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The Analysis and Design of Windowed Fourier Frame
Based Multiple Description Source Coding Schemes

Radu Balan, Ingrid Daubechies, Fellow, IEEE, and Vinay Vaishampayan

Abstract—In this paper the windowed Fourier encoding–de-
coding scheme applied to the multiple description compression
problem is analyzed. In the general case, four window functions
are needed to define the encoder and decoder, although this
number can be reduced to three or two by using time-shift or
frequency-shift division schemes. The encoding coefficients are
next divided into two groups according to the eveness of either
modulation or translation index. The distortion on each channel
is analyzed using the Zak transform. For the optimal windows,
explicit representation formulas are obtained and nonlocalization
results are proved. Asymptotic formulas of the total distortion and
transmission rate are established and the redundancy is shown to
trade off between these two.

Index Terms—Multiple description coding, redundant sets, win-
dowed Fourier transform.

I. INTRODUCTION

T HE multiple description problem, a generalization of the
problem of source coding subject to a fidelity criterion, is

one of the fundamental problems of source coding theory. The
objective of a multiple description coder is to construct several
descriptions of the source sequence, with the property that the
descriptions be good individually (in the rate distortion sense)
and be better together. The simplest case (the one considered
here) is of constructing two descriptions. Multiple description
source codes are designed with the following scenario in mind.
It is assumed that several (in this case two) channels connect the
source to the destination, each with its own rate constraint. Each
channel may fail; whether or not a channel has failed is known
to the decoder but not to the encoder. The encoder wishes to
send information about the source sequence over both channels,
subject to the rate constraints, such that when both channels
work, a high-fidelity replica of the source sequence is obtained,
and if either channel fails, the degradation is graceful.

In addition to being an interesting and nontrivial problem in
its own right, the multiple description problem is of significant
practical interest because it results in compression systems that
are better able to withstand frame erasures. Frame erasures are
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a significant problem in several communication systems of cur-
rent interest, most notably wireless digital speech communica-
tions and packetized speech and video communications.

The formulation of the multiple description problem is
attributed jointly to Gersho, Ozarow, Witsenhausen, Wolf,
Wyner, and Ziv. The main problem that information theorists
consider is that of determining the rate-distortion region for a
given statistical model for the source and for a given fidelity
criterion. Ozarow [38], constructed the rate-distortion region
for the only case solved so far, namely. the special case of a
memoryless Gaussian source and the squared-error distortion
criterion. An achievable rate region was given by El Gamal
and Cover [22] for a memoryless source and a single-letter
fidelity criterion. The binary-symmetric memoryless source
with an error frequency distortion criterion has been studied
by Berger and Zhang [7], [53], Ahlswede [1], Witsenhausen
and Wyner [51], Wolf, Wyner, and Ziv [52]. It was conjectured
that the achievable rate region given in [22] coincided with
the rate-distortion region in cases other than the Gaussian
memoryless source and the squared-error distortion criterion.
However, this conjecture was disproved in [53]. An important
special case of the multiple description problem is the problem
of successive refinement of information [17]. In [17], a neces-
sary and sufficient condition for a rate distortion problem to be
successively refinable is derived.

Published design techniques can loosely be divided into
two categories, quantization-based approaches and subspace
approaches. In quantization-based approaches, the starting
point is a memoryless source and the most basic system is the
multiple description quantizer [45], [47]. Multiple description
quantizers operate by sending information about each source
sample over each channel. The simplest illustration is of two
uniform step-size quantizers each with step size, one offset
from the other by half a step size. The first quantizer index
is sent on the first channel and the second quantizer index is
sent on the second channel. If both channels work, the decoder
sees a quantizer with effective step size whereas if only
a single channel works, the effective step size is. Thus two
channels are better than one in the sense that a lower distortion
is obtained when both channels work. However, when the
step size is small, we are using bits in order to obtain the
performance of an bit quantizer, i.e., the rate overhead
is almost 100%. More efficient constructions are presented in
[45] and an asymptotic analysis is presented in [49].

For real-world sources such as speech and video, it is
important to exploit the correlation in order to build efficient
coders. Multiple description quantizers can be used efficiently
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for sources with memory by using standard decorrelating
transforms [4], [46].

Subspace methods begin by assuming that the source to be
encoded is correlated. The objective is to construct two sub-
spaces of the signal space and to send the projection of the signal
on each space over a separate channel. If the spaces are well
chosen, the two projections are correlated and it is possible to
obtain acceptable quality when one channel is broken. Subspace
methods have been considered in [27], [48], [31], and [37]. One
common point in all the subspace methods cited above is that
they do not use overcomplete expansions of the signal being
coded. More recently several new approaches have been con-
sidered; some papers have considered overcomplete sets (see
[10], [23]); others have used vector quantization methods (see
[20], [42]), a forward error-correction coding ([35]) or an itera-
tive decoding approach ([43]). Here we consider the design of a
multiple description system based on overcomplete windowed
Fourier expansions.

In this paper, we use the discrete windowed Fourier trans-
form to encode and decode the signal. A (discrete)windowed
Fourier transformis defined by the following data: a function

calledwindow, and two positive parameters called
modulation parameter, respectively, translation parameter.
With these data one constructs the following set of functions
called aWeyl–Heisenberg set(or aWH set):

(1)

A windowed Fourier transform-based encoderconverts a signal
into a sequence of coefficients , where

is the scalar product in (in this paper we shall deal with
continuous-time signals; in practice, the signal is usually dis-
crete and the scalar product becomes a discrete sum). The in-
verse operation is performed by thewindowed Fourier decoder.
This takes a double-indexed sequence of (complex) numbers

and returns a continuous-time signal of the form
. We use the notation signaling a double-in-

dexed sequence of functions. Usually it is equivalent to
if not otherwise indicated.

Weyl–Heisenberg sets have been long studied in the literature
(see [13] or [25]). In Appendix A, we briefly review the main
known results. Two important definitions regarding these (and
other sets) are the following.

Definition 1: A Weyl–Heisenberg set is called aframe if
there are two positive constants such that for every

(2)

The numbers are calledframe bounds. If , the frame
is calledtight.

A WH set is called aRiesz basis for its span(or a -Riesz
basis) if there are two positive constants such that for
every finite sequence (i.e., only a finite number of

elements are nonzero)

(3)

The numbers are calledRiesz basis bounds. If the WH
set is simultaneously frame and-Riesz basis, then it is simply
called aRiesz basis(its closed span is, in this case, the entire
space ).

An extension of a (single windowed) Weyl–Heisenberg set
is given by aWeyl–Heisenberg multisetdefined simply as a
union of Weyl–Heisenberg sets. Thus given
and , we call

aWeyl–Heisenberg multiset. Similarly, we use the terms ofmul-
tiframeandmulti -Riesz basisto suggest the multiset property
as well as the frame, respectively, the-Riesz basis property of
the WH multiset. Thus is a multiframeif there
are such that for every

The multiset is called amulti -Riesz basisif
there are such that for every

Weyl–Heisenberg multisets have been studied in [55] and re-
cently in [11]. In Appendix A we recall some of these results.

The block scheme of the multidescription transmission
system we are proposing is given in Fig. 1.

The original signal is passed through theanalog en-
coders defined for the first channel by a Weyl–Heisenberg
set associated to the window, respectively, for the second
channel by . Their outputs represent the encoding coefficients

These coefficients are
passed through thequantizers and ,

are their quantized values (we take the
midpoint of the quantization interlevel). Next, the coefficients

are encoded, using, for instance, anentropy encoder,
into the bit-sequences and sent through the two
channels. The receiver is made out of three decoders; theside
decodersconvert, in the first stage, the bit-sequences into
the approximate coefficients and , respectively,
and then, in the second stage, decode these coefficients into
approximating signals and , respectively; thecentral
decoderdoes the same thing, except for the fact that it uses
both bit-streams and .

Our problem is to analyze this scheme by computing the dis-
tortion, minimizing it under certain hypotheses, evaluating the
transmission rate, and determining the rate-distortion character-
istics (or the side distortion—central distortion characteristics).
As we shall see later, by varying the encoding redundancy we
cantrade off between side distortions and the transmission rate.
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Fig. 1. The multidescription transmission block diagram.

The paper is organized as follows: in Section II we discuss
the analog encoders and decoders, we analyze different signal
models, and state certain optimization problems; in Section III
we solve the optimization problems using the Zak transform; we
also analyze the optimal, partial optimal, and near-optimal cases
by obtaining the distortion–redundancy characteristics; in Sec-
tion IV we discuss the rate and obtain the rate-distortion and side
distortion—central distortion characteristics; Section V contains
the conclusions and is followed by a Reference section.

II. M ODELS AND OPTIMIZATION PROBLEMS

Let us now return to the block scheme in Fig. 1. Suppose for
the moment the quantizer does not introduce any error (for in-
stance, consider the asymptotic limit ) and, therefore,
the bit-stream contains the same information as the
coefficients . If both channels work, then the full in-
formation is known to the central decoder. Then we have to de-
sign the encoders/central decoder in such a way as to losslessly
reconstruct the original signal (recall that we make abstraction
of the quantization error). This is possible only if the multiset

defining the encoder is a multiframe. The den-
sity result due to Christensen, Deng, and Heil (see Appendix A)
shows the redundancy of this multiframe is . For the
reconstruction (central decoder) we have many possibilities, all
given by various dual frames. Even if we impose the dual frame
to be given by a WH multiset, an infinite number of choices (as-
suming ) remains (for instance, see [33]). Among
these we shall choose the standard dual frame (also known as
canonical, or minimal dual frame) , whose con-
struction will be indicated later, in the next section.1 Let us now
consider that only one channel works, say channel 1. Then the
receiver knows the bit-stream solely. Unless we are pre-
pared to spend a lot of rate, this bit-stream should contain only
partial information on the original signal(even neglecting the
quantization error). Thus the coefficients typ-
ically represent an incomplete description of the signal. This
means that the set should be an incomplete set, which
suggests (see Appendix A). Thus we obtain the nat-

1As reminded by one of the readers, this dual frame minimizes the reconstruc-
tion error variance in the case of white quantization error (see, for instance, [9],
for the single-window case).

ural condition

(4)

i.e., the redundancy of the original WH multiset
should be between 1 and 2.

On the other hand, the side decoders are assumed linear,
of the form and , re-
spectively. Approximating again we obtain

. In principle, the could be an
arbitrary collection of functions not necessarily obtained via
(1). If we impose two invariance conditions on this decoding
scheme, we can show that the decoder necessarily has to be
coherent, i.e., given by translations and modulations as in (1).
The two (very natural) invariance conditions are as follows:

1) If is translated by then the decoded signal trans-
lates by as well, i.e., if

is the translation operator , then

(5)

2) If is modulated by , then the decoded signal
modulates by as well, i.e., if

is the modulation operator then

(6)

Lemma 2: If conditions (5) and (6) are satisfied and
is an -Riesz basis, then there exists a function

such that

(7)
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Fig. 2. The encoding–decoding scheme for the time-shift division encoder (TSDE):g ; g are derived from the sameg.

Fig. 3. The encoding–decoding scheme for the time-shift division decoder (TSDD):g ; g are derived from the sameg .

Proof: Since the set is incomplete we can find
such that (where if and
otherwise). From here, by setting

we obtain

On the other hand, one can easily check that

and

for every . In particular by plugging into (5) and (6) we
get

(8)

for every integer . Iterating now these relations we ob-
tain (7).

Similarly, by assuming the same invariance hypotheses for
the second channel we obtain the following relations:

(9)

which shows that both and should be coherent,
i.e., obtained as WH sets.

This discussion justifies our choice for the side decoders as
given by the WH sets and , respectively.

There are two particular choices for the encoder or decoder
that we would like to single out. Both choices correspond to
using a single windowed WH frame followed by a
downsampling (division) of the coefficients. One possibility is
to split with respect to the time shifts as follows:

(10)

We call this encoder atime-shift division encoder(TSDE). Then
it is obvious that can be equivalently obtained via

where and . Similar translation–modulation
invariance conditions on the decoder ask for the following rela-
tions: , respectively, .
The encoding–decoding scheme is represented in Fig. 2.

The other possibility is to split the coefficients with respect
to the frequency shifts as follows:

(11)

We call this encoder afrequency-shift division encoder(FSDE).
We can still obtain the encoding scheme via the general scheme
presented in Fig. 1, except for a constant phase factor in the
second channel, which is canceled out by a similar choice of the
second side-decoder. We have and

where and .
The invariance conditions on the decoder are satisfied if we
use the following windows: and

. Note that

and this explains how the constant phase factor is removed. The
encoding–decoding scheme is similar to the one in Fig. 2 where
the indexes and are replaced by , respec-
tively .

Similarly, we can construct the side-decoders either by
time-shift division or by frequency-shift division, of one
given frame. Thus if we choose and

we obtain thetime-shift division decoder
(TSDD) and the encoding–decoding scheme is shown in Fig. 3.
If we choose and
we have thefrequency-shift division decoder(FSDD) and the
encoding-decoding scheme is analogous to the one drawn in
Fig. 3, where we replace the indexes and by

and , respectively.



