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InfoMax and FastICA are the independent component analysis
algorithms most used and apparently most effective for brain fMRI.
We show that this is linked to their ability to handle effectively
sparse components rather than independent components as such.
The mathematical design of better analysis tools for brain fMRI
should thus emphasize other mathematical characteristics than
independence.

I ndependent component analysis (ICA), a framework for sepa-
rating a mixture of different components into its constituents,

has been proposed for many applications, including functional
magnetic resonance imaging (fMRI) (1–3). Separating a signal
mixture into its components is impossible in general; however,
many cases of interest allow for special underlying assumptions
that make the problem tractable. ICA algorithms decompose into
a sum of signals that “optimize independence.” Several algorithms
and software packages are available for ICA (4, 5).

The first blind source separation in fMRI via ICA used InfoMax
(1); other ICA algorithms for fMRI followed, such as FastICA
(2, 5). These algorithms work well if the components have “gen-
eralized Gaussian” distributions of the form p(x) = Cexp(−α|x|γ),
with γ �= 2. More general ICA algorithms that assume less about
the components can separate into independent components mix-
tures for which Infomax and FastICA fail. Nevertheless, these 2
are the most used ICA algorithms for brain fMRI.

Stochastic processes are independent if the distribution of either
remains the same if the other is conditioned to any subregion
of their range. Detecting deviations from independence requires
large samples. In fMRI experiments, brain activity is measured in
small volumetric regions or voxels v ∈ V , at times tn, n = 1, . . . , N .
(fMRI measures brain function via the associated increase of
oxygen-enriched blood flow. The hemodynamic response func-
tion is the flow’s time profile for 1 pulse in brain activity; from a
signal analysis point of view, it blurs the signal in time.) Often the
voxels outnumber N by far. Thus, one often prefers to view the
voxel-index v as labeling the samples over which independence is
sought (spatial ICA, or SICA), rather than the tn (temporal ICA,
or TICA).

In the linear model for brain activation (6), the total brain activ-
ity X (t, v) is assumed to be a linear superposition of the different
ongoing brain activity patterns: X (t, v) = ∑L

�=1 M�(t)C�(v), where
the C� correspond to the brain activity patterns, and the “mixing
matrix” M gives the corresponding time courses. At high signal
amplitudes, saturation effects “spoil” linearity; nevertheless, the
linear model is remarkably effective. We shall stick to it here.

Typically, the brain function under study is turned “off” and
“on” by having subjects perform a task during defined periods,
punctuated by either resting states or other tasks. The activation
map of interest Cact(v) associated with a time course Mact(t) related
to the task paradigm, is then identified via a statistical analysis.
When a strict paradigm is not possible, or to capture more complex
task-related time dependence, “blind” decomposition techniques

are of interest; they decompose X (t, v) without reference to the
task paradigm. The time paradigm used (convolved with the hemo-
dynamic response), is used only to identify, among the C�(v) found
by the algorithm, the one with the closest resembling time course.

ICA (or another source separation algorithm) is thus used to
identify the different components C� by decomposing X (t, v). In
brain fMRI, there is no physical reason for the spatial samples
to correspond to different activity patterns C�(v) with indepen-
dent distributions. Several of the seminal papers suggest that ICA
decomposition is particularly effective when the brain patterns
one seeks are spatially sparse, with negligible or no overlap (1).
Such components are “near” to independence in the following
sense. Consider 2 binary-valued components C1 and C2. Define
V1 (V2) as the collection of all v where C1(v) [C2(v)] equals 1, and
V12 as V1 ∩ V2. Then the random processes that consist in evalu-
ating C1(v) and C2(v) for a voxel v, picked randomly (uniformly
distributed) in V , are independent if and only if #V12

#V1
= #V2

#V or,

equivalently, #V12
#V2

= #V1
#V , regardless of the value of these frac-

tions, where the notation #V stands for “number of voxels in
V .” If the components are sparse (i.e., #V1/#V and #V2/#V
are much smaller than 1) and well separated (V12 is tiny), then
these equations always hold after, at most, a small change in #V12;
in this (loose) sense, sparse and well-separated components are
always “nearly independent.” Similar arguments hold for multi-
valued components. We want to understand better, beyond this
heuristic, when an ICA algorithm gives a valid decomposition,
or the reasons why some types of ICA algorithm work better for
brain fMRI. This article summarizes the findings of several years
of interaction between applied mathematicians and neuroscien-
tists, expert in fMRI, concentrating on probing ICA methods for
brain fMRI. It raises questions, informed by mathematical con-
siderations, that are investigated by using numerical simulations
and specially designed fMRI experiments. Although other authors
have investigated to what extent ICA decomposition techniques
for brain fMRI data can be validated (1, 7), our emphasis and con-
clusions are of a different nature. In particular, we conclude that
independence is not the right mathematical framework for blind
source separation in fMRI; representations in which the fMRI sig-
nal is sparse are more promising. A similar observation was made
about ICA for image processing (8).

Spatial Variation Captured by ICA Algorithms
We first investigate the ability of InfoMax and FastICA to extract
fine-grained spatially varying brain function maps. To this end,
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we carried out an ICA analysis of the data described in ref. 9,
which demonstrated distributed patterns of activation, to find out
to what extent ICA analysis could reproduce these findings. We
first briefly recall the setup and results of this experiment (9).

Overlapping Representations of Faces and Objects in Ventral Temporal
Cortex. The subjects in the original experiment were shown visual
stimuli during the “on” intervals of a simple on/off block time
paradigm. The stimuli were images that, depending on their sub-
ject, belonged to 1 of 8 categories: Faces, Houses, Cats, Bottles,
Scissors, Shoes, Chairs, or a control category of Scrambles (ran-
dom noise patches). Images viewed in each 24-s stimulus block
belonged to the same category. Each run consisted of 8 stimu-
lus blocks (1 for each category), separated by 12-s rest intervals.
The blocks visited the categories in a different random order for
each run. To keep their attention on the images, the subjects were
assigned a 1-back memory task. The object of the study was, how-
ever, not linked to this task but to the representation in the ventral
temporal cortex of the different broad classes of objects.

