansion for m become more important. This causes the
deviation of £ from a Gaussian profile to become more marked. For A = 1 the frame
breaks down (as ?.na_nﬁma by Theorem 2); the function § can still be computed (via
another method, see [41] [42]) but it is no longer a square integrable function.

8.4.3 Wavelet Frames
The machinery of Section 8.4.1 can also be m@@:na to the wavelets
Bn(t) = ag”™? b(ag™t — nbo). (8.32)

These wavelets can be considered as a “discretized” version of the continuously
labeled families in Section 8.3.1. As @ tends to 1 and by tends to 0, the discrete
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EmE.n 8.6 The dual function g for the frames g, (8} = M_x exp [2  fmvet — ot — nt, )],
with vo = fo = VX, for the values A = 0.25, 0.375, 05, 0.75, and 0.95, For A\ = 1, the duat
function g is no longer-in L2 (R).

family approaches, at least intuitively, a continuous family, and we may expect that

only wavelets b that satisfy the admissibility condition (8.15) can give rise to frames

with nondiverging frame bounds (0 <A < B < ), It turns out-that this intuition is

right. We can show that a family of wavelets (Brun)mnee 25 defined by (8.32) can

only be a frame if the function b satisfies (8.15); the frame bounds are then con- -
- strained by the inequalities

= -1 2 =
A= s aoa ay|y|TH(P =< B (8.33)
Nonadmissible # lead to a diverging upper bound, that is, B = «, The inequalities
(8.33) hold for any choices of aq, by (see [8]).

As in the continuous case, we can choose to work with wavelets that have
positive frequencies only, support & C.[0, ®). In this case, the frame uses the two
functions # and b_, with b, = band H_(y) = H(—y), and the inequality (8.33) has
to be adapted (see [8]). If only real signals fare mﬁm:ﬁoa we may restrict our atten-
tion to only b, (see Section 8.3.2).

There are some crucial differences between wavelet frames and frames in the
windowed Fourier transform situation. For instance, there exists no absolute, 2 pri-
ori limitation on a0, b -values _am&:m to frames. In fact, we can build a tight frame of
wavelets for any pair (4o, bo) [7]. This freedom in the choice of ao, b is deceptive,
however, because of the behavior of frames ‘under dilations. If the b,,,,,, based on &,
with parameters ao, b, constitute a frame, then so do the Dy, 1, based on by(x) =

v2h(yx), with frame parameters ag;- 7} by This explains, at least partially, why a
mnm.Bn can be constructed for any pair dg, bo. To eliminate this dilational freedom, let
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us restrict our attention, in the present discussion, to framies:such that ||Bl] = 1 and
I dy|y|™MH(»)|? = 1. Under this restriction, we might hope again that there exists
a critical curve b§ (ap) mnﬁwm»nu_m. the “frameable” pairs from the. “nonframeable,”
with the orthogonal bases corresponding to the curve itself. This is the sitvation for
the windowed Fourier transform case: a family (gmn)mnez €an only constitute an
“orthonormal basis if vo £, = 1 (we’ll come back to this in Section 8.5); for vg fp > 1,
the g, cannot span all of L2 (R) (see Theorem 4.1), and redundant sets correspond
t0 vo £ < 1. Itturns out however that this picture is not true in the wavelet case. In
[8] the following counterexample is established. We consider a basic wavelet
constructed by Y. Meyer [10], and look at the Yy, b, 2 family of wavelets generated
from § with g, = 2, b, arbitrary. For by = 1, these wavelets constitute an orthonor-
mal basis [10].. If there existed a nice critical curve b§ (o) separating frameable and
nonframeable values, then we would expect that the ,,,, », would not.be a frame for
by > 1 (“not enough” vectors) and might be a frame consisting of nonindependent
vectors for by < 1 (“too many” vectors). It turns out, however (see [8]), that there
exists ¢ > 0 such that, for all values of by in (1 — &, 1 + £), the associated Yy,
constitute 2 basis for Z2 (R). This baffling fact shows that the concept “time-frequen-
cy density,” so well suited for the windowed Fourier transform, is not well adapted to
the wavelet situation. _
This example shows that there exist no straightforward analogs of Theorems
4.1 and 4.2 for the wavelet case. The localization expressed by Theorem 4.3 does
have an analog; however. .

Theorem 4.4 w:bbomm that the By, (x) = ag™? b(ag ™ x — nbg) constitute
a frame, with frame bounds A, B, and dual frame (b,,,) . Assume that

JH )| = ClpP (1 4y~ T B2
where B > 0, a > 1, and that, for some vy > 1/2
Jdx(1+ kwua_w@v_u < o,

Fix T> 0,0 < Qo < Q. Then, for any € > 0, there exists a finile subset
B, (T, Oy, O3) of Z7 such that, for all f £ L* (R), ,

. (mn) e BT, b._. 0 .
, vz 12
< (BIAYA | % atlfOrF| + % dolF() |+ e\fll}-
o =7 Briirte

Emcﬂnm.umrﬁmwmnrnamnn n,nmnnmnﬁwnou %m:nsm: ,,.namnmna... mnngmmﬁbr
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Figure 8,7 The lattice (nby a7, xaz™ ko), indicating the localization of the b,,,,
[see Fig. 8.2(b)], and the two rectangles [~T; T} X [, Q4] (- LT, X [0, =]

" onwhich the signal fis mainly concentrated. The coefficients (b, f } corresponding
to lattice points 2_55 the set B, (in dashed lines) suffice to reconstruct fup to an
_error _wnovonaoump to & -

To apply formula (8.25) to wavelet frames, we need to compute the b,,,. We
may easily check that T*T, and therefore (T*7)~!, commutes with the dilations
Dy,

D D) = ag™3f(ag™ b).