BALAN et al.: ANALYSIS AND DESIGN OF MULTIPLE DESCRIPTION SOURCE CODING SCHEMES 2495

Finally, we consider also the case when both the encoders and
side-decoders are obtained by shift division. Then, thetime-shift
division encoder–decoder(TSDED) is obtained by

and

The frequency-shift division encoder–decoder(FSDED) is de-
fined analogously by

and

We analyze now certain signal models and we compute the
one-channel approximation error.

Given a signal , the approximation error furnished by the
first side decoder is given by

(12)

Suppose again that . When noa priori information is
known about the signal, a logical choice for the error measure
would be to take the supremum of over all with

. We obtain the following norm:

(13)

The index stands for theworst case. Indeed, measures
the worst case error when the encoder is fixed byand the
decoder by . Thus the designing issue seeks to solve the
following optimization problem:

(14)

Since for is always incomplete in
, then obviously (just take to be orthogonal to

all ). In fact, it is easy to see that the optimal value in (14)
is for every with and it is for . The value

is the threshold for when may turn from an
incomplete set when into a complete one when

(see Appendix A). To achieve the optimal value, we can
choose and such that represents, for
instance, an orthogonal projection. This happens whenever
is the generator of a WH set that is biorthogonal to ,
i.e.,

and for every . We shall
return in the next section to the problem of finding , the
biorthogonal generator, given. We note here only the discon-
tinuity of as a function of , at the threshold value
(see Fig. 5 top plot). The stochastic model presented below will
yield a continuous transition fromto (see Fig. 5 bottom plot).

We introduce now the stochastic model which is the main
topic of this paper. The abstract (mathematical) results needed
to justify the formal computations are presented in Appendix B.
More results and extensions are presented in [2].

Our stochastic model is of a stationary signal with zero-mean
and known autocovariance function

(15)

The natural representation space can no longer be , the
space of finite energy signals, since is not integrable;
instead, one can use the Wiener amalgam space , a
space of finite power signals (hence the mathematical “com-
plications” presented in Appendix B), or (less intrinsically)
weighted -spaces.

The approximation error is measured as an expected value of
the weighted -norm given by a nonnegative weight function

as follows:

(16)

where

The lower index st stands forstationary, the upper index indi-
cates the channel for which the approximation error is measured.
Hence means the approximation error of the second channel

(17)

Consequently, the two-channel error (which is not the recon-
struction error of the central decoder) is

(18)

The design task is the following: given the stochastic
model (15) and the weight function , find the windows

that minimize the two-channel approximation
error, allow a perfect reconstruction when both channels work
and the quantizer is ignored, and are well-localized in the
time–frequency domain. To deal with the time–frequency
localization we can append to the optimization criterion certain
terms measuring the time–frequency spread, but this turns out
to be very expensive computationally.
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Let us state now the possible optimization problems related
to the approximation errors (16)–(18). We denote hypotheses

and as follows:

The set is a -Riesz basis (19)

The set is a frame (20)

The multiset is a multiframe

(21)

Ocasionally, we shall use when there
is no danger of confusion. For we can also use

or instead of (19), (20),
or (21), respectively.

A. The Optimal Problems:

The One-Channel Optimal Problem:

(22)

The Two-Channel Optimal Problem:

(23)

The optimal TSDE:

(24)

The optimal TSDD:

(25)
The optimal FSDE:

(26)

The optimal FSDD:

(27)

The optimal TSDED:

(28)

The optimal FSDED:

(29)

B. The Partial Optimal Problems:
The partial optimal problems are variations of the following

theme: fix either the encoder or the decoder and find the cor-
responding optimal decoder or encoder that minimize the error.
Obviously, there are 16 possible problems. Each of them is an
optimization problem with respect to a smaller search space.

C. The Near-Optimal Problems:
For the near-optimal problems we need to know first the op-

timal value for the corresponding problem. Given a threshold
, the problem is to find an encoder or decoder that pro-

duce an error less than times the optimal error for the
corresponding case.

For instance, thenear-optimal FSDEDwith threshold is to
find a such that

We thus have eight near-optimal problems associated to A1–A8.
In the real world, however, the total distortion is different

from the approximation errors considered before. The assump-
tion, made at the beginning of this section, that the quantization
error is negligible, may not be true. In general, we should take
into account all sources of error. If we do so, the total distortion
has the following form:

(30)

for the first channel (and, similarly, for the second channel),
where is the set of coefficients actually encoded. Using the
triangle-inequality we obtain

(31)

Here is thestationary errordue to the incompleteness of
each channel description; is thequantization errordue to the
quantization; is the truncation errorand is due to the fact
that we send only a subset of the total set of coefficients.

In Section IV, we analyze the quantization and truncation er-
rors. In the next section, we deal only with the stationary error
and the optimization problems stated before.

III. COMPUTATIONS USING ZAK TRANSFORM

In this section we shall compute the stationary error under the
additional hypothesis that the redundancy is a rational number.
Consider the general encoding–decoding scheme in Fig. 1. Set

(32)
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A. Stochastic Errors

First we concentrate on the first channel and estimate the re-
construction error. Then we compute . For the
stationary stochastic model (15) we obtain

Using Parseval’s formula (see Appendix C) for the summations
over we get

(33)

We need to use the Zak transform. As mentioned earlier, we
assume with and relatively prime. The
Zak transforms of the four windows and are
denoted by capital letters by , respectively,
and are defined analogously to the following:

(34)

The inversion formulas in time and frequency domain are

(35)

We note here our convention regarding the Fourier transform

For more information on the Zak transform we refer the reader
to [28], [29]. We recall here two quasi-periodicity relations that
will be used throughout this section

(36)

We denote by the matrix whose entry is

i.e., we get the matrix (37) at the bottom of this page. We
define similarly the matrices and

. We also define the following transforms of the
autocovariance function, respectively, of the weight function:

(38)

(39)

Let us denote by the matrix whose entry is
, i.e.,

...
... (40)

Note the following properties:

(41)

i.e., for fixed as a matrix (we shall also use instead
of ). Thus is a self-adjoint Toeplitz matrix.

Using defined in (39) we construct a diagonal
matrix whose entry is , i.e.,

...

(42)

Since is one-periodic the diagonal of contains a per-
mutation of the .

...
...

...

(37)
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Using these notations and the Parseval identity, the error
given by (33) turns into

(43)

where
and is the identity matrix. In order to

make explicit dependence of the error on the window functions
and , we also use the notation

(44)

A full account of these computations can be found in [2].
The other channel error is given by

Then the same derivation leads to

(45)

We turn now to the special cases of time-shift division and
frequency-shift division encoders and decoders. Both cases can
be treated by adapting (43) to the specific context. We take

.
In the time-shift divisioncase the reconstruction operator on

channel 1 has the form

and thus the reconstruction error is

(46)

with defined as before but for
. For the second channel we obtain

The error is

because of the stationarity of the reconstruction error. Next,
has the same second-order statistics asdoes, because

of the stationarity of the signal itself. Thus can be dropped
from the above formula and we obtain

(47)

The frequency-shift divisioncase is a bit different. For channel
1, the reconstruction error does not raise any difficulty since

Thus

(48)

On the other hand, for channel 2 we obtain

which implies

Note now that has a different second-order statistics
than has. Indeed,

(49)

Thus the reconstruction error becomes

(50)

where is a Toeplitz matrix obtained similarly to but
for the autocovariance function (49). Let us denote by the
entries of . Then an easy computation shows that

...
... (51)

with

(52)

Note that and have similar properties to those of and
given by (41).

The last two cases we consider are the TSDED and the
FSDED. Both schemes are defined by two windowsand
only. The total error in the TSDED case is obtained by adding
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up and for and .
Thus we obtain

(53)

In the FSDED case we have to add and and we
obtain

(54)

The expressions (53) and (54) look very similar; note, however,
that, because one of them uses and the other as the time
translation unit, our analysis uses different Zak transforms (in
which the translation unit enters), so that have different
forms in the two formulas.

Next, we analyze the three hypotheses (19)–(21), stated in the
previous section, as well as the central decoder construction.

B. Biorthogonal and Dual Generators

The hypotheses impose different conditions on a WH set or
multiset. The -Riesz basis and frame conditions on ,
in terms of the Zak transform, have long been studied (see [13]
and [25]). Similarly, one can obtain necessary and sufficient
conditions on a WH multiset to become a multiframe (see [54]).
These conditions can be stated as follows:

Theorem 3:

A. Consider a WH set. Suppose with
relatively prime integers. Let us denote by

the Zak transforms of these windows with respect to the
parameter , and by the matrices obtained
similarly to (37). Then

1) is a -Riesz basis with bounds iff for
a.e.

(55)

where the inequalities are understood in the quadratic
forms sense (i.e., iff

). Moreover, the standard biorthogonal-Riesz
basis generator is given through the following re-
lation:

(56)

2) is a frame with bounds iff for a.e.

(57)

Moreover, the standard dual frame generatoris given
by

(58)

B. Consider now a WH multiset. Suppose
again with integers and consider the same
notations as before.

The multiset is a WH multiframe with
bounds iff for a.e.

(59)

In this case, the standard dual-frame generator is
given by

(60)

(61)

This result is known in the literature. Part B is perhaps the
least known, since WH multisets have been studied less. In Ap-
pendix D we sketch its proof.

Remark 4: Note in (55), the -Riesz basis condition is stated
in terms of because , whereas in (57) the frame con-
dition involves the product , since now .

This result makes it possible to obtain the central decoder.
Indeed, in the TSDE or FSDE cases, the full bit-stream is
obtained by encoding the expansion coefficients of the signal
with respect to a frame . On the other hand, the stan-
dard (minimal) dual frame minimizes the reconstruction error
variance when the coefficients are perturbed by an additive in-
dependent white noise. Thus the standard dual frame is a logical
choice for the central decoder, and that is what we choose. In the
other cases, when the encoder is a WH multiframe we choose its
standard dual multiframe (60) and (61) for the central decoder
(note in the FSDD case the central decoder should preprocess
the coefficients of the second channel by shifting them with a
constant phase ).

C. The Partial Optimal Problems

Let us now concentrate on the partial optimal problems. Note
first of all the symmetry in terms of the encoding and decoding
problem. Indeed, because we can make circular permutations
and take adjoints under the trace we have

(62)

For the one-channel partial optimal problem with fixed en-
coder we have to minimize with respect
to , for . This is clearly equivalent with minimizing
the following trace:

(63)

for , with Hermitian and
given, because each can be chosen independently from
each other for . The optimal solution
is given by

(64)

Note that it does not depend on, however, the optimal value
of the error does

(65)

The explicit solutions that will be presented assume implicitely
the encoding hypotheses (19)–(21) are satisfied. We shall com-
ment on this fact later in the subsequent subsections when the
optimal problems are considered.
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We introduce an expression that will be useful in the sequal

The solutions to the 16 partial optimal problems are given in the
following theorem whose proof in given in Appendix D:

Theorem 5: Suppose the matrices and are
strictly positive with bounded inverse. Then the solutions of the
partial optimal problems are given by

The one-channel partial optimal problem with fixed
encoder:

(66)

(67)

The one-channel partial optimal problem with fixed
decoder:

(68)

(69)

The two-channel partial optimal problem with fixed
encoder

(70)

(71)

The two-channel partial optimal problem with fixed
decoder :

(72)

(73)

The partial optimal TSDE with fixed encoder:

(74)

(75)

The partial optimal TSDE with fixed decoder:

(76)

(77)

The partial optimal TSDD with fixed encoder:

(78)

(79)

The partial optimal TSDD with fixed decoder:

(80)

(81)

The partial optimal FSDE with fixed encoder:

(82)

(83)

The partial optimal FSDE with fixed decoder:

solution of the linear system

(84)

(85)

The partial optimal FSDD with fixed encoder:

(86)

(87)

The partial optimal FSDD with fixed decoder:

(88)

(89)

The partial optimal TSDED with fixed encoder:

(90)

(91)

The partial optimal TSDED with fixed decoder:

(92)

(93)

The partial optimal FSDED with fixed encoder:

(94)

(95)

The partial optimal FSDED with fixed decoder:

(96)

(97)

Remark 6:

1) We point out that the requirements (such as strict posi-
tivity) on and are not necessary. They
are sufficient conditions ensuring that the suboptimal
windows belong to ; in most
cases these conditions can be relaxed. Each case can be
dealt with separately, but we shall not go further into
this here. However, in practice, we are interested in
more regularity than simply square integrability; we are
interested in smoothness for our windows as well. We
return to this issue in the designing step, in Section IV
below.

2) As mentioned above, we assume that each solution satis-
fies the -Riesz basis and multiframe condition. Explicit
conditions for these hypotheses will be given for the op-
timal problems.

IV. THE OPTIMAL PROBLEMS

A. Spaces of Eigenvalue, Eigenvector, and Eigenspace-
Valued Maps

The following objects are useful in the analysis of the optimal
solutions. The unit two-dimensional square is symbolized by
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. Recall that the Hilber–Schmidt scalar
product of two matrices is defined by

(98)

Similarly, the Hilbert–Schmidt norm of is defined as
usual by . Then we can easily define
several spaces of matrix-valued functions. In particular we
define two spaces

(99)

and

(100)

Note that is not a linear space (for instance,
the constant zero matrix does not belong to this space), but a
group with respect to the matrix multiplication. Consider now
the space of nonnegative symmetric matrices .
It is a convex cone and its trace is a pseudo-metric

for

Using this pseudo-metric we construct the space of
-valued functions as follows:

(101)

is then extended to the space of -equivalent
matrices, denoted

Thus a matrix if and only if it is diagonalizable
and all its eigenvalues are positive real numbers. Accordingly,

extends to

(102)

Note that is a subset of the space
which, in turn, is a subset of the set of

trace-classoperators over . Moreover, the following
property holds true as well.