For each subject, 12 fMRI time series were recorded. The
object-selective cortex was determined (for each subject sepa-
rately) by selecting the voxels whose responses differed signifi-
cantly across categories, including voxels that showed no or weak
activation for 1 or several categories. The ventral temporal object-
selective cortex S was defined as the intersection of the anatomi-
cally defined ventral temporal cortex and the functionally defined
object-selective cortex. The data, reduced to 12 time series for
each voxel in S, were then split into training and test sets (even- vs.
odd-numbered time series).

Based on the training dataset, S was partitioned into 8 subsets
Sc by determining for each voxel v ∈ S the category c for which
the response deviated most from the average response (over cat-
egories) of that voxel. This partition was used in the second, most
important, step of the study. In the first step, the activation pat-
terns (restricted to S), extracted for each stimulus time block in
the test dataset were correlated with each of the category-specific
activation patterns on S observed in the training dataset. The cor-
relation scores were systematically and significantly higher “within
category” than “between category,” so that the activition pattern
in S for any particular stimulus block in the test set allows one
to identify, with high confidence, the category the subject viewed
during that time block. (Detailed data are in ref. 9; see also Fig. 2
below.)

In the second step, similar pairwise correlations were computed,
except that, for every pair c, c′, the computation of the correlation
between the 2 activation patterns was carried out summing over
only voxels in S \ (Sc ∪ Sc′), i.e., excluding the voxels that were
most active for either c or c′. Although the correlation scores for
these amputated object-selective zones were smaller than before,
they still permitted correct identification of the categories viewed
during the test time blocks; with high confidence. The information
about the identity of the categories was thus stored not just in a
small specialized zone but also, almost as importantly, in a more
distributed spatially varying pattern, with lower amplitudes.

ICA Analysis of This Dataset. Because N was too large for the
ICA algorithms, we first performed a dimensionality reduction
via PCA, retaining only the L PCA components with largest sin-
gular value, with L < N . Choosing L appropriately is nontrivial
(10); we used an automatic estimation method for each dataset,
maximizing the evidence of the model (11), as implemented in the
FSL package (12) [the FSL (and its subtools BET, FLIRT, FEAT,
MELODIC) can be downloaded from www.fmrib.ox.ac.uk/fsl].
(We also checked that augmenting L beyond our cutoff dimension
did not impact the contrast of the components isolated by the ICA
algorithm.) The output of this PCA was used as input for spatial
ICA, to obtain L “spatially independent” components. We used 2
algorithms: InfoMax, as implemented in the NIS package (nisica,

available at http://kraepelin.wpic.pitt.edu/nis), and FastICA, as
implemented in the FSL package (12); in both cases the stan-
dard nonlinearities were used, maximizing the non-Gaussianity of
the spatial sources. (Note: the FSL package outputs Z-score maps
for the components isolated by the FastICA algorithm, whereas
the NIS package provides the ICA maps themselves. To make the
results comparable, the raw ICA components computed within
FSL were used, not the corresponding Z-score maps.)

As shown by the original data analysis in ref. 9, the patterns
of activation associated with the different separate categories are
highly overlapping; InfoMax and FastICA lacked sufficient sensi-
tivity to distinguish the responses across categories. When either
ICA algorithm was applied to 1 of the original 8-block functional
time series (containing 1 block of trials for each of the 8 cate-
gories), the time series of the resulting ICA components did not
correlate strongly with any of the category-specific reference func-
tions (which consisted of single 24-s “on” blocks). Instead, a single
consistently task-related (CTR) component was produced system-
atically, with a time series that correlated strongly with the full
8-block time paradigm. This result persisted when several original
time series were concatenated (“creating” a signal in which the
category-specific paradigms had several active blocks).

To identify category-specific activation maps by ICA, we re-
organized the data. Only voxels in the ventral temporal cortex
were studied, as in the original data analysis in ref. 9. For these
voxels, new time series were constructed by concatenating blocks
(consisting of 24 s of task plus the following 12 s of rest) of
images corresponding to the same category, adjusting the mean
of each time series, and high-pass filtering to avoid baseline
drifts. This was done separately for training and test datasets,
thus creating 16 new composite time series (2 for each of the
8 categories), each containing 6 blocks of stimulus of a unique
category (see Fig. 1). For each of these, we identified the com-
ponent of interest generated by ICA; because the analysis used a
dataset with trials corresponding to 1 category only, we expected
these components to contain category-specific information. From
the resulting 16 maps, we computed the correlations between
Cc,training and Cc′ ,test within and between category, i.e., for c = c′
and c �= c′. The results are given in Fig. 2 Left, for both Info-
Max and FastICA; the within-category correlations are in most
cases significantly higher than the between-category scores, lead-
ing to an identification accuracy of 82% for FastICA and 89% for
Infomax, significantly better than chance level, albeit not as high as
the 96% identification accuracy obtained in ref. 9. This high iden-
tification accuracy confirmed that category-specific information
was indeed present in the CTR components estimated from the
composite runs; it also confirmed that the preliminary dimension-
reducing PCA step had not removed the correlations observed in
ref. 9.

Next, we concentrated on the “off-peak” information in these
ICA components. Following the lead of ref. 9, we partitioned S
into 8 subsets S̃c; each S̃c was composed of the voxels that
responded more strongly to the category c stimulus than the other
stimuli. For each pair c, c′, we defined the c, c′-off-peak region
S̃OFF

c,c′ := S̃ \ (S̃c ∪ S̃c′), and we computed the corresponding
correlations between the components C̃OFF

c,test and C̃OFF
c′ ,training. The

Fig. 1. Concatenation to create “face run” from the odd-numbered runs.
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results are shown in Fig. 2 Right: Though within-category scores
are smaller over these off-peak regions, they remain significantly
higher than between-category correlations in most cases, still pro-
ducing high identification accuracy (73% for FastICA and 80%
for InfoMax, both significantly higher than chance level, albeit
lower than the 94% accuracy for the GLM-based analysis). In this
analysis, InfoMax systematically outperformed FastICA.