It follows that

\maxzﬁwv &= hc:a\m\uozﬁﬁoﬁ ),

reducing the number of different functions to be computed.” Since T"T does not
commute with the translations by & nbo, the bq, can in general not be obtained by
translating a single function. In many applications, however, we like to use frames
that are almost tight (sec Table 8.2), in which case (see Section 8.4.1)

2
A+ B

xx:Ahv aaaﬁnu.

" Moreover, there exist special choices of  for which the dual frame is again generated:

by translations and dilations of a single function. This is the case for the orthonormal
cmmnm Emﬂ we shall n_mncmm in mmoeon 8. m ﬂ&nnn @3: = wia‘ and for the 50:02—5.
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normal bases constructed by Tchamitchian in [43]. By introducing more redundan-
¢y, we can easily construct frames based on these bases, which still have the property
that B

Bn(t) = a5™?2 b(as™t — nbo)

for 2 suitable b.

As in the windowed :Fourier transformy case, we .can show that for most “rea-
sonable” wavelets b (that is, b that satisfy the admissibility condition (8.15), with at
least some decay for 4 and H, and without big “gaps” in the family of functions
H{(a&Fy)), there exist threshold values of g, Do, 50 that choices of g, be smaller than
these threshold values jead to frames. Good estimates of the frame bounds can again
be obtained viz the Poisson summation formula [81]. Table 8.2 lists the frame
bounds A, B for a few values of ao, by for the “Mexican hat function” b(¢) = 2V3
™ Y4 (1 = 2)e~¥2. The parameter N indicates the number of “voices,” These are
introduced to obtain good frame bounds, while still working with a fixed dilation
step dp = 2. Good, tight frame bounds can also be obtained by choosing smaller
values for ay; for practical implementation, however, ¢, = 2 is much more efficient.
We may therefore choose to use several basic wavelets b7, corresponding to different
“voices,” that is, having slightly different frequency ranges. The frame then consists

TABLE 8.2 Frame bounds for wavelet frames based on the Mexican hat-function
hit) = 2V3 771 — Be-22. The dilation parameter ap = 2 in all cases;
N is the number of voices {see text).

N=1 N=2
bo A B BIA B A B BlA
025 | 13.091 | 14183 1.083 025 | 27.273 | 27.278 1.0002
0.50 6.346 | 7.092 1.083 0.50 § 13.637 | 13.639 1.0002
0.75 4.364 4.728 1,083 0.75 9,091 9,093 1,0002
1.00 3.223 3.596 1.116 1.00 6768 | 6.870 1.015
1.25 2.001 3.454 1.726 1.25 4834 6.077 1.257
1.50 0.325 4221 12.986 1.50 2609 | 6483 2.485
1.75 0.517 7.276 | 14.061

N=3 N=4

bo | A B BIA . Bo A B | BA.

0.25 | 40914 | 40914 | 1.5000 0.25 7| 54.552 { 54.552 | ‘L.000D:
0.50 | 20.457 | 20.457 1.0000 0.50 | 27.276 | 27.276 1.0000
0.75 | 13.638 | 13.638 1.0000 075 | 18.184 | 18.184 1.0000

1.00 | 10.x78 | 10279 1.010 . 100 | 13,586 | 13.690 1.007
125 7.530 8.835 1.173 1.25 § 10.205 | 11,616 1.138
150 | 4.629 9.009 1947 - 1,50 6594 { 11590 | 1758

-1.75 1.747 9.942 5691, - 175 2928 [ 12,659 4:324 -
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of (b, ymn €Z;7=0,...,N— 1, where Nis the number of <omnnw. In practice, we
,onn: choose o

(1) = 27 (2N 1),

see [19}, Hmm_ .ﬂ._n computation of. mnm_.:n Uocnam for these _,.ntnm is entirely analo-
gous to the case N.=-1 (see [8]).

Finally, we'd like to remark that very special wavelets b :ﬁ.n been developed
for which the decomposition of a (sampled) function into its wavelet component can
be carried out very fast, in a numbeér of steps proportional to the number of samples
(and thus faster than an FFT!). This construction can be found in TE_

8.4.4 An Advantage of Redundant Frames: Less Precision on the
Coefficients is Required

Morlet noticed, some time.ago, that in numerical wavelet calculations, it often suf-
ficed to calculate the wavelet coefficients to a precision of, say, 1072, in order to be
able to reconstruct the original signal with a precision of, say, 1073, This rather
surprising fact can be explained as a consequence of both phase space localization,
and “oversampling.”

Time-frequency localization is necessary to restrict oneself to a m::m number of
coefficients. We cannot hope to control an infinite number of coefficients if they can
all induce an error of the same order. The role of “oversampling” is the following,
Let us go back to the frame operator T defined in Section 8.4.1:

T L2 (R) = 8473

mﬂ\uga = Aaviz. .\.vu
where &5: stands for either b,,,, or g,,,. Since the ¢,,, constitizte a frame, this
operator is bounded and has a bounded inverse on its closed range. The operator T'is
. onto (that is, Range T = ¢ NANNVV if and only if the &,,,, constitute a basis. In general,

:oiﬂ.nn the &,,.,, are not independent, and Range T is a proper subspace of €2(Z2).
The inversion procedure,

£= 2 Gmn) A ),

when applied to elements ¢ of £2(Z%) not necéssarily in Range T,

M Aa_uiavz Cinens

1,77

consists in fact of (1) a projection of £2(Z%) onto Range Tand (2} the inversion of
on s range (25 discussed in Section 8.4.1) We shall model the finite precision of
numerical calcaiations by adding random “noise” to the coefficicass ($pn, [, thus
leading to modified coefficients ¢,,.,{ f). The “noise” component of these coeffi-
cients “lives” on all of £(Z?). If we apply the inversion procedure, this component
will therefore be reduced in riorm by the projection onto Range 7. This reduction
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will be the more pronounced the “smaller” Range Tis, as a subspace of £ %(Z?), that is,
the more pronounced the oversampling or redundancy in the frame. The calcula-
tions in the sequel show how this works in practice.’

