IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000 2491

The Analysis and Design of Windowed Fourier Frame
Based Multiple Description Source Coding Schemes

Radu Balan, Ingrid Daubechigsellow, IEEE and Vinay Vaishampayan

Abstract—In this paper the windowed Fourier encoding—de- a significant problem in several communication systems of cur-
coding scheme applied to the multiple description compression rent interest, most notably wireless digital speech communica-
problem is analyzed. In the general case, four window functions tions and packetized speech and video communications.
are needed to define the encoder and decoder, although this . . . .
number can be reduced to three or two by using time-shift or The forml:llatlon of the multiple descr_lptlon problem is
frequency-shift division schemes. The encoding coefficients are attributed jointly to Gersho, Ozarow, Witsenhausen, Wolf,
next divided into two groups according to the eveness of either Wyner, and Ziv. The main problem that information theorists
modulation or translation index. The distortion on each channel consider is that of determining the rate-distortion region for a
is analyzed using the Zak transform. For the optimal windows, giyen statistical model for the source and for a given fidelity

explicit representation formulas are obtained and nonlocalization iteri o 38 tructed th te-distorti .
results are proved. Asymptotic formulas of the total distortion and  CTiterion. Ozarow [38], constructed the rate-distortion region

transmission rate are established and the redundancy is shown to for the only case solved so far, namely. the special case of a
trade off between these two. memoryless Gaussian source and the squared-error distortion
Index Terms—Multiple description coding, redundant sets, win- criterion. An achievable rate region was given by .El Gamal
dowed Fourier transform. and Cover [22] for a memoryless source and a single-letter

fidelity criterion. The binary-symmetric memoryless source
with an error frequency distortion criterion has been studied
|. INTRODUCTION by Berger and Zhang [7], [53], Ahlswede [1], Witsenhausen
HE multiple description problem, a generalization of thend Wyner [51], Wolf, Wyner, and Ziv [52]. It was conjectured
problem of source coding subject to a fidelity criterion, ighat the achievable rate region given in [22] coincided with
one of the fundamental problems of source coding theory. T rate-distortion region in cases other than the Gaussian
objective of a multiple description coder is to construct severgilemoryless source and the squared-error distortion criterion.
descriptions of the source sequence, with the property that tewever, this conjecture was disproved in [53]. An important
descriptions be good individually (in the rate distortion sensgpecial case of the multiple description problem is the problem
and be better together. The simplest case (the one considereguccessive refinement of information [17]. In [17], a neces-
here) is of constructing two descriptions. Multiple descriptiogary and sufficient condition for a rate distortion problem to be
source codes are designed with the following scenario in mirgliccessively refinable is derived.
It is assumed that several (in this case two) channels connect thBublished design techniques can loosely be divided into
source to the destination, each with its own rate constraint. Edetp categories, quantization-based approaches and subspace
channel may fail; whether or not a channel has failed is knovapproaches. In quantization-based approaches, the starting
to the decoder but not to the encoder. The encoder wishegtnt is a memoryless source and the most basic system is the
send information about the source sequence over both chann@ligltiple description quantizer [45], [47]. Multiple description
subject to the rate constraints, such that when both chanrgigntizers operate by sending information about each source
work, a high-fidelity replica of the source sequence is obtaineggmple over each channel. The simplest illustration is of two
and if either channel fails, the degradation is graceful. uniform step-size quantizers each with step sizeone offset

In addition to being an interesting and nontrivial problem ifrom the other by half a step size. The first quantizer index
its own right, the multiple description problem is of significants sent on the first channel and the second quantizer index is
practical interest because it results in compression systems et on the second channel. If both channels work, the decoder
are better able to withstand frame erasures. Frame erasuresags a quantizer with effective step six¢2 whereas if only

a single channel works, the effective step sizéisThus two
, : . channels are better than one in the sense that a lower distortion
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for sources with memory by using standard decorrelatirdements are nonzero)
transforms [4], [46].

Subspa_ce methods begin by as'_suming that the source to be AZ lemn]? < Zcrnngrnn
encoded is correlated. The objective is to construct two sub- i~ ~ i~
spaces of the signal space and to send the projection of the signal ’ ’ _ o
on each space over a separate channel. If the spaces areg\mff_l numbersd, B are calledRiesz basis bound#f the WH
chosen, the two projections are correlated and it is possibleSg} IS Simultaneously frame areRiesz basis, then it is simply
obtain acceptable quality when one channel is broken. Subsp&gied aRiesz basigits closed span is, in this case, the entire
methods have been considered in [27], [48], [31], and [37]. OlggaceL?(R)).. _ _ _
common point in all the subspace methods cited above is thaf\n €xtension of a (single windowed) Weyl-Heisenberg set
they do not use overcomplete expansions of the signal beffigdiven by aWeyl-Heisenberg multisetefined simply as a
coded. More recently several new approaches have been ddpOn of Weyl-Heisenberg sets. Thus givehg® € L*(R)
sidered; some papers have considered overcomplete sets §&&k, 5 > 0, we call
[10], [23]); others have used vectpr quaptization methO(_js (see WH (g g2y = WHatias UWH o0 5
[20], [42]), a forward error-correction coding ([35]) or an itera- R o o
tive decoding approach ([43]). Here we consider the design of¥Veyl-Heisenberg multiseSimilarly, we use the terms afiul-
multiple description system based on overcomplete windowétiameandmulti s-Riesz basigo suggest the multiset property
Fourier expansions. as well as the frame, respectively, thRiesz basis property of

In this paper, we use the discrete windowed Fourier trarife WH multiset. ThuSVH 1 2)..,5 IS @multiframeif there
form to encode and decode the signal. A (discretiedowed areA, B > 0 such that for every’ € L*(R)

Fourier transformis defined by the following data: a function 2 2

g calledwindow and two positive parameters 5 > 0 called AllfIF < Z (|<f7 grlnn>| + |<f7 gran>| ) < BIIfII*.
modulation parameter respectively, translation parameter e

With these data one constructs the following set of functiofie multiseWWH 1 ;2). ¢ iS called amulti s-Riesz basisf

2
<BY lemnl®. ()

called aWeyl-Heisenberg séor aWH sej: there ared, B > 0 such that for every!, ¢? € 2 (Z2)
WH a8 = {0mnsag;m,n € 4}, 2
L mime ' 12 2 |2 11 2 2
i) = T g — ) @ A ([l +16l) < |3 (Shinshon + rnghin)

A windowed Fourier transform-based encodenverts a signal <B Z (|c1 |2 e |2)
f into a sequence of coefficients,,, = ([, gmn), Where T mn mnl J-
(fi,f2) = / fulz) folx) d Weyl-Heisenberg multisets have been studied in [55] and re-
—o0 cently in [11]. In Appendix A we recall some of these results.
is the scalar product in?(R) (in this paper we shall deal with The block scheme of the multidescription transmission
continuous-time signals; in practice, the signal is usually disystem we are proposing is given in Fig. 1.
crete and the scalar product becomes a discrete sum). The infhe original signal f is passed through thanalog en-
verse operation is performed by twéndowed Fourier decoder codersdefined for the first channel by a Weyl-Heisenberg
This takes a double-indexed sequence of (complex) numbgg$ associated to the windoyt, respectively, for the second
(dmn)m nez and returns a continuous-time signal of the forrghannel byy2. Their outputs represent the encoding coefficients
> dimngmn. We use the notatio,,,, signaling adouble-in- ¢, = (f:0mn)s G = (f,97n)- These coefficients are
dexed sequence of functions. Usually itis equivalenttg... s Passed through thquantizersQa andd},, = Qal(cp,,),
if not otherwise indicated. d?, = Qa(c,,) are their quantized values (we take the
Weyl-Heisenberg sets have been long studied in the literatamigpoint of the quantization interlevel). Next, the coefficients
(see [13] or [25]). In Appendix A, we briefly review the maind.,,,. dz,,, are encoded, using, for instance amropy encoder
known results. Two important definitions regarding these (aidto the bit-sequences},,,, b2, and sent through the two
other sets) are the following. channels. The receiver is made out of three decodersitlee
decodersconvert, in the first stage, the bit-sequences into
the approximate coefficientsl. , and d2, ,,, respectively,

N m,n’

and then, in the second stage, decode these coefficients into

Definition 1: A Weyl-Heisenberg set is called feame if
there are two positive constants B > 0 such that for every

2
J e LA (R) approximating signalsf* and f2?, respectively; thecentral
Allf|1? < fogmn) 2 < BIIFIP- (2) decoderdoes the same thing, except for the fact that it uses
7 ,%;L'( 4 7 both bit-streams,,, andb?,,,.
The numbersi, B are calledrame bounddf A = B, the frame Qur pro.bl-em IS tq analyze this ;cheme by computing Fhe dis-
is calledtight tortion, minimizing it under certain hypotheses, evaluating the

transmission rate, and determining the rate-distortion character-
A WH set is called &Riesz basis for its spafor a s-Riesz istics (or the side distortion—central distortion characteristics).

basig if there are two positive constants B > 0 such that for As we shall see later, by varying the encoding redundancy we

every finite sequenc&:,.»)m. ncz (i-€., only a finite number of cantrade off between side distortions and the transmission rate
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Fig. 1. The multidescription transmission block diagram.

The paper is organized as follows: in Section Il we discussal condition
the analog encoders and decoders, we analyze different signal 9
models, and state certain optimization problems; in Section I 1< —=<2 4)
we solve the optimization problems using the Zak transform; we af
also analyze the optimal, partial optimal, and near-optimal casgs, the redundancy of the original WH MUItSTH (1 2.0 5
by obtaining the distortion—redundancy characteristics; in Segiould be between 1 and 2. T
tion IV we discuss the rate and obtain the rate-distortion and sidepp the other hand, the side decoders are assumed linear,

distortion—central distortion characteristics; SectionVcontaigg the form 3 dl' g# and S d2 o2 | re-
. . . m,n “mnJdmmn , m,n “mnIm,n’
the conclusions and is followed by a Reference section. spectively. Approximating agaiml},m _ c}n,n we obtain

SY = Y n Crundit. In principle, the{gl# .} could be an
arbitrary collection of functions not necessarily obtained via

Let us now return to the block scheme in Fig. 1. Suppose f6k). If we impose two invariance conditions on this decoding
the moment the quantizer does not introduce any error (for ischeme, we can show that the decoder necessarily has to be
stance, consider the asymptotic lirdit — 0) and, therefore, coherent, i.e., given by translations and modulations as in (1).
the bit-strean{d; .., b2,,.) contains the same information as thd he two (very natural) invariance conditions are as follows:
coefficients(c},,,, ¢2,,,). If both channels work, then the full in-

formation is known to the central decoder. Then we have to de-
sign the encoders/central decoder in such a way as to losslessly

Il. M ODELS AND OPTIMIZATION PROBLEMS

1) If £ is translated by3 then the decoded signgl trans-
lates byg as well, i.e., if

reconstruct the original signal (recall that we make abstraction Ty : L*(R) — L%(R)
of the quantization error). This is possible only if the multiset ’
WH(41,42);a,¢ defining the encoder is a multiframe. The den- is the translation operatdi; f(z) = f(z — f3), then

sity result due to Christensen, Deng, and Heil (see Appendix A)
shows the redundancy of this multiframé2s'«/3) > 1. For the Z (Taf, gk ) g, = Z (from.) Togrt, Yf  (5)

H R m,n
reconstruction (central decoder) we have many possibilities, all,; . o
given by various dual frames. Even if we impose the dual frame

to be given by a WH multiset, an infinite number of choices (as- 2) If f is modulated by27c«, then the decoded signgt

suming(2/«/3) > 1) remains (for instance, see [33]). Among modulates by2r« as well, i.e., if
these we shall choose the standard dual frame (also known as
canonical or minimal dual frame)(g!, 4°; «, 3), whose con- Moo : L*(R) — L*(R)

struction will be indicated later, in the next sectiohet us now )

consider that only one channel works, say channel 1. Then the is the modulation operatdtsy,, f(x) = ¢*™** f(x) then
receiver knows the bit-streafid’ . } solely. Unless we are pre-

pared to spend a lot of rate,{?hié git-stream should contain onlyz (Maraf, i) Gpin = Z (s Grn) Moragnln, VI
partial information on the original signgl(even neglecting the ™" mmn

quantization error). Thus the coefficierfs ,, = (f, g5, ..) typ- (6)
ically represent an incomplete description of the signal. This

means thatthe s&VH .., s should be anincomplete set, which Lemma 2:1f conditions (5) and (6) are satisfied and
suggestgl/af3) < 1(see Appendix A). Thus we obtain the nat¥y#, .., 5 is ans-Riesz basis, then there exists a functiort

1As reminded by one of the readers, this dual frame minimizes the reconstrﬁgph that

tion error variance in the case of white quantization error (see, for instance, [9], 1 e 1
for the single-window case). g (z) = ™7 g # (1 — np). (7)
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Fig. 2. The encoding—decoding scheme for the time-shift division encoder (TSDE) are derived from the same
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Fig. 3. The encoding—decoding scheme for the time-shift division decoder (T$D®)y># are derived from the samg.

Proof: Since the sefg?, ) isincomplete we can fingy  We call this encoder ame-shift division encodgT SDE). Then
such that{fo, g}, = 6,,1706”70 (whereé, , =1if a=0band0 itis obvious that},,,c2,, can be equwalently obtained via
otherwise). From here, by setting

f]\L]\T(.’L') — e?wi]\lamfo(x _ Nﬁ)

Crn <f7 Gmn; a0,280> Crnn <f7 Imn; a0,280>

whereg' = g andg? = T},¢. Similar translation—modulation

we obtain invariance condltlons on the decoder ask for the followmg rela-

tions: g1, = g.7,,.., 4,0 respectivelyg2t = g7%, . 5.
Farnsgh ) = Smnibnn The encodlng—decodmg scheme is represented in Fig. 2.
LN — Um, mn,N - N . . . .
e The other possibility is to split the coefficients with respect
On the other hand, one can easily check that to the frequency shifts as follows:
(Tafgpen) = e 2meB(f gl 1) Imn = G20 6o G = G2m+1,ms0 80 - (11)
and We call this encoder frequency-shift division encod&fSDE).
(Maraf,gb ) = (f, b 1) We can still obtain the encoding scheme via the general scheme

presented in Fig. 1, except for a constant phase factor in the
for every f. In particular by plugging’ys » into (5) and (6) we second channel, which is canceled out by a similar choice of the
get second side-decoder. We hayg, = (f, 03, :200.5,) @NACZ,,, =
cFrincobo(f g2 ) wheregt = g andg® = M.
mn;2aq,80 g g9 g 2w -
G_QMMQBQJI\?EN 1—T,agjlth g}\erl,N:Mng%ﬂN (8) The invariance conditions on the decoder are satisfied if we

use the following windowsyl# = g;% . and g2 =
for every integerM, N. Iterating now these relations we ob- 24 Note that B

tain (7) O ng-l—l,n;aO,,BO

e?ﬂinag Bo (

. . . . 24 _ 24
Similarly, by assuming the same invariance hypotheses for  92m+1,n;008, = Moragg™™ )m,ni2a0,60

the second channel we obtain the following relations: and this explains how the constant phase factor is removed. The

encoding—decoding scheme is similar to the one in Fig. 2 where
the indexesn, 2n andm, 2n + 1 are replaced bgm, n, respec-

which shows that botfigl#, } and{g2#, } should be coherent, tively 2m + 1, n.
i.e.. obtained as WH sets. Similarly, we can construct the side-decoders either by

This discussion justifies our choice for the side decoders d&e-shift division or by frequency-shift d'V'S'on of one
given by the WH set®VH ;14,3 andWH 24 o, 5, rESPECtively. given frame Thus if we choosgif, = g7, »ua,,5 and

There are two partlcular choices for the encoder or decodds = a7 2n+15a0,3, WE Obtain thaime-shift division decoder
that we would like to single out. Both choices correspond {d SDD) and the encodlng—decodmg scheme s, shown in Fig. 3.
using a single windowed WH framé’H,. 5, followed by a If we choosegl®, = g7 . . andg2% = g .\ ... o

downsampling (division) of the coefficients. One possibility i¥/e have thefrequency-shift division decodéFSDD) and the
to split with respect to the time shifts as follows: encoding-decoding scheme is analogous to the one drawn in

Fig. 3, where we replace the indexes2n andm, 2n + 1 by
b = Om 2nic0.80 Joan = Gm.2n+Lixo B0 - (10) 2m,n and2m + 1,n, respectively.