Proposition 7: If then
and .

Proof: Suppose then there is a unique
such that . For every

and we have the following equivalence:

Now, by continuity of the spectrum with respect to (com-
pact) perturbations, we may take the limit and obtain

. Thus . Consequently, for
satisfying our hypothesis, we have for every point

. Next, note

by the Cauchy–Schwartz inequality and thus

which ends the proof.

Consider now , a matrix-valued function in
. We want to study the eigenproblem solution

for . We are interested in the eigenvalue and the
eigenvector maps.

At each point , the eigenvalues are well-defined
and positive. The eigenvectors may not be uniquely defined if
one or more of the eigenvalues is degenerate. Let us denote
by the monotonically decrasing ordered
eigenvalues of at . Thus we obtain real-valued
maps over the unit-square . The fol-
lowing result characterizes these eigenvalue maps.

Theorem 8: Consider and
the monotonically decreasing ordered eigenvalue

maps as above.

1) For every is measurable (with respect to
the standard Lebesgue measure) and .

2) If the entries of are continuous complex-valued func-
tions on , then so are .

3) Suppose the entries of are differentiable at some
(i.e., the real and imaginary parts of are

differentiable at , for ) and is
nondegenerate, then is differentiable at .

Proof of Theorem 8:
2) Part 2 is a standard result in matrix perturbation theory

(see, for example, [44, Theorem IV.1.3] due to Elsner), and it is
usually proved using complex analysis methods.

3) Part 3 is also standard (see [44, Theorem IV.2.3]), and it is
proved using the Gerschgorin’s disks technique.

1) For the first assertion we use first the density of
in . Then we consider a

sequence in that converges to in
sense. Then we extract a subsequence

that converges pointwise almost everywhere on. Next, the
sequences of the ordered eigenvalues
of are bounded and necessarily converge to , some
eigenvalue of , where is a point-dependent permutation of

. Because of the ordering of we have .
Thus pointwisely and each is
continuous, hence measurable, and in . Therefore,

is measurable as well. Since we
obtain

Thus for every .
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We consider now the eigenvectors problem. Unfortunately,
there are no easy answers to the continuity problem for the
eigenvectors. The difficulty arises whenever the eigenvalue is
degenerate. For the nondegenerate eigenvalues, the problem is
relatively easy and the answer is furnished by the spectral theory.

Given a matrix and a closed curve that
does not pass through any eigenvalue of(i.e.,
), then

(103)

defines a projection onto the spectral space associated with
the eigenvalues included in the interior of(see, for instance,
[32]). A spectral spaceassociated with some eigenvalue
is the largest invariant space of such that the restriction
of to this invariant space has the spectrum made only of

. If is self-adjoint, is an orthonormal projection and
any spectral space is exactly the eigenspace associated with
some eigenvalue. In general, the eigenspace is included in
the spectral space, but the inclusion may be strict. However,
when diagonalizes, the two spaces are always of the same
dimension.

Suppose now that is a matrix whose en-
tries are continuously parametrized by, and for has
a simple eigenvalue at ; we choose to number the eigen-
values so that is continuous in (see earlier). Then the pro-
jection onto (the eigenvector associated to) is a contin-
uous function in the space of rank-one projectors. Next, using
a transformation function adapted to (see [32, Cap. II, Sec.
4.2]) we can construct a continuous map of eigenvectors from
into , associated to the map . The same argu-
ment can be carried over to any spectral projection of constant
rank. Thus we get the following result.

Proposition 9: Let be a continuous
-valued map defined on an open set( , for

some ) and let be the monoton-
ically ordered continuous system of eigenvalues. Suppose for
some on , then there are or-
thonormal vectors continuously defined on that
form an orthonormal basis for the spectral space ofassoci-
ated to .

Remark 10:
1) Explicitly, have the following property: for

every , if is their -dimensional span in ,
then is an invariant space for and the spectrum
of restricted to is exactly , i.e.,

.

2) The result in [32] does not yield directly the orthonormal
system, but rather a basis for eachin the spectral space.
From there it is straightforward to obtain an orthonormal
basis (for instance by Gramm–Schmidt) which will de-
pend continuously on as well.

In order to deal with the degenerate case we have to be
more careful. Consider now a function
in and its system of
eigenvalues. Fix . Let us denote by the

set of -dimensional subspaces of . We define the following
two important sets of maps:

for every is

invariant

and (104)

is measurable

and s.t. (105)

We shall also denote by or
with the same objects, when there is

no danger of confusion. Note thatis not necessarly a spectral
space, because we do not requirein to be max-
imal as invariant space (in fact we could not require this because
of the dimension constraint). If , then is a spectral
space, though. In this case, Proposition 9 proves there is a con-
tinuous ; moreover,
contains only one map, namely, the one associates for every

the spectral space of . In the case when
will contain infinitely many

maps. Note the columns of form an
orthonormal basis for some .

For a better characterization of these objects we introduce the
following indexes. For every we define thedegeneracy
indexes and as follows:

(106)

Thus the eigenvalues at are ordered as follows:

(107)

Then we define

(108)

and

(109)

Note that we always have and . It is
easy to show the following properties of these sets:

1) , for every ;
2)

is open;
3) is open;
4) is open;
5) is open for every .

With these notations, Proposition 9 implies that on we
can construct (continuous)-system of orthonormal basis in
the spectral space of (assuming is continuous).
Note also that restricted to contains
only one map. We are now ready to discuss the optimal prob-
lems and the localization result.
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B. The Optimal Problems

Once we have solved the partial optimal problems we can
optimize over the remaining freedom in the choice of window
functions, i.e., we now concentrate on the eight optimal
problems stated in (22)–(29). We shall solve exactly (i.e., in
a closed form) seven of these eight problems. For the eighth
problem (the FSDE problem) we provide upper and lower
bounds for the approximation error. The exact value of the
optimal error in this particular case can be obtained by solving
a continuously parametrized finite-dimensional optimization
problem. For all the cases the optimal solution represents
a Karhunen–Loève approximation of the original stochastic
signal. For the remainder of this section we assume
is bounded and invertible for almost every (more
precisely, ).

We are going to study separately each of the eight optimal
problems. In the following we use the notations introduced be-
fore.

1) The One-Channel Optimal Problem:The one-channel
optimal problem is the simplest and, in some sense, represents
a benchmark for the other optimization problems.

Recall the one-channel structure involves two WH-Riesz
bases and the communication struc-
ture contains one encoding and one decoding block. If,
respectively, , denotes the encoding, respectively, decoding
window, then the optimal solution is obtained by solving one
of the following optimization problems:

(110)

where was defined in (44). Solving the first
optimization problem is equivalent to first solving the partial
optimal one-channel problem with fixed encoder, and then op-
timizing over the encoders. The second form in (110) means
to optimize the partial optimal one-channel problem with fixed
decoder over all admissible decoders, and then to optimize over
the encoders. The solution is given by the following theorem.

Theorem 11 (One Channel):The optimal solutions of the
one-channel optimal problem are parametrized in the Zak trans-
form domain as follows:

(111)

(112)

where

(113)

and

(114)

denotes the Hermitian conjugate of the inverse
. Recall from Section IV-A that rep-

resents the set of -matrices of functions whose columns at

each point are orthonormal vectors and span an invariant space
of corresponding to the largesteigenvalues.

The optimal value of the error turns into

(115)

where are the real eigenvalues of decreas-
ingly ordered as .

Proof: First note that in the Zak domain the optimiza-
tion problem decouples into independent finite-dimensional op-
timization problems continuously parametrized by . For a
fixed we have to minimize

over . Assume is invertible at . Notice that

is an orthogonal projection for any choice of for which
is invertible. Moreover, for every -dimensional

subspace of , there is a such that ,
where is the orthogonal projection onto . Then the
problem reduces to finding a subspace that maximizes

. It is clear that this subspace should
belong to . Next we check
that given in (113) is a solution for . Note that

(see Proposition 7). Thus corresponds to the largest eigen-
values of as well; , where

with the ordered eigenvalues of . This proves (115).
Then

which shows that is an invariant subspace of
and also

Thus which
proves (113).

Next we note that any other that satis-
fies the -Riesz basis condition (55) and is optimal should cor-
respond also to an element of . This
means that . From (55), it
follows that for some and

, i.e., (111).
Finally, the biorthogonal generator is obtained through (66)

which turns into (112) when (111) is used. .

An upper bound for the optimal error (115) can be easily ob-
tained by using the following inequality:
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Now, note the right-hand side is .
Since is diagonal and the diagonal of is constant
equal to we obtain further

Next, by integrating for we get

(116)

where is the -norm of the weight function
and is the autocovariance function evaluated at lag.

Remark 12:

1) In the case is nondegenerate, the optimal solution is
parametrized only by . In the case
is degenerate, the parametrization is more complicated
because it takes into account the local degeneracy of.

2) In either of the two cases (i.e., degenerate or not), the
approximation error is given by the same formula (115).

3) In the case when or
we can solve this problem explicitly. We postpone this
analysis until later.

2) The Two-Channel Optimal Problem:The two-channel
transmission scheme uses two encoding and two decoding
blocks, one of each for each channel. It thus represents a
union of two one-channel transmission schemes, subject to hy-
potheses and . Without these additional
constraints, the optimal two-channel problem would simply
reduce to the previously solved one-channel optimal problem.
Hence a lower bound for the approximation error is given by
twice the optimal value of the optimal error for the one-channel
case

(117)

The issue is then whether the lower bound can be achieved.
The optimal solution for the one-channel problem is param-

etrized using the spaces in ; in partic-
ular we have . On
the other hand, the frame condition requires that in
the Zak domain, , another subspace con-
dition. Now clearly these two conditions are contradictory, un-
less almost all eigenvalues are degenerate and there is enough
“room” in to cover ; we can, there-
fore, in general not hope to achieve equality in (117). Moreover,
(117) cannot be improved: for every there is a near-op-
timal solution with . All these
facts are proven in the following theorem.

Theorem 13 (Two-Channel):For the two-channel optimal
problem, the lower bound (117) is sharp. The equality cannot
be achieved unless the following two conditions hold for almost
every .

1) The eigenvalue is degenerate for .
2) .

Proof: We have to prove two statements: one is about the
near-optimal solution with bound , the other
concerns conditions to be satisfied if the bound is attained.

For the near-optimal solution we use a perturbative argument
as follows. Consider , the solution of the optimal
one-channel problem. We shall tailor a near-optimal solution

for the one-channel problem by perturbing the first
one in such a way that the two hypotheses and

are satisfied.
For each . Let us construct the or-

thogonal complement of and let be an
orthonormal basis in this complement. Note that
can be chosen to be at least measurable, as vector-valued func-
tions over , by a similar argument as in Proposition 9. Since

we have . Set

(118)
where the matrix contains on the first columns,
the component of the vectors in the cannonical
basis and then is completed with zero on the remaining
columns. The lower bound of the WH multiset
is given by (see (59))

By Theorem 11, with .
Then In the orthonormal basis
(which depends on ), the matrices of interest are given by

where every matrix is written in two blocks: a block on
top, and a block on the bottom; is the
matrix of which the first columns form the
identity matrix and the remaining columns are zero. Then

However,

Hence

Since it follows that
for a.e. and some . Thus is

fulfilled. Similarly, holds true as well.
It remains to be shown that the approximation error is close

to . The first channel approximation error is
. For the second channel we use (43) and get
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Notice that are all bounded as functions
in or .
Using again (43) and expanding the above formula, we ob-
tain a fourth-order polynomial in with zero constant term,

. Since this can obviously
be made arbitrarily small by choosing appropriately small,
(117) is sharp.

For the second part of the theorem we need to show the two
conditions in the hypothesis are equivalent with the existence of
two one-channel optimal solutions that satisfy .
As mentioned before this reduces to the algebraic condition

a.e., or equivalently, to the existence
of two members such that

for a.e. . Using now the
parametrization of developed in Section
IV-A we obtain the conclusion.

Remark 14: The proof of the theorem suggests how to con-
struct optimal solutions when the two conditions hold. Let us fix
some and let and

as in Section IV–A. Let denote the eigenspace
of corresponding to the eigenvalues

If denotes the eigenspace corresponding to
then and .
Let be a measurable system of eigenvec-
tors. Let

be two injective selection maps such that

Then on we construct the following objects:

By construction

and

The constructed on are local optimal solu-
tions for each one-channel transmission problem and for every

they form a frame in with lower bound larger
than . Therefore, by patching together these local frames we get

two windows that satisfy and are also optimal
for each one-channel transmission problem.