Let us assume that we are interested in signals f that are essentially localized in
the time interval [—7, 7'}, and in the frequency range [~), 2] (in the Weyl-Heisen-
berg case) or [—{);, =] U [0, O] (in the wavelet case); that is,

% LFOP = 2| 7|2

=71

and

[ a0 = e

fw] = 0

or

ﬁ \, do> + R aL |F()I? = &2]| 7|12

[l =0, o] = £,

Then, by Theorems 3 and 4, there exists an “enlarged box” &, such that

|

where ¢ denotes either g or b. Since B, is 2 finite subset of ZZ, we restrict ourselves
therefore to the finjtely many coefficients (d,,,,,, .

. In practical calculations, the coefficients {¢,,,, ) will be computed with finite
precision. Let us take the following model for the errors. Assume that the coeffi-
cients to be used in the calculations are given by

LS = Brrrss £) + Vo,

where the vy,,,, are identical independently distributed random variables, with mean
‘zero, and with variance 8%

- M ) Aﬁvﬁav: Anvﬁa. .\.V : = WAN\.}VH\N@_.\.,_“

(m,n) € B,

Elyant = 82
This means that the (b,,,,,, /) are known with “precision” 8. Note that our model is
only a first approximation. In general the Pmn, and hence the {d,,,, f}, are not
linearly independent, which means that the roundoff errors should not be regarded
as independent random variables. With the above approximation, we find that the
estimated error between fand a partial reconstruction, using only the finitely many
coefficients associated to (m,71) € B,, and even those only with finite precision (i.e.,
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replace (brnn, f) BY Uy (), is given by

_Mﬁ :\.l M Ui ) (bpn)”
(mn) €8, .

'

- l:n -3 ?L-_A?aét S V()"

(mn) € B, (mn) € G, -
< 9(B/A) £%| |2 + A7282N,,

J (8.34)

where N, = #%, and where we have used E(y,.,,) = 0, m?.i: 43 ') ™ B By’ 8%,
and _ﬁﬁixvz“m = AN&H«V ~Av§=_m A\mlnmﬁvuxa_m =A%
The “reduction of calculational noise,” observed by Morlet, is contained in the
second term in (8.34), more particularly in the factor N.4~2. Let us show how.
Assume that we are considering a Weyl-Heisenberg frame, Eon, With B = A. If
we assume that %, is large with respect to the lattice mesh, then (see Theorem
3) . _ -

470

._\O.no.

N, = #RB, =

On the other hand, if the frame is almost tight (i.c., B = A), we find, by (8.31),
= (v - 7)™
n.ﬁqn assume ||gl] = 1). Hence
N.AT2 = 4TQ (vg - ty). : (8.35)

If the g, had constituted an orthonormal basis, then (provided we neglect the loss
in phase space localization due to Sn use of an orthonormal basis) this factor would
have been

Q< A” Nvo..n.—o.p. basis *= %N‘.D Am wav

The frame gives n_Em a net gain of @o #5)~ " with respect to the orthonormal basis
situation. .

Something similar happens for wavelets. In this case we don’t have such a
simple expression for N¢, but we can easily see that the same phenomenon takes
place by the foliowing argument. Suppose b, a,, by are chosen so that the frame
is almost tight, A = B. Gonsider now the frame with the same b, a,, but with
b = bo/2. This frame will obviously also be close to tight, with A' = B’ = 2A. On
‘the other hand, there are twice as many points in the graphical representation of this
new frame for every n.nnsnpn% level. Hence N; = 2N,. Combining these two, we
find N A'~2 = 16N, A™2, that is, halving by leads to a gain of 2 in the total error on f,
for the same precision on Em coefficients.
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. For the frames used by Morlet when he noticed this phenomenon, which were
heavily oversampled (for example, he used up to 15 “voices™) a gain factor of 10 or

vision analysis [16], part of the reduction is a.consequence of the fact that, urdike the
original signal, the coefficients c,,,,,( ) at every fixed m-level are distributed around
zero, with a sharp peak at zero, This apparently makes it possible to reduce drasti-
cally the number of quantization steps in the Cinny Without significantly altering the
quality of the reconstructed signal [16], _ .

8.5 ORTHONORMAL BASES

The frames studied in the Pprevious section are usually redundant, in the sense that
the functions in the frame are not linearly independent: (any one of them lies in the
closed linear span. of all the others). This redundancy. is a useful feature in many
applications. In other applications, we prefer to reduce the redundancy as much as
possible; in the extreme situation the frame becomes linearly independent. A par-
ticularly interesting case is presented by orthonormal bases, Standard examples of
orthonormal bases are given by _

Lifor0=t=j o ‘

81 = ﬁo. otherwise (837)
] ty = 1, Vg =1

for the windowed Fourier transform, and by the Haar basis,

Lfor0=¢t=<1/2
—Lfor,1/2=s <1 .(8.38)
0, otherwise

b(t)

Ao =2, by =1

for the wavelet case. The n_on.n%ou&:m 8mn 20d by, constitute orthonormal bases

' of L? (R), with, however, very bad frequency lfocalization, since G(w) and H(w)

"+ decay as [w] " for lw] =, This section discusses how this situation can be
‘improved. _ . .

8.5.1 Orthonormal Bases and the Windowed Fourier. Transform
An orthonormal basis is 2 frame with frame constanis 4 = 8 = 1 {Coaversely, a

frame with frame bounds 4 = B = L, consisting of normalized vectors, [0 = 1 for
& necessarily an orthonormal basis.) If the mnctions

every j € g

*The index f uséd here shouid not be confused with the symbol § for the mn:wnn root of —1.
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Brmn() = €T g(t ~ p, 1) - (8.39)

noummn:ﬂn an orthonormal basis, then by ,Am.m 1) this va:nm Volo = 1. It follows from
Theorem 2 that g must necessarily have bad localization in either time or frequen-

cy,
%&m Plg®)ff =w or %&E em_.QA,eu_m = o,

‘= -0

It is therefore impossible to do much better Ewn. (8.37). It turns out we can do
slightly better: in [45] an orthonormal basis of type (8.39) is constructed with
Vg = NO =1 and

0 r= -1

o = sin (z +NCﬁ
,(t— mm ﬁ (- :an

R=t=n+1,n€N.