Gotn(@) = ETMOT G2 (4 — ) 9)
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Finally, we consider also the case when both the encoders amdi (gl#,g,,m) = Om,00n 0 fOr everym,n € Z. We shall
side-decoders are obtained by shift division. Thentithe-shift return in the next section to the problem of findig§*, the

division encoder—decod€f SDED) is obtained by biorthogonal generator, giveri. We note here only the discon-
. tinuity of J_ as a function ofl /a3, at the threshold valug
Imn = 9m,2n;00,80 (see Fig. 5 top plot). The stochastic model presented below will
Toon = Gm 204100 00 yield a continuous transition fromto 0 (see Fig. 5 bottom plot).
1# # We introduce now the stochastic model which is the main

Imn = grn,Qn;ozg,,ﬁg

topic of this paper. The abstract (mathematical) results needed
4 to justify the formal computations are presented in Appendix B.
gﬁﬁ = I 2n+1:00,80° More results and extensions are presented in [2].

S . Our stochastic model is of a stationary signal with zero-mean
The frequency-shift division encoder—decodEEDED) is de- 54 known autocovariance function

fined analogously by

and

L Ef(t)=0
G = 2o Ef(0f(5) = B(t ~ 5). (15)
Gn = 92m+1,n500,80

14 # The natural representation space can no longek &), the

Imn = gan,n;ozg ,80

space of finite energy signals, sinE®f(#)?| is not integrable;
) 4 instead, one can use the Wiener amalgam spé¢e?, [°°), a
g = J2m+1,m:00,80 space of finite power signals (hence the mathematical “com-

o rﬁ)lj%cations” presented in Appendix B), or (less intrinsically)
We analyze now certain signal models and we compute ighted2-spaces.

and

one-channel approximation error. - _ The approximation error is measured as an expected value of
Given a signalf, the approximation error furnished by thepe \eightedz2-norm given by a nonnegative weight function
first side decoder is given by w as follows:
2 2
er(f) = Y drngitn — 1 (12) ek =E Hf = A Gn) G (16)
Suppose again thaY = ¢. When noa priori information is where
known about the signal, a logical choice for the error measure 0o
would be to take the supremum ef(f) over all f with |h|12 = / |h(x)|?w(x) dz.
|I7]l = 1. We obtain the following norm: o
2 The lower index st stands fatationary the upper index indi-
_ 1 # 13) cates the channel for which the approximation error is measured.
Cwe ||§il||l£1 ;L {9 G = 1 (13) Hencec?, means the approximation error of the second channel
2
The indexwc stands for thevorst caseIndeed e measures 5 5 5
1-We o _ #
the worst case error when the encoder is fixedgbyand the e =E Hf Z (£ 9m,n) It a7
decoder byg'#. Thus the designing issue seeks to solve the e w
following optimization problem: Consequently, the two-channel error (which is not the recon-
5 struction error of the central decoder) is
J:\(/(‘ = inf sup Z <f’ grln n > g}r#ﬂ - f (14) 2
‘ 1 1% - T i
Sa = e =yt =E Hf > A Thn) 93
Since fora3 > 1 {g;, .;m,n € Z} is always incomplete in - Yo,
L?(R), then obviously,,. > 1 (just takef to be orthogonal to 2 2
L) o wC X X E _ 18
all g,lnm). In fact, it is easy to see that the optimal value in (14) +E|\f ;L <f’ gm’">gm’" (18)

is 1 for everyag with a3 > 1 and itis0 for a3 < 1. The value
1is the threshold for3 when{g;. ... 5}m.» mayturnfroman  The design task is the following: given the stochastic
incomplete set when/3 > 1 into a cbmplete one whem3 < model (15) and the weight functiom, find the windows
1 (see Appendix A). To achieve the optimal valuewe can g*,g¢?%, ¢'*, ¢*# that minimize the two-channel approximation
choosey! andg'# suchthal”, . (-, gt )95, represents, for error, allow a perfect reconstruction when both channels work
instance, an orthogonal projecjtion.This happens whengéver and the quantizer is ignored, and are well-localized in the
is the generator of a WH set that is biorthogonal¥ 1., 5, time—frequency domain. To deal with the time—frequency
ie., localization we can append to the optimization criterion certain
terms measuring the time—frequency spread, but this turns out
g'* € SpanWH,,, 5 to be very expensive computationally.
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Let us state now the possible optimization problems relatedB. The Partial Optimal Problems:
to the approximation errors (16)—(18). We denote hypothesesThe partial optimal problems are variations of the following

Hi(g;a, ), Ha(g; . 3), and H(g", g%; a, 3) as follows:

Hi(g;«, 3): The seWVH,,., 5 is as-Riesz basis  (19)
H(g; o, 3): The seWWH,,.,, s is a frame (20)
H(g', g% o, 8): The multisebVH 1 .2y, 5 is @ multiframe
(21)

theme: fix either the encoder or the decoder and find the cor-
responding optimal decoder or encoder that minimize the error.
Obviously, there are 16 possible problems. Each of them is an
optimization problem with respect to a smaller search space.

C. The Near-Optimal Problems:

For the near-optimal problems we need to know first the op-
timal value for the corresponding problem. Given a threshold
6 > 0, the problem is to find an encoder or decoder that pro-

Ocasionally, we shall usH,(g), H»(g), H(g*, °) when there
is no danger of confusion. Far3 = p/q we can also use
Hi(g;p,9), H2(g;p,9) or H(g*, ¢*; p, ¢) instead of (19), (20),

or (21), respectively.

duce an error less thah+ § times the optimal error for the
corresponding case.
For instance, theear-optimal FSDEDwith thresholds is to

A. The Optimal Problems:

A1 The One-Channel Optimal Problem:
eipt = inf ¢l (22)
gt .a'*
Hy(g%e,8)
A2 The Two-Channel Optimal Problem:
eég'f = inf elt? (23)
g'.q.a% g
H(g",9%:20,280)
A3 The optimal TSDE:
com "= inf gt =g,6° =Tpg).  (24)
9.9% 5%
Hz(g500,60)

A4 The optimal TSDD:

TSDD __
opt -

jnf e (g = g7, g = Tag®).
9.9 ,9
H(g',9%:0,280)

c

(25)
A5 The optimal FSDE:
cop = inl e (e = g,0% = Marag).  (26)
g9.9"" .9
H;(g5000,80)

A6 The optimal FSDD:

FSDD inf
op 17
9'g°9
H(g',9”;20,280)

e et (o' = g%, 6°* = Morag™).

(27)

A7 The optimal TSDED:

Copr 0= inf e (gt = g.9" = Tpg.g'" = g%,
9.9
Hz (g5000,80)
g% =Tpg"). (28)
A8 The optimal FSDED:
opt 0= inf e (gt = g.9" = Marag,
9.9
Ha(g;0,80)
g% = g%, g™ = Morag®™). (29)

find ag,g* € L*(R) such that

1—1—2(

Cqt gl =g, .92 = M27ra.97 gl# = 9#792# = MQWag#)

S (1 + 6)6FSDED.

opt

We thus have eight near-optimal problems associated to A1-A8.

In the real world, however, the total distortion is different
from the approximation errors considered before. The assump-
tion, made at the beginning of this section, that the quantization
error is negligible, may not be true. In general, we should take
into account all sources of error. If we do so, the total distortion
has the following form:

JO=E|f- > Qs({f:9mn) 95

(m,n)es

(30)

for the first channel (and, similarly, for the second channel),
where S is the set of coefficients actually encoded. Using the
triangle-inequality we obtain

JU<E Hf—z s Gonn) Gt

m,n

w

+E|| > (Qa((F:90mn)) = (fr00n)) 63Fs
(m,n)CS w
2
+E|| > fi9hn) 0| =chteitel. (31)
(m,n)gS w

Here ¢, is the stationary errordue to the incompleteness of
each channel descriptioa}; is thequantization errodue to the
quantization;ei, is thetruncation errorand is due to the fact
that we send only a subset of the total set of coefficients.

In Section 1V, we analyze the quantization and truncation er-
rors. In the next section, we deal only with the stationary error
and the optimization problems stated before.

I1l. COMPUTATIONS USING ZAK TRANSFORM

In this section we shall compute the stationary error under the
additional hypothesis that the redundancy is a rational number.
Consider the general encoding—decoding scheme in Fig. 1. Set

aff = g €[1,2]. (32)
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A. Stochastic Errors We note here our convention regarding the Fourier transform
First we concentrate on the first channel and estimate the re- . et
construction error. Then we computg™ = ¢, + ¢2. For the = / t)dt.
stationary stochastic model (15) we obtain
2 For more information on the Zak transform we refer the reader
el =E /w(a; Z (f.90 ) g5 ( dx to [28], [29]. We recall here two quasi-periodicity relations that
m,n will be used throughout this section

/ dx—Z/ / d dy () gnion () G(t+1,5)=G(t,s)  Glts+1)=e *G(t,5). (36)
e We denote byI'(¢, s) thep x ¢ matrix whos€4, k) entry is
X b (0) Bz — 1) (o) thep x g (k) entry

_Z//dxdyw e Ry GO i@, G =0 pmLE =0 g

mn i.e., we get the matrix (37) at the bottom of this page. We
define similarly the matrice§ (¢, s),I'%(¢, s),'*#(t, s), and
+ d d d m,n m,n . ? ’ . ? ? ? ?
Z /// @ dy 2 g5, ()90 (2)00(0) I'?#(t,s). We also define the following transforms of the
autocovariance function, respectively, of the weight function:

rnnrn Tl

X Gott g (x)ghy () R(y — 2).

Using Parseval’'s formula (see Appendix C) for the summatlon% Z o2rimat R <mp+r) r=0,...,p—1 (38)
overm, m’ we get - a )’ Y
el = RO)|w] — ~ ZR( ) [ et ()= w(Fs+E). (39)
k
xg (96 —nf - E) gt#(z —np) Let us denote by (¢) thep x p matrix whose(r,72) entry is
Pri—r (T), 1.€.,
_1 ZR (—T) /da:w(a:)
a i a pot) -+ p_p-n)(t)
X o ppa(t) o polt)
+ (@)? Z ,R< )/dxw(w) Note the following properties:
[1Ad) T - ~ ‘ 1
x gt (a: L n/i)gl#(a: —nB)gt#(x —n'B) prap(t) = 2T pu(t) py <t + a) = pr(t)
(8%
!
X g x—ﬂ—n/ﬁ . (33) P—r (t)—p,():>M =M (41)
(8%

We need to use the Zak transform. As mentioned earlier, \e., for fixed¢, M(t) as a matrix (we shall also usd™ instead
assumex3 = (p/q) = 1 with p andg relatively prime. The of M” (¢)). ThusM(t) is ap x p self-adjoint Toeplitz matrix.
Zak transforms of the four windows', %, ¢'# and g># are  Using W (s) defined in (39) we constructa x p diagonal

denoted by capital letters b§*, G2, G*#, GQ# respectively, matrix W (s) whose(r, r) entry isw(s + (g/p)), i.e
and are defined analogously to the foIIowmg

4 w(s)
$) = VB ™ g(B(s + k). (34) w(s+2) 0
hez W(s) = : :
The inversion formulas in time and frequency domain are ( )
1 0 wls+ ( 1)1
o(z) = — / a <t, f) dt 42)
VB Jo B

B ! igst J513 Sincew(s) is one-periodic the diagonal & (s) contains a per-
-V _/ ¢ ¢ Tont? ds. (35 mutation of theu(s +7/p),7 =0,...,p— 1.

G(tvs) G(t—i—%,s) aQ
I(t,s) = G(t"“r%) G(t+§,s+§) (

G(t,s—i—:(p—l)%) G(t+§,s:+(p—1)j—,) G(t+%,s+( —1)1)

° ) @37
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Using these notations and the Parseval identity, the etyor because of the stationarity of the reconstruction error. Next,
given by (33) turns into T_zf has the same second-order statistic§ aoes, because

N N of the stationarity of the signal itself. Thls s can be dropped
ol = ﬁq/P ds/q J# trace {W <_, B }p#p*) from the above formula and we obtain
0 0 p
x M <I - lrlrl#*>}
b

eSQt;TSD = o(W,M;T?2 % «g,253%). 47
The frequency-shift divisiogase is a bit different. For channel
(43) 1, the reconstruction error does not raise any difficulty since
where It = Tl(t,s), % = T#(t,s), M = M(t),
W = W(s), and! is thep x p identity matrix. In order to

FSD ¢ 1 1
Sl f - Z <f7 anl,n;ag,,ﬁg> g?nz,n;ag,,ﬁg
m,n

make explicit dependence of the error on the window functions

g andg#, we also use the notation

= o(W,M;T T q, )

1 1
= Z <f’ gm,n;an,,@o> gnfnﬁao,,@o'

Thus

e(w,R; g, g%, B) = (W, M; T, T%; a, ). 44 .
( 9,9 /) ( /) ( ) eslt,FSD _ C(W, M;Fl,l“l#;2ao,/30). (48)

A full account of these computations can be found in [2].