3) The Optimal TSDE:The encoding scheme using atime-
shift division encoder(TSDE) shown in Fig. 2 is characterized
by

(119)
where and are the generating win-
dows. The approximation errors have been computed in (46) and
(47). In the TSDE case and thus the total approx-
imation error is

The partial optimal TSDE with fixed encoder has been obtained
in Theorem 5 case B5, as

(120)

and

(121)
which is perfectly equivalent to the one-channel problem, du-
plicated modulo a -time shift to the two channels. Clearly,
the optimal value of the error is bounded below by twice the
one-channel optimal error

(122)
As in the optimal two-channel case, the lower bound is actu-
ally achieved if and only if the hypothesis holds true. To
be more precise, the only issue is whether there is any optimal
solution of the one-channel optimal problem (paramterized by
(111)–(114)) that makes also a WH frame. A partial
answer to this question in given by the following lemma.

Lemma 15: Consider with rela-
tively prime integers and such that is
a -Riesz basis. Then is a frame for iff there
is an such that for almost every

(123)
( is the matrix defined in (37)).

Proof: Let us denote by the -time shift of
. By sorting the labels into those with even and those

with odd , we have the following decomposition:

Therefore, is a frame iff is a WH
multiframe. Next note the Zak transform of is

The fact that is a WH -Riesz basis translates into
(see Proposition 3, case A.1)

(124)
for almost every and some . By the
same Proposition 3, case B.3, the multiset is
a multiframe (with frame bounds ) iff

(125)
a.e. . Since the upper bound comes
automatically from (124) (note ). Thus the
only condition that remains to be satisfied is the lower bound in
(125) which is equivalent to (123).
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This Lemma does not solve our problem completely. It
merely states an equivalent form of the hypothesis when

is satisfied (i.e., when is a WH -Riesz
basis). However, it provides an easier verifiable condition.
The general solution of the optimal TSDE is furnished by the
following theorem.

Theorem 16 (TSDE):Consider the encoding scheme of Fig.
2 using a TSDE. Then the optimal approximation error is

(126)

This bound is achieved iff for almost every

(127)

for and some . In this case,
the optimal solution in terms of the Zak transform is

(128)

(129)

with

(130)

(131)

If (127) is not satisfied, the optimal bound (126) is not
achieved, however, for every there is a near-optimal
solution within

Remark 17:
1) The condition (127) is generically satisfied. In fact, it

represents a constraint only on the weight. However,
for every (autocovariance and weight functions)
such that but not satisfying
(127), and for every there is a weight that sat-
isfies (127) and . To see this note that

and (127) can be made to
hold true with an arbitrary small perturbation.

2) There is a particular class of weights for which (127)
does not hold true in general (it depends now on). This
class contains the characteristic function of , or
any other weight such that . For these
weights and, therefore, does not de-
pend on . The only way for (127) to be satisfied is, in
this case, that satisfy both conditions of Theorem 13.
Since this is an important case we state it explicitelly in
the following corollary.

Corollary 18: Suppose the weight satisfies

for almost every . Then the lower bound in the TSDE encoding
scheme is achieved iff for almost everythe following two con-
ditions hold true:

1) the eigenvalue of is degenerate;
2)

where are the left and right multiplicities of
as defined in Section IV-A.

Proof of Theorem 16:It is clear that and from
(127) and (129) achieve the lower bound in (122) because of

(121) and the construction of . The only
issue is to check whether the frame hypothesis on is
satisfied. Using the previous lemma we have to check whether

for some and a.e. . Since and
it follows that is uniformly

bounded, therefore, for a.e. . Hence

and (127) is then a sufficient condition.
To show now that it is necessary also, we use the upper bound

for some finite and a.e. . Then
if holds true we get

and thus (127).
The near-optimal solution is easily obtained using the fol-

lowing observation. Condition (127) is structurally stable be-
cause for every . Thus a
small perturbation in -sense of would make
(127) hold true. However, by the continuity of the approxima-
tion error with respect to the window (see the argument used
in the proof of Theorem 13) we get a perturbation that increases
the approximation error by no more thanand makes (127) hold
true. This concludes the proof. .

Proof of Corollary 18: If then the
columns of can be chosen from the eigenvectors of
and the lower bound condition reduces to an algebraic
range condition: if then

and thus the conclusion.

Remark 19: In general, the range condition from the proof
is a necessary but not sufficient condition for the attainability
of the optimal bound. Equation (127) is equivalent to this range
condition plus a lower bound of some angle between these
spaces. The angle should be defined between the orthogonal
complements within each range of their intersection.

4) The Optimal TSDD:The encoding scheme using atime-
shift division decoder(TSDD) is shown in Fig. 3 and involves
the following configuration:

(132)

where and are the generating win-
dows. The approximation error is similar to the TSDE case

The partial optimal TSDD with fixed decoder has been obtained
in Theorem 5 case B8, as

(133)

(134)

Note the similarity to (120) and (121), though and have
switched their places. The problem is formally equivalent to two
one-channel problems as in the TSDE case. Since has the
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Fig. 4. The encoding–decoding scheme for the time-shift division encoder and decoder (TSDED):g ; g are derived from the sameg andg ; g are derived
from the sameg .

same spectrum as , the lower bound for the optimal error
is as follows:

(135)

Clearly, the which achieves the lower bound in (135) is given
by

(136)

with .
Using (133) we obtain for

(137)

with

(138)

The achievability of the lower bound depends now upon the va-
lidity of the frame hypothesis on as in the TSDE
case. Moreover, (136)–(138) are perfectly equivalent to the so-
lution (127)–(131) of the TSDE case. Thus we have obtained
the following theorem.

Theorem 20 (TSDD):The optimal encoding scheme using
a TSDD is identical to the TSDE case. The optimal bound

is achieved under the same conditions
and by the same solutions as in the TSDE case.

Remark 21:
1) Corollary 18 equally applies to the TSDD case.
2) One can ask whether the-Riesz basis and/or frame

conditions on the decoder automatically imply the corre-
sponding conditions on the encoder. The answer to this
question is analyzed in the next subsubsection, devoted
to the TSDED case.

5) The Optimal TSDED:In the TSDED scheme shown in
Fig. 4, we start with the structure

(139)

with and the generating win-
dows. Since the partial optimal of TSDE or TSDD schemes in-
volve a TSDED structure anyway, it is straightforward that the
optimal TSDED case should be identical to the optimal TSDE
and TSDD. Indeed, using the same arguments as before, one can
easily show that

(140)

and the optimal value, if achieved, is attained by (136)–(138).
Hence the following theorem.

Theorem 22 (TSDED):The optimal TSDED scheme coin-
cides with the optimal TSDE and TSDD schemes. The achiev-
ability conditions are the same as in Theorem 16.

We discuss now two interesting results concerning the be-
havior of the encoding and decoding sets. Recall the hypotheses
of the optimal problems were stated in terms of the encoding
sets. Here we establish the connections with the decoding sets.

Proposition 23:

a) Suppose

and satisfies , i.e., is a
-Riesz basis. Then defined by

(141)

satisfies as well, i.e. is a -Riesz
basis as well.

b) Suppose

are the standard matrices associated to the weight, respec-
tively, the autocovariance function. Supposesatisfies

and has the form

(142)

for some

Then satisfies also and defined by

(143)

satisfies both and .

Remark 24: One may ask whether is was necessary to as-
sume the special form for at part b). The answer is affirma-
tive. Indeed, without assuming as above, the
frame conclusion would not be true in general.
Therefore, the exact solutions of the partial optimal problems
should take into account this phenomenon: while the-Riesz
basis condition on the encoder follows easily from the-Riesz
basis conditions on the decoder, the same thing does not happen
for the frame condition.

Proof of Proposition 23:

a) The conclusion follows easily since means

(144)

for some , and means
a.e. for some . Hence
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and

and thus .
b) The first claim comes from

The conclusion follows from the part a).
For the frame condition we use the Theorem 16. Re-
peating the proof of this theorem we obtain that the only
condition we have to check onis the lower bound of the
form

for some . We know that satisfies (144) and the
similar inequality

Using (143) and (142) we get

Now we note that with
. Therefore,

for some positive constants depending on
and . This proves and hence the

Proposition.

6) The Optimal FSDE:The encoding–decoding scheme for
the frequency-shift division encoder(FSDE) case is similar to
the TSDE case shown in Fig. 2. The analog encoder and, re-
spectively, side decoders are given by

(145)

with as before, and the generating
windows. The approximation error obtained before in (48) and
(50) gives

(146)

The partial optimal FSDE with fixed encoder has been obtained
in Theorem 5, case B9, as

(147)

and the error

(148)

Note that unlike the TSDE case, the two terms are different be-
cause in general. The difference is due to the meaning
of stationarity: the signals are assumed stationary in time do-
main. This makes the TSDE case easy since both channels have
the same . However, in frequency domain we do not have sta-
tionarity which results in different matrices.Unfortunately,
we are not able to obtain a closed-form solution for the optimal
window in the FSDE case. We still can find lower and upper
bounds for the optimal error and a subspace type condition for
the optimal window , though this subspace does not necessarily
come from an eigenvalue problem.

For the optimal error we proceed as follows. A lower bound
is given as in the previous cases by the two-channel optimal
formula with adapted parameters. Thus

(149)

An upper bound of the optimal error is obtained by choosing
a particular, yet interesting as we shall see later, configuration.
Set in (146) and obtain

Thus the optimal value under this constraint is given by a for-
mula similar to the one-channel case. Obviously, this will con-
tain an upper bound for the optimal FSDE error

(150)

Hence we can bound the optimal FSDE error by

(151)

A direct computation shows that and commute (we shall
discuss in Section IV-C the exact structure of the spectrum of
these two matrices). However, they do not commute with
in general, unless (or ) is (are) a multiple of identity.
Suppose this is the case, namely, is a multiple of identity.
Then the lower bound is given by the smallest eigenvalues
of , whereas the upper bound is determined by the smallest

eigenvalues of . Unfortunately, the eigenvalues
of that enter in the smallest eigenvalues of are,
in general, not the smallest eigenvalues of . Thus despite
of the fact that

(since ) we do not obtain an exact
formula for the optimal FSDE error.

Let us analyze now the optimal windows. Using (65), (148)
turns into the following explicit formula:

Therefore, the optimization problem turns into an infinite
number of finite-dimensional optimization problems. For
each , we have to maximize the trace of

(152)

over subject to the constraints and
. An analysis of (152) shows thatcan always be

factored in the usual way, where has orthonormal
columns and is invertible in . The following Lemma is the
first step toward this fact.
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Lemma 25: Let be an arbitrary change of co-
ordonates in . Then and defines a unique
map from , the space of all -dimensional subspaces of

, into denoted by as follows:

where (153)

Remark 26: can also be defined on the space of rank
orthogonal projectors, since each defines uniquely
such a projector.

Proof: The proof is straightforward since
and are invariant under the transformation

. Hence, for any two of rank such that
.

This Lemma shows the optimal window is given by a
solution of the following optimiza-

tion problem:

(154)

Note that the optimizer may not be unique. However, it always
can always be factored as with a -matrix
valued function whose columns are orthonormal vectors and

a -matrix valued function. The-Riesz basis condition
requires us to consider only thosethat are in

. It remains for us to check the frame hypoth-
esis . For this we need the following Lemma, sim-
ilar to Lemma 15.

Lemma 27: Suppose with relatively
prime integers and a WH -Riesz basis in .
Then is a frame for iff there is a constant

such that for almost every

(155)

where is the diagonal matrix whose element is
and is the matrix given by (37).

Proof: Let be the -frequency modu-
lation of . By sorting the labels into those with even
and those with odd , we have the following decomposition:

Therefore, is a frame iff is a WH
multiframe. The Zak transform of is

Then the -matrix of is .
Since is a WH -Riesz basis, with Proposition 3,
case A.1, we obtain for some
Using again Proposition 3, case B, is a WH
multiframe (with frame bounds ) iff

for almost every and for some . The upper
bound is immediate, whereas the lower bound condition is
equivalent to (155). This ends the proof of the Lemma.

Thus we have to check (155) for the optimizer of (154). Un-
fortunately, the answer is negative. In general, the optimizers of

(154) do not satisfy (155) and the reason is the following. The
definition of given by (51) and (52) is equivalent to

(156)

with as in the statement of Lemma 27. Then one can easily
check that

Assuming the solution of (154) is unique (in terms of subspaces)
and we obtain where

. Then

which makes (155) impossible. The only way in which (155) can
be satisfied is if two subspace optimizers that cover the entire
space exist, as in Theorem 13. In the generic case (when the
subspace optimizer is unique), the optimal error is not achieved
by admissible windows (i.e., windows that obey the frame and
-Riesz basis hypotheses) but for every there is a near-op-

timal solution within , because of the continuity of the approx-
imation error with respect to the windows. Hence we obtain the
following result.

Theorem 28 (FSDE):Suppose is a mea-
surable solution of (154) whose columns are orthonormal vec-
tors in . Then the optimal error has the lower bound

(157)

The optimum is not achieved unless there are two solutions
and such that a.e. . In
this case, the admissible optimizers are parametrized by

with . The decoding windows are
obtained from (147).

In general, for every there is an admissible near-op-
timum solution , within of (157).

Remark 29: The term in (157) comes from the
integral over .
stands for the -norm of the weight function and is the
variance of the signal (i.e., the autocovariance for lag).