This function is continuous and it is differentiable everywhere €xcept in £ = *1,
Both g and G are absolutely integrable,

fatlg®) <, [do |Gy <=

which is indeed an improvement over (8.37). However, I ar tg(e)|? diverges.

It turns out, rather surprisingly, that we can do much better by a slight variant
on the construction (8.39). This is outside the scope of the present chapter, so that
we will only lightly touch on the subject. If G is'well localized, then the G,,,, as given
by (8.39) can be viewed as a “one-bump” function G, translated in frequency,
Gmo(v) = G(v ~ muy,), and multiplied by 270" in order to obtain the time local-
ization, Wilson proposed in [46] to generate time-frequency localized functions hav-
ing two “bumps” in frequency,

Youn(8) = &, (2 — nty), neZz . ) AW.AO.V
with . . o . ,.
Sm0) =l =) + A (vt o), m €N,
where the SaV), f2(v) are both peaked mnoﬁ.,.m. v=0. mn_mﬁ.m an explicit construc-
tion for an orthonormal basis of this type and produced numerical evidence that the

J# in his construction have €xponential decay in both time and frequency. Wilson’s
basis has the attractive property that

&N
._. dr .@.*:‘waﬁﬂv MMM am.si. n'(e)
o , (8.41)
iflm —m'|>1

- : W2, Y, = -
= L v W) v Wy (v) =0 or if|lm—m'|=1ln—-n|>1.
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In [47] a proof of the exponential decay of Wilson’s basis is sketched. If we are
willing to give up (8.41), then much simpler “two-frequency-bump” bases of type
(8.40) can be constructed, as shown in [48). The Wilson basis in [48] has “bumps”
that all have the same shape; that is,

500 = LA = £

is independent of m. The function fis proved to have exponential decay in time and
in frequency, and can be obtained as a superposition of Gaussians,

8.5.2 Orthonormal Wavelet Bases

The situation is very different in the wavelet case: much nicer bases than the Haar
basis exist. The first constructions are due to Stromberg [9), to Meyer [10], and to
Battle [13] and Lemarié [12]. In the Meyer basis the function » has 2 compactly
supported, infinitely (many times) differentiable Fourier transform H. It follows that
b itself is infinitely (many times) differentiable, and that it decays faster than any
inverse polynomial: for all N, there exists Cy so that

bl =C 1+ gy~

For practical purposes, however, the constants Cy turn out to be so large as to give
rather bad numerical localization properties. The Stromberg and Battle-Lemarié
bases have less differentiability (typically they are k times a_mnnmnzm,u_nuu but they
have exponential decay in time,

()] = e,

The annm% constant « tends to zero as & Anrn degree of differentiability of &) tends
to o, ,

The first constructions of orthonormal bases of wavelets were generally the
result of 2 lot of ad hoc ingenuity, together with seemingly miraculous cancellations.
This picture changed with the advent of multiresolution analysis, an elegant frame-
work developed by Mallat and Meyer [16], [15], into which all existing nice wavelet
bases fit, and that can be used for other wavelet bases constructions. In particular, it
can be used to construct orthonormal wavelet bases with compactly supported basic
wavelet # [18]. These bases turn out to be related to a special type of quadrature

" mirror filters. A detailed exposition of many aspects of this construction is given in
[18]; a summary of the ideas of B:Enomo_nﬂ_o: mb&%m_m anda mwnnnw of the construc-
tion oh, Emu will mumwnm rnnm :

8.5.3 Multiresolution Analysis

The idea of multiresolution analysis is to write L-functions £ as a limit of successive
approximations, each of which is a smoothed version of J, with more and more
concentrated smoothing ?:nﬂ_oa The successive approximations thus correspond
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to different resolutions, whence the name multiresolution analysis. The successive
approximation schemes are also required to have some translational invariance;
More precisely, a multicesolution analysis consists of

1. A family of embedded closed subspaces V,,, C Z%(R), m € 7

CVCVICVa GV, CV,C--- (8.42)

such that
2. M Ve =10} | Vi = 2Ry (8.43)
meEzZ mezZ,
and
3. fe€V, o f(2)¢v,_, - (8.44)

Moreover there exists ¢ € V; such that for all #: ¢ Z, the d,,, constitute a Riesz
basts for Vi, that is, .

4, Vin = linear span .Eui.a,, neg} (8.452)
and there exist 0 < A =< B < « such that, for all (c,.),.cz € €3(2),

' 2
A2l =S cnbmn || <BS e, (8.45b)

Qn@npm@mmmwa&:mucmmmm which is also a frame. This excludes bases in
which the angle between basis vectors can become arbitrarily small.). Here
Prn(x) = 2772 (2 =y n). Let P,, denote the orthogonal projection

onto V,,,. Itis then clear from (8.42), (8.43) that lim P,,, f = £ for all S e L3(R).

e —

The condition (8.44) ensures that the V. correspond to different scales, while
the transtational invariigce

f€Vm—=f(—-2"n)¢cv,, foralln € Z
is a consequence of (8.45).

Example 8.1

>a§namro:mwon=an Qmaw_nmmﬁrn mo:oﬂnm. Take the V,,, to be spaces of piecewise
constant functions, : .

Vin = {f € I*(R); f constant on [2™n, 2™(n + D), for all n € Z}.
‘The conditions (8:42)—(8.44) are clearly satisfied. The v_.o_.nnaoam P, are defined
by
2"y + 1)

ﬁ‘a.\._ﬁs;.m.._?+ =27 .\\ dx flx).

2"n
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The successive Py, S (as m decreases) do therefore correspond to approximations of fon
a finer and finer scale. Finally, we- can choose for ¢ the characteristic fanction of the
interval [0, 1],

_ . 1, 0=a<l1
@C&i *9 cn_un_d&mn.