The other channel error is given by On the other hand, for channel 2 we obtain

FSD g __ Z 2 27
2 SQ f - <f’ g?rn-l—l,n;ozo,,@o 92n1+1,n;a0,,80>
m,n

652t =F Hf - Z <f7 g?n,n>9727fn

m,n

Then the same derivation leads to

w _ 2 24
- MQTNXO < § <M—27Ta0 f7 Im,ni2a0,80 > grn,,n;?(yg,,@g)

m,n

which implies

2 = (W, M,I% I?#;q,pB). (45)

. 2
We turn now to the special cases of time-shift division andz; -~ = E||f — S{*Pf||. = E HMQTNXO <M27ra0f
frequency-shift division encoders and decoders. Both cases can

be treated by adapting (43) to the specific context. We dake- ) 2

2 2
2040/30 = p/q - Z <M_27rao f7 grn,n;Qozg,,ﬁg> gnfn;?ag,,ﬁg
In the time-shift divisioncase the reconstruction operator on m,n
channel 1 has the form

TSD 1 1
Sl f = Z <f’ gm:2n§0407,30> gann;ag,,ﬁo

m,n

_ E 1 14 24
- <f’ gnl,n;(yg,?,@g> gnz,n;ag,zﬁg Xg"%nﬂ‘l():,@()

m,n

w

=F M_Qﬂ-(yof — Z <M—27T(yof7 g?n,n;?ozo,,30>

m,n

Note now thatM_»., f has a different second-order statistics
than f has. Indeed,

E[M_ oy ()M —ray (5)] = 2T0C0R(t — ). (49)
Thus the reconstruction error becomes
CEQFSD = e(W,N;I'2 T%%; 20, o) (50)

whereN is ap x p Toeplitz matrix obtained similarly td4 but
for the autocovariance function (49). Let us denoterbi¢) the

and thus the reconstruction error is

elTSP = (W, M; Y Y g, 230) (46)
with W, M, Tt T''# defined as before but fg8 = 253y, « =
ag. For the second channel we obtain

TSD ¢ __ 2 2#
SQ f= Z <f’ gm:2n+1§040,,30> Im,2n+1500, 60

m,n

= TB <Z <T—,@f7 ggz,n;a0,2,80> gif’n,;@g,?,@g) M

entries of N (¢). Then an easy computation shows that

_ e oo(t) O_(p—1) (t)
The error is N(t) = : : (51)
X0 = B\ f -SSP, op1(t) oo(t)
with
=E TB <T,3f - Z <T*,3f7 g?n,n;ozg,?,@g>
mn ) or(t) = (=1)"pr(t + o f0). (52)
X gf,fnm’z@o) Note thato, andN have similar properties to those pf and
- M given by (41).
2 The last two cases we consider are the TSDED and the
=E|T_sf - Z (T, G2 s 280) Tt micnn 260 FSDED. Both schemes are defined by two windamend g#

only. The total error in the TSDED case is obtained by adding

m,n w
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up el TP ande% TP for gt = g2 = g andg# = g*# = g#. In this case, the standard dual-frame generatbrg?) is
Thus we obtain given by
el PEISPED — 9u(W M T, T%; o, 250). (53) [t =pirt 4202t (60)
e 1p-1* 22%\ 112
In the FSDED case we have to add"" and¢%"*" and we [ =pC I + 170 ) 7T (61)

obtain . . . . .
This result is known in the literature. Part B is perhaps the

et HSPED = (W M + N;T', T'#; 200, fo). (54) least known, since WH multisets have been studied less. In Ap-
The expressions (53) and (54) look very similar: note, howev&ENndix D we sketch its proof.

that, because one of them ug¢% and the othefi, as thetime  Remark 4: Note in (55), thes-Riesz basis condition is stated

translation unit, our analysis uses different Zak transforms (i terms of"*I" because > ¢, whereas in (57) the frame con-
which the translation unit enters), so thatl'# have different dition involves the produdfT™*, since nowg > p.
forms in the two formulas. ) ) . .
Next, we analyze the three hypotheses (19)—(21), stated in thd his result makes it possible to obtain the (_:entral de_coder.
previous section, as well as the central decoder construction!Nd€ed, in the TSDE or FSDE cases, the full bit-stréam is
obtained by encoding the expansion coefficients of the siginal
B. Biorthogonal and Dual Generators with respect to a fram&/H,., s. On the other hand, the stan-

The hypotheses impose different conditions on a WH set %{F\rd (minimal) dual frame minimizes the reconstruction error

multiset. Thes-Riesz basis and frame conditions Wiy s, variance when the coefficients are perturbed by an additive in-

. ; pendent white noise. Thus the standard dual frame is a logical
in terms of the Zak transform, have long been studied (see [ : .
cHhoice for the central decoder, and that is what we choose. In the

and [25]). Similarly, one can obtain necessary and sufficien{ . : .
- . . her cases, when the encoder is a WH multiframe we choose its
conditions on a WH multiset to become a multiframe (see [54ﬁ .
- ) tandard dual multiframe (60) and (61) for the central decoder
These conditions can be stated as follows: -
(note in the FSDD case the central decoder should preprocess
Theorem 3: the coefficients of the second channel by shifting them with a
A. ConsidenVH,., s a WH set. Suppose3 = p/q with ~ constant phase 7o),
p, g relatively prime integers. Let us denote 8yG*, G? , _
the Zak transforms of these windows with respect to ttfe The Partial Optimal Problems
parametess, and byl',I'*, I'? thep x ¢ matrices obtained  Let us now concentrate on the partial optimal problems. Note

similarly to (37). Then first of all the symmetry in terms of the encoding and decoding
1) WH,.. 5 is as-Riesz basis with boundd, B iff for ~ problem. Indeed, because we can make circular permutations
e.(t,s) € [0,1/q] x [0,1/p] and take adjoints under the trace we have
A<irr<n 55  c(W,MiT' 1" 0, 8) = (M, W;T'* 50, 8). (62)
p

) - ) _ For the one-channel partial optimal problem with fixed en-
where the inequalities are understood in the quadragigger we have to minimize(W, M; T, [#; a, 3) with respect

forms sense (ieM > oo € Riff (z,Mx) > 97# foraf > 1. This is clearly equivalent with minimizing
a||z||*). Moreover, the standard biorthogonaRiesz o following trace:

basis generatag# is given through the following re-

lation: min trace {W <I — 1Xl_‘*> M <I — 1I‘X’k)} (63)
X p p
* —1
I'# = pD(I*T) ™ (56)  for X € "¢, with W, M € CP** Hermitian andl € CP*¢

given, because eacli(¢, s) can be chosen independently from

2) WHgia,s is @ frame with boundsd, B ff for a.e. each other fo(¢, s) € [0,1/¢] x [0,1/p]. The optimal solution

(t;s) €[0,1/q] x [0,1/p]

) is given by
As T < B. 57) I# — pMI(I* MD)~. (64)
Moreover, the standard dual frame generatirgiven ot that it does not depend &%, however, the optimal value
by of the error does
[ =p(IT*)~I. (58) (W,M;T'\T%;q,p3)

B. Consider nowWWVH g1 42).4,5 @ WH multiset. Suppose :/3(]/; ds/;dt trace{ WM —WMD(I* ML)~ 'I* M}
againa = p/q with p, q integers and consider the same 0 0

notations as before. =ies0o(W, M; s, B). (65)
The multisetVH ;1 42).0,4 is @ WH multiframe with  The explicit solutions that will be presented assume implicitely
boundsA, B iff for a.e. (¢, s) € [0,1/q] x [0,1/p] the encoding hypotheses (19)—(21) are satisfied. We shall com-

ment on this fact later in the subsequent subsections when the

1 1p1* 272*
A< E(F I+ ) < B. (59) optimal problems are considered.
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We introduce an expression that will be useful in the sequal B10. The partial optimal FSDE with fixed decoder:

e (W, M1, Mo; T, 1% 0, )
= /3q/p ds/q dt trace{W (M + M>)
0 0

— W(M T + M,T2) (T M T + T2 M,I2) 7t
x (V" My + T2 M,)).

The solutions to the 16 partial optimal problems are given in the

following theorem whose proof in given in Appendix D:

Theorem 5: Suppose the matricd¥ (s) andM (¢), N(¢) are
strictly positive with bounded inverse. Then the solutions of the

partial optimal problems are given by

B1. The one-channel partial optimal problem with fixed

encoder:
i = pMIH (Y ML (66)
Cliso = Cso(W, M;I'" 5, B). (67)

B2. The one-channel partial optimal problem with fixed

decoder:
1 :pWFI#(Fl#*WFI#)—l
eit#qo = GQO(M, w; Fl#% «, /3)

(68)
(69)

B3. The two-channel partial optimal problem with fixed

encoder
Di# = pMDH (T M)
2% = pMT?(I2*M1?)!
Cét—ifo = CSO(Wv M; Fl? O‘aﬁ) + CSO(Wv M; FQ?

(70)

o f)  (71)

B4. The two-channel partial optimal problem with fixed

decoder :
= pWID#(D# Wri#)-1

= pWIH (D2# W)~ (72)
eiﬁi# = oo (M, W;T#; 0, B) + oo (M, W; T, 0, 3).
(73)
B5. The partial optimal TSDE with fixed encoder:
¥ =% = pMT(I"MI)™! (74)
LH2TSPE = 260 (W, M T g, 250). (75)
B6. The partial optimal TSDE with fixed decoder:
[y = pW(I'# 4 T2#)
x (P WI# 4 D2# ' Wr2#)-1  (76)
LYZISDEE = LXMW W T T2 0, 260). (77)

B7. The partial optimal TSDD with fixed encoder:
I# = pM(I'' + T?) (I Mt + 12" MT?)~1 (78)
LHASDD = (L2(W M, M T T a0, 20). (79)
B8. The partial optimal TSDD with fixed decoder:

UL, =2, = pWI#(I# wr#)=*

Slng%TSDD = 2¢.o(M,W:T'#; g, 200).
B9. The partial optimal FSDE with fixed encoder:
Ii# —pMI(I*MI)t  I?#=pNI(I'*NI) !

(82)
ei{'ﬁ;FSDE =eso (W, M; T, 200, Bo)+eso(W, N;T'; 200, fo)-
(83)

(80)
(81)

I'so = X solution of the linear system

MXPl#* =» (MWID'¥# 4+ NWD?#)  (84)
TSR = g / ds / dt
trace {2WM X(T#* WM + FQ#*WN)}
P
(85)

B11. The partial optimal FSDD with fixed encoder:
I'# = p(MI! + NIV M +T2°NT?) !
(86)

14+2,FSDD _ (87)

st,00 sl (W, M, N;T . T'% 2a0, f).

B12. The partial optimal FSDD with fixed decoder:
Il =12 = pWI#I# WIr#)~!  (88)
Caregl TP = e (M + N, WiT#; 200, 5).  (89)

B13. The partial optimal TSDED with fixed encoder:
% = pMT(T*MT)~! (90)
LE2ISPED = 9eo(W, M; T a0, 20). (91)

B14. The partial optimal TSDED with fixed decoder:
= pWI#(# WIr#)~! (92)
;j;TSDED# Qe M, W;T % 00,200).  (93)

B15. The partial optimal FSDED with fixed encoder:
I'# =p(M +N)I'(T*(M+N)I')~'  (94)
Gir.tiiFSDED = coo(W, M + N;1'; 2000, o). (95)

B16. The partial optimal FSDED with fixed decoder:
., = pWI#([# Wr#)* (96)
eIF2ISDED#E coo M + N, W;T#: 200, 3). (97)

st,so

Remark 6:

1) We point out that the requirements (such as strict posi-
tivity) on W (s), M(¢) andN(t) are not necessary. They
are sufficient conditions ensuring that the suboptimal
windows g, g2, gL#, ¢2# belong to L?(R); in most
cases these conditions can be relaxed. Each case can be
dealt with separately, but we shall not go further into
this here. However, in practice, we are interested in
more regularity than simply square integrability; we are
interested in smoothness for our windows as well. We
return to this issue in the designing step, in Section IV
below.

2) As mentioned above, we assume that each solution satis-
fies thes-Riesz basis and multiframe condition. Explicit
conditions for these hypotheses will be given for the op-
timal problems.

IV. THE OPTIMAL PROBLEMS

A. Spaces of Eigenvalue, Eigenvector, and Eigenspace-
Valued Maps

The following objects are useful in the analysis of the optimal
solutions. The unit two-dimensional square is symbolized by
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0,0 = [0,1] x [0,1]. Recall that the Hilber—Schmidt scalamNow, by continuity of the spectrum with respect to (com-
product of two matricest, B € CP*? is defined by pact) perturbations, we may take the limait\, 0 and obtain
roa AB ~ AY2BAY2 ThusAB € Plus,(C). Consequently, for
(A, Byns = Trace{A"B} = > > A;Bi;.  (98) s, R satisfying our hypothesis, we have for every pdints),
i=1 j=1pxq S - Rl € Plus,(C). Next, note
Similarly, the Hilbert—-Schmidt norm od € C?”? is defined as .
usual by||A|jus = ((4, Ayus)/2. Then we can easily define Trace{S™ R} = (S, R)us < ||S]|us|Zlns
severalL? spaces of matrix-valued functions. In particular wéy the Cauchy—Schwartz inequality and thus

define two spaces S+ R e LY(O; Plus,(C))
LA, 07" = {A O — &P || Al 72 erx which ends the proof. %

Consider now S, a matrix-valued function in
= At, s)||Ag dt d 99 :
//D 14CE, 3)llis dt ds < OO}( ) L'(; Plus, (C)). We want to study the eigenproblem solution

for S(¢,s). We are interested in the eigenvalue and the
L>(0; GL,(C)) := {A :0— C|||All L~ @saL, ) eigenvector maps.
At each point(¢,s) € O, the eigenvalues are well-defined
= (tSSED |A(t, 5)llns < oo and and positive. The eigenvectors may not be uniquely defined if

one or more of the eigenvalues is degenerate. Let us denote
by A1(¢, s),...,Au(¢, s) thep monotonically decrasing ordered
eigenvalues of5(¢, s) at (¢, s). Thus we obtairp real-valued
maps over the unit-squavg : L — R* 1 < j < p. The fol-
Jp\gmg result characterizes these e|genvalue maps.

sup [|AH(E 8)|lus < OO} - (100)
(t,s)cO

Note thatL>*(0; GL,(C)) is not a linear space (for instance
the constant zero matrix does not belong to this space), b

group with respect to the matrix multiplication. Consider now Theorem 8: ConsidetS € L' (; Plus,(C))andA;, ..., Ay :
the space op x p nonnegative symmetric matricésm;} (C). O — RT the monotonically decreasing ordered eigenvalue
It is a convex cone and its trace is a pseudo-metric maps as above.

= - +
d(_Sl’ 52)__ | Trace{S: SQH’ for 51, 52 € Sym, (C). 1) Foreveryl < j < p, A; is measurable (with respect to
Using this pseudo-metric we construct thigt space of the standard Lebesgue measure) ane L'(C%; RT)

+ ~ . . ] .
Sym, (€)-valued functions as follows: 2) If the entries ofS are continuous complex-valued func-
Ll(IZI;Sym;f(C')) _ {5 S0 — Sym;r(g) NEre tions onl], then so are\; : L1 — R j=1,...,p.

3) Suppose the entries df are differentiable at some
- // Trace{S(t,s)} dt ds < OO} ] (t_, 5) € = (i.e., the real and imaginary parts 8f; are
| differentiable at(¢, s), for 1 < I,k < p) andA;(¢,s) is
(101) nondegenerate, they is differentiable att, s).