It is standard practice, in the use of ICA for fMRI, to threshold
the CTR component obtained. If a binary ground truth of acti-
vation is available, this can be done by means of ROC curves.
Typically such “ground truth” maps are not available, and one
thresholds based on the deviation from the mean in the distri-
bution of the voxel amplitudes (see, e.g., refs. 13 and 14). The
thresholds determined by standard practice are fairly high,
retaining only the voxels with the very highest response. A post
hoc analysis of the ICA CTR maps in our case shows that this
would have eliminated, on average, >60% of the voxels in the
off-peak regions; restricting the correlation computations to only
the remaining voxels reduced the identification accuracy to much
smaller values, for both FastICA and InfoMax. This shows the
importance of voxels that experience lower amplitude activation,
and of the spatial variation of this lower-amplitude activation,
in encoding category-specific information; it also shows that the

Fig. 2. Correlation scores (averaged over subjects, standard error indicated
by error bar) between pairs of patterns from the training and test datasets
for all pairs of categories. (Left) Correlations computed by using all the vox-
els in S . (Right) Correlations for each pair (c, c′) computed by using only the
voxels in S \ (S c ∪ S c′ ). In each block, triplets of columns give the results for
every pair (c, c′) with 3 different methods: left = the GLM analysis in ref. 9,
middle = InfoMax, and right = FastICA. For each algorithm (GLM, InfoMax, or
FastICA), the sets S c are defined by using a first-step analysis with the same
algorithm.

ICA algorithms were sufficiently sensitive to pick up the lower-
amplitude spatial variation in the distributed category-specific
components that enabled good identification accuracy from the
off-peak regions. (As stated above, the ICA algorithms did not
pick out the category-specific activation patterns from the orig-
inal data; we refer here to their effectiveness in capturing the
correct spatial variation in amplitude of the activation patterns,
even among amplitude levels that are normally discounted.)

This ICA-analysis of the data of ref. 9 show that Info Max
and FastICA “work:” they capture fine-grained spatially varying
information, even though the independence hypothesis is surely
violated. We next examine “independence” more closely.

Mathematical Independence: Generalities
Two stochastic variables X and Y are independent if their joint
distribution is a product of their marginal distributions. More pre-
cisely, X and Y are independent if, for all possible choices of the
4 numbers a ≤ b and c ≤ d, we have Prob(a ≤ X ≤ b|c ≤
Y ≤ d) = Prob(a ≤ X ≤ b), i.e., the probability of observ-
ing X in an interval is the same whether we condition the values
of Y to a subrange or not. For X and Y to be independent, it
is necessary and sufficient that their mutual information equal
zero:

∑
k,� PX ,Y

k,l log(PX ,Y
k,l ) −∑

k PX
k log(PX

k ) −∑
� PY

� log(PY
� ) = 0,

where PA
1 , . . . , PA

� , . . . are the probabilities with which a random
variable A can take its different values a1, . . . , a�, . . .. Requiring
independence for 2 random variables is a very strong condition.
Independent random variables are uncorrelated; the converse is
not true.

Given linear mixtures Zr = ∑
Mr,sXs, r = 1, . . . R of indepen-

dent random variables Xs, s = 1, . . . S (with R ≥ S), one can
recover the Xs by identifying the S × R matrix W for which the
combinations

∑R
r=1 Ws,rZr are independent. Often this matrix W

is identified via an iterative algorithm that seeks to minimize the
mutual information

∑
k1,·, kS

P
X [n]

1 ,·,X [n]
S

k1,·, kS
log

(
P

X [n]
1 ,·, X [n]

S
k1,·, kS

)
−

S∑
s=1

∑
ks

PX [n]
s

ks
log

(
PX [n]

s
ks

)
,

[1]

where X [n]
s = ∑R

r=1 W [n]
s,r Zr , and “n” numbers the iteration steps.

This nonconvex minimization problem is nontrivial. Moreover,
when SNR values are low, mutual information is hard to evaluate.

Many ICA algorithms minimize a proxy functional instead of
Eq. 1 or simplify the optimization by making assumptions about
the distributions of the components. This is the case for InfoMax
and FastICA: Both algorithms perform better if the components
have distributions of type p(x) = Cexp(−α|x|γ), with γ �= 2 (1, 2, 5).

Mathematical Independence: Some Simulations
In this numerical study of InfoMax and FastICA (15), we study the
respective roles of independence, sparseness, and separatedness
in the success of the algorithms. We experiment on simple models
where it is easy to change each of these characteristics separately.

In the InfoMax and FastICA algorithms, as adapted to brain-
fMRI studies, the data are first prewhitened via a PCA analy-
sis, leading to X WH.(t, v) = ∑k

�=1 MWH.
� (t)CWH.

� (v). Next, the
algorithms identify an (orthogonal) L × L matrix W such that
the C�(v) = ∑L

k=1 W�,kCWH.
k (v) are as “independent” as possi-

ble. FastICA determines W such that the values (C�(v))v∈V are
distributed as un-Gaussian-like as possible, as measured by the
kurtosis or the negentropy. In InfoMax, the different components
are fed into a neural network optimizing the mutual information
of the “output components.” For details, see refs. 5 and 16. These
ICA algorithms fail when the components to be separated have
Gaussian distributions.

Daubechies et al. PNAS June 30, 2009 vol. 106 no. 26 10417



We construct input mixtures (of independent or dependent
components) for InfoMax and FastICA, and run the algorithms to
produce their estimate of the “unmixed” components.

Both algorithms come in several forms; we selected those to cor-
respond with the implementations on real fMRI data, described
above. The selected InfoMax algorithm is adapted to heavy-tailed
components; the nonlinear function characterizing its neural net-
work is 1/(1 + e−x). For the FastICA algorithm the nonlinear
function approximating the negentropy is (in the notation of ref.
5) g(y) = y3; the iteration follows the “symmetric approach”.