Clearly, ¢ € Vo, and V,,, = Span {$,n}.

In what follows, we shall revisit this example to illustrate the construction of an
orthonormal wavelet basis from multiresolution analysis.

Note that, in view of (8.44), the condition (8.45) may be replaced by the
weaker condition V5 = Span {¢,}. Moreover, we may, without loss of generality,
assume that the o, are orthonormal (which automatically implies that the &,,,, are
orthonormal for every fixed mz). If the ¢, are not orthonormal to start with, we may
then define & as 5@ inverse Fourier transform of the following frequency func-
tion; :

- —1/2
O(E) = € L) A i g+ Nﬁ_mv (8.46)

kEZ

where we implicitly assume that @, the Fourier transform of ¢, has sufficient annﬁa to
make the infinite sum converge. We find that

mmvmb .TvO‘L = m@mb Am_mo:u. H

while, moreover, the o, are orthonormal. See [15] for a detailed proof.

Example 8.1 {continued)
" In this case the by, aré orthonormal from the start, If we define

M+ 1)

?é-@%bé-é % axf (), (8.47)

2y

- then
Poud = Con(f) Sonn

Let us look at the difference between P, f and the next coarser approximation Py, + 1.f.
We may easily check that

Avﬁ..: n - ./\I Q.VE. 2n + Auw: N:+Hv

Hence

e s = 2 om 20CF) + Em 2mea )
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This again exhibits P,, , , f a5 an averaged version of m.ui J, that is, as a larger-scale
approximation. The difference between these two successive approximations is given
by , :

Prf = Prss f =5 3 (o 20l ) = Gom 2ms sG] [ n = o )

The remarkable fact 2bout this expression is that it can be rewritten under 2 form very
similar to (8.47). Define ) :

1, 0=x<1/2

) =d(2x) (2~ 1) ={~1, 12=x<] (8.48)
0, . otherwise
Then
Prmn(2x) = 2772 (2~ "x — 1)
1 (8.49)
”.ﬂ Aavi,la 21 — Gom—1 N:+—v.
and .
Qi1 f=Puf ~ P f
, (8.50)
= M &~=+~B A.\.v &—3+_ n
where
1

A BA.\.V = AGE+— B_.\.v = /\M ?.5 Nnﬁ.\.v - h!a.Nr.:.A-.x.v_.

What is 50 remarkable about this? Note first, as ¢an easily be.checked from. (8.48), that
for fixed m the ., are orthonormal: The decomposition (8.50) is thus the expansion,
with respect to an orthonormal basis, of O+, f, the orthogonal projection of f onto
W41 = P L? — Py L%, that is, onto the orthogonal complement of Vipiq in Vi,
The surprising fact is that, as is clear from (8.50), the W,, are also.(as are the V)
generated by the translates and dilates .., 0f 2 single function 1. Once this is realized,
building a wavelet basis becomes' trivial. Clearly (8.42)—(8.43), together with
W L Vi, Viey = Vi @ W,,,, imply that the W,,, are all mutually orthogonal and that
their direct sum is L*(R). Since for eachi m, the set (Ui, 7 € Z} constitutes an ortho-
normal basis for W,,, it follows that the whole collection {{i,,; 7, 2 € Z} is an ortho-
normal wavelet basis for ZZ(R).

In the example above, the function ¥ is nothing but the Haar function (see
(8.38)), and it is therefore no surprise that the ¥, CONStitute an orthonormal basis.
The example does, however, clearly show how this basis can be constructed from a
multiresolution analysis. Let us sketch now how the general case works. .

For a multiresolution analysis, that is, a family of spaces V,, and a function )
satisfying (8.42)—(8.44), we may define (as in example 8.1) W, as the orthogonal
complement, in V,,,..;, of V,,,, , .
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Vo1 =V @ W,,, W, LV, . (851)
Equivalently,
= 0, L3%R), withQ,, = Py — P (8.52)
It follows immediately that atl the W, are scaled versions of W,
fE W, & f(2m) € W, (8.53)
and that the W, are orthogonal spaces which sum to L2{R),
IHR) = smwwﬁs (8.54)

Because of the properties (8.42)~(8.45) of the V,,,, it turns out [14]; [15] that in W,
also (as in V) there exists a vector \ such that its integer translates span W,, that
is,

Span {on] = Wo, (855)

where A denotes the closure of 4, that is, the set of all the functions in Z2(R) that can
be approximated with arbitrary precision by elements of A. As before, Y, (x)
stands for 272 Y(2™"x — n), for m,n € Z. It follows immediately from ¢8.53) thal
then

Spant {yn} = W,

for all m ¢ 2.

Intuitively we may understand this similarity between W, and V;, by the fact
that V_, is “twice as large” as V,, since V;, is generated by the integer translates of 2
single function ¢y o, while V_., is generited by the integer translates of fwo functions.
namely, &_; ¢ and ¢_, ;. It therefore seems natural that the orthogonal comple:
ment Wy .of V, in V_, is also generated by the integer translates of a single function.
This hand-waving argument can easily be made rigorous by using group representa
tion arguments. A mere proof of existence of a function ¥ satisfying (8.55) would
however, not be enough for practical purposes. A more detailed analysis leads to the
following algorithm for the construction of ¥ [14], [15]. We start from a function ¢
such that the ¢, are an orthonormal basis for V, (if necessary, we apply (8.46)).
Since

$ € Vo C V., = Span {p(2- ~ n)},

there exist ¢, such that

d(x) = > Cn $(2x — 7). : - (856
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Define then
Y= (= 1" Gy b(2x+ ) D)

The corresponding Yi,,, will constitute an orthonormal basis of W, [14], {15]. Con-

sequently; the \s,,,,, for fixed m, will constitute an orthonormal basis of W It fol-
lows then from (8.53) that the Wi, 7, 7 € Z} constitute an orthonormal basis of
‘wavelets for L2(R). This completes the explicit .ooanEnaoP in the general case, of
an orthonormal wavelet basis from a multiresolution analysis.
Example 8.1 (final visit)
As we already noted, the don are orthonormal in this ¢xample, and
9(x) = d(2x) + d(2x — 1).
Applying the recipe (8.56)—(8.57) then leads to
b(x) = d(2%) — (2% ~ 1),
which corresponds to (8.48).