Sym;}(C) is then extended to the spaceSgin | (C)-equivalent Proof of Theorem 8:

matrices, denoted 2) Part 2 is a standard result in matrix perturbation theory
Plus, (C) = {TAT™*; A € Sym (C),T € GL,(C)}. (see, for example, [44, Theorem IV.1.3] due to Elsner), and it is

Thus a matrix} € Plus,(C) if and only if it is diagonalizable usually proved using complex analysis methods.

and all its eigenvalues are positive real numbers. Accordingly,3) Part 3 is also standard (see [44, Theorem IV.2.3]), and it is

L'(0; Sym}(C)) extends to proved using the Gerschgorin’s disks technique.
L 1) For the first assertion we use first the density of
L (0 Plusy(C)) = {B : 0 — Plus, (C) || B| - O(0; Plus,(€)) in L*(O;Plus,(C)). Then we consider a

sequencéS(™), > in C(O; Plus,(C)) that converges t§ in
= // Trace{B(t, s)} dtds < oo} . LY(O; Plus,(C)) sense. Then we extract a subsequenge;.
= that converges pointwise almost everywheresnNext, the
(102) o -
. + sequences)\ Yk>a,J = 1,...,p of the ordered eigenvalues
Note that L*(LJ; Sy, (C)) is a subset of the spaceqt ¢() are hounded and necessarily converga tg,, some

L}(0; Plus,(C)) which, in turn, is a subset of the set ofg eigenvalue ofS, wherer is a point-dependent permutation of
trace-classoperators ove£?(0J; C7). Moreover, the following {1,2,....n}. Because of the ordering 65"+ ) we haver = i.

property holds true as well. Thus )\j(x) = limg—o A7*(z) pointwisely and eaciA? is
Proposition 7: If S,R € L*(00;Sym;(C)) thenS - R € continuous, hence measurable, and.i{C; RY). Therefore,
LY (0 Plus,(C)) and||S - Bl < 1Sz, 1Bl 2, - A, is measurable as well. Sinée< A;(z) < Trace S(z) we
Proof: Supposed € Sym}(C) then there is a unigue obtaln
1/2 + 1/2 41/2
AY? € Sym*(C) such thatd/ 541/ = A. For everye > 0 // Nt 5) deds < // Trace S(t, 5) dt ds < 5o,
andB € Sym;f(O') we have the following equivalence: ] u]

(A+el)B ~ (A+eD)'/?B(A+el)'/? € Sym*(C). Thus for everyj, \; € L' (C; R™). &
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We consider now the eigenvectors problem. Unfortunateket ofg-dimensional subspaces 6F. We define the following
there are no easy answers to the continuity problem for thweo important sets of maps:
eigenvectors. The difficulty arises whenever the eigenvalue js
degenerate. For the nondegenerate eigenvalues, the problén# 8
relatively easy and the answer is furnished by the spectral theory= {V : O — L,(C") | for every(t,s) € O, V(t, s) is A(t, s)

acemax(A; p, q)

Given apx p matrix A € C?*? and a closed curvé € C'that — invariantdim V(t,s) = ¢
does not pass through any eigenvaluéldf.e.,Spec(A)NA = andS Alu) = 1) A 104
(Z)), then ) peC( |V) { 1yeeey ’I}} ( )
eigmax(A4;p, q)
Py = 2i (M — A)~tdr (103) ={F:0— CP*?|F*(t,s)F(t,s) = I, F is measurable
A and3V € eigspacemax(A4;p,¢) s.t.Ran F' = V}. (105)

defines a projection onto the spectral space associated V\(}\t,g

) . : O : shall also denote byeigspacemax(A;a,3) or
the eigenvalues included in the interior &f(see, for instance

) X X ' elgmax(A4; «, 3) with o3 = p/qthe same objects, when there is
[32]). A spectral spaceassociated with some eigenvalde ' qanger of confusion. Note theitis not necessarly a spectral

is the largest invariant space of such that the restriction space, because we do not reqOird eigspacemax to be max-

of A to this invariant space has the spectrum made only g, ¢ invariant space (in fact we could not require this because
Al A s self-ad10|qt,PA IS an orthqnormal projection andof the dimension constraint). X, > A,,;, thenV is a spectral

any spe.ctral space is exactly the eigenspace qsspuated ‘ﬁ’g_gce, though. In this case, Proposition 9 proves there is a con-
some eigenvalue. In general, the eigenspace is mcludedti OUSF € eigmax(A; p, ); moreovergigspacemax(A; p, ¢)

the spectral space, but the inclusion may be strict. HOWeVEgains only one map, namely, the one associates for every
when A diagonalizes, the two spaces are always of the sara}’es) e O the spectral space f ..., \,}. In the case when

dimension. . , L

. . Ay = Agpreigspacemax(A; p, ¢) will contain infinitely many

_Suppose now tha:ﬂ = At)isapxp mfatnx Whosehen- maps. Note the columns df € eigmax(A;p,q) form an
tries are continuously parametrized hyand for¢ € I, Ahas 00 ormal basis for somé e cigspacemax(A; p, ).

a simple eigenvalue at;(t); we choose to number the €igen- £ 4 petter characterization of these objects we introduce the

values so thad; is continuous irt (see earlier). Then the pro-) o ing indexes. For everyt, s) we define thedegeneracy
jection ontoe; (the eigenvector associated Ag) is a contin- indexesk, (¢, s) andks(t, s) as follows:

uous function in the space of rank-one projectors. Next, using
a transformation function adapted £y (see [32, Cap. II, Sec. ki(t,s) = m]?x{k [Agmt = Ag}
4.2]) we can construct a continuous map of eigenvectors from ) o _

into C” : ¢ — ¢;(t), associated to the may. The same argu- Fa(t, ) = masctk [ Agn = Ag)- (106)
ment can be carried over to any spectral projection of constgifs the eigenvalues &t s) are ordered as follows:
rank. Thus we get the following result. '
Proposition 9: Let A : I — Plus,(C) be a continuous Agmto=1 > Agmiy =00 = A = = Aty > Aot
Plus,(C)-valued map defined on an open et/ c C*, for (107)
somek > 0) and letA;(¥) > --- > A,(¢) be the monoton- Then we define

ically ordered continuous system of eigenvalues. Suppose for

somel < g < p, A (t) > Ag41(t) on I, then there arg or- Dy g, ={(t,s) € O kv(t,s) =11, kao(t,5) = 1o} (108)

thonormal vectors:y, ..., ¢, continuously defined od that gng

form an orthonormal basis for the spectral spacelaissoci- q

ated to{\i,..., A\ }. % D= U D (109)
Remark 10: =0

1) Explicitly, ey,...,e, have the following property: for Note that we always have< k1 < ¢ and0 <k, <p—g. Itis
everyt € I, if E is their g-dimensional span ic?, €asy to show the following properties of these sets:
then £ is an invariant space for and the spectrum 1) Dy, 1, N Dy, = 0, for every(ly, 1) # (mq, ma);
of A restricted to £ is exactly {A1,..., A}, i.e., 2) Doo={(t,s) DA, 1(t, s) > Ag(t,5)> Agy1(t, )}
Spec(Alg) = {A, ..., Aqt. is open;

2) The resultin [32] does not yield directly the orthonormal 3) Dy = {(¢,s) € O| A\, (¢, s) > Aj41(t. s)} is open;
system, but rather a basis for eadh the spectral space. 4) Do U D; U---U Dy is open;
From there it is straightforward to obtain an orthonormal 5) U<, <m, Yo<i, <m. Dty .1, 1S Open for everyn,, mo.
basis (for instance by Gramm-Schmidt) which will de-

pend continuously onas well With these notations, Proposition 9 implies that Bg we

can construct (continuous)system of orthonormal basis in
In order to deal with the degenerate case we have to #he spectral space ¢f\(,. .., A, } (assumingd is continuous).

more careful. Consider nowt : O — Plus,(C) a function Note also thatigspacemax(A;p, ¢) restricted toD, contains

in L*°(0; Plus,(C)) and Ay > Ay > --- > A, its system of only one map. We are now ready to discuss the optimal prob-

eigenvalues. Fix,1 < ¢ < p. Let us denote by,,(C?) the lems and the localization result.
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B. The Optimal Problems each point are orthonormal vectors and span an invariant space

Once we have solved the partial optimal problems we c&fi © corresponding to the largegeigenvalues.
optimize over the remaining freedom in the choice of window 1n€ Optimal value of the error turns into

functions, i.e., we now concentrate on the eight optimal @it;opt = eopt( WM; o, B)

problems stated in (22)-(29). We shall solve exactly (i.e., in 1/p 1/q P

a closed form) seven of these eight problems. For the eighth = /3q/ ds/ dt Z Ait,s)  (115)
problem (the FSDE problem) we provide upper and lower 0 0 i=q+1

bounds for the approximation error. The exact value of thﬁnere()\i)_l— are thep real eigenvalues dW M|, ,, decreas-
optimal error in this particular case can be obtained by solviri'pgw ordezrédpaéxl > o> ) ’
- —_ p-

a continuously parametrized finite-dimensional optimization™ " p.oof First note that in the Zak domain the optimiza-

problem. For all the cases the optimal solution represenisy, nrohlem decouples into independent finite-dimensional op-

a Karhunen-Loeve approximation of the original stochastigyization problems continuously parametrized(bys). For a
signal. For the remainder of this section we assubf€t) gy qq (t, ) we have to minimize

is bounded and invertible for almost everye [0,1] (more . .
precisely,M € L>=([0,1]; GL,(C))). Trace{WM — WMI'(I"MI')""I""M}
We are going to study separately each of the eight optimgjerr". AssumeM is invertible at(, s). Notice that
problems. In the following we use the notations introduced be- 12 L 12
fore. Pr = MY’ (I"MD)~'I"M
1) The One-Channel Optimal ProblenThe one-channel is an orthogonal projection for any choice Bf for which
optimal problem is the simplest and, in some sense, represaMafI" is invertible. Moreover, for everyg-dimensional
a benchmark for the other optimization problems. subspaceV of C?, there is al’ such thatPr = Py,
Recall the one-channel structure involves two WARIesz where P, is the orthogonal projection ont®. Then the
basesWH.a,5, WHy#.0,s and the communication struc-problem reduces to finding a subspatethat maximizes
ture contains one encoding and one decoding blocky, If Trace{M'/?W M'/?P,}. Itis clear that this subspace should
respectivelyg#, denotes the encoding, respectively, decodingslong toeigspacemax(M'/*WM'/?; p, q). Next we check
window, then the optimal solution is obtained by solving ongat £ given in (113) is a solution fof . Note that

of the following optimization problems:
gop P Spectrum(WM) = Spectrum(Ml/QWMl/Q)

eit;o L= lnf lnf e(w7R7979#7a7[3)
Hi( g”;aﬂa) gj (see Proposition 7). ThuE corresponds to the largest eigen-
Hi(g™5e.0) values ofMY/?>W M'/? as weliWMFEF = FA, where
= inf inf  e(w, Ryg,9%;0,6) (110) ¢
Hl(gg#;a“@) Hi(g;a,8) Trace{A} = Z Ai
=1

wheree(w, R; g, g% ; o, 3) was defined in (44). Solving the first

optimization problem is equivalent to first solving the partia\f\’ith Ai the ordered eigenvalues & 2. This proves (115).

optimal one-channel problem with fixed encoder, and then o hen

timizing over the encoders. The second form in (110) means M'/?WM'/*Pp = M*/*WMF(F*MF)~'F*M"'/?
to optimize the partial optimal one-channel problem with fixed = Pp MY W M?
decoder over all admissible decoders, and then to optimize over

the encoders. The solution is given by the following theoremWhich shcl)vgs thatRan Pp is an invariant subspace of
_ _ MY2WM*? and also
Theorem 11 (One ChanneljThe optimal solutions of the

1/2 1/2
one-channel optimal problem are parametrized in the Zak trans- Trace{M PWMEP F} = Trace{A}.
form domain as follows: Thus Ran Pr € eigspaucemax(Ml/QWM]L/2;p7 q) which
Fopt(tv 3) = F(tv 3) : L(tv 3) (111) proves (113)
=) X .
T# (t,5) = F#(t,5) - L*(t,5) 112) . Next we note tha}t any qt_heﬁ* eL (Q;C” 'q) that satis-
! fies thes-Riesz basis condition (55) and is optimal should cor-
where respond also to an element @fspacemax(W M ; o, 3). This
F € eigmax(WM; «, 3) means thaRan[' € eigspacemax(W M;«,3). From (55), it

F#* = MF(FM?F)"'/? ¢ eigmax(MW; a, 3) (113) follows thatl’ = F"- L for someL € L*°(LJ; GL,(C)) and

F € eigmax(WM;a, ), i.e., (111).
Finally, the biorthogonal generator is obtained through (66)
L e L=(0; GL,(C)) which turns into (112) when (111) is used. 0.

L# = p(F*M?* )Y (F"MF) 7 L™ € L°(0; GL,(C)).

and

An upper bound for the optimal error (115) can be easily ob-
(114)  tained by using the following inequality:

L—* denotes the Hermitian conjugate of the invelse* = p p—1

(L~1)*. Recall from Section IV-A thatigmax(S; «, 3) rep- B Z Ailt,s) < 12)\1(@ s).

resents the set @f x g-matrices of functions whose columns at P—q,27, Y
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Now, note the right-hand side i6l/p) trace{W (s)M(¢)}. Proof: We have to prove two statements: one is about the
SinceW (s) is diagonal and the diagonal 3 (¢) is constant near-optimal solution with bounge,,. (W AL; «, 3), the other
equal tope(t) we obtain further concerns conditions to be satisfied if the bound is attained.

» p—1 For the near-optimal solution we use a perturbative argument
Z At s) < 2900 Z“’ <S + ﬁ) ) as follows. Consider(g!, g*#), the solution of the optimal

imgt1 p —0 p one-channel problem. We shall tailor a near-optimal solution

(g%, g**) for the one-channel problem by perturbing the first

Next, by int ting fort, 0,1 0,1 t .
ext, by integrating fot?, 5) € [0, 1/q] x [0, 1/p] we ge one in such a way that the two hypothesd$g', ¢°) and

1 T
copt(WM; a, 8) < <1 - _> R(O)|w]|z» (116) H(g'*,g*¥) are satisfied.
of For each(t, s) dim Ran (¢, s) = ¢. Letus construct the or-
where||w|| 1 = [ w(z) dz is thel-norm of the weight function thogonal complementdtan I (¢, s) andletf,,. .., f,—, bean

w(-) andR(0) is the autocovariance function evaluated atag orthonormal basis in this complement. Note tifat. .., f,—,
can be chosen to be at least measurable, as vector-valued func-

Remark 12: tions overJ, by a similar argument as in Proposition 9. Since
1) In the case\, is nondegenerate, the optimal solution i3 < 5 /¢ < 2 we havep — ¢ < ¢. Set
parametrized only byL>°([0; GL,(C)). In the case\, [2=T!4eA

is degenerate, the parametrization is more complicated

2 _ ple#t
because it takes into account the local degeneragy; .of =174 ea

2) In either of the two cases (i.6\, degenerate or not), the A: [£1| R 't"f.p_q | 0|t'h' ' |f(')] | (118)
approximation error is given by the same formula (115W ere thep > g matrix 2 contains on the !rsp — g columns,
the component of the vector§, . .., f,—, in the cannonical

3) In the case whei(s) = w(s)l or M(t) = po(t)] pasis and then is completed with zero on the remaiging p
we can solve this problem explicitly. We postpone thig,|,mns. The lower bound of the WH multigét

. . (gh,9%)ie0,8
analysis until later. is given by (see (59))
2) The Two-Channel Optimal ProblenThe two-channel A= 1 inf min A\ (U0 + 0202,
transmission scheme uses two encoding and two decoding D (ts) @

blocks, one of each for each channel. It thus represent% Theorem 11" = KLy with Ly € L=(0;GL(C)).