Our examples are deliberately chosen simple, with few parame-
ters. We consider only 2 components C1 and C2, and 2 “obser-
vations,” at times t1, t2. Each component is a realization of a
stochastic process that is itself a composite of 2 processes: one
“activation process,” restricted to a subset of V , and a “back-
ground process” on its complement; the components are both of
the type Ci(v) = χVi (v)xi

v + [1 − χVi (v)]yi
v, i = 1, 2, where the

Vi, i = 1, 2 are different subsets of V (and can be picked differ-
ently for different examples), where χA stands for the indicator
function of A ⊂ V (i.e., χA(v) = 1 if v ∈ A, χA(v) = 0 otherwise),
and where x1, x2, y1 and y2 are 4 independent random variables,
of which, as v ranges over V , the xi

v and yi
v are independent real-

izations. The “background” random variables y1 and y2 have the
same cumulative density function (cdf) Φy(u) = [1+e−1−u]−1; the
“activation” random variables x1 and x2 also have identical cdf,
equal to either Φx(u) = [1 + e2−u]−1 or Φx(u) = [1 + e2(2−u)]−1,
depending on the example. (For the first choice, the parameters of
our ICA implementations provide optimal “detectability” in the
sense that the nonlinear function defined by the parameter set-
ting of the algorithm coincides with the cdf of the signal source;
for the second, there is a slight mismatch, as can be expected in
realistic applications.) Finally, the mixtures of C1 and C2 given as
input to the algorithms are X (t1, v) = 0.5C1(v) + 0.5C2(v) and
X (t2, v) = 0.3C1(v) + 0.7C2(v).

The joint distribution function of the components C1 and C2 is
easy to compute. The probability density functions (pdf) of x and y
are, respectively, ϕx(u) = Φ′

x(u) and ϕy(u) = Φ′
y(u) = (cosh[(u +

1)/2])−2. The pdfs ψ1 and ψ2 of C1 and C2, respectively, are then
given by ψ1(u) = (#V1)/(#V )ϕx(u) + [1 − (#V1)/(#V )]ϕy(u),
ψ2(u) = (#V2)/(#V )ϕx(u) + [1 − (#V2)/(#V )]ϕy(u). Like-
wise, the joint pdf ψ{1,2} of C1 and C2 is ψ{1,2}(u, v) =
#(V1∩V2)

#V ϕx(u)ϕx(v) + #(V c
1 ∩V2)
#V ϕy(u)ϕx(v) + #(V1∩V c

2 )
#V ϕx(u)ϕy(v) +

#(V c
1 ∩V c

2 )
#V ϕy(u)ϕy(v). Thus ψ{1,2}(u, v) = ψ1(u)ψ2(v) (i.e. C1 and C2

are independent) if

(#(V1 ∩ V2))(#V1)−1 = (#V2)(#V )−1. [2]

This condition does not involve the pdfs ϕx, ϕy. The unrealistic rec-
tangular shapes of V , V1, and V2 have no bearing on the outcome
of the simulations; by spatial rearrangement V , V1, V2 could be
shaped closer to physiological reality.

In each example below, the algorithms start from the 2 mix-
tures and are asked to “unmix” them; in all examples, a simple
visual inspection of the mixtures already clearly indicates that
there are several different components; the success of the algo-
rithms is judged by the extent to which the “unmixed” output
components they provide are close to the original 2 components,
i.e., show a contrast boundary at only the edges of V1 for one of
the components and only at the edges of V2 for the other.

Consider now the following 4 examples, each specified by the
choices of V1, V2, and the cdf Φx. These examples are illustrated
in Fig. 3, with V = {1, . . . , 100} × {1, . . . , 100}.
Example 1. In this example, V1 = {11, . . . , 40} × {21, . . . , 70}, and
V2 = {31, . . . , 80} × {41, . . . , 80}. By Eq. 2, C1 and C2 are inde-
pendent. For the cdf Φx we choose Φx(u) = 1

1+e2−u . Fig. 3, Case
1 shows (Left) the 2 components C1 (Upper) and C2 (Lower), and

Fig. 3. Unmixing the 4 mixtures of rectangular components described
below. (Left) pdfs of original 2 components, of components as identified by
InfoMax and by FastICA. Color coding: the whole (blue), the active region
(red), the “background” (green); In the ICA outputs, the purple pdf corre-
sponds to the zone associated to the other component; the background pdf
is then for the area outside V1 and V2. Separation is completely successful only
when the purple and green pdf line up, i.e., in cases 1, 3 and 4, but not in case
2. (Right) false-color rendition of unmixed components for Cases 2 and 4, as
obtained by InfoMax, FastICA, and a more sophisticated ICA algorithm that
learns pdf distributions. InfoMax and FastICA do better in Case 4 (separated
components) than in Case 2 (independent compoenents); for the pdf-learner
it is the converse.

the 2 components computed by InfoMax (Center) and FastICA
(Right). The plots of the pdfs of the components: for the �th com-
ponent (� = 1 or 2) the pdf for the pixels in its own “zone” Zone� =
V�\V3−� (red) and in the “rival zone” Zone3−� = V3−�\V� (pur-
ple) are shown as well as the pdf for the background (green) and
for the whole picture (blue). For both components, and for both
algorithms, the rival-zone pdfs align perfectly with the background
pdf, showing that the decomposition is effective.

Example 2. All choices are identical to Example 1, except that the
cdf Φx is picked differently: Φx(u) = 1

1+e2(2−u)
. The components

C1 and C2 are still independent. Fig. 3, Case 2 (with the same
organization as Fig. 3 Example 1) shows that neither Infomax nor
FastICA separate the 2 components, even though they are inde-
pendent. Both components exhibit “ghosting” (see the difference
in shape between the ghosting-Zone pdf and the background pdf).

Example 3. A different variant of Example 1: All choices are iden-
tical, except the location of V2, now shifted to {43, . . . , 92} ×
{53, . . . , 92}. The pdfs of C1 and C2 are unaffected. The new V2
and V1 do not intersect, i.e., C1 and C2 are spatially separated, not
independent. Fig. 3, Case 3 shows that both InfoMax and FastICA
successfully identify the 2 original components C1 and C2.