Remarks

1. We can show [15] that the functions ¢, § having all the above properties nec-
essarily satisfy ,

\ dx b(x) = 0 (858)

and

\ dx b(x) #0, (8:59)

-where we implicitly assume that ¢, ¥ are sufficiently well behaved for these integrals
to make sense (in all examples of practical interest, ¢, ¢ € L), In fact we do not
cven need to assume that the ¢, or dioy, are orthonormal to derive (8.58)~(8.59).
We saw in Section 8.4 that (8. 58) has to be satisfied even if the Uiy cOnstitute only a
frame. Note also that the trarisition (8.46) from ¢ to &, orthonormalizing the ¢,
preserves [ dx $ix) # 0. . .
2. If we restrict ourselves to the case where ¢ is 2 real function {as in all the
examples above), then ¢ is determined uniquely, up to a sign, by the require-
ment that the ¢, be orthonormal, We then also have [ dx d(x) = + 1; we

shall fix the sign of ¢ so that

[ dx d(x) =1,
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In practice we can often start the whole construction by choosing an appropriate ¢,
that is, a fanction ¢ satisfying (8.56) for some ¢y, Provided ¢ is “reasonable” (it.

suffices, for example, that inf [®(£)| > 0 and that > |O(E + 2mk)|? is bounded),

|Ef = v . k€Z )
the closed linear spans V,, of the ¢,,,,, (m fixed) then automatically satisfy (8.42)—
(8.45). There exists then an associated orthonormal basis of wavelets, Two typical
examples are as follows:

Example 8.2
x. O0sx=1
Gy =12-x 1=x=2
0, otherwise,

This is the linear B-spline function; the spaces V,,, consist of continuous, piecewise linear
functions. The c,, are given by .

1 1
b = 5 (20 + $(2x = 1) + ~ b2 - 2)

Example 8.3

2 0=x<=1

222+ 6x—3 1=x=<2
(3~x)% 2=<x=3

0, otherwise,

dlx) =

This is the quadratic B-spline function; the mvmnn.m V., consist of C*, piecewise quadratic
functions. The ¢, are given by :

: 1 3 3 1
ﬁv@vlmeﬁ&+meﬁx:c+weﬁa18+Meﬁxlwv

In these last two examples the corresponding Y will be respectively continu-
ous and piecewise linear, or C' and piecewise quadratic. Starting from spline func-
tions we can, in fact, construct orthonormal bases of wavelets with an arbitrarily high
number of continuous derivatives. These bases are the Battle-Lemarié bases [13],
[12], [15]). In these constructions the initial function $ is compactly supported, but -
‘the o, are not orthogonal, as illustrated by the two examples. We therefore have to
apply (8.46) before using (8.56), (8.57); the transition ¢ —¢ in (8.46) leads to a
noncompactly supported &, resulting in a noncompactly supported . Typically, the
Battle-Lemari¢ wavelets have exponential decay. :

Up to now, we have restricted ourselves to one dimension, It is very easy,
however, to extend the multiresolution analysis to more dimensions. This extension
- was alrcady inherent in the first construction by Lemarié and Meyer [11] of an »-
dimensional wavelet basis. It becomes much more transparent, however, from the
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multiresolution analysis point of view. Let us illustrate this for two dimensions. The

case of # dimensions, » arbitrary, is completely similar, Assume that we dispose of a

one-dimensional multiresolution analysis, that is, we have at hand a ladder of spaces

Vs, and functions ¢, ¢ satisfying .(8.42)-(8.45) and (8.55), where.the ¢, and the
to,y are assumed to be orthonormal. Define then: ,

n ® d\N
ﬁ&ﬂ.o we use the notation A' ® mm mon the space spanned by m: En funetions of the
type f(x,, x2) = a(x;) b(xs), with g € A, b € B. Clearly the V,, define a ladder of

subspaces of L2(R?), satisfying (8.42) and the equivalent, for R?, of (8.43). Moreover
(8.44) holds, and if we define

Doy, x2) = Plx)P(x2),

then this two-dimensional Ennzos satisfies the u.:m_om of (8.45),

; Vi D:nmh span .MBS,: n € 27,
where @,,, is Qnmsnm by
D, (51, X2) = 27™D(27 %) — 1y, 27T, - 1y)
= Q1 (X1) Gmna(x2).

Note that we use the same dilation for both arguments. Because of the definition
(8.51) of W, we find immediately that

Vi =1 = Vo @ [(VH®W2) © (WhH® Vi) ® (Wh® W)L
This implies that an orthonormal basis for the orthogonal complement W,,, of V,,, in

Vin—q is given by the functions GueyWpmngy Winny Prnay Yrmny Wy, With 72, 112 € Z

or equivalently, by the two-dimensional wavelets e .,

WE (s, x2) = 27" W27 x, — my, 27 ™%, — 12), (8.60)
where € = 1, 2, 3, and # € Z* and with
Wixy, x2) = $lxy) dix2) (8.61)
W2y, x2) = P dd(xz)
W3y, x2) = Wl WW(xz).

It follows that the W, €= 1 2 3 m € Z, and » € Z? constitute an orthonormal
hasis of waveiels for £2( %‘J

The above construcrion shows how any multiresolution mw\:wim pius associated
wavelet basls ln one dimensioo can be extended o 4 dimensions, The decomposi-
tion plus reconstruction algorithm constructed by Mallat for visual data [16]} uses
such a two-dimensional basis.