. .. . 1pl* _ :
union of two one-channel transmission schemes, subject to 1€ 1" = F1 L, LTFY. Inthe orthonormal basif, . . ., fp

potheses (¢', ¢?) andH(g'#, g°#). Without these additional (which depends on s), the matrices of interest are given by

constraints, the optimal two-channel problem would simply = {)ﬂ A= jO
PrP—q

reduce to the previously solved one-channel optimal problemh LYl ) Pl block
Hence a lower bound for the approximation error is given b ere every x ¢ matrixiswritten in two blocks: gx g block on

twice the optimal value of the optimal error for the one-channiP: @nd &p—aq) x ¢ block on the bottomi,,_ is the(p—q) x ¢
case matrix of which the firsp — g columns form thép —¢) x (p—¢q)

identity matrix and the remainirzy — p columns are zero. Then

142 1 .
Cst,opt 2 2601)t(WM7 O‘vﬁ) 111* 212% Ll * ~Ll * Tk
e e w DI = L 0+ g [Ly elr_]
0 0 j=q+1 = |: - N - :|
= el,_,Lt €I,

The issue is then whether the lower bound can be achieved. However,

The optimal solution for the one-channel problem is param- 2L, L3 ely
etrized using the spacesdigspacemax(WM; p, ¢); in partic- { el sQIpJ
ular we haveRanI'!, RanI? € eigspacemax(WM;p,q). On

* 3
the other hand, the frame conditidh(g', ¢*) requires that in _ FLlLl ) 0 } + \/;L1
the Zak domainRan I'' +Ran I'? = C?, another subspace con- 0 Slp—q e/21,
dition. Now clearly these two conditions are contradictory, un- } 17 [ 0
less almost all eigenvalueg are degenerate and there is enough . [\/EL{ 5@1;_4 > [2 e 2 } .
“room” in eigspacemax(W M; p, ¢) to coverC?; we can, there- ence 0 Tl
fore, in general not hope to achieve equality in (117). Moreover, N N 1.1 9
(117) cannot be improved: for evesy> 0 there is a near-op- Amin(DHTH +120%7) > min<§€27 5 L7 ) -
timal solution Wit.heslt'i'Q < 2eop(WM;a, 8) + . Allthese  gineer ¢ L>(0; GL,(C)) it follows thatT!['L* 4+ 202" >
facts are proven in the following theorem. v > 0fora.e.(t s) € Oand somey > 0. ThusH(g', g'#) is

Theorem 13 (Two-Channel)For the two-channel optimal fulfilled. Similarly, H(g?, ¢**) holds true as well. _
problem, the lower bound (117) is sharp. The equality cannotlt remains to be shown that the approximation error is close
be achieved unless the following two conditions hold for aimo# 2e.,.(WM; «, 3). The first channel approximation error is

every(t,s) € O. copt (WM v, 3). For the second channel we use (43) and get
2 1 _ .71 1 .
1) The eigenvalué,(t, s) is degenerate folV M. el = eiyo = ¢(W, M + eA T - eAsa, )
2) 1+ ki(t,s) > ka(t,s) =p—gq. —e(W, M;T T o, ).
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Notice thatW , M ,I'* I''# A are all bounded as functionstwo windowsg*, g2 that satisfyH (g*, g?) and are also optimal
in L>(0; Sym (C)), L=(0; C**?) or Loo(0; €P*P=P). for each one-channel transmission problem.

Using again (43) and expanding the above formula, we ob-3) The Optimal TSDE:The encoding scheme usindiae-
tain a fourth-order polynomial im with zero constant term, shift division encode(TSDE) shown in Fig. 2 is characterized

€2, — €i., = ae + be? + ce® + de*. Since this can obviously by
be made arbitrarily small by choosing appropriately sraall g},m = Gm.2n:00, 80 gf,m = Gm, 2n+1:00,50
(117) is sharp. L — gl# 24 _

1 24
g - grn nia g - grn " et (119)
For the second part of the theorem we need to show the tyg o 2" [1/2”21]’ ;F%g, gl#:'gé# arejihglg’]eoﬁ%rating win-

conditions in the hypothesis are equivalent with the existence(%ws_ The approximation errors have been computed in (46) and
two one-channel optimal solutiops, g2 that satisfyH (¢*, ¢%).

) . : ..(47). In the TSDE casg' = ¢ = g and thus the total approx-
As mentioned before this reduces to the algebraic conditi a)tion error is ¢ =9 =9 PP

RanI'! 4+ RanI? = C? a.e., or equivalently, to the existence 1+2:TspE 1
* ' ’ = e(W,M;T,I''#; a9, 2
of two members/, 1, € eigspacemax(WM;af3) such that —** oW, M; T, 3 0, 260)

. . 24,
v (t,s) + a(t,s) = C? for a.e.(t,s) € L. Using now the ) ) _ _+6(W7M7er ; 0, 2f%0)- _
parametrization ofigspacemax(S; a, 3) developed in Section _The partial optimal TSDE with fixed encoder has been obtained
IV-A we obtain the conclusion. ¢ InTheorem 5 case BS, as

Ii# = 12# — pMI(I*MT) ! (120)
Remark 14: The proof of the theorem suggests how to cons 4
struct optimal solutions when the two conditions hold. Let us fiX 142,TSDE
some(to, 80) e dand |et]€1 = /{Jl(to, 80), ko = k‘g(to, 80) and ) . est;S(; : 2CSO(W’M; I'; avo, 2/30) (121)
Dy, 1, as in Section IV-A. Letd(t,, 5o) denote the eigenspacewhich is perfectly equivalent to the one-channel problem, du-
of W (s0)M(t,) corresponding to the eigenvalues plicated modulo &-time shift to the two channels. Clearly,
{\(to, 50), \j(to0, s0) > Ag(to, s0)}- the optimal value of the error is bounded below by twice the

If E4(0, so) denotes the eigenspace corresponding{éy, so) one-channel ?fg'fT“S%'Ee”OV

thenit(to, so)BE,(to, so) =C* anddim E, (o, s0) > 2(p — q). Cstiopt 2 2eop (WM o, 25). (122)

Let ey (#,5),...,e,y(t, s) be a measurable system of eigenveﬁs in the optimal two-channel case, the lower bound is actu-
tors. Let P ally achieved if and only if the hypothesi,(g) holds true. To

mme {1,214 k) be more precise, the only issue is whether there is any optimal
’ o ' solution of the one-channel optimal problem (paramterized by
—He—kna—k+l....qq+l...atk =D} (111)-(114)) that makes al3tH ., 5, a WH frame. A partial
be two injective selection maps such that answer to this question in given by the following lemma.
Ranm URanms = {g—k1,¢—k1+1,...,q,¢+1,...,q+k2}.

Then onDy, 1, we construct the following objects: . L .
(t.5) € 1’51”‘2 g o) tively prime integers ang € L?(R) such thabVH,.., 24, is
’ ke as-Riesz basis. TheWH,,.., 5, is a frame forL2(R) iff there
= By (t,s) = span{er, ()(t, 8), - -, my 14y (F,9) | is anA > 0 such that for almost every, s) € O
(t,s) € Dy, 1, LT*| ) + 0| 0y 1) > pA (123)
(t )} (I" is thep x ¢ matrix defined in (37)).
e Proof: Let us denote by(® = T}, g the fo-time shift of
) @E,}L(t,s) . Vi = 13,9 Bo
)

Lemma 15: Consider2agf8o = p/q > 1 with p,q rela-

— E?(t, s) = span{ e, (1y(t,5), . ..
(t,s) € Diy hy — vi(t,s) = U(t,

(t.5) (t.5) Ll(t 5 g. By sorting the labelém, ») into those with evem and those
t,s) € Dy, k, — 2(t,s) =U(L, s

& Ef(@ s) with oddn, we have the following decomposition:
(tv S) € Dkl,kz WHgiae,80 = WHgiao,28 U WHg(2>;ao,2,30
— Lt s) = [61(@ $)| - legmti—t | emy(t, 8) | Therefore WH,.q,,5, is a frame iffWH , ;)).q0,24, IS@WH
e em s (£ 9)] multiframe. Next note the Zak transform ¢ is
7 VAN (2) — /o3 2mikt (2) .
(t,) € Di 1o Gt s) = V2t z,; T 2fols + 1))
= 2 (t,s) = [ea(t,s) | oo | egora—t | emyy(t:5) | 1
=G |(ts+=).
|6772(1+k1)(t’ 3)] . 2 . . .
(t.5) € Dy 1, — FL(t,5) = FL(F FY=1/2 The fact thaﬂ_/\_ﬂ-lg;ao72,@O is a WH s-Riesz basis translates into
’ ) ) Fe N1/ (see Proposition 3, case A.1)
(t,5) € Dy o = F7(2,5) = FE(ETFT) ™5 pAg <T*T < pB, (124)
BYICOHSUUC'[;O” _ _ for almost every(t,s) € O and somedq, By > 0. By the
E (t,s)+E(t,s)=E4(t,s),dimw (¢, s)=dimwa(t, s)=¢  same Proposition 3, case B.3, the MUItBEt, , ,2);q, 24, 1S
and a multiframe (with frame bound4, B) iff
V1,12 € eigspacemax(W (s)M(t); o, B)Ip,, . - pA < TT* +TAM* < pB (125)
The F*, F? constructed omDy, 5, are local optimal solu- a.e.(t,s). Sincel'® = I'(¢, s 4 (1/2)) the upper bound comes
tions for each one-channel transmission problem and for eveytomatically from (124) (notdZ*T|| = ||77*||). Thus the

(t,s) € Dy, x, they form aframe iC* with lower bound larger only condition that remains to be satisfied is the lower bound in
thanl. Therefore, by patching together these local frames we g&5) which is equivalent to (123). &
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This Lemma does not solve our problem completely. (L21) and the construction efgmax(W M ; «y,25,). The only
merely states an equivalent form of the hypothé&igg) when issue is to check whether the frame hypothesiWh .., s, IS
Hi(g) is satisfied (i.e., wheMVH .., 24, IS @ WH s-Riesz satisfied. Using the previous lemma we have to check whether

basis). However,'it provides an easier vgrifiablle condition. ToptT et +F01)trzl)t|(t ) > i
The general solution of the optimal TSDE is furnished by the . ’ e
following theorem. for someA > 0 and a.e.(t,s). Sincel’ = F - L and

_ _ . L e L*>~(O;GL,(C)) it follows that || L~1(¢, s)|| is uniformly
Theorem 16 (TSDE)ConS|d_er the encocjmg_scheme pf F'gbounded, thereford, - L*|;.y > v > 0 for a.e.(t, s). Hence
2 using a TSDE. Then the optimal approximation error is ’

CSTt?C]%]E = 2@01“(WM; «o, 2/30) (126) FoptFZPtkt,s) +]._‘opt]-_‘2pt|(t75+%) Z’Y (FF* |(t75)+FF(*t,s+%))
This bound is achieved iff for almost evef, s) € O and (127) is then a sufficient condition.
FF* |0y + FF| 041y > A (127) To show now that it is necessary also, we use the upper bound
’ ST5) —

L-L*|,5 < T < oo forsome finiteY > 0and a.e(t, s). Then

for I’ € eigmax(W M ; «g, 283y) and somed > 0. In this case, .
elgmax( a0, 26) if H2(g) holds true we get

the optimal solution in terms of the Zak transform is

FOPt(t7 S) = F(tv S)L(tv S) (128) T (FF*|(t:5) + FF*|(t,s+%))
1# _ 2# N . -
. Fopt - Fopt - F#(t7 S)L# (tv S) (129) 2 FOI)tFOI)t|(t75) + FOI)tFOI)t|(t,S+%) 2 pA
with , and thus (127).
F#=MF(F*M*F)™/? € cigmax(MW;a0,2%) (130)  The near-optimal solution is easily obtained using the fol-
Le L™=(O0; GL,(C)), lowing observation. Condition (127) is structurally stable be-

L#— p(F*MQF)l/Q(F*MF)—lL—* € L®(0;GL,(C)). cause for ever;{t,s?,rank(FF*kt,s)) = ¢ > p/2. Thus a
small perturbation inL>°(0J; C**%)-sense ofF would make
(131) (127) hold true. However, by the continuity of the approxima-
If (127) is not satisfied, the optimal bound (126) is nofion error with respect to the windoiv (see the argument used
achieved, however, for every > 0 there is a near-optimal iy the proof of Theorem 13) we get a perturbation that increases
solution withine. the approximation error by no more thaand makes (127) hold
Remark 17: true. This concludes the proof. &

1) The condition (127) is generically satisfied. In fact, it pyoof of Corollary 18: If W(s) = w(0)I, then the
represents a constraint only on the weightHowever, cojumns of F can be chosen from the eigenvectors Mf
for every (R, w) (autocovariance and weight functionshng the lower bound condition reduces to an algebraic
such thatW, M ¢ L=(0; GL,(C)) but not satisfying range condition: ifv € eigspacemax(W M; oo, 25) then
(127), and for every > 0 there is a weightv' that sat- (¢ ) 4 (¢, s + (1/2)) = C? and thus the conclusion. <

isfies (127) and|w — w'||1 < e. To see this note that -
|lw = w!||72 < ||W — W]~ and (127) can be made to Remark 19:1n general, the range condition from the proof

hold true with an arbitrary small perturbation. is a necessary but not sufficient condition for the attainability
f the optimal bound. Equation (127) is equivalent to this range
ondition plus a lower bound of some angle between these
spaces. The angle should be defined between the orthogonal
complements within each range of their intersection.

4) The Optimal TSDD:The encoding scheme usingime-
shift division decode(TSDD) is shown in Fig. 3 and involves
the following configuration:

2) There is a particular class of weights for which (1273
does not hold true in general (it depends now)nThis
class contains the characteristic functionj@f2/,], or
any other weightw such thate(s) = const. For these
weightsW (s) = w(0)I and, thereforeF’ does not de-
pend ons. The only way for (127) to be satisfied is, in
this case, thaM satisfy both conditions of Theorem 13.

Since this is an important case we state it explicitelly in grlnn = grln,Qn;ag,,ﬁg gran = .97271,271—1—1;(10,,80
i 1# _ # 24 _ #
the following corollary. G =00 oot Totn = O anatianse (132)
Corollary 18: Suppose the weight satisfies whereaoo € [1/2,1] andg!, g%, g* are the generating win-
w(s) = Z w(2B0(s + k) = w(0) > 0 dows. The approximation error is similar to the TSDE case
kez el TEISPD — (W M T T#; 0, 200)

for almost every. Then the lower bound in the TSDE encodingSt

T2 T#.
scheme is achieved iff for almost everthe following two con- +e(W, M; 1%, I a0, 2/5).

ditions hold true: The partial optimal TSDD with fixed decoder has been obtained
1) the eigenvalug,,(t) of M(t) is degenerate; in Theorem 5 case B8, as )
2) 14+ ki(t) 2 k2(t) =p—q I =3, = pWIH (T WI#)™ - (133)
wherek (t), k2(t) are the left and right multiplicities oX,(t) eHHISPD — o0 (M, W;T#; a9, 280). (134)

as defined in Section IV-A. Note the similarity to (120) and (121), thougf andW have

Proof of Theorem 16:1t is clear thatl’y; andl“iff&t from switched their places. The problem is formally equivalent to two

(127) and (129) achieve the lower bound in (122) because afe-channel problems as in the TSDE case. SM&¥ has the
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Fig. 4. The encoding—decoding scheme for the time-shift division encoder and decoder (TgDEB)are derived from the sameandg!#, ¢*# are derived

from the samey#.

same spectrum 3% M, the lower bound for the optimal error

is as follows:
142;TSDD

st;opt

2 26opt (WM7 @, 2[30)

Theorem 22 (TSDED)The optimal TSDED scheme coin-
cides with the optimal TSDE and TSDD schemes. The achiev-
(135) ability conditions are the same as in Theorem 16.