Example 4. The sets V1 and V2 are as in Example 3, but Φx is as in
Example 2; C1, C2 are not independent. Fig. 3, Case 4 shows that
both algorithms both successfully separate C1 and C2.

10418 www.pnas.org / cgi / doi / 10.1073 / pnas.0903525106 Daubechies et al.
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Examples 3 and 4 show that InfoMax and FastICA
can identify different but not truly independent components;
this is not surprising, because these components, even if not
independent, may give the “least dependent” decomposition.

In Examples 2 and 4, the components are very similar—they
differ only by a shift of V2, resulting in truly independent C1, C2
in Example 2, but some dependence in Example 4. Yet the 2 algo-
rithms fail to identify the correct components in Example 2 (the
independent case) and succeed in Example 4. The failure for both
algorithms to identify these truly independent components is due
to the fairly strong assumptions about the pdfs of the individ-
ual components. For comparison purposes, we also analyzed the
mixtures from Example 2 with a more sophisticated ICA algo-
rithm [see supporting information (SI)] that has fewer underlying
assumptions on the pdfs of the constituent components, at the
price of taking longer to converge. This alternative ICA algorithm
not only “learns” the components but also their pdfs, modeling
them as a mixture of Gaussians, of which the parameters are
“learned.” The Fig. 3 Right shows that this more complex algorithm
identifies the correct independent components in Example 2, and
does less well in the separated case (Example 4), more consistent
with expectation for an ICA. ICA algorithms of this type do not
seem to be used in fMRI studies; in our trials, they did not perform
well on fMRI data.

To further investigate the relative influence of separation and
independence of both InfoMax and FastICA, we repeated the
experiment for more gradual shifts of V2: for α ranging from
−15 to 15, we pick V α

2 = {31 + α, 80 + α} × {41 + α, 80 + α},
leaving all the other settings the same as in Examples 2 and 4. In
this family, α = 0 corresponds to mathematical independence (=
Example 2), whereas we have complete separation (no overlap of
V1, V2) for α ≥ 10. For each α, we find the unmixing matrix Wα ,
with both FastICA and InfoMax, and quantify the quality of the
decomposition by the norm nα = ‖Id − Wα · M‖ of the difference
between the 2 ×2 identity matrix and the product of the unmixing
matrix Wα and the mixing matrix M. For an accurate decompo-
sition, this product is close to the identity, and nα is close to 0.
The less accurate the decomposition, the larger nα . The value of
nα depends on the particular realizations of C1, C2; we computed
(for each α) 99 different realizations, and we show the median, 1st
and 3rd quartiles, and the highest and lowest values of nα in Fig. 4
(leftmost images). “Success of separation” can also be judged by
visual inspection; by this crietrium, the components were visually
perfectly separated whenever nα < 0.2; they were never separated
when nα > 0.3.

Fig. 4. The dependence on α of the norm nα = ‖Id − Wα · A‖. Ninety-nine
realizations were generated for each α, and used for both algorithms. Black
curve: medians; shaded blue region: bounded by the 1st and 3rd quartiles;
magenta curves: lowest and highest values. When nα ≤ 0.2, the components
are separated; when nα ≥ 0.3, they typically are not. (Left) “Medium” boxes
(also used for Fig. 3). (Center) “Small.” (Right) “Large boxes.” In each case,
α = 0 marks the independent case, where #(V1 ∩ V2,α) = #(V1) × #(V2)/(#V ).

Fig. 5. (Left) Full disk and “left” wedge used in 2 of the preruns in each
session, as explained in Experimental Design. A third prerun featured 1 of
the θ -sector wedges. (Right) Superpositions used for the visual stimuli in the
runs themselves.

In addition to this “medium boxes” family of examples, where
the components occupy, respectively, 15% and 20% of the 100 ×
100 voxels in V , we repeated the numerical experiment with both
sparser and less-sparse choices for V1, V2. In the “small boxes”
family, V1 = {41, . . . , 60} × {31, . . . , 50}, V2,α = {57 + α, . . . , 81 +
α} × {46 + α, . . . , 65 + α}, occupying 4% and 5%, respectively,
of V ; in the “large boxes” family, V1 = {1, . . . , 48} × {1, . . . , 100},
V2,α = {25+α, . . . , 74+α}×{1, . . . , 100}, occupying 48% and 50%
(see top of Fig. 4).

Within each family, Fig. 4 shows the relative importance of inde-
pendence. For medium and large boxes, the dip at α = 0 shows
that FastICA is most successful when the components are indeed
independent; InfoMax becomes successful only for larger α, when
there is (almost) no overlap. For small boxes, both algorithms
identify the components for all α, even when the overlap is large.
Comparison across the 3 families shows that sparsity of the com-
ponents (measured by #V2/#V , #V1/#V ) affects the success rate
of either algorithm much more than (in)dependence (measured
by the deviation).

Mathematical Independence: fMRI Experiments
The fMRI experiments discussed here parallel the simulations
above; they are inspried by ref. 7. We analyze∗ the results of exper-
iments with 2 components, depending on 1 parameter, 1 value of
which gives 2 independent components; for other values there
is either more or less overlap. We analyze the results with Info-
Max and FastICA and discuss their rate of success for different
parameter values (17).

Experimental Design. The experimental paradigm consisted of
stimulating the right and left visual hemifields using a pair of 8-Hz
flashing checkerboard wedges. The subjects were asked to focus
on a bright dot at the center of a circular field; the visual stimulus
consisted of flashing checkerboards in large wedges of this field.
Two parameters, θ and α, characterized each run; quantifying the
spatial and temporal overlaps in the paradigm.

The value of θ determined the positions of the 2 flashing
checkerboard wedges. Both wedges spanned an angle of 120◦. One
wedge, S1, remained in the same position; S2(θ) was either com-
pletely separated from or overlapped with S1. In the overlap, the
contrast of the flashing checkerboard was more pronounced than
in regions covered by only 1 wedge. (See Fig. 5.) The contrast
levels of the photic stimulations (5% for nonoverlapping wedges,
100% for overlapping wedges) ensured the linearity of the model.