(8.62)
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8.5.4 The Connection with Discrete Filters

Multiresolution analysis can be used to decompose discrete sequences of data (cor-
responding to time series, or, in two dimensions, to television images) into several
“layers” corresponding to the content of the original sequence in different frequency
bands, with each component sequence sampled at a lower rate, adapted to its fre-
quency content. This scheme was first proposed by Mallat {16]. Let us show explic-
itly how his algorithm works. ,

We associate a mz:nso: fev S:& the original sequence mnavz €z U% anmb:am

=3 Sbon
nezZ

(we have attached a superscript 0 to the data sequence). Since Vo = Vy ® Wy, fcan
be decomposed uniquely into an element of V; plus an element of Wy; these two
components can be expanded into the ¢y, and Yy ,, respectively (since (Gyn)n ¢ z is
an orthonormal basis of V;, and (1,,), ¢ z an orthonormal basis of Wy),

f=Pf+Oif

= M b1 + M &wnf_,:a.

nez neZ
The Sequences c, dy can be noB?:na. directly from the cS:
cn = (b1 PLf) = (b1, )
= M«Unw (D10, dor?

(8.63)
= M G.N @N: -k
R
with
,
by = /|\.m.ﬁ dzx b (2/2) dx + k). (8.64)
Similarly _
=> R&m—n (8.65)
with

Ee = %mg. dx Y(x/2) db(x + k). ,,Am.m@
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Since [ dx d(x) = 1 (see Section 8.5.3), the sequence ¢} can be considered as an
“averaged” version of the c2, on a scale twice as large, and therefore sampled only haif
as often, as expressed by (8.63), which is a convolution followed by a “decimation”
with factor 2. The sequence 4 corresponds to the difference in information
between the original ¢ and the averaged version cl; the dy als0 “live” on a scale twice
as large as the cj, as shown by (8.65). The original sequence cy can be reconstituted
from the ¢;; and 4, using the same coefficients b, and g,

ﬁm,n A.\.vo\: m.v = Amvo:. TF\..T @F\.v

= 2 ¢k (dom bu) + M % (bon, V1) (8.67)

=¥ Tw Bog —n + di 826 - L.
£

- The decomposition of ¢ into ¢} and @ is only the first stage of the game. In the
next stage, we decompose ¢} into an even coarser average sequence ¢2 and a new
“difference” sequence &2 To do this, we again use multiresolution analysis as a
tool: _ ._

&Ur\nm d\n ”H\N@—sﬁw
=>  PS=Pf+Quf

= M Ci ban + M drban
with
&= Gam Pof) = (Gn, Pyf)
= 3 om0
e may casly check that (820 $1) = (o u) = by  herice

> ¢ ban - (8.68)

i

]

 Similarly

)

= D) Ck Gan— S (8.69)
no ’ o

We also find, analogously to (8.67), that

ch= Tw Bak - n + s 8o — L. , (8.70)

k :
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It is now clear how to construct a tree algorithm for the decomposition of the

2 into the different resolution “layers”, by iterating the same procedure. If we

, define the maps'H and G from the sequence of square summable sequences (I 1o
- iwself by , - o

m‘m &va = M oy Rk
&

(G a)n = M 8z2n ~ k%0
k

with adjoint maps

(H'@)e = 2. P2n - £
7

(G @

M 8on — rAn.
M

then the whole decomposition plus reconstruction scheme can be represented as in
Fig. 8.8. For any L, ¢° is decomposable into 4, ..., d"*and ct.

* H* L]

c0 H cl I 2 H e —— onxl....l.l ¢l .A.l..lnm\...ll... €3 w——
NG T TR N
) a? d® h d’ d2 a3

Figure 8.8 Schematic representation of the tree algorithm for the decomposition
and reconstruction in Mallat's scheme., ’

The tree structure, together with the easy convolution and decimation struc-
ture of H, G, makes this algorithm work very fast; the whiole decomposition can
be done faster than an EFT. Note that at every level ¢ is replaced by a roughly equiv-
alent number of entries: if the ¢t are zero except for N consecutive -entries, then,
apart from edge effects, only N/2 entries of ¢+ 4¢+ 1 will be ponvanishing. The
total number of relevant entries in A\, &2, ..., db c" is therefore essentially the same
as in the original sequence c°. ‘ :

In fact, for the implementation of Mallat’s algorithm, we only need the two
filters G, H; their multiresolution analysis origins are not used explicitly. We may
therefore try to isolate the relevant properties of the filters and design filters satis-
fying all these properties directly, without multiresolution analysis. From (8.63),
(8.65), and (8.67) a first condition (C1) can be derived. _

Condition 1: ‘
H'H+ GG =Id
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A second condition {C2) expresses the fact that H is an “averaging operator,” that is, a
low-pass filter, while G measures the difference between a sequence and its average,
and is therefore 2 band pass filter. This results in '

Condition 2:
Sgm)=0
n

M@Q@ =2

where the V2-normalization is due to the decimation 2:1 in the definition of the filter
H (see [18]). Finally, we also impose a regularity condition. The complete recon-
struction formula for ¢® from &', &2, ..., d* ¢

= G'd' + BFGHR + -+ (Y TG AR+ (R

When iterated many times, the operator H" should therefore not lead to something
too hectic. One way of visualizing this is to represent any sequence by a piecewise
constant function, with the heights of the different levels given by the coefficients.
The “elementary” sequence e, = 1 for n = 0, e, = 0 for # # 0 is then represented
by the function

—12 <x<1/2
otherwise.

() = ﬁ“

Our anm:_an condition mva then reads as:

Condition 3: The Ennnd&mn constant functions representing Qm* e
{(where e,, = 0 forn # o e = 1) converge to a “nice” function as £ — s,
B

For a more precise formulation of this no:n::on. see [18]. Filters H, G, which
are derived from a multiresolution analysis, automatically mmem@ conditions (C1)-
(€2). Moreover, we can show that in this case the piecewise constant functions
representing (& )¢e converge to the averaging function ¢ itself [18], so that (C3) is
also satisfied. Itis possible to construct filters H, G which satisfy (C1)—(C2), but not
(C3). An example is given in Fig. 8.9. In this case the (H")%e converge, for { —», to
a distribution which is singular at every dyadic rational between 0 and 3, that is, every
point of the form k2™, with 0 = k<3 2. This mxmn.v_n shows that condition
{C3) is necessary to avoid “messy” iterations.