Clearly, thel'* which achieves the lower bound in (135) is given \We discuss now two interesting results concerning the be-

by
¥, =F%.L¥

op

(136)

with F# € eigmax(MW; ao,2/), L# € L>=(0; GL,(C)).
Using (133) we obtain fol’
Copy = F - L (137)
with
F =WEF#(F#W?F#)~Y2 ¢ cigmax(WM; «v, 260)
L = p(FHW?2F#)Y PR WF#)
SL*7" € L¥(0; GL,(C)).  (138)
The achievability of the lower bound depends now upon the va-
lidity of the frame hypothesis oMV .., g, as in the TSDE
case. Moreover, (136)—(138) are perfectly equivalent to the so-
lution (127)—(131) of the TSDE case. Thus we have obtained
the following theorem.

Theorem 20 (TSDD):The optimal encoding scheme using
a TSDD is identical to the TSDE case. The optimal bound
2eopt(WM; g, 20) is achieved under the same conditions
and by the same solutions as in the TSDE case.

Remark 21:

1) Corollary 18 equally applies to the TSDD case.

2) One can ask whether theRiesz basis and/or frame
conditions on the decoder automatically imply the corre-
sponding conditions on the encoder. The answer to this

havior of the encoding and decoding sets. Recall the hypotheses
of the optimal problems were stated in terms of the encoding
sets. Here we establish the connections with the decoding sets.

Proposition 23:
a) Suppose

Re L™(O,GL,(C)Nn Syln;'(C'))
and ¢g¥ satisfies Hi(g%; ., 8), i.e., WHys.0 5 is @
s-Riesz basis. Thepn defined by
I = pRU#(I# " RI#)~1 (141)
satisfiesH1(g; v, 3) as well, i.e WH,., 5 is as-Riesz
basis as well.

b) Suppose

W.M e L>™(0O,GL,(C)N Syln;(C'))
are the standard matrices associated to the weight, respec-

tively, the autocovariance function. Suppage satisfies
H,(g™; o, B0) and has the form
I'# =F#. L% (142)

for some

F# ¢ eigmax(MW;a,280), L% € L™(0; GL,(C)).

Theng# satisfies alsdf; (g% ; v, 23 ) andg defined by
L = pWI#([# Wr#)- (143)

satisfies bothH; (g; «o, 2/50) and Hz(g; o, Bo)-

question is analyzed in the next subsubsection, devotedRemark 24: One may ask whether is was necessary to as-
to the TSDED case. sume the special form fdi* at part b). The answer is affirma-
5) The Optimal TSDED:In the TSDED scheme shown intlve: Indeed, wlthout assuming® = r'# . L* as gbove, the
Fig. 4, we start with the structure frame conclusiont(g; ao,_ﬁo) would not b_e true_ in general.
1 Therefore, the exact solutions of the partial optimal problems
Imn = Im,2m;00,5 should take into account this phenomenon: while ¢HRiesz
gt = gﬁgn;ao,,@() gt = gﬁ72n+1;a0“@0 (139) basis condition on the encoder follows easily from thRiesz
with a3y € [1/2,1] andg, g* € L?(R) the generating win- basis conditions on the decoder, the same thing does not happen
dows. Since the partial optimal of TSDE or TSDD schemes ifr the frame condition.
volve a TSDED structure anyway, it is straightforward that the
optimal TSDED case should be identical to the optimal TSDE
and TSDD. Indeed, using the same arguments as before, one ¢
easily show that

2 _
Imn = Im,2n4+100,80

Proof of Proposition 23:
B{JH The conclusion follows easily sindé, (¢#) means

pA ST#'T# < pB, (144)

LH2STSPED > 2equ(W M g, 2/30) (140)

and the optimal value, if achieved, is attained by (136)—(138).
Hence the following theorem.

for someA;, B; > 0, andR € L>(0; GL,(C)) means
c1 < R < ¢y a.e. for somey, cs > 0. Hence

pAje, <T#'RI# < pBicy
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and Note that unlike the TSDE case, the two terms are different be-
pAici < [#T# causeV # M in general. The difference is due to the meaning
23— of stationarity: the signals are assumed stationary in time do-
— pA(I#" RI#)~LD# " R2D# (D #" RI#) L main. This makes the TSDE case easy since both channels have
B2 t_he sa_meM - However, in frequency domal_n we do not have sta-
< b 21 22 tionarity which results in differenM matrices.Unfortunately,
Afep we are not able to obtain a closed-form solution for the optimal
and thusH, (g). window in the FSDE case. We still can find lower and upper
b) The first claimH; (¢#; o, 23 ) comes from bounds for the optimal error and a subspace type condition for
D#T# = [#L# > ||L#7Y|72 > 0. the optimal window;, though this subspace does not necessarily

The conclusiorH; (g; cvo, 250) follows from the part a). come from an eigenvalue problem.
For the frame condition we use the Theorem 16. Re- For the optimal error we proceed as follows. A lower bound
peating the proof of this theorem we obtain that the onf$ given as in the previous cases by the two-channel optimal

condition we have to check dhis the lower bound of the formula with adapted parameters. Thus

form eod TSP > e (WM ; 200, Bo). (149)
K(t,s) =T T + 1T 41) 2 pA An upper bound of the optimal error is obtained by choosing

a particular, yet interesting as we shall see later, configuration.

B cnticf
for someA > 0. We know thal™* satisfies (144) and the gy is _ 12# _ 1 ip (146) and obtain

similar inequalit .
- q #y a* H ot slt—i—Q’FSDE =c(W, M + N; 200, 5).
K (t,S):F -T |(t75)+1_‘ -T |(t S_i_;) ZPAQ . . . . .
i 513 Thus the optimal value under this constraint is given by a for-
Using (143) and (142) we get mula similar to the one-channel case. Obviously, this will con-
K(t,s)=p? [Wp#(p#*wp#)ﬁr#*wm 5 tain an upper bound for the optimal FSDE error
" 142;FSDE
Copt < eopt(W(M + N); 20, Bo). (150)
# #* #r—2 #* X opt = Copt 9 ?
+ WITTT WET)™T W'“?”E)} Hence we can bound the optimal FSDE error by
Z C3 |:WF# . F#*W|(t75) 2eopt (WM7 2@0, [30) S ei:)—tQ;FSDE
< eq jf(I’V(.Al—‘r N) 2000 /30) (151)
WF# . F#W . : : ' S
+ |<t75+5>} A direct computation shows thaf and N commute (we shall
Now we note thatMWF# = F#A with A € discuss in Section IV-C the exact structure of the spectrum of
L=(0; GL,(C)). Therefore, these two matrices). However, they do not commute J#th
M) - K(t,s) M(t) in general, unles®& (or M, N) is (are) a multiple of identity.

Suppose this is the case, namd#j, is a multiple of identity.
H A2 [ H# A2 it
2 Cs [F ATFT (g5 + FTATE |(m+%)} Then the lower bound is given by the smallgst ¢ eigenvalues

> ey K#(t,8) > pegAs of M, whereas the upper bound is determined by the smallest
for some positive constanis,,c, > 0 depending on p—q eigenvalues aM + N . Unfortunately, theg— g eigenvalues

I#, W, andM. This provesHs(g; ao, So) and hence the of M that enter in the smallegt— ¢ eigenvalues oM + N are,
Pro’pos’ition ' Y N in general, not thg— ¢ smallest eigenvalues . Thus despite
' of the fact that
6) The Optimal FSDE:The encoding—decoding scheme for Copt (WN; 200, Bo) = eopt (WM 200, o)
the frequency-shift division encod¢ESDE) case is similar to ,_. ' i o o
the TSqDE c;’se shown in Fig. 2. '?ie an)alog encoder and ?smceWN(t) ~ WM(t + aoff)) we do not obtain an exact

fively. side decod ven b Sfmula for the optimal FSDE error.
Spectively, side decoders are given by Let us analyze now the optimal windows. Using (65), (148)

G = g2m niao,80 Grun = g2m+1,ma0,60 turns into the following explicit formula:
1 _ 1# 2 2# 145 _ 1/p 1/q
9 = oo s oin = Prmrtmons (49) apawso g / ds/ dt trace{W(M + N)
with a3 € [1/2,1] as before, ang, g*#, g°# the generating 0 0

windows. The approximation error obtained before in (48) and ~WMI(I*MD) 'I'*M — WNI(I'*NI') 'I'"*N}.

(50) gives Therefore, the optimization problem turns into an infinite

el TESPR — (W, M T, T; 20, o) number of finite-dimensional optimization problems. For
+e(W,N;T,T%#; 20, fo). (146) eaclit, s), we have to maximize the trace of

The partial optimal FSDE with fixed encoder has been obtainddl) = tfrace{W MT(I"MT) M
in Theorem 5, case B9, as +WND(*ND)™'I* N} (152)
I'# — pMIO(D*MI)~' I = pNI(I*NI)~! (147) overl € CP*? subject to the constraintd: (g; 2ao, So) and
Hy(g; ag, o). An analysis of (152) shows thBtcan always be
L4 2:FSDE factored in the usual way;, = F' - L whereF" has orthonormal
Cstiso = eso(W, M;1'; 200, o) columns and. is invertible inL>°. The following Lemma is the
+ewo(W,N; ' 200, Bo).  (148) first step toward this fact.

and the error
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Lemma 25:LetT € GL,(C) be an arbitrary change of co-(154) do not satisfy (155) and the reason is the following. The
ordonates irC?. ThenI(I') = I(I'T) andI defines a unique definition of N given by (51) and (52) is equivalent to
map from£L,(C"), the space of alj-dimensional subspaces of N(t) = DM(t + aofBo) D (156)

72 + .
C", into R™ denoted by/ as follows: with D as in the statement of Lemma 27. Then one can easily
v e Ly (CV) — J(v):=I('), whereRanI'=v. (153) check that

Remark 26:.J can also be defined on the space of rank J(V(t. +aofho, S))_|(t+"°'8°’s) : J(l.)'/(t + ofo; 8))|(t’8)'
orthogonal projectors, since eaete £,(C?) defines uniquely Assuming the SO|ut.IOI”I of (154) is unique (in terms of subspaces)
such a projector. andg < p we obtainDF(t + «ofo, s) = F(t,s) wherell =

Proof: The proof s straightforward sindI* MT)~'r* £ - L. Then
andl'(I'*NI')~'I'* are invariant under the transformatibn—  I'T"™|¢; .y + DT |44 0, 8,,5)D
I - T. Hence, for any twd™,I'? € CP*? of rank ¢ such that = F(t,8)(LL*|(1.6) + LL*|(ttan 0,0 F (2, 5)

1 _ 2 1y 2
RanI" = Ranl*, [(I") = I(T'%). ® Wwhich makes (155) impossible. The only way in which (155) can

This Lemma shows the optimal window is given by d#e satisfied is if two subspace optimizers that cover the entire
reC?? Ranl C £,(C") solution of the following optimiza- spaceC”exist, as in Theorem 13. In the generic case (when the

tion problem: subspace optimizer is unique), the optimal error is not achieved
Ranl = arg max  J(v). (154) by gdm|35|b_le windows (i.e., windows that obey the frame and
vEL,(CP) s-Riesz basis hypotheses) but for every 0 there is a near-op-

Note that the optimizer may not be unique. However, it alway#nal solution withins, because of the continuity of the approx-
can always be factored &5 = F - L with F' ap x ¢-matrix imation error with respect to the windows. Hence we obtain the

valued function whose columns are orthonormal vectors affdlowing result.
L aq x g-matrix valued function. The-Riesz basis condition  Theorem 28 (FSDE):SUpPOSE?, s) > Fop (£, 5) is @ mea-

H,(g; 20, flo) requires us to consider only thosethat are in - graple solution of (154) whose columns are orthonormal vec-

L>(L; GLy(C)). It remains for us to check the frame hypothios inC”. Then the optimal error has the lower bound
esisHs(g; av, fo). For this we need the following Lemma, sim-

L/p 1/q
ilar to Lemma 15. eI ZESDE — ol10]| L R(0) — /joq/ ds/ dt I( Fopt).
0 0

st;opt

Lemma 27: Suppos€ao3o = p/q > 1 with p, g relatively (157)

o . S
prime integers anWH”?Q“WO a VQVH S'R'esz bags i~ (R). The optimum is not achieved unless there are two solutigns
ThenWH,..,.5, is a frame forL*(R) iff there is a constant and % such thatRan F, + Ran Iy = C” a.e.(t,s) € O In
A > 0 such that for almost ever, s) € L this case, the admissible optimizers are parametrizdd,hy=

PT*4 5y + DUT™| (4400 80,5 D 2 pA (155) F,, L with L € L=(0; GL,(C)). The decoding windows are

obtained from (147).

In general, for every > 0 there is an admissible near-op-
timum solutiong, within ¢ of (157).

whereD is thep x p diagonal matrix whosél,!) element is
Dy = (=1)! andr is thep x ¢ matrix given by (37).