The values of θ and the spanning angles were selected so that
the experiment mirrored the setup of the numerical experiments
above: for θ(= 100), the overlap of the wedges gives

area of overlap
area of wedge

= area of wedge
area of disk

, i.e.
40

120
= 1

3
= 120

360
. [3]

Within the full disk, the indicator functions of the wedges S1
and S2(100) are thus independent. For θ = 140, the overlap is
larger; for θ = 0, the wedges are completely separated. Because

∗ Benharrosh M, Takerkart S, Cohen JD, Daubechies I, Richter W, Annual Meeting of the
Organization for Human Brain Mapping, June 18-22, 2003, New York.
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retinotopic mapping preserves the relative importance of spatial
areas, spatial independence of the visual stimuli translates (in
first approximation) into spatial independence of the correspond-
ing retinotopic activity patterns. Within brain areas that preserve
retinotopic organization, we thus have the same (or similar) spa-
tial relationships between the activity patterns for the wedges as
for the wedge stimuli themselves.

A second parameter, α, indexes shifts in the time paradigms
for the 2 wedges. (Even though we studied only SICA, we wanted
to test dependence on shifts in the time paradigm seen in ref.
7.) For each α, both wedges are “on” (“off”) half the time, and
follow identical time patterns; the only difference is a time lag
for S2. The 3 values of α ( 1

8 , 1
4 and 3

8 ) represent the fraction of
temporal overlap between the “on” time intervals for S1 and S2
(see Fig. 6). Each experimental run had 4 blocks of visual stimu-
lation for a fixed couple (α, θ), with each block corresponding to
a 56-s period. Each session had 12 of these 224-s runs (different
α, but same θ per session), with 10 s of rest between consecutive
runs. To minimize subject fatigue and obtain better fixation of the
paradigms, subjects were scanned at 3 different sessions, each ded-
icated to a specific value for θ . To perform a clear identification of
“ground truth,” each session included 3 preruns, corresponding to
the individual visualization of the wedges S1, S2(θ) separately (1
prerun for each), as well as a full flashing checkerboard (the third
prerun).

Image Acquisition and Preprocessing Stages. Whole brain images
were acquired for 3 healthy subjects (2 males, 1 female) with
a 3T Siemens Allegra scanner. A T1-weighted structural image
was acquired to localize the anatomy of the activated areas.
The functional images were acquired by using a gradient-echo
EPI sequence, (TR = 1,000 ms; flip angle = 60◦; field of view
192 mm × 192 mm; matrix 64 × 64; slice thickness 7 mm; dis-
tance factor of 13%); each run contained 244 volumes of 15 axial
slices acquired in the anterior-to-posterior phase encode direc-
tion. Preprocessing stages included the application of the FSL
FLIRT motion correction algorithm (12) on all EPI images after
discarding the first 6 volumes of each run; in order to include only
brain voxels in the analysis, we applied a brain extraction algorithm
[FSL BET (12)] on motion-corrected data.

Data Analysis of the Preruns. We performed a general linear model
(GLM) regression (6) on each of the preruns using the FSL FEAT
package (12), to establish a “ground truth” activation map for each
of the individual components. Voxels for which the time series,
restricted to stimulus periods, showed a departure of at least 2
standard deviations from their average rest behavior were des-
ignated as true positives. The activation map resulting from the
stimulation of the full flashing checkerboard was used for a second

Fig. 6. (Left) Temporal paradigm. (Upper) Time paradigm for visual stimu-
lus S1. (Lower) Time paradigms for S2, for different α. For α = 0 (not used
in experimental runs), the paradigm is just that of S1; for α = 1/8, 1/4, 3/8,
respectively, it is shifted by αT . (T = 56 sec. = period of the time paradigm.)
(Right) Combined paradigm for (α, θ) = (1/4, 100): wedge S2(100) is turned
on and off according to the time paradigm shifted by T/4.

analysis (see below) . The β-maps B1, B2,θ from the GLM analy-
sis on the preruns were used to define ground truth maps for the
brain patterns created by visualization of the individual wedges
S1, S2(θ).

Using standard GLM statistical analysis, we also defined (sep-
arately, for each of the 3 preruns, for each session) binary ground
truth maps G(v). We first extracted from (F(v, tn))n=1,..,N the com-
ponent that most distinguished between “on” and “off” para-
digms, and evaluated its significance by comparing it with the
remainder of the demeaned (F(v, tn))n=1,..,N ; when the distinguish-
ing component was significant at the P = 0.01 level for both v and a
contiguous neighbor v′ �= v we set G(v) = 1, otherwise G(v) = 0.

Application of SICA. We carried out both InfoMax and FastICA
analyses on the experimental runs for all (α, θ) pairs, using the
same methods and software package as the ICA analysis of the
Haxby data (see above); this included, in particular, a dimensional
reduction via PCA, with a dimensional cutoff chosen so that the
output component strength did not change when the dimension
was increased. For each of the separated components produced
by the ICA algorithm, we computed correlation scores r1(�) and
r2,α(�) between its associated time course M�(t) and the 2 time-
paradigm functions ϕ1(t) and ϕ2,α(t). The component with the
highest value of r1 (respectively r2,α) was identified as the CTR
component map C1(v) [C2,θ (v)] corresponding to S1 (S2,θ ). (This
classification is equivalent to classification based on the GLM
threshold τ.) To assess and compare the “quality” of the activity
maps produced by the ICA algorithm for the different experimen-
tal designs, receiver operating characteristics (ROC) curves were
used.

Results for the Different Experimental Conditions. For each α, i.e.,
for each of the 3 time paradigms, we compare the quality of the
component separation by ICA for the 3 values of θ = 0, 100, and
140. The spatial paradigm (and thus also the retinotopic brain
activity) has 2 independent components when θ = 100◦, because

Area(S1)/Area(D) = Area(S1 ∩ S2,100)/Area(S2,100), [4]

where D is the whole disk, which translates to a similar relation
for the corresponding activation patterns,

Activation Area(S1)
Activation Area(D)

= Activ. Area(S1) ∩ Activ. Area(S2,100)
Activ. Area(S2,100)

.