7) The Optimal FSDD:In the frequency-shift division de-
coder case, the encoding–decoding scheme is similar to the
TSDD case shown in Fig. 3. The analog encoders and side
decoders are described by

(158)

with and the generating windows.
The approximation error obtained through (48) and (50) gives

(159)

The solution of the partial optimal FSDD with fixed decoder, as
found in Theorem 5, case B12, yields

(160)

and the error

(161)
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The optimal FSDD should minimize (161). This is equivalent to
the one-channel optimization problem having the matrix-valued
autocovariance function instead of . Therefore, the
lower bound of the optimal approximation error is

(162)

and the optimizer is parametrized by

and with . However, it
remains to check that satisfies the -Riesz basis
and frame hypotheses and . First
we need the following result, proved with the help of Lemma
27.

Proposition 30: Suppose

and is defined by for some

and , satisfies . Then
satisfies and defined by

satisfies both and .
Proof: The claim comes from

The second claim follows from Proposition 23,
part a). The frame condition comes from the pre-
vious lemma as follows. First, the condition we need to check
is (155). Let

and, similarly,

By hypothesis and Lemma 27, for some .
For we have

. Therefore,

for some positive constant . This ends the proof of the claim
and hence of the proposition.

This proposition proves the optimizer , defined above,
satisfies the -Riesz basis hypotheses. Unfortunately, in the
cases of interest, the frame conditions is not satisfied. Indeed,
suppose is given by with

and

The definition of given by (51) and (52) is equivalent to
with as in the statement of Lemma

27. Then note the following invariance
holds which implies

, unless theth eigenvalue of is fully
degenerate as in the hypothesis of Theorem 13. This invariance
turns into

and, clearly, the rank of this matrix is , when .
On the other hand, a similar perturbation argument, as in The-
orem 13, shows that the approximation error can be arbitray
close to the lower bound in (162). Thus we obtain the following
theorem.

Theorem 31 (FSDD):In the FSDD case, the optimal approx-
imation error is

(163)

although, in general, it is not achieved by any encoder–decoder
satisfying the frame hypothesis . For any
there are that satisfy the -Riesz basis and frame hy-
potheses
and achieve, for FSDD scheme, an approximation error within

of the optimal value (163). The optimal value is achieved
by an admissible solution (i.e., one that satisfies the above
-Riesz basis and frame hypotheses) only if the conditions

in Theorem 13 with replaced by are
satisfied, in which case the optimizers are parametrized by

with and
.

8) The Optimal FSDED:The frequency-shift division en-
coder and decodercase, similar to TSDED shown in Fig. 4, has
the following equations:

(164)

leaving only two degrees of freedomand . As in the TSDED
case, the FSDED optimal problem reduces to the previous case
FSDD. Indeed, as we have seen in (160), the partial optimal
FSDD with fixed decoder already requires . Thus the
optimizers of FSDD are also optimizers for FSDED and con-
versly. Thus we obtain the following theorem.

Theorem 32 (FSDED):The optimal approximation error in
the FSDED case is

(165)

and is achieved under the same conditions as in Theorem 31.
Moreover, for every there is a near-optimal admissible
solution within to (165).

Remark 33: The only new thing this theorem brings, com-
pared to Theorem 31, is that there is near-optimal solutions of
the form for every . Again, the proof of this
fact follows the perturbative arguments as shown in Theorem
13.

C. The Case

In this subsection we analyze the optimal solutions obtained
before in the case is a multiple of the identity matrix. Re-
call the operator is defined in terms of the weight function
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by (39) and (42). Thus is a multiple of identity if and
only if the function is a -periodic function. This means
the following condition holds:

(166)

for almost every . A particular case is when and
then the approximation errors (16) and (17) are computed as
averages over an interval of length, the translation step.

Except for the FSDE case, in all the other configurations, the
optimal solution involves the computation of the eigenspaces of

or . When is a multiple of the identity, the
computation reduces to the eigenproblem foror . In
the remainder of this subsection we find first the eigenvalues and
eigenvectors of and , and next we compute the optimal
errors for two encoding–decoding schemes (one-channel and
FSDD cases).

Recall that is the -valued function introduced
in (40). We pointed out in (41) some of its properties. In fact,

is not only self-adjoint Toeplitz matrix, but it is also a
nonnegative form as we prove below. First, note the following
“quasi-periodicity” property of :

(167)
where is the following unitary matrix:

...
...

...
. . .

... (168)

Therefore, and commute, hence they have the same system
of eigenvectors. A simple computation shows the eigenvalues of

are the roots of

(169)

corresponding to the eigenvectors

(170)

Note at these eigenvectors are the standard vectors that
perform the finite-dimensional discrete Fourier tranform. The
eigenvalues of are obtained by computing the quadratic
form

because . Furthermore, using the defi-
nition (38) of we obtain

(171)

Thus is the discrete Fourier transform of the sequence
evaluated at . Note that

(172)

This relation is useful in the localization problem treated in Sec-
tion IV-F.

Suppose now decays sufficiently fast (for instance,
, for some ), then we can apply

the Poisson summation formula (see, for instance, [24]) and
obtain

(173)

where

is the Fourier transform of , and thus the spectral power
density of the original signal. Equation (173) shows also that

because the spectral power is always nonnegative.
Thus we proved is nonnegative-definite and the eigen-
problem for is completely solved.

We study now the eigenproblem for , defined in
(51) and (52). A simple computation shows that
has the same “quasi-cyclicity” property as , i.e.,

. Therefore, has the same system
of eigenvectors as , namely, (170). In particular this shows
that and commute. The eigenvalues of are computed
similarly to those of

Explicitly, this turns into

(174)

Thus has the same eigenvectors as has at an argument
shifted by . This also proves that is nonnegative-definite
as well. These conclusions could have been obtained also from
(156). Indeed, this relation shows that has the same eigen-
values as . However, (174) shows
something that these eigenvalues also correspond to the same
eigenvectors as ’s correspond to for . This remark al-
lows us to write down immediately the eigenvalues of

(175)

Note that is -periodic, whereas and are
only -periodic.

Now we can obtain explicit forms for some approximations
errors. We compute and

where has been introduced in (115). The
eigenvalues of are

(176)

To compute the optimal error we need to select the smallest
eigenvalues. Let denote an index set of the smallest
eigenvalues. Thus for every and

The index set may not be
unique if the th monotonically ordered eigenvalue is degen-
erate. In any case, turns into
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Fig. 5. The optimal error in the deterministic model (top plot) and in the generic stochastic model (bottom plot).

Since is -periodic, the first integral is .
Thus we obtain

(177)

For analogous computations yield

(178)

Remark 34:

1) Let us assume now the map

is continuous and monotonically decreasing on and
increasing on , for some . Then for a
fixed , the sum of the smallest eigenvalues is given
by

for some . Then, integrating over
we obtain

where is an interval of length
containing . The monotonicity insures the

contiguity of . Then turns into

(179)

Furthermore, if the original signal has the correlation
length smaller than , i.e., for ,
then the approximation error turns into a very simple
expression

(180)

showing the decaying of the error proportional to
as plotted in Fig. 5, bottom.

2) For the other approximation error
the anlysis can be done similarly.
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3) Knowledge of the eigenvectors (170) allows one to
explicitly construct the optimizing window(s). However,
one has first to find for everythe largest eigenvalues of

or and then to select the right eigenvectors
in the columns of . Later on we give some examples of
optimal windows.

D. The Case

The second special case we propose to treat separately is
when is a diagonal matrix for every. Since is al-
ready Toeplitz, it follows that it has to be a multiple of the di-
agonal matrix, i.e., . Such a situation can be
achieved when , for , i.e., the signal correla-
tion length is smaller than. One such case is when the signal
is white noise.

The solution of the optimization problems studied before
is controlled in this case by the weight function . The
optimizer subspace is given at every by the -dimensional
invariant subspaces of corresponding to the largest
eigenvalues, i.e., . One case easily
see that the optimization problem (154) reduces also to

. The eigenvectors of are given
by

(181)

i.e., by the canonical basis of (the only “ ” is on the st
position in (181), ). The eigenvalues of are

(182)

or, since and are relatively prime

(183)
The selection of ’s is based on the largest eigenvalues,
respectively, the largest positive numbers of (182). When
the th eigenvalue is degenerate, the invariant space is not
unique. In fact, there are infinitely many possible choices,
i.e., has an infinite cardinal. Let

. Note the following “twisting” relation,
similar to (172):

(184)

where is a permutation of . This relation will
be useful in the localization analysis of the optimal window.

We analyze now the optimal approximation error given
in (115). For this expression turns into

(185)

where is the index set of the labels corresponding to
the smallest eigenvalues in (183). Using the definition of
(38) we obtain

Thus

(186)

Remark 35: The upper bound obtained in (116) is more
transparent here: first note that

(187)

Then the integrand in (186) is bounded above by

Thus we get

(188)

The equality in (187) is achieved only for .

E. Optimal Windows—Examples

Let us consider the stationary signalgiven by the output of
a four-pole Markov process whose transfer function is

(189)

We take the weight function to be the characteristic function
of the interval . Thus

(190)

we plot in Fig. 6 the autocovariance function in time and fre-
quency domains, respectively.

Let us consider now the one-channel optimal problem. We
set . For every such that , we
construct using (40). Then the optimal window is param-
etrized by

(191)

where and . Let us
consider the solution with

(192)

where is the matrix with on the antidiagonal
. Then the optimal

window is uniquely determined by .
We choose the columns in to be the eigenvectors of

, ordered according to the corresponding eigenvalues
of . Therefore, for those where

is uniquely deter-
mined.Suppose this nondegeneracy condition holds for almost
every . Then does not depend on, for which
in turn implies is piecewise-constant for everyand

. The number of pieces is exactly. Therefore, the
optimal window is piecewise-constant on and the
number of pieces on this interval is exactly.

For our case (189), this situation takes place as can be seen
Figs. 7–9.



2514 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000

(a)

(b)

Fig. 6. The autocovariance function of the stationary process (189) in (a) time
domain and (b) the spectral power (i.e., frequency domain).

For various (i.e., and ) we plot the eigenvalues of
as function of (Figs. 10–12), and the optimal window

obtained as described before (Figs. 7–9). This window is
also a Weyl–Heisenberg orthogonal basis generator. Thus
the biorthogonal window coincides with a scaled version
of . The exact normalization to have an orthonormal basis
generator is . The standard biorthogonal generator to

is .
We prove that when the signals are real, the optimal solution

chosen as before is a real-valued function. First, the necessary
and sufficient condition for a function to be real in terms of the
Zak transform is the following.

Lemma 36: is a real-valued function if and only
if

(193)

or, equivalently, iff

(194)

where is the Zak transform of , is the matrix
representation (37), and is the matrix with on the
antidiagonal.

This lemma can be checked directly from the definition of
the Zak transform (34) and of in (37). Next, we check the
symmetry properties of the eigenvectors (170). Since in ,

(a)

(b)

Fig. 7. The optimal solution forp = 2 andq = 1.

defined above, the eigenvectors are ordered according to the
eigenvalues, we have to find the symmetry relations of the eigen-
values as well. Note the eigenvalues are proportional to
given in (171) or with given in (174). As-
sume the signal is real. This implies the autocovariance function
is real too and then

This symmetry of the autocovariance function implies immedi-
ately

(196)

Therefore, if the -indexed column (i.e., the first one) of at
is given by the eigenvector , then at the first

column is given by such that
. Hence . Similarly, for the other columns.

Thus if are indexes of the eigenvectors ap-
pearing in the columns of , at , the indexes are



BALAN et al.: ANALYSIS AND DESIGN OF MULTIPLE DESCRIPTION SOURCE CODING SCHEMES 2515

(a)

(b)

Fig. 8. The optimal solution forp = 5 andq = 1.

Note that defined in (169) obeys

hence

Thus

or

(197)

(Alternatively, (197) could have been obtained by noting that
.) Note that has been chosen in

(192) in such a way that we obtain

which proves that is real. The following result contains our
findings so far.

Theorem 37:When the autocovariance function is real, the
optimal window can be chosen to be real-valued.

(a)

(b)

Fig. 9. The optimal solution forp = 3 andq = 2.

F. Localization of the Optimal Windows

We continue in this subsection the anlysis of the optimal solu-
tion of the one-channel problem. The other encoding–decoding
schemes, except for the FSDE case, reduce to an equivalent
one-channel optimal problem. The examples shown in the pre-
vious subsection suggest a “bad” localization in the time–fre-
quency domain. For a given autocovariance function and a
weight , the optimizer is parametrized via (191), by some

, in general. In the examples shown in
Figs. 7–9, we made a particular choice forto obtain real-
valued windows, namely, (192). One can ask whether by ap-
propriately choosing , the “bad” time–frequency localization
phenomenon observed before can be avoided. The purpose of
this subsection is to show for any choice of, when the data sat-
isfies some topological condition, the optimizeris not well-lo-
calized in time–frequeny domain, in a sense that is made more
precise below.

Our method of proving requires exact knowledge of the
eigenvectors and eigenvalues. Thus we shall assume either

or . The general case still
remains an open problem, though some perturbative arguments
may extend the nonlocalization results that we obtain a bit
further than the mentioned cases.

For our purposes, a window is said to bewell-localized
in time–frequency domainif or

. The space and Wiener amalgam space
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Fig. 10. The eigenvalue maps for the casep = 2 andq = 1.