It turns out [18] that conditions (C1)—(C3) ensure that the filtets H, G are
associated to a multiresolution analysis. The “averaging function” e of that multire-
solution analysis is exactly the “nice” function to which the (H")Ce-piecewise con-
stant functions converge. The proof in [18] of this equivalence between filters and




412 The Wavelet Transform: A Method for dam-mwmacmanv\.__,.onm_.__.Nma.o: Chap. 8

I,.m.. , H*)%e . e

H*)%

Figure 8.9 A pair of filters H, G thatdo satisfy (C1)—(C2), but not (C3). In this case
bo=15a,5; = 10a,by = —20,b3 = 3o, witha = (13 V/2)~!, and all other by =
0. The g, are defined by g« = (—1)* b(—E+ 1)

orthonormal bases of wavelets essentially uses this “graphical” construction ofpasa
limit of piecewise constant functions representing s€quences.

The filters H, G are special cases of quadrature mitror filters, developed by
Esteban and Galand [49] for subband coding with reconstruction without aliasing.
The multiresolution filters H and G give exact reconstruction: not only is there no
aliasing, but amplitude and phase distortion are absent as well. Quadratutre mirror
filters leading to nanm reconstruction were first developed by Smith and Barnwell
[50], who called them conjugate quadrature filters. General quadrature filters do
not satisfy our regularity condition, however.

8.5.5 Orthonormal Bases of Compactly Supported Wavelets

The equivalence between filters H, G satisfying conditions (C1)~(C3) and multi-
resolution analysis can be exploited to construct orthonormal bases different from
the examples shown so far, We may easily check that the graphical representation of
(i )fe, as a piecewise constant function with- stepwidth 27¢ is supported on
[—27¢~ L K(1 - 276 + 2~ ¢~ 1] if the filter H has a finite number omﬂmﬁm"_@» = ( for
B < 0ork > K It follows that the limit function, which is nothing but the averaging
function ¢ of the multiresolution analysis, is supported on [0, K]. As a finite linear
combination of translates and dilates of ¢, the wavelet ¥ therefore also has compact
support; one finds support Yy C [—(XK — 1)/2, (K + 1)/2) (see [18]). It therefore suf-
fices to find finite filters H, G satisfying the conditions (C1)—(C3) in order to have an
orthonormal basis of compactly supported wavelets. In [18] this method is used 1o
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build an infinite family of functions . For each N ¢ N, these ) have the following
properties: ,

e support x = [~V — 1), N} (8.71)
0 (D) = 272 ()27t — 1) (8.72)

constitute an orthonormal basis of L*(R)

o

[t b =0, k=01, N2 | 873)

—_Cs

o ()W) = Cu(1 + 70N (8.74)

For N = 1, ;¢ is the Haar function. As &V increases, the functions p become more
regular, as shown by the decay of their Fourier transform (8.74), and have more
moments equal to zero, as shown by (8.73). The price to pay for these desirable
features is that the support of s increases (see (8.71)). Figure 8.10 shows the
functions np and the corresponding averaging function ¢ for N = 2, 6, 10.

A very recent application of orthonormial bases of wavelets is in numerical
analysis. Beylkin, Coifman, and Rokhlin {51] have developed an algorithm that uses
multiresolution analysis for large matrix computations, for example. They claim that
even for matrices of “convolutional” character, that is, My = m(i — ), their algo-
rithm beats FET by a wide margin if the matrices are very large (more than (2'°)*
entries). They use in particular the compactly supported orthonormal bases present-
ed here, because the corresponding filters have finitely many taps, and because of the
“vanishing moments” propérty (8.73).

8.6 CONCLUSION:

In this chapter we have presented different aspects of the wavelet transform, a linear
transform that can be used as a tool for time-frequency analysis. It has the attractive

" feature that High-frequency wavelets have a much smaller support in time than low-

frequency wavelets, which makes the wavelet transform particulaily well suited for
the analysis of signals with high-frequency transients superposed on longer-lived
Jow-frequency components. We have reviewed three different forms of the wavelet
transform: the continuous wavelet transform, frames of wavelets, and orthonormal
wavelet bases. In the first two cases, the formulation is analogous to the windowed
Fourier transform, which we have discussed in parallel with the wavelet transform.
The main difference is that the wavelet transform handles frequency logarithmically
rather than linearly, resulting in an analysis with-constant Av/v. The third form of the
wavelet transform uses orthonormal bases of wavelets with good localization in both
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Figure 8.10 The wavelets ) and the corresponding averaging functions i for
N=2,6,10.

time and frequency; these have no analog in the windowed Fourier case. We have
reviewed their construction and given a few examples. Orthonormal bases of wave-
lets turn out to be related to special filicrs for subband coding that lead to exact
,nnno:mﬁcnno? without Ewmﬂﬁm and without wa.m_ncan ‘or phase distortion. The
wavelet transform m.m..,_@w.a%.nm? even though it is related to techniques in signal
analysis that are well established (constant Avfv filts ring, subband coding). The

~ mathematical theory presented here gives a new way of looking at these standard

techniques, which may lead to new applications. Examples are the finitely sup-
ported wavelet bases of Section 8.5.5; they are functions corresponding to special
quadrature mirror filters, 'with an extra regularity condition. To my knowledge,
noboby had represented QMF filters by these functions before; indeed, without the
regularity condition such a representation would be meaningless. ‘This representa-
tion has led to a new application of QMF filters to numerical analysis. Other fields-

where the wavelet transform is currently applied are acoustics and image analysis.
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