[5]

In the numerical simulations leading up to Fig. 4, we explored, for
each of the small, medium, and large boxes families, the deviation
from “true” independence in a fine-grained manner (varying the
overlap in small increments) that is not possible in our experimen-
tal setting. The distinction among the 3 families can be mimicked,
however. Eq. 4 explicitly refers to the disk D as the reference with
respect to which independence of S1 and S2,100 are assessed (i.e. D
plays here the role of the square V in the numerical study). This
means that the corresponding components C1 and C2,100 can be
expected to be independent if we compare them within the region
D := Activ.(D) = {v; Gdisk = 1}, i.e. if we carry out our ICA analy-
sis after restricting ourselves to these voxels only. If we consider
a larger collection of voxels V as the region within which we carry
out the ICA analysis, then Eq. 5 is not satisfied for this larger
V, and the corresponding components C

1;V and C
2,100;V are no

longer independent. The deviation from independence increases
with the ratio of the areas of regions V and D.

We carried out 3 different ICA for each (α, θ)-pair, varying the
“horizon region” V within which the ICA is carried out: V = D
(the region of retinoscopic response to the disk), V = V (the
whole brain), and V = I, an intermediate region, D ⊂ I ⊂ V ,
for which [#D]/[#I] = [#I]/[#V], but that was otherwise cho-
sen randomly. To compare these 3 cases via their ROC curves,
the ground truth had to be the same for all, with identical regions
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P1 := {v; G1(v) = 1} and N1 := {v; G1(v) = 0}, and similarly
for G2,θ . This “common denominator” was achieved by reducing
everything to the intermediate region I; in the case V = D, we
extended the components obtained by the ICA algorithm to V = I
by setting them equal to 0 on I\V; in the case V = V , we restricted
the components to I. Note that this introduces a bias favoring the
D-components: because P1 and P2,θ are concentrated almost
exclusively withinD, the extension fromD toIautomatically (and
artificially) ensures that the identification will be overwhelmingly
correct on I \ D for the extended D components.

Fig. 7 shows the results of our experiments, for both InfoMax
and FastICA, for the 9 different (α, θ)-pairs and the 3 different
choices V = D, I or V, for 1 of the subjects (AW).

For both algorithms we observe that: (i) for the choice V = D,
success in identifying the components is not noticeably higher in
the independent case (θ = 100) than for the other values of θ ;
(ii) in most cases, success in component identification increases as
the size of V increases, and this despite the bias in our comparison
method in favor of the smallest region D.

The ROC curves in Fig. 7 were for the data from 1 subject only.
The results for the other 2 subjects were similar. Fig. S10 gives
average AUCs over all 3 subjects; because the region 0 ≤ false
positive rate ≤ 0.05 is the one of most interest, we restricted the
AUC computation to this region only.

The averaged ROC powers for the different cases illustrate the
relative importance of independence/separation/sparsity.
Role of independence. When the reference region isD, the exper-
imental design mimics the numerical simulations discussed earlier.
For InfoMax, the AUC for V = D turns out to be, at best, only
marginally higher for θ = 100 (the “independent” choice) than for
the other θ ; for FastICA the effect is slightly more pronounced;
in neither case is it very convincing. (Note that the ROC power
is significantly smaller for V = D than for the other 2 choices,
arguing against any special role of “independence.”)
Role of separation. For the parameter choices for which the error
bars in Fig. S10 are not too wide (i.e., the cases where the mean
AUC is most meaningful), there is virtually no difference between
the cases θ = 0 (separated activity patterns) and θ = 140 (sub-
stantial overlap). The influence of spatial separation of the compo-
nents, very noticeable in the numerical simulations in the previous
section, is thus not so apparent here. However, the θ = 140

Fig. 7. The ROC curves obtained for the ICA-computed component, for the
choices V = V (black), I (red) or D (blue); the data are those for 1 sub-
ject (AW) in the experiment. This is done for 36 cases: 2 components, 2 ICA
algorithms (InfoMax or FastICA), 3 different time paradigms, 3 different over-
lap angles (θ = 100 is the independent case when V = D). The comparison
is with the ground truth activation patterns G1 (1st component), G2,θ (2nd
component).

case shows substantial differences in effectiveness over the 3 test
subjects, so it is not clear how much we can rely on it.
Role of sparsity. For most (θ , α) [including all (θ , α) with small
error bars], AUCV (black) > AUCI (red) > AUCD (blue), for
both InfoMax and FastICA. Switching from V = D to V = I
and then to V = V , makes the activation regions more and more
sparse with respect to the reference region V.

In this experiment, the factor that most influences the success
rate of the ICA algorithms is thus sparsity of the components;
moreover, this is slightly more marked for InfoMax than for
FastICA. Independence of the components plays a marginal role,
at best.

Remark. The mention of sparsity in the introduction was within the
framework of justifying the use of Independent Component Analysis
in brain fMRI analysis: even if components were not truly inde-
pendent, the heuristic argument went, they were “close to indepen-
dent” if very sparse. The experiment described above is important
in that it teases apart independence and sparsity; it points to spar-
sity (in its own right, not as promoting independence) as the crucial
factor.

Independence Versus Sparsity: Discussion
Summary of our Findings so Far.

• InfoMax and FastICA can capture, with considerable accuracy,
fine-grained spatial variability in activity patterns.

• In our fMRI brain experiments, InfoMax systematically gave
better results than FastICA.

• In the purely numerical simulations with the small, medium,
and large boxes, InfoMax is barely selective for independence;
FastICA shows more selectivity towards independence. For
both algorithms, sparsity of the components is more important.

• Our second fMRI experiment confirms that sparsity affects the
success of InfoMax and FastICA more than independence.

• A more sophisticated ICA algorithm that performs better than
InfoMax and FastICA on independent medium boxes, and is
more sensitive to independence, performs less well on the fMRI
experiments.