Fig. 11. The eigenvalue maps for the casep = 5 andq = 1.

Fig. 12. The eigenvalue maps for the casep = 3 andq = 2.

have been introduced in Appendix A, by (236), re-
spectively, (237). Tt can be easily checked that if a function
is well-localized in time–frequency domain (as defined above),
then the Zak transform is either a continuous function (if

or ), i.e., , or
the derivatives of with respect to and are square inte-
grable (if ), i.e., . Thus in order to
prove is not well-localized (or, equivalently, isbadly local-
ized) in the time–frequency (TF) domain, we have to show that

, i.e., is discontinuous and

or

(see [6]).
Consider now the data (the autocovariance and

weight functions and ) for the one-channel
optimal problem. With this data we construct the matrix-valued
functions and as in (40) and (42). For every we
denote by the real eigenvalues
of ordered monotonically decreasing. Consider now
the following sets of points of :

(198)

(199)
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Note that agrees with the definition in (109), and
with the same notations as in (109).

The data is said to benondegenerate on a dense
subsetif is dense in .

The data is said to besufficiently regularif the spectral pro-
jector associated to the eigenvalues is contin-
uous on .

For instance, it is enough that and are continuous for
the data to be sufficiently regular (see Proposition
9). Hence, when the data is sufficiently regular and nondegen-
erate on a dense subset, is a closed subset with empty inte-
rior in . This also shows the following property.

Lemma 38: Suppose that is a data sufficiently
regular and nondegenerate on a dense subset. Let be
a function such that on it takes only values on a discrete
set (for instance, ). Then, if is continuous it
follows that should be constant on.

The next lemma extends the previous result to multivalued
maps (or selection maps):

Lemma 39: Suppose that the data is sufficiently
regular and nondegenerate on a dense subset. Let

be continuous vector-valued maps onsuch that
at every point form a
basis in . Let be a -dimensional sub-
space-valued map on such that on is spanned by some

vectors from , i.e., there is a selection map
such that

(200)
Then, if is continuous on with respect to the graph topology
(or, equivalently, the orthonormal projection ontoat every

is continuous with respect to the norm topology), then the
selection map is a permutation of the same index set, i.e.,

for every . Moreover, in this case

for every .
Proof: Despite its rather long statement, the proof of this

lemma is relatively simple. Suppose that is
the decomposition of into its arcwise connected compo-
nents. Thus each is an open arcwise connected subset of

. The continuity of implies that is a permutation of the
same index set , for every .
Next, consider two neighboring subspaces and such
that , where is the closure (with respect
to the usual Euclidian topology) of in . This is always
possible since there is no isolated subsetin (recall that

is dense). Now, the same continuity argument implies that
and, furthermore, on the common boundary

where is the boundary of . This ends the
proof of the lemma.

Remark 40: The two essential ingredients in this lemma are
the continuity of and the fact that the arcwise-connected com-
ponents of are not isolated. Thus for every continuous curve

, the intersection of its image with is either
empty or is made out of isolated points.

Now let us return to our optimization solution. In the one-
channel case, is chosen in such a way that is a
-dimensional subset of a family of-dimensional subspaces.

Moreover, at is constrained to a unique
subspace. Thus we are in a position to check whether

can be a continuous map on. Under regularity
and density conditions of the initial data, if is continuous it
follows that the selection map is a permutation of the some index
set of eigenvectors. But this is not possible whenis chosen
to be spanned by the eigenvectors corresponding to the largest
eigenvalues because of twisting relations (172) and (184) as we
prove next.

Lemma 41 (The Case ): Suppose the data
is sufficiently regular and nondegenerate on

a dense subset, and, additionally, . Then,
if and be-
long to different connected components of , and every

is discontinuous.

Lemma 42 (The Case ): Suppose the data
is sufficiently regular and nondegenerate on a

dense subset, and, additionally, . Then, if
and be-

long to different connected components of , and every
is discontinuous.

Remark 43: The conclusions of these lemmas also imply
that for any continuous curve connecting to

, there is at least one transversal intersection
of the curves and , or, since is not dif-
ferentiable along that curve.

Proof of Lemma 41:When the eigenvec-
tors are given by , given in (170). Let

be the associated eigenvalue for as given in (171).
Note that for some permutation de-
pending on . We prove the claim by contradiction. Suppose

is a continuous curve connecting to
. First note that ,

hence from it follows
as well. Using Lemma 39, it follows that and

are spanned by the same eigenvector
labels, say, . On the other
hand, (see (172)). Thus it neces-
sarily holds true that

(201)

On the other hand, that implies
the eigenvalues of should be the largest eigenvalues
of . In particular, because of periodicity, we should have

But this contradicts (201) and the proof is complete.
Proof of Lemma 42:Note first that since

is equivalent to , if then
as well. On is spanned by somevectors of
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, where is defined in (181). Note the cor-
respinding eigenvalues of are . Sup-
pose the conclusion of this lemma is fale. Then there is a con-
tinuous curve connecting to
such that is continuous. In particular, using Lemma 39, it
follows the eigenvalues of

are where
are the indexes of the largesteigenvalues of at .
Because of (184)

which is a contradiction with the maximality of the eigenvalues
of .

These two lemmas lead to the following conclusion.

Theorem 44:Suppose the data is nondegen-
erate on a dense subset. Additionally, suppose that either

or . Then any window defined
by with and

is bad-localized in the time–frequency
domain, in that and .

Proof: If the data is not sufficiently regular,
then the spectral projector onto the eigenvectors corresponding
to the largest eigenvalues is discontinuous and thenwill have
even less regularity than in the case when the data is sufficently
regular. Thus we can assume the data is sufficiently regular.

We have to prove two conditions: is discontinuous and
or is not square-integrable over.

The discontinuity of comes directly from the previous two
lemmas because otherwise

would be continuous.
The nonintegrability condition is proved as follows.

First note that in any of the two cases or
is discontinuous on at least a straight

segment or parallel
with one of the axes. Then by Fubini theorem

where is the normal direction to the segment (in the first
case, and in the second case). Then one of the inner inte-
grals or is infinite
(because a discontinuous function on the line cannot have a
square-integrable derivative) and therefore the left-hand side
is infinite as well. In conclusion, we obtain that both
and cannot be in which is equivalent to

. This ends the proof of the Theorem.
Remark 45:

1) The discontinuity of comes as a result of the disconti-
nuity of . This means that
the rank projector-valued function associated with,
that is uniquelly defined on , cannot be extended to
a continuous projector-valued function on.

2) As in the standard Balian-Low theorem, the second part of
nonlocalization (i.e., ) does not come automati-
cally from discontinuous via a Sobolev embedding ar-
gument, because Sobolev embedding theorem in dimen-
sion does not require continuity for functions in .

V. NEAR-OPTIMAL SOLUTION AND DISTORTION-RATE

ESTIMATES

The previous section showed that the optimal solution is not
well-localized in the time–frequency domain. Moreover, in the
frequency-shift division cases, the optimal solution does not sat-
isfy, in general, the frame condition , unless some
very strong geometric conditions are satisfied. Naturally, in such
cases we can try to find a near-optimal solution. In this section
we show, in a case study, how to design or choose a near-op-
timal solution and also obtain some asymptotic estimates re-
garding the transmission rate when a “nice” window is used
(i.e., a well-localized window in the time-frequency domain). In
fact, the TF localization of the window is a first important factor
in determining the rate. Thus for better localized windows, the
filter lengths used to implement the encoders and decoders are
smaller and the number of coefficients in the frequency label
(i.e., the label) is smaller than in the non-well-localized case.

A. Near-Optimal Solutions: A Case Study

Let us study more closely the example introduced in Sec-
tion IV-E. Consider a signal whose autocovariance function is
given by (190) and for the weight we choose . Con-
sider (half the value considered in Section IV-E) and
let us concentrate on the time-shift division optimal problems.
More specifically, we consider the TSDED problem where the
encoder is characterized by a windowand the decoder is deter-
mined by a window . As proved in Theorem 22, the optimal
problem reduces to a one-channel problem with

. This latter problem was analyzed in Section IV-E. Figs. 7–9
show some real-valued optimal windows. In general, any op-
timal solution is bad-localized in the TF plane, as we proved in
Theorem 44. On the other hand, we know that for any
and there is a near-optimal solution in that the crite-
rion is not larger than times the op-
timal value given in (140). Our problem
here is to find well-localized near-optimal solutions. Suppose

5% is the allowed tolerance to the optimal criterion.
We start by choosing a particular window for the encoder and

computing the best associated decoding window. For this we
use the solution of the partial optimal problem TSDED given in
Theorem 5, case B13. We choose a Gaussian function for the
encoding window. More specifically, consider

(202)
for the encoder. For the partial optimal we use (90) and for
the criterion (91). The numerical results are compared in Table I
(note that would be obtained for

).
and are the Riesz basis bounds obtained for

, whereas and are the frame bounds
obtained for with and
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TABLE I
NUMERICAL RESULTS FOR THEPARTIAL OPTIMAL PROBLEM WITH GAUSSIAN WINDOW (202)

The decoding window is plotted in Figs. 13–16 for each case.
Note how well-localized is each window in the TF domain. Ba-
sically, we can very well approximate the window by compactly
supported functions in both time and frequency domain. Practi-
cally, this implies short filters for both the analog encoder and
analog decoder.

We would like to have the criterion smaller than 1.05 times
the optimal value. Notice that the Gaussian window (202) satis-
fies this condition for all the redundancy values except
and . For these particular values we have to choose dif-
ferent encoding windows. Here is how we proceed for these
two cases. In the first step we analyze the optimal window and
find some frequency conditions. In the second step we design
an encoding window satisfying these constraints Finally, in the
third step we adjust, if needed, the decoding window to have a
better time–frequency localization satisfying at the same time
the near-optimality condition.

The optimal encoding windows given by

with (recall that in our case)
and as in (192), are represented in
Figs. 17 and 18. Note the symmetry axis in the time domain
has an offset from the origin. Thus the Fourier transform of
the window has an imaginary component too. In any case, the
frequency plots suggest encoding windows that have no DC
components.

The previous frequency constraint necessitates the choice of
a window of zero mean. The-Riesz basis and frame constraints
require the measure of the window support to be at least.
One simple choice satisfying these constraints is

(203)

shown in Fig. 19. For this choice we obtain the results of
Table II.

The approximation error is less than 3% larger than the op-
timal value. The time-domain plots of the partial optimal duals
for (203) are shown in Fig. 20. Note the time localization of
both the encoding and decoding windows is very good. The fre-
quency localization is not so good, but this is due to the temporal
discontinuities of these windows. For practical purposes, their
form is good enough. Hence we do not need a third step to filter
the decoding window function. Anther example is given in [2],

where all these steps are effectively applied to obtain windows
well localized in the TF plane.

B. Rate and Distortion Estimation

Let us return to our transmision scheme in Fig. 1. The digital
encoders will encode only meaningful coefficients. By mean-
ingful we mean those coefficients whose variance is greater than
a threshold. The labels of these coefficients can be determined
a priori, based on the autocovariance functionand the en-
coding window . Suppose is this threshold. (This cor-
responds to a uniform quantizer with interlevel.) The lower
the threshold, the larger the number of coefficients to be encoded
and transmitted, and hence the higher the rate. At the other limit,
the higher the threshold the larger the distortion (i.e., the recon-
struction error). Thus there is a tradeoff between distortion and
rate realized by this threshold. However, in our case we want
to keep the threshold fixed and realize the tradeoff by changing
the redundancy of the encoding scheme. In the following, the
threshold is assumed fixed and the redundancy is the free pa-
rameter. However, to obtain analytic expressions, we need to
consider the asymptotic limit .

The analysis is done in the following steps: first we compute
the variance of the coefficients and that are
output from the analog encoder. Next, using a Gaussian model
for the signal, we can estimate the number of bits (on average)
needed to encode this coefficient when the entropic encoder is
used. Thus we obtain an exact formula for the rate. Also we
can obtain an upper bound for the distortion when only a finite
number of coefficients are sent. However, to obtain the qualita-
tive behavior of these we shall perform asymptotic analysis for

. We also make the assumption that the signal is real.
This implies the autocovariance is a real and even function.

Here we present the analysis for a single channel. The same
result holds for all two-channel cases, although some adjust-
ment of the formula might be necessary because of different en-
coding windows. We assume that the encoding window is suf-
ficiently well localized in the time–frequency domain. For in-
stance, the frequency band of the window is much smaller than
the frequency range of the stochastic process (i.e., of the spec-
tral power).

First, let us evaluate the variance of the coefficents. We denote
by the window that defines the encoder. Thus we are interested
in estimating
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(a)

(b) (c)

Fig. 13. The Gaussiang given by (202) (a) and the partial optimalg found in time domain for various choices ofp andq. (b) p = 6; q = 5. (c)p = 5; q = 4.

where Assuming and
these vari-ances are easily obtained as (for

details see [2])

(204) (205)
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(a) (b)

(c) (d)

Fig. 14. The partial optimalg found in the time domain for various choices ofp andq. (a)p = 4; q = 3. (b)p = 3; q = 2. (c)p = 5; q = 3. (d)p = 2; q = 1.