Proof: Letg® = My, g be the2rao-frequency modu-
lation of g. By sorting the labelém, ) into those with evemn Remark 29: The term2|jw||; R(0) in (157) comes from the
and those with odd:, we have the following decomposition: integral Boq trace{W (M + N)} over. |w|; = [w(z)dx

WH o080 = WHgzo.60 UWHg<2>;2a0,,ao- stands for thel-norm of the weight function an@&(0) is the

i . ) variance of the signal (i.e., the autocovariance fordag
Therefore WH,.q, g, is aframe |ffWH(g;g(2>);2a0“80 isaWH

multiframe. The Zak transform of?) is 7) The Optimal FSDD:In the frequency-shift division de-
@) omikt (2) coder case, the encoding—decoding scheme is similar to the
Gt s) = v /3026 97 (Po(s + k) TSDD case shown in Fig. 3. The analog encoders and side
k

) decoders are described by
= GQWZQO’BOSG(t + o Po, S)

1 _ 1 2 _ 2
. 2 2 Ymicen B n = g?nl,n;ag,,ﬁg Imn = g?rn-f—l,n;ozg,,@g
Then thel-matrix of g isT'(?) = 2™ %3 DI'(t 4 ao o, 5). % # ou  # (158)
SinceWH 424, 8, IS @ WH s-Riesz basis, with Proposition 3, Imn = 92m,msevo, 0o Imn = G2m1,m500,00

case A.1, we obtaipA, < I'"T < pB, for somed, By > 0. With aofl € [1/2,1] andg*, 4% g% the generating windows.
Using again Proposition 3, case B/H ,.,2):2a, 4, 1S @ WH The approximation error obtained through (48) and (50) gives
multiframe (with frame boundsi, B) iff el TSR — (W M T T#; 200, o)

pA <IT* +TTr®* < pB +e(W,N;T2 T%; 200, o).  (159)
for almost every(t, s) € (I and for somed, B > 0. The upper The solution of the partial optimal FSDD with fixed decoder, as

bound is immediate, whereas the lower bound condition feund in Theorem 5, case B12, yields
equivalent to (155). This ends the proof of the Lemma. ¢ Il =12 = pWr#@# wr#)-* (160)

Thus we have to check (155) for the optimizer of (154). Urnd the error
fortunately, the answer is negative. In general, the optimizers of ¢ TZFSPP# — o (M + N, W;T#; 2a0, o). (161)

st;so
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The optimal FSDD should minimize (161). This is equivalent ta7. Then note the following invarian¢d +N)W |1 o, 5,.5) =

the one-channel optimization problem having the matrix-valudd(M + N)W D), ., holds which impliesF'# (¢ + a3, s) =

autocovariance functioM + N instead ofM. Therefore, the DF# (¢, s), unless theth eigenvalue\, of (M + N)W is fully

lower bound of the optimal approximation error is degenerate as in the hypothesis of Theorem 13. This invariance
14+2;FSDD -, eojt((M+N)W;2ozo,/3o) (162) turns 'Eto .

dth ) tl't zer i 1 trized b rer# lt.) + prer# |(t+cvo B0,5) D
and the optimizer is parametrize % "

P P y = F#(t, )[L¥ L¥#*| (1 0y + L¥*L**| (g o o, ) | F# (2, 5)

I'# = F#L%, F# ¢ eigmax((M + NYW; 2a0, (o) and, clearly, the rank of this matrix is< p, when2a3, > 1.
andL# € L(0; GL,(C)) with 2008 = p/q. However, it On the other hand, a similar pertgrbayon argument, as in The-
remains to check that = ¢g' = ¢ satisfies thes-Riesz basis olrem 13,hsr:ows tgat tze. approxmhatlon errt?r par;] bf l?rb|_tray
and frame hypotheses, (¢; 20, So) and Ha(g; o, o). First close to the lower bound in (162). Thus we obtain the following

we need the following result, proved with the help of Lemm@eorem'

27. Theorem 31 (FSDD):In the FSDD case, the optimal approx-
Proposition 30: Suppose Imation errorT|:DD
W.M+Nc Lo(:GL.(C) N Symt(C Cstiopt — copt (M + N)W'; 200, o) (163)
M+ N € L=(0; GLy(C) N Sym,; (C)) although, in general, it is not achieved by any encoder—decoder
andg# is defined byl'# = F# L# for some satisfying the frame hypothesi¥.(g; ao, ). For anye > 0

there argy!, ¢°, ¢# that satisfy thes-Riesz basis and frame hy-
# i . ) )

F7 € eigmax((M + N)W; 200, o) pothesed (g*; 2co, Bo), H1(g%; 2cv0, o), H(g", 9°; 2cx0, o)
andL# € L*°(0; GL,(C)), satisfiesH2(g; o, Bo). Theng#  and achieve, for FSDD scheme, an approximation error within
satisfiesH (¢%; 2, 30) andg defined by e of the optimal value (163). The optimal value is achieved

* by an admissible solution (i.e., one that satisfies the above
— #(H# #y—1
I'=pWIT (™ WI'7) s-Riesz basis and frame hypotheses) only if the conditions

satisfies bothH1 (g; 2avo, So) and Ha(g; o, o). in Theorem 13 withWM replaced byW (M + N) are
Proof: The claimH, (¢%#; 2a, 30) comes from satisfied, in which case the optimizers are parametrized by
. I'# = F#L# with F# € eigmax((M +N)W; 2«0, 8o) and
#ITH [ H# x—1|—2 ) )
[P = LPL7 2 |77 2 0. L# € L™(0; GL,(C)).

The second clain; (g; 2c, o) follows from Proposition 23, gy The Optimal FSDED:The frequency-shift division en-

parta). The frame conditioH>(g; 2a, o) comes fromthe pre- ., jer and decoderase, similar to TSDED shown in Fig. 4, has
vious lemma as follows. First, the condition we need to che@ﬁe following equations:

is (155) Let 1 2
9mn = 92m,n;a0,80 Gn = 92m+1,n500,06
K(t, 8) =IT |(t75) + DI'T |(t+a0,8075)D g}r#t = g;:n,n;()éo,,ﬁo ggﬁl = g;ﬁn—l—l,n;ag,,ﬁg (164)
and, similarly, leaving only two degrees of freedapandg® . Asinthe TSDED

case, the FSDED optimal problem reduces to the previous case
FSDD. Indeed, as we have seen in (160), the partial optimal
By hypothesis and Lemma 2K, (¢, s) > pA forsomeA > 0. FSDD with fixed decoder already requirgs = ¢2. Thus the
For M € L**(00; GL,(C) N Sym; (C)) we haveXM X* > optimizers of FSDD are also optimizers for FSDED and con-

E#(t,5) = T#T#" | o) + DT#T#7 | (140, ,.0) D-

|| M~ X X*. Therefore, versly. Thus we obtain the following theorem.
K(t, s) =p*W [F#(F#*WF#)_QF#*|(t %) Theorem 32 (FSDED):The optimal approximation error in
. - ’ the FSDED case is
+ DU#(# WI#) 208 Dl g, 0| W eFSDPD _ e (M + NYW:200,50)  (165)
> p2||F#*WF#||—2||W*1||_2K#(t, s)> A and is achieved under the same conditions as in Theorem 31.

. ) . Moreover, for everye > 0 there is a near-optimal admissible
for some positive constart. This ends the proof of the Cla'msolutiong g#, within ¢ to (165).

and hence of the proposition.
. " o “ ) Remark 33: The only new thing this theorem brings, com-
This proposition proves the optimizer g™, defined above, 5red to Theorem 31, is that there is near-optimal solutions of
satisfies thes-Riesz basis hypotheses. Unfortunately, in thgq formg! = g2 = g for everye > 0. Again, the proof of this

cases of interest, the frame conditions is not satisfied. Indeggct follows the perturbative arguments as shown in Theorem

supposd'# is given byl'# = F# L# with 13,
F# ¢ eigmax((M + NYW; 200, fo)
and C. The Casé¥(s) = w(s)]
L# € L=(0; GL,(C)). In this subsection we analyze the optimal solutions obtained

The definition of N given by (51) and (52) is equivalent tobefore in the cas® (s) is a multiple of the identity matrix. Re-
N(t) = DM (t+ oo f0)D with D as in the statement of Lemmacall the operatoW (s) is defined in terms of the weight function
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w(-) by (39) and (42). ThuBV (s) is a multiple of identityifand ~ Suppose nowR decays sufficiently fast (for instance,
only if the functionw(s) is a%-periodic function. This means |R(z)| < C/(1 + |z|)**7, for somey > 0), then we can apply

the following condition holds: the Poisson summation formula (see, for instance, [24]) and
1 i
> w </3 <s o k)) — Y w(B(s+k)  (166) OPtn )
kEZ KEZ — /o R _ L .
for almost everys. A particular case is whemw = 1f 5 and pr(t) = V2ra Y R <27ro‘l P (gt + 7)> (173)
then the approximation errors (16) and (17) are computed as ez
averages over an interval of lengththe translation step. where
Except for the FSDE case, in all the other configurations, the . 1 i J
optimal solution involves the computation of the eigenspaces of (w) = Vor ¢ R(z)dz

WM orW(M + N). WhenW is a multiple of the identity, the )

computation reduces to the eigenproblemXror M + N. In 1S the Fourier transform ofi(-), and thus the spectral power
the remainder of this subsection we find first the eigenvalues af@nsity of the original signal. Equation (173) shows also that
eigenvectors aM andM+N, and nextwe compute the optimal/-(t) > 0 because the spectral power is always nonnegative.
errors for two encoding—decoding schemes (one-channel arfHis we provedM(t) is nonnegative-definite and the eigen-
FSDD cases). problem forM (¢) is completely solved.

Recall thatM is the Sym,(C)-valued function introduced _We study now the eigenproblem faN(¢), defined in
in (40). We pointed out in (41) some of its properties. In facf®1) and (52). A simple computation shows thak(t)
M(#) is not only self-adjoint Toeplitz matrix, but it is also ahas the same “quasi-cyclicity” property add(t), i.e.,

nonnegative form as we prove below. First, note the followin§ (1) N (t)E(t)* = N(t). Therefore N(¢) has the same system

“quasi-periodicity” property of\ (t): of eigenvectors a&'(t), namely, (170). In particular this shows
E@t)-M@)-E@®)* = M(t) (167) thatM andN commute. The eigenvaluesM(¢) are computed

whereE(t) is the followingp x p unitary matrix: similarly to those ofM(t)

0 1 0 --- 0 p—1 e

0 01 - 0 va(t) = {wo, N(t)r) = 3 on(t)e, " (0).

BE(y=| © i il (168 S . =
0 00 - 1 Explicitly, this turns into
—2migt g r,q
[ q O 0 ... 0 Vr( ) — ZCQWZl;(t-I—E-F%)R <£> = liy <t+ £> ) (174)

Therefore 2 andM commute, hence they have the same system ez o 2q

of eigenvectors. A simple computation shows the eigenvalue

EX(t) are thep roots of¢—2w1t S‘ICHUSN has the same eigenvectors &&has at an argument

shifted byp/2¢. This also proves thdY¥ is nonnegative-definite

er(t) = 6_2’”%(“’5), r=20,1,...,p—1 (169) as well. These conclusions could have been obtained also from
corresponding to the eigenvectors (156). Indeed, this relation shows ti¥t¢) has the same eigen-
1 - values ad (t + cvo50) = M(t +p/2q). However, (174) shows
=71 & & - 7 (170) something that these eigenvalues also correspond to the same

vP eigenvectors ag,.(t)’s correspond to foM (¢). This remark al-

Note att = O_these_elgen_\/ectors_ are the sta_ndard vectors thal o s to write down immediately the eigenvaluesbt+ N
perform the finite-dimensional discrete Fourier tranform. The

eigenvalues ofM(¢) are obtained by computing the quadratic ,, () = ;1,.(¢) + v,.(t) = 22 ATILLE+E) B <2_l> . (75)
form ez o
—(k=D) Note thatn,.(-) is p/2¢-periodic, whereag..(-) andv,.(-) are
Pr—IE, (t) p N
only E-pel’IOdIC.

Now we can obtain explicit forms for some approximations
errors. We compute,:(WM;«, 5) and cope(W(M + N);
2a, o) Whereeg,(+;+, ) has been introduced in (115). The

k=0 .
eigenvalues oW M are

becausey (t)ek=? = py_,(t)e¥. Furthermore, using the defi-
nition (38) of p,.(t) we obtain A (WM)(t, s) = w(s)p(t), r=0,1,....,p—1. (176)

L (gt l i
pe(t) = ZeszF(tJFE)R( ) . (171) To compute the optimal error we need to select the smallest

v « p — g eigenvalues. Lef(¢) denote an index set of the smallest

. . . —qei . I j 1,...
Thus 1,.(¢) is the discrete Fourier transform of the sequeng)e ¢ eigenvalues. Thus for everye I(f) and; € {01,

) ?— 1N\I(t), p(t) < w;(t). The index setf(¢) may not be
{R(l/a)}iez evaluated afg/p)(t + (v/q)). Note that unique if theqth monotonically ordered eigenvalue is degen-

L <t + 1) = fog1 (). (172) erate. In any case,,:.(W»M;«, ) turns into
q

p 1/q
This relation is useful in the localization problem treated in Sec-c,,.(WM; «, 3) = /jq/ w(s) ds/ Z e (t) dt.
tion IV-F. 0 O eI



2512

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000

Jae
1 ]

! 1

0 1 B
eopt
llwll . R(0)

1

0 1 Pl

Fig. 5. The optimal error in the deterministic model (top plot) and in the generic stochastic model (bottom plot).

Sincew(s) is 1/p-periodic, the first integral i$1/6p)||w||L:.
Thus we obtain

Copt(WM; v, 3)

_ ol 5~

af

T D g (177)

dOTA>

l -Z rel(t)
For eo, (W (M + N); 2w, 59) analogous computations yield

Copt (W(M + N) 2060, /30)

1/q ;
_ IIwII;I <2l>/ S D ar (178)
af ez rcl(t)
Remark 34:

1) Let us assume now the map

t— R= Z AP R(] o)
1

is continuous and monotonically decreasing®m*] and
increasing orit*, p/q|, for somet* € [0, p/q]. Then for a
fixed ¢, the sum of the smallegt— ¢ eigenvalues is given

by
R(t4+70/q) + R(t + (ro + 1/q)) +
+Rt+(ro+p—q—1/q)

2)

for some0 < ¢ < ¢. Then, integrating over € [0, 1/¢]
we obtain

/Uq > pe(t)dt = /R()d

7€I(t)
wherely, = [to,to + (p — ¢/q)] is an interval of length

(p — gq/q) containingt*. The monotonicity insures the
contiguity of /. Theneq turns into

el 3~ (1) 4

icz

sin (z—é(aﬁ — 1))
X — . (79
a8
Furthermore, if the original signal has the correlation
length smaller thad /¢, i.e., R(z) = 0 for |z| > 1/«,
then the approximation error turns into a very simple

expression

3—1
a;z )

Copt, (WM o, /3

af—1
B R(0)

showing the decaying of the error proportional lte-
(1/af3) as plotted in Fig. 5, bottom.

For the other approximation erret,.(W(M + N);
2ay, o) the anlysis can be done similarly.

Copt (WM7 Q, /3) = (180)

[l
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3) Knowledge of the eigenvectors (170) allows one tdhus
explicitly construct the optimizing window(s). However, 1/p r
one has first to find for everythe largest eigenvalues of Copt = /33(0)/ Z w <8 + —) ds.
M or M + N and then to select the right eigenvectors O rci(s) P
in the columns of". Later on we give some examples of Remark 35: The upper bound obtained in (116) is more
optimal windows. transparent here: first note that

,
<s + —) . (187)
p

ol s i) <1
The second special case we propose to treat separately is P — ¢ ) < - p;) P
whenM(¢) is a diagonal matrix for every. SinceM (t) is al- . . .
ready T(Se)plitz, it follows that it has to be a multipl(e)of the di:l'hen the mtelg/rand in (186) is bounded above by
agonal matrix, i.e.M(t) = po(¢)I. Such a situation can be P
achieved wherR(z) = 0, for |z| > «, i.e., the signal correla- (7~ Q/p)/o trace{W(s)} ds = (p — ¢/p)(1/B)[wllz:-
tion length is smaller than. One such case is when the signa{-hus we get
is white noise.

The solution of the optimization problems studied before Copt < <1 _ i) R(O)||w]| 2.
is controlled in this case by the weight functian(-). The of
optimizer subspace is given at evétys) by theg-dimensional The equality in (187) is achieved only i (s) = w(s)I.
invariant subspaces d¥ (s) corresponding to the largest
eigenvalues, i.e.eigspacemax(W(s);p,q). One case easily E. Optimal Windows—Examples

see that the optimization problem (154) reduces also 10| gt s consider the stationary signagiven by the output of
eigspacemax(W (s); p, ¢). The eigenvectors d¥(s) are given g four-pole Markov process whose transfer function is

(186)

p—1

> w

r=0

1

D. The CaseM (t) = po(t)]

rCI(s

(188)

by

y(s) = [0 010 o* (181)
i.e., by the canonical basis 6% (the only “1” is on ther + 1st

position in (181)0 < » < p—1). The eigenvalues dW (s) are
q q
w(s),wls+ = = .

,oe,wls+ (-1
) (o]
or, sincep andgq are relatively prime

(182)
1
O

The selection ofy,.’s is based on the largegt eigenvalues,

Spec(W(s))

p—1

Spec(W (s))

respectively, the largest positive numbers of (182). When

_ 158.15%(s? + 60s + 300?)
(82 4 20s + 1002)(s2 + 200s + 10002)

We take the weight functiom to be the characteristic function
of the interval[0, 3]. Thus

() = |HG€)P, R(x)z\/% / TRy de (190)

we plot in Fig. 6 the autocovariance function in time and fre-
quency domains, respectively.

Let us consider now the one-channel optimal problem. We
setg = 0.1. For everya: > 10 such thatefs = p/q > 1, we
constructM (¢) using (40). Then the optimal window is param-
etrized by

H(s) (189)

I(t,s) = F(t) - L(t, 5) (191)

the ¢gth eigenvalue is degenerate, the invariant space is not ) -
unique. In fact, there are infinitely many possible choice¥/herel” € eigmax(M;p, ) andL € L>(0J; GL,(C)). Letus

i.e., eigspacemax(W;p,q) has an infinite cardinal. Let
wr(s) = w(s+7r(q¢/p)). Note the following “twisting” relation,

similar to (172):
1
Wr |l S+ — ) =weimils
< p> (m(s)

whereos is a permutation of0, 1, ..., p— 1}. This relation will
be useful in the localization analysis of the optimal window.

We analyze now the optimal approximation eregg, given
in (115). ForM (t) = po(t)I this expression turns into

1/q 1/p -
Copt = /3(]/ po(t) dt/ Z W <8 =+ —)
0 0 ) p

rCI(s
wherel(s) is the index set of thg — ¢ labels corresponding to
the smallest eigenvalues in (183). Using the definitiopgit)

(38) we obtain
1/q
/ £0o (t) dt
0

(184)

ds (185)

1
LRO),

consider the solution with

L(t, s) {Iq’ £ (192)
’3 = 1

Jo t> 5
where J, is the ¢ x ¢ matrix with 1 on the antidiagonal

(JPir = bigrg-1,0 < I, < g — 1). Then the optimal
window ¢ is uniquely determined byeigmax(M;p,q).
We choose the columns i# to be the eigenvectors of
M, ordered according to the corresponding eigenvalues
po(t), ..., up(t) of M. Therefore, for those(t,s) where
po(t) > m(t) > > ug(t), F(t) is uniquely deter-
mined.Suppose this nondegeneracy condition holds for almost
everyt. Thenl" does not depend osy for s € [0,1/p] which
in turn implies G(t, s) is piecewise-constant for evetyand
s € [0,1]. The number of pieces is exactly Therefore, the
optimal window ¢ is piecewise-constant ofo, 5] and the
number of pieces on this interval is exactly

For our case (189), this situation takes place as can be seen
Figs. 7-9.
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Fig. 6. The autocovariance function of the stationary process (189) in (a) time
: . . (b)
domain and (b) the spectral power (i.e., frequency domain).

Fig. 7. The optimal solution fop = 2 andg = 1.

For variousa (i.e., p and ¢g) we plot thep eigenvalues of . . }
M(t) as function oft (Figs. 10-12), and the optimal windowd€fined above, the eigenvectors are ordered according to the
obtained as described before (Figs. 7-9). This window gigenvalues, we have to fln(_j the symmetry relatlon_s ofthe eigen-
also a Weyl—Heisenberg orthogonal basis generator. TH{fues as well. Note the eigenvalues are proportion. (@)
the biorthogonal window# coincides with a scaled versiondiVen in (171) or,.(¢) + »:(¢) with v,.(¢) given in (174). As-
of g. The exact normalization to have an orthonormal basi¥me the signal is real. This implies the autocovariance function
generator i§1//p)g. The standard biorthogonal generator t&° real too and then
gis g% = (1/p)g. _ _ _ R(—z) = R(x).

We prove that when the signals are real, the optimal solution
chosen as before is a real-valued function. First, the necesshiys symmetry of the autocovariance function implies immedi-
and sufficient condition for a function to be real in terms of thately

Zak transform is the following. 1 1
A= —t) = ppr1(t = =t ) = ppr1(B).
Lemma 36: g € L?(R) is a real-valued function if and only a <q ) tp=r=1(?) " <q ) tHp—r—1(?)
if (196)
G(t,s) = G(1—t,s) (193) Therefore, if thed-indexed column (i.e., the first one) éf at

t is given by the eigenvectat,.(¢), then at(1/p) — ¢ the first
column is given byx;((1/q) — t) such thatu,((1/q) — t) =

or, equivalently, iff ur(t). Hencel = p — r — 1. Similarly, for the other columns.
Thus if ro(t),...,74—1(t) are indexes of the eigenvectors ap-
L(t,s)=T <1 —t, 3> - J, (194) pearing in the columns af (¢), at(1/q) — ¢, the indexes are
q

hereG = Zak(g) is the Zak transform of, " is the matri rol(t/a) =8 =p = rolt) ~1
whereG = Zak(g) is the Zak transform o, T' is the matrix ) N ) _
representation (37), and, is the ¢ x ¢ matrix with 1 on the /=t =p=ri—1.ral/9-1)
antidiagonal. =p—rg-1— 1

This lemma can be checked directly from the definition of
the Zak transform (34) and df in (37). Next, we check the _ 1 _ 1
symmetry properties of the eigenvectors (170). Sincé {t), Fat) =zn () Fa <§ - t) = Fp-n(t)-1 <§ - t) :
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Fig. 8. The optimal solution fop = 5 andg = 1. Fig. 9. The optimal solution fop = 3 andg = 2.
Note thate,.(¢) defined in (169) obeys F. Localization of the Optimal Windows
1
Er <§ - t) = ep-1—r(t) We continue in this subsection the anlysis of the optimal solu-
hence tion of the one-channel problem. The other encoding—decoding
schemes, except for the FSDE case, reduce to an equivalent
71 N\ one-channel optimal problem. The examples shown in the pre-
, <— - t) = zp_1_r(t). vious subsection suggest a “bad” localization in the time—fre-
4 quency domain. For a given autocovariance funcign and a
Thus weightw(-), the optimizer is parametrized via (191), by some

L e L>=(O;GL,(C)), in general. In the examples shown in
1 Figs. 7-9, we made a particular choice fborto obtain real-
Fg <— - t) =, (n)(t) = FL(t) valued windows, namely, (192). One can ask whether by ap-
propriately choosind., the “bad” time—frequency localization
phenomenon observed before can be avoided. The purpose of
this subsection is to show for any choicelgfwhen the data sat-
F <} _ t) _ m (197) isfigs some topological conditiop, the optimizes no.t well-lo-
calized in time—frequeny domain, in a sense that is made more

or

i i ; [ low.
(Alternatively, (197) could have been obtained by noting thit o '5¢ below

M((1/q) — t) = M_(t).) Note thatL(t, s) has been chosen in Our method of proving requires exact knowledge of the
(192) in such a way that we obtain eigenvectors and eigenvalues. Thus we shall assume either

1 W(s) = w(s)I, or M(t) = po(t)I,. The general case still
r <— —t, s) =I(,s)- Jq remains an open problem, though some perturbative arguments
q

. : i ) may extend the nonlocalization results that we obtain a bit
which proves thay is real. The following result contains ourfither than the mentioned cases.

findings so far. For our purposes, a window is said to bewell-localized

Theorem 37:When the autocovariance function is real, the time—frequency domaiii ¢ € Q%' U C(L>,I*) or g €
optimal window can be chosen to be real-valued. QY U C(Le,1Y). The space)!-! and Wiener amalgam space
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The eigenvalues for p=2 q=1
T v T

) L s L L L L L 2
[e] o.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The sigenvalues for p—5 q=1
T v T

160 — —
1S5S0 - -

140 |- —

' . . N s L . . '
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Fig. 11. The eigenvalue maps for the case- 5 andg = 1.

The eigenvalues for p=3 q=2
r r v

125 L L . L L L L L "
o 0.05 o1 .15 0.2 0.25 .3 .35 0.4 ©.45 0.5

Fig. 12. The eigenvalue maps for the case- 3 andg = 2.

C(L®°,1*) have been introduced in Appendix A, by (236), reer
spectively, (237). Tt can be easily checked that if a function // (0G/9s)|2dt ds = o
is well-localized in time—frequency domain (as defined above), O
then the Zak transfornd? is either a continuous function (if (see [6]).
g € C(L*, M) org € C(L™,11)), ie,G € C(O;C), or Consider now the datéR, w;p, q) (the autocovariance and
the derivatives ofG with respect tot and s are square inte- weight functions andv? = (p/q) > 1) for the one-channel
grable (ifg € Q%'), i.e.,G € W12([J,C). Thus in order to optimal problem. With this data we construct the matrix-valued
prove g is not well-localized (or, equivalently, ibadly local- functionsM andW as in (40) and (42). For evelft, s) we
ized) in the time—frequency (TF) domain, we have to show thdenote byx;(¢,s),7 = 0,...,p — 1, the p real eigenvalues
G ¢ O(0; ) u Wh3([O; C), i.e., G is discontinuous and of W(s)M(¢) ordered monotonically decreasing. Consider now
the following sets of points dfl = [0,1/¢] x [0,1/p]:
) Do ={(t,s) € O\t s) > A\ga(t, s)} (198)
/ /D (0G/o8)2 dt ds = oo D.. — Do\ Da (199
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Note thatD, agrees with the definition in (109), ald., = ~ : [0,1] — [, the intersection of its image with.,, is either
UY_ D, with the same notations as in (109). empty or is made out of isolated points.

The data R, w; p, q) is said to benondegenerate on a dense
subsetf Dg is dense ir.

The data is said to bsufficiently regularif the spectral pro-
jector associated to the eigenvalles> X 41(¢,s) is contin-

uous onbo. subspace. Thus we are in a position to check wheters) =

For instance, it is enough thAf andW are continuous for . .

- .. Ranl'| ;) can be a continuous map a@n. Under regularity
the data( R, w;p, q) to be sufficiently regular (see Proposition %, o S it . ;
) - and density conditions of the initial data,)ifis continuous it
9). Hence, when the data is sufficiently regular and nondegen

. . : ollows that the selection map is a permutation of the some index
erate on a dense subsg,, is a closed subset with empty inte- . . ; .
S ) : set of eigenvectors. But this is not possible whéis chosen
rior in O. This also shows the following property.

to be spanned by the eigenvectors corresponding to the largest
Lemma 38: Suppose thatR, w;p, q) is a data sufficiently eigenvalues because of twisting relations (172) and (184) as we
regular and nondegenerate on a dense subsef. 1let— Rbe prove next.

afunction such that o, C Oittakes only values on a discrete Lemma 41 (The Cash(s) — w(s)I,): Suppose the data

set (for instancel0,1,...,p — 1}). Then, if f is continuous it . -
follo(ws that f slﬁe({juld be cgnstai)t O, ! (R,w;p,q) is sufficiently regular and nondegenerate on

Now let us return to our optimization solutidh In the one-
channel casdl' is chosen in such a way th&anI'|; , is a
g-dimensional subset of a family gfdimensional subspaces.
Moreover, af(t, s) € Do RanI'| ,y is constrained to a unique

a dense subset, and, additional¥(s) = w(s)I,. Then,
The next lemma extends the previous result to multivaluéd (¢9, so) € Do, (to,s0) and (¢o + (1/q), so + (1/p)) be-
maps (or selection maps): long to different connected components b%, and every

Lemma 39: Suppose that the dat®, w; p, q) is sufficiently V € eigspacemax(WM; p, g) is discontinuous.

regular and nondegenerate on a dense subsefglet , f,_1 : Lemma 42 (The CasM (t) = po(t)1,): Suppose the data
O — C? bep continuous vector-valued maps Bnhsuch that (R,w;p,q) is sufficiently regular and nondegenerate on a
at every point(t,s) € O, {fo(t,s),..., fp—1(t,s)} form a dense subset, and, additionalM (t) = po(t)I,. Then, if
basis inC”. LetV : O — L£,(C”) be ag-dimensional sub- (to,s0) € Do, (to,s0) and (to + (1/q),s0 + (1/p)) be-
space-valued map d@d such that oDy, V is spanned by some long to different connected components %, and every

q vectors from{fy,..., f,—1}, i.e., there is a selection mapV € eigspacemax(W M p, ¢) is discontinuous.

m:Dox{0,1,...,q =1} = {0,1,...,p — 1} such that Remark 43: The conclusions of these lemmas also imply

V(t,5) = span{ fr(,s0)(F8), -+ frttsa-1) () that for any continuous curve connecting(to, so) to (to +
V(t,s) € Do. (200) (1/q), s+ (1/p)), there is at least one transversal intersection

Then, ifVis continuous ol with respect to the graph topologyof the curves\, and )41, or, since\, > A 41, A, is not dif-

(or, equivalently, the orthonormal projection orlkbat every ferentiable along that curve.

(t, s) is continuous with respect to the norm topology), then the

selection map is a permutation of the same indeX se¢.,

Rann(ty,s1;-) = Rann(to, s0;-) =1
for every(ty, s1), (t2,s2) € Do. Moreover, in this case

Proof of Lemma 41:WhenW (s) =w(s)I, the eigenvec-
tors are given by:..(¢),7 =0,1,...,p—1, given in (170). Let
1~ (t) be the associated eigenvalue fdf(¢) as given in (171).
} Note that);(t, s) = w(s)p-(;(t) for some permutation de-
V(t; 5) = spant fi(t, s);i € I} pending ont. We prove the claim by contradiction. Suppose
for every(t,s) € L. 7 : [0,1] — Ois a continuous curve connectirfgy, so) to
Proof: Despite its rather long statement, the proof of thigy 4 (1 /4, s,+(1/p)). Firstnote that (to+(1/q)) = M(to),
lemma is relat_lv_ely 5|mp_le. S_uppose_th@t) = Useala IS pence from(to, so) € Dy it follows (o + (1/q), so + (1/p)) €
the decomposition of), into its arcwise connected compo-p, as well. Using Lemma 39, it follows that(to, so) and
nents. Thus eacl,, is an open arcwise connected subset @by, 4 (1/4), s, + (1/p)) are spanned by the same eigenvector
[J. The continuity oy implies thatr| ;, is a permutation of the |apels, say{rq, i, .,7g-1} € {0,1,...,p—1}. Onthe other
same index sel,, Ranw(t,s;-) = I,, for every(t,s) € Ha.  hand,p.(fo + (1/q)) = p11(to) (se€ (172)). Thus it neces-
Next, consider two neighboring subspadés and H,, such sarily holds true that
that H,, N H,, # 0, whereH, is the closure (with respect -1 . -1
to the usual Euclidian topology) d, in O. This is always ] <t + _) (). 201
possible since there is no isolated subdgtin Dy (recall that ;F‘ CUY q 7 ;“ ((fo) (