This strongly suggests that when InfoMax and FastICA are effec-
tive in brain fMRI, the underlying reason may be other than
their striving for independence. Let us now examine sparsity more
closely.

Sparsity. We call a vector v = (v1, v2, . . . , vN ) B-sparse (B 
 N)
if at most B of its entries differ from 0. This notion is basis-
dependent; the basis with respect to which the B-sparseness is
defined, must be specified. One can also define sparse random vec-
tors, i.e., sparse vectors of which the components are random vari-
ables (r.v.). Fig. 8 Left shows realizations of noisy 2-dimensional
1-sparse random vectors, generated as follows: r := γr1+(1−γ)r2,
where γ is an r.v. that takes values 1 and 0 only; r1, r2 are the 2-
dimensional random vectors r� := α�a+β�b, where α1, β2 have the
same pdf p(t), and α2, β1 have the rescaled pdf p′(t) = 10×p(10t).
It follows that r is mostly aligned either with a, or with b.

Fig. 8. Mixtures M1, M2 of 2 2-dimensional processes that are 1-sparse as
defined in. Each component has a Gaussian distribution, yet both InfoMax
and FastICA succeed in separating them: The directions found with InfoMax
are marked by fat red lines, with FastICA by thin green lines.
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Very similar figures are often used as “promotional material”
for ICA: In this example it is clearly desirable to identify (from
the data) the 2 vectors a and b; because these are not orthogo-
nal, they cannot possibly be the outcome of a PCA. Hence (the
argument goes) the need for ICA. Yet Fig. 8 depicts processes
with 2 sparse rather than independent components: If one con-
ditions r on having a large inner product with b, the distribu-
tion of its component along a will be affected. The 2 images of
Fig. 8 differ only in that γ equals 1 in 50% for M1, but only
30% for M2. When given this input, InfoMax or FastICA iden-
tify the 2 special directions a and b correctly as the components.
However, in the example given here, p(t) is gaussian; because
ICA methods cannot separate mixtures of independent gaussian
processes, the successful separation of components by InfoMax
and FastICA underscores again their ability to identify sparse
components.

Algorithms for Brain fMRI Adapted to Sparsity. We conclude that,
rather than decomposition methods that search for independent
components, one should develop alternate decomposition meth-
ods, still striving to write X (t, v) = ∑L

�=1 M�(t)C�(v), but targeting
decompositions into components that are optimally sparse (only
a small number of voxels play a role in each C�) and/or separated
(the number of voxels playing a role in more than one C� is small).

It is a good time to look for algorithms involving sparsity. Impor-
tant progress has been made recently on the problem of recovering
a sparse vector from underdetermined linear information. More
precisely, if A is a L × N matrix, with L 
 N , then it is typi-
cally impossible to recover an N-dimensional vector u from its
image w = Au, or to recover a close approximation to u from w
if [∑L

�=1[w� − (Au)�]2]1/2 ≤ ε. Often, one introduces constraints
or penalizations to this type of problem to make it well-defined
and well-posed. The knowledge that u is B-sparse, or is close
to a B-sparse vector (with B < L), is now known (18–21) to
be a sufficient constraint to achieve this, even if the identity of
the nonvanishing entries of u is unknown. (There are, of course,
technical conditions on A, involving L, N , and B, and satisfied
by large classes of matrices, that we shall not discuss here.) The
mathematical study for this problem uses insights from computer
science, statistics, nonlinear approximation and the geometry of
finite-dimensional Banach spaces. Several approaches have been
proposed; of special interest are the ultrafast (sublinear in N)
methods developed, in e.g., ref. 22, and the �1-optimization meth-
ods in refs. 18–21, 23–25, equivalent to �1-penalization methods
(26). �1 penalization can be connected with InfoMax and FastICA.

Both implicitly assume that the independent components have
pdfs of the form p(u) = Ce−α|u|γ . Using this same assumption as
a prior for independently distributed components in a Bayesian
framework, in which X (v, t) is viewed as

∑
� M�(t)C�(v) corrupted

by Gaussian noise, leads to the search for C� that maximize

Prob(X |C1, . . . , CL)Prob(C1, . . . , CL)

= CΠv,te−|X (v,t)−∑
� M�(t)C�(v)|2/(2σ2)ΠL

�=1Πve−α|C�(v)|γ

= Ce
∑

v,t |X (v,t)−∑
� M�(t)C�(v)|2/(2σ2)−∑

v,� α|C�(v)|γ ,

where C contains all the appropriate normalization constants,
and we assume the M� are normalized. Maximizing this amounts
to maximizing the exponent; for γ = 1, this is an �1-penalized
functional, also used to obtain sparse decompositions. This may
explain why InfoMax and FastICA are good at identifying sparse
components.

In the quest for algorithms that are effective for fMRI, based
on sparsity of either the components or their intersections, it will
be important, to determine the basis with respect to which one
expects/hopes for sparsity. In fMRI experiments subjects have as
few distractions from the task at hand as possible, in the hope of
minimizing the brain activity, so that functional activation maps
are less hard to isolate. If this means the signal of interest is con-
fined to a small region only, with little overlap with other activation
maps, then sparsity in the voxel domain is likely. For an experiment
like the one in ref. 9, where 8 different components all live in the
same region of the ventral temporal cortex, sparsity in the voxel
domain may be elusive. The original experimental data were not
registered so as to make reduction to a common cortical surface
model possible for all the subjects. Recently, the experiment was
repeated, with such extra registration;† the corresponding new 2-
dimensional data on the cortical surface remains to be analyzed,
aiming for sparsity not in the purely spatial domain (on the cortical
surface), but in, e.g., a corresponding wavelet domain, appropri-
ate for components that have strong peaks in some small areas but
behave more smoothly elsewhere.

† Sabuncu MR, Singer BD, Bruan RE, Ramadge PJ, Haxby JV, Annual Meeting of the
Organization of Human Brain Mapping, June 11-15, 2006, Florence, Italy.
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