(206)

Note that, in general, the variances of the real and imaginary
parts may depend on. In any case, this dependency is-peri-
odic.

The scheme works in the following way: in a time interval,
say , the transmitter has to send the mean-
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(a)

(b) (c)

Fig. 15. The Gaussiang given by (202) (a) and the partial optimalg found in the frequency domain for various choices ofp andq. (b) p = 6; q = 5. (c)
p = 5; q = 4.

ingful coefficients (or for some fixed delay )
for . The meaningful coefficients
are those given by or (when each
real and imaginary part is quantized separately). Using the Rie-
mann–Lebesgue lemma (see [41]) there exists an such

that for every . Thus we have to send
only a finite number of quantized values.

In the second step of our analysis we have to assume a partic-
ular distribution for the signal. Suppose the signal is Gaussian.
Then, when the entropic encoder is used, for the threshold
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(a) (b)

(c) (d)

Fig. 16. The partial optimalg found in the frequency domain for various choices ofp andq. (a) p = 4; q = 3. (b) p = 3; q = 2. (c) p = 5; q = 3. (d)
p = 2; q = 1.

the number of bits needed to quantize a Gaussian random
variable with zero mean and variance is given by

(207)

(see [15]). This yields the following rate:

Rate
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(a) (b)

Fig. 17. The optimal encoding window forp = 6 andq = 5.

(208)

where we assume we encode independently the real and imagi-
nary parts of .

Let us analyze now the distortion obtained through this
scheme. In (31) we obtained an upper bound for the distortion
in this transmission scheme. We now analyze further the terms
in that formula.

Let be the decoding window. Let

Then the reconstructed signal has the following form:

Then

Distortion

(209)

where representsthe stochastic approximation errordue to
the incompleteness of the set in ;
is the truncation errorand represents those coefficients that are
excluded from encoding; is the quantization errorand is due
to the uncertainty introduced by the quantizer. Our problem is
to bound and control each term.

Now recall the upper bound given in Lemma 59, Appendix B.
Let denote the norm of the reconstruction operator

. By the lemma above, an upper bound for
this norm is
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(a) (b)

Fig. 18. The optimal encoding window forp = 7 andq = 6.

(a) (b)

Fig. 19. The encoding windowg given in (203) in (a) time and (b) frequency domains.

For an arbitrary distribution of , the difference
which implies

. The same

relation holds true for the imaginary part as well. However,
if we assume the signal is Gaussian, the upper bound
becomes instead of . The same result is obtained
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TABLE II
NUMERICAL RESULTS FOR THEPARTIAL OPTIMAL PROBLEM WITH THE CHARACTERISTIC FUNCTION WINDOW (203)

(a) (b)

Fig. 20. The decoding windowg obtained as the partial optimal dual tog via (90) for (a)p = 6 andq = 5 andp = 7 and (b)q = 6.

if we assume the are uniformly distributed on each
quantization interlevel. In general, we obtain

(210)

where . As-
suming symmetry between the distribution of real and imagi-
nary parts of the coefficients we get

(211)

where . We give now a rough
evaluation of the cardinality of based on (204) and the fol-
lowing assumptions: is concentrated in a band of size
( because is even in the frequency domain—recall that we
assumed real-valued signals) and the support ofis much nar-
rower than . Then the number of coefficients is roughly con-
stant and it is given by

Thus

(212)

which says that decays to as when .

For the truncation error, using again Lemma 59 (see Ap-
pendix A) we obtain a first estimate of the form

Next, assuming again a symmetry in the distribution of the real
and imaginary part we obtain

with . Assuming we
obtain

(213)

The assumptions made before to obtain (212) would now give
. Thus if we assume that both the autocovariance func-

tion and the window are band-limited, we get rid of the trunca-
tion error provided we take into account all the (finite) nonzero
coefficients.
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Another (more realistic) model of and is to assume that
both decay in the frequency domain as

(214)

with . The assumption on is particularily useful when
we assume that our signal is the output of a linear system excited
by white noise. Then where is the linear
system transfer function. We shall give an asymptotic estimation
of the rate and the truncation and quantization errors.

We start by estimating the variance

(215)

where and an estimate of is

Next we estimate such that for .
Using (214) we obtain for the following estimate:

(216)

Therefore, we have to encode at most coefficients.
This gives the following estimate for the quantization error
(see (211):

(217)

with an estimate of given by .
For the truncation error we use the following estimate (see

(213)):

Now, using (216) we obtain

(218)

with an estimate of given by . We
notice that and are both of the same order in. Moreover,
for and they both decay to zero as . Thus
by choosing a sufficiently small we can make .
The purpose of this computation was to show that asymptoti-
cally (i.e., for ), the dominant term in the distortion (209)
is given by the stochastic approximation errorwhich depends
on the redundancy proportional to (see (116).

TABLE III
NUMERICAL RESULTS FOR THERATE ESTIMATION

We analyze next an asymptotic approximation of the rate,
under the same assumptions as before. We use (208) and again
replace and by . We get

Rate

Note that has been chosen so that

Then, when we approximate the sum by an integral we get

Thus

Rate (219)

Note that the upper bound of the rate goes towhen ,
a very natural conclusion since we are going to send more and
more coefficients. For a fixed , the rate is (essentially) propor-
tional to the redundancy , whereas, for sufficiently small

, the distortion is given by the stochastic part which is propor-
tional to . Thus the redundancy parametrizes
both the distortion and the rate plots, realizing a tradeoff be-
tween two quantities in the distortion-rate characteristics.

We end this section by evaluating the rate for the stochastic
process studied in Section V-A. We analyze the rate for two en-
coding windows: the Gaussian (202) and the step function (203),
both after norming. We take . The numerical results are
given in Tables II and III, where represents the number of
coefficients sent in a time interval ( for each channel
and ) counting separately the real and immaginary parts
of each is the average on eachtime interval, i.e.,

, and the rateRateis computed with (208). We
computed these values for both the Gaussian window and the
step function. In Fig. 21, we present a typical distribution of
the variance coefficients for the two windows. On the same plot
is shown the coefficient variance for different. Note that for
Gaussian window there is no difference for different’s. For the
step function, for some values of the variance is different for
different (in particular, at ). In Fig. 22, the rate-redun-
dancy and rate-distortion characteristics are shown. The redun-
dancy is . Note the almost linear dependence of the rate
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(a) (b)

Fig. 21. The distribution of the variance ofRe(c ) for p = 4 andq = 3 when (a)g is the Gaussian or (b) the step function.

to the redundancy. We computed only the stochastic part of the
distortion when the decoding window is the partial optimal dual
to . In Fig. 22, the distortion is measured as the ratio
where

These results are for one channel. For two channels, one should
multiply the numbers by a factor of two. However, the depen-
dence rate distortion is essentially the same.

VI. CONCLUSION

In this paper, we analyzed the multiple representation trans-
mission scheme when windowed Fourier encoders and decoders
are used. A windowed Fourier encoder is obtained by computing
first the Fourier coefficients of the signal multiplied by a trans-
lated window and next by quantizing and encoding these coef-
ficients. The inverse of the product of the modulation parameter
and window translation factor represents the redundancy of the
encoder. When this number is subunital, the encoder gives only
a partial description of the signal, i.e., ignoring the quantiza-
tion effects, the encoder is not invertible, and no decoder would
be able to perfectly reconstruct the original signal. The win-
dowed Fourier decoder is obtained by an inverse operation (even
though, as we mentioned before, it may not be the inverse oper-
ator), namely, by making a linear combination of the quantized
coefficients with translates and modulates of a certain window
function. Thus a windowed Fourier encoding–decoding channel
is characterized by two distinct windows: the encoding window
and the decoding window. Some natural invariance properties

make us to choose the same translation and modulation param-
eters for the encoder and decoder, respectively.

In the multiple description scheme, two channels are used to
transmit the signal (see Fig. 1). Each channel carries a partial de-
scription of the signal, but together they form an (over)complete
representation of the original signal. The side decoders must es-
timate the original signal based on the partial description that
each channel carries. When the signal is assumed stationary with
a known autocovariance function and the error is measured as a
weighted norm, an exact analysis of the approximation error
is possible and this is what we did in this paper.

In Section II we introduced several configuration schemes.
Specifically, the two encoders can be realized as a time shift
or a frequency shift of the other. This means that one of the
windows is, essentially, either a time shift or a frequency shift
of the other. We call the former scheme a Time-Shift Division
Encoder (TSDE), and the latter scheme a Frequency-Shift Di-
vision Encoder (FSDE). The same terminology is appliable to
the decoder: Time-Shift Division Decoder (TDED) and Fre-
quency-Shift Division Decoder (FSDD). When the division is
performed at both the encoder and decoder we have a TSDED or
FSDED transmission schemes. These cases are shown in Figs.
2–4, for time-shift division.

The one-channel distortion, in the absence of quantization ef-
fects, is simply a weighted-norm of the approximation error.
In Section III we analyzed this error by using the Zak trans-
form. In order to do so, we assume the redundancy parameter is
rational. This allows us to reduce the problem to a finite-dimen-
sional matrix algebra problem. The minimization of this crite-
rion (i.e., the purely stochastic distortion) yields an interesting



BALAN et al.: ANALYSIS AND DESIGN OF MULTIPLE DESCRIPTION SOURCE CODING SCHEMES 2529

(a) (b)

Fig. 22. (a) The rate-redundancy and (b) rate-distortion characteristics;o is for the Gaussian and+ is for the step function.

optimization problem. In Section IV, we analyzed all the eight
optimization problems and we obtained explicit parametriza-
tion in all cases, except the FSDD case. The parametrization
is a Karhunen–Loève-type formula: the window is obtained by
solving an eigenvalue–eigenvector problem for a self-adjoint
matrix of functions. The distortion is obtained by summing and
then integrating the lowest eigenvalues of this matrix (the exact
formulas are obtained in Section IV-B). In the FSD cases, the
optimal solution is shown not to satisfy generically the com-
pleteness hypothesis on the encoders. Specifically, the encoders
are optimal and the two channels do not give an (over)complete
description of the signal. Thus even though each channel would
have the lowest distortion, when both channels work, the recon-
struction stochastic error (i.e., neglecting the quantization ef-
fects) is nonzero. However, a near-optimal solution always ex-
ists and satisfies the (over)completeness requirement. A second
negative property of the optimizer is established in Section IV-F,
where a nonlocalization result (either for TSD or FSD case)
of the optimal window is proved. These nonlocalization results
are of the type of “no-go theorems” of Balian–Low and Heil–
Walnut. However, the case of FSDD is still open.

A case study is presented in Section V-A. It is shown that
well-localized windows can achieve near-optimality. The op-
timal window, despite being poorly localized, gives interesting
information about certain “frequency bands” that a near-optimal
window has to avoid. This suggests an algorithm for designing
such windows (and, therefore, encoding–decoding schemes).

Finally, in Section V-B, we analyzed the total distortion and
the rate needed for transmission. Asymptotic formulas with re-
spect to the quantizing interlevel are obtained in that section.

The redundancy parameter is shown to trade off between distor-
tion and rate.

Some problems are left for further study. We mention here
two such open problems. First is the nonlocalization phenom-
enon proved in Section IV-F. There, we proved this result as-
suming some extra conditions (either is diagonal or
is Toeplitz). Thus we naturally ask whether this result holds in
the general case. The second problem concerns the near-op-
timal case. A better solution to the design problem would be
to minimize a criterion containing not only the approximation
error measure but also a time–frequency localization norm of
the window (for instance, some mixed Sobolev norm).

APPENDIX A
KNOWN RESULTS ONWEYL–HEISENBERGFRAMES

AND RIESZ BASES

The abstract concept offramehas been introduced in the sem-
inal paper [16] by R. J. Duffin and A. C. Schaeffer. Consider
a Hilbert space and a countable index set. Then

Definition 46: A set of vectors of is called
a frame(for ) if there are constants such that for
every we have

(220)

The constants are calledframe bounds. If we can choose
the frame is calledtight. Note that (220) immediately

implies that is a complete set in (i.e., the set of finite linear
combinations of ’s is dense in ). Indeed, if this is not so,
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there would exist a nontrivial orthogonal to all of ’s.
But the first inequality would imply , leading to a con-
tradiction.

The Riesz basis for its span concept generalizes the notion of
an orthonormal set.

Definition 47: A set of vectors of is called
a Riesz basis for its span(or an -Riesz basis) if there are con-
stants such that for every finite sequence of complex
numbers we have

(221)

The constants are called -Riesz basis bounds. If we can
choose , the -Riesz basis is anorthogonal equi-norm
set. Thespanof is defined as the closure of its linear span (i.e.,
of the finite linear combinations of ’s). If the span is , we
simply call a Riesz basis. Note that (221) implies an -form
of linear independence of ’s. Moreover, the restriction that
be a finite sequence can be dropped; we can letrun through

.

We introduce now several operators associated with frames
and -Riesz bases (see (222)–(225) at the bottom of the page).

The right inequalities in (220) and (221) show that the anal-
ysis and synthesis operators are bounded and well defined on
their definition domains. Moreover, notice that they are dual to
one another (hence the * notation). Thus the frame and gram-
mian operators are well defined as well. The frame condition
(220) is equivalent to , where the inequalities are
in the sense of quadratic forms. Similarly, (221) is equivalent to

in the same sense. Note that implies that
and , respectively, are invertible. Then let us define the fol-

lowing vectors. For a frame

(226)

and, respectively, for an-Riesz basis

(227)

(where is the canonical basis of —the Kro-
necker symbol). Straightforward computations show the fol-
lowing result.

Proposition 48:

A. Suppose is a frame for and consider the vectors
(226). Then:

1) The set is a frame for with bounds
;

2) The synthesis operator associated tois a left inverse
of the analysis operator associated to. Similarly, the
synthesis operator associated tois a left inverse of
the analysis operator associated to . Explicitly this
means that for every ,

(228)

3) Let denote the range of in . Then

(229)

is the orthogonal projection onto. Thus
and has the same range as .

B. Suppose is an -Riesz basis in and consider the vec-
tors defined by (227).

1) The set is an -Riesz basis in
with bounds and with the same spanas in

.
2) The analysis operator associated to is a left

inverse of the synthesis operator of , and the
analysis operator is a left inverse of the synthesis
operator associated to . Explicitly, for every

(230)

Thus the following biorthogonality relations hold:

(231)

3) The operator

(232)

is the orthogonal projection onto the spanof .
Hence the following identity holds true as well:

(233)

the analysis operator (222)

the synthesis operator (223)

the frame operator (224)

the grammian operator (225)
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4) is a frame for . Moreover, the formula (226) gives
the same vectors as (227), i.e.,

(234)

The set defined by (228) is called thestandard dual frame
(associated to ). The remarkable property (228) represents a
discrete resolution of identity, called also areconstruction for-
mula. Note that (228) does not uniquely define. In other
words, there may exist manydual frames which yield recon-
struction formulas like (228). In general, there are infinitely
many such duals, unless is a Riesz basis, in which case the
dual is unique. Each such alternate dual frame gives an oblique
(i.e., nonorthogonal) projection onto via (229).

The set defined by (227) is called thestandard biorthog-
onal -Riesz basis(associated to ). Equation (230) represents
a reconstruction formula in the space of coefficients and follows
immediately from the biorthogonality relations (231). Note that,
in general, there are many alternate biorthogonal-Riesz bases
that satisfy (231). Each of them will yield a reconstruction for-
mula of the type (230), although (232) will give only an oblique
projection onto and, therefore, (233) is no longer true. These
alternate biorthogonals will have different spans.

Weyl–Heisenberg frames and-Riesz bases are simply WH
sets that are frames or-Riesz bases, according to the previous
definitions. Note that the definitions in Definition 1 are simply
particular instances of Definitions 46 and 47, applied to the WH
context.

WH sets enjoy the remarkable property (which wavelet sets
do not have, for instance) that the standard dual frame or the
standard biorthogonal-Riesz basis is also a WH set. This fol-
lows from the commutation relations

(235)

Therefore, in the WH frame case, if , the WH set
is the standard dual frame, whereas in the WH-Riesz

basis case, if

then is the standard biorthogonal-Riesz basis.
The window is called thestandard dual frame window,

whereas is called thestandard biorthogonal window. Note
that, in general, there are many dual frame generators (respec-
tively, biorthogonal windows) that give rise to alternate WH dual
frames (respectively, alternate WH biorthogonal-Riesz bases).
The only case when the dual (or biorthogonal) is unique is when

is a Riesz basis, in which case the standard dual frame
is also the standard biorthogonal-Riesz basis.

Beside this dual/biorthogonal construction, there are also re-
sults dealing with the density of the lattice

and the localization of the generatorin the basis case. We
summarize these results in the following theorem. The inter-
ested reader may find the density results proved for the lattice
case in [40], [14] or [30], and for nonuniform sets in [39]. The
localization theorem due in its original form to Balian [3] and
Low [34] has been rigorously proved by Coifman and Semmes
(see [13]) and differently (and more simply) by Battle in [5].
Later it was extended to a different space of functions by Heil
and Walnut (see [6]). Statements of these results are summa-
rized in the theorem below. The following spaces of functions

turn out to be very useful in the statement:

(236)

(237)

Theorem 49:Consider a WH Riesz basis. Then:

1. The lattice has uniform density
, i.e., . Moreover, if is a frame

then , whereas if is an -Riesz basis
then .

2.1 (Balian–Low) The generatorhas an infinite uncertainty
product, i.e., .

2.2 (Heil–Walnut) The generator is spread in the time–fre-
quency domain, i.e., and .

Moreover, when we have a union of WH sets, the following
density and nonlocalization results apply.

Theorem 50:Suppose is a Riesz
basis of . Then

1) (see [11]) ;
2) (see [55]) either , or ;
3) (see the proof of the previous result and the Heil–Walnut

proof in [6]) either and ,
or and .

APPENDIX B
APPROXIMATION OF STOCHASTIC PROCESSES BY

WEYL–HEISENBERGSETS

Consider two WH sets and a sta-
tionary stochastic signal of zero-mean and second-order sta-
tistics (i.e., autocovariance) given by .
Assume the analysis operators of the two WH sets are bounded
on (this means they areBessel sequences). For such pairs
of WH sets we define theframe operatordenoted by

(238)

Note that is bounded on and its norm is
bounded by the product of the two analysis operator norms

. The problem is to give sense to and study
the boundedness of this frame operator when applied to the
stochastic signal .

First we introduce a couple of function spaces that are useful
in the following. The generalWiener amalgam spaceis defined
by

(239)
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where the norm for is defined as

(240)

For or the definitions have to be adapted
in the obvious way. For instance, has been de-
fined earlier in (237). In particular, we are concerned with

and . For more properties
of these spaces we refer the reader to [21]. Note that these
spaces are translation- and dilation-invariant. In particular, the
space does not change (although the norm does) if instead of
translation step 1 we consider the translation step.

Another useful space is theweighted space for some non-
negative function

(241)

With this weight we can construct a weighted version of the
Wiener amalgam space

(242)

and are, in general, no longer translation-in-
variant, but for appropriate they may be (see below). Finally,
we introduce the following notion.

Definition 51: A function has thepersistency
length if there is a and a compact set congruent to

such that for every .

The following results are proved in [2].

Theorem 52:Suppose .

a) Let and . Then

converges unconditionally in the topology, i.e., for
every and compact set there are
such that for every finite set

(243)

Moreover, (243) converges also in the weak-* topology of
, i.e., for every and there

are such that for every

b) For every there is some constant

such that for every the function defined
by (238) is in and

Therefore, is a well-defined and bounded op-
erator on . Moreover, the constant can be
chosen as

Remark 53: It is well-known (see [25]) that if
then and are Bessel sequence

generators; therefore, is well-defined and bounded
on . However, in general, even if is well-de-
fined and bounded on , it does not need to be bounded
on .

Remark 54: Similar results have been proved in [18] but
under a stronger requirement, namely, that the generators
must belong to the Segal algebra which is a subspace of

(for exact definitions see [18]).

Remark 55: The series (238) that locally defines
is not strongly convergent in -norm in general.

The condition in Theorem 52 is not
necessary for the boundedness of on (an
example is given in [2]). However, the following result shows
that it is a necessary condition for .

Theorem 56:Let be the given data and suppose
the following.

1) For every , the series
converges unconditionally in .

2) The frame operator is bounded on .
3) has persistency length.
Then, .

The above results refer specifically to . However,
we are interested in measuring the error in. The transition
toward this space is given by the following result.

Proposition 57: Suppose the nonnegative weight has
persistency length and . Then the norm

is equivalent to and thus the two
Banach spaces are identical: .

Note that by equivalence we mean that there are constants
such that for every

All these results show that if and the
weight has persistency length and belongs to the space

, then is well-defined and bounded on
.

We would like to work with because
is not possible for stationary signals. However, extending

to is tricky because is not well-adapted to
the study of translations (in general, it is not even a normed
space). Therefore, we introduce
under some mild conditions on the weight. On this space,

is well-defined and bounded, provided the con-
ditions of Theorem 52 are satisfied. Now, our stochastic
signal is given by an element of where

is a probability space and is the
space of -valued functions on that are square-in-
tegrable with respect to the probability measure. Thus
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is a realization of
this stochastic process. The goal is to approximateby the
coherent stochastic signal . We still measure the
approximation error in

which is finite and bounded as follows:

because commutes with the translation of. Note that

which turns the previous relation into

(244)

All the above are summarized by the following theorem.

Theorem 58:Suppose and the nonneg-
ative weight has persistency length and .
Then, for every stochastic signal , the
approximation error given by the WH pair is
bounded above as in (244).

In the asymptotic analysis of the distortion we shall need the
following result (whose proof is in [2]).

Lemma 59: Suppose . Then
, defined by , is well defined and

bounded by

(245)

APPENDIX C
NOTE ON THEPOISSONSUMMATION FORMULA

The computations made in Section III-A used a special form
of the Poisson summation formula. Actually, the formula we
use is, in fact, the Parseval identity. We call it theweak form of
the Poisson Summation Formula. It has been proved and used
by many authors before (see [25, proof of Theorem 4.1.5], or
[12,Theorem 2 ], or [14, Lemma 3.2]). Below we prove it for a
different set of functions.

Lemma 60 (Weak Poisson Summation Formula):Suppose
and . Then

(246)

and the integrals converge absolutely.

Proof: The “trick” is to periodize each integral on the
left-hand side. Notice that . Then

and the -periodic function

is in because of the following:

We denote by a similar expression as for where
the product is replaced by . Thus using the Parseval
identity, the left-hand side in (246) becomes

Now commuting all the summation symbols with the integral
(allowed because of the absolute convergence of the integrals)
and extending again the integral over the entire real line, we
obtain the right-hand side in (246) and thus the conclusion.

This lemma has the following corollary.

Corollary 61: Suppose is a sta-
tionary stochastic signal of autocovariance function, and

, then

(247)
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APPENDIX D
PROOF OFTHEOREMS3 AND 5

Proof of Theorem 3:The idea is to consider the frame
operator associated to WH multisets and

. For the first two cases, we set
or . In the first case,

should be the orthogonal projector onto the range of
(which is the span of the-Riesz basis); in the second case,

; and in the third case, , the unit
operator.

These conditions are more transparent if we change the rep-
resentation. Instead of we use
via the unitary transformation

where is the Zak transform (34) of and * denotes the Her-
mitian conjugation. Note also that

(248)

Then standard computations show that, for every
(or, equivalently, for every )

Thus the frame operator acting on
is given simply by the matrix multiplication with

for every . This easily implies (57)
and (59). Note that if any of (55), (57), or (59) holds true for

then it automatically holds true for every, by the
one-periodicity of the Zak transform in. Note that an -Riesz
basis can always be viewed as a frame when one restricts
oneself to the span of the-Riesz basis; the upper-Riesz
basis bound is then identical to the upper frame bound of this
(restricted) frame. Hence if is an -Riesz basis then

where is the largest eigenvalue of the matrix. Thus
we obtain the upper bound in (55).

Next we compute the standard biorthogonal generator and
the standard dual generator. In the case when is an
-Riesz basis, we impose to be the othogonal projection

onto the range of . This clearly implies (56).
In the case when is an -Riesz frame, we require

. Clearly, (58) is a solution. Now any other solution

will be given by for some with

Thus , which can be drawn back to’s via
(248). Since the standard dual frame generator is the dual frame
generator with the smallest norm (see [14]) we obtain that

and hence (58).

Similarly, in the case when is a WH multiset,
we obtain the equation

or with and . The
discussion follows the previous case and we thus obtain (60)
and (61).

The lower bounds in (55), (57), and (59) are obtained by
noting that the standard biorthogonal-Riesz basis and standard
dual frame, have as upper bound.

In order to prove Theorem 5 we first need the following
lemma.

Lemma 62: Let be nonegative sym-
metric matrices and be matrices. Suppose fur-
ther that either are invertible and is of full rank, or

are invertible and has maximal rank. Then the solu-
tion of the following optimization problem:

(249)
is unique and given by the solution of the linear system

(250)
and the optimum in (249) is

(251)

Proof of Lemma:The variation of the criterion (249) due
to a variation is

c.c.

c.c.

where c.c. stands forcomplex conjugated term.
By the variational principle, must vanish for every

. Thus we get (250). We have now to prove that (250) has
a unique solution. Consider the linear endomorphism on
defined by

This linear map defines also a quadratic form on the Hilbert
space of complex matrices with scalar
product . It is straightforward to see
that

The hypothesis guarantees at least one of the two terms is strictly
positive. Thus

with , and then is invertible.
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The only remaining issue is to check that defines the min-
imum for (249). To do this consider . Then, an easy
computation using (249) shows that

Thus is a global minimum and (251) follows.

Proof of Theorem 5:Each of the partial optimal problems
is solved by choosing appropriate in
(249) as follows:

B1.
.

B2.
.

B3.
(for channel 1),

(for channel 2).
B4.

(for channel 1),
(for channel 2).

B5.
(for channel 1),

(for channel 2).
B6.

.
B7.

.
B8.

(for channel 1),
(for channel 2).

B9.
(for channel 1),

(for channel 2).
B10.

.
B11.

.
B12.

(for channel 1),
(for channel 2).

B13. .
B14. .
B15. .
B16. .
This ends the proof of the theorem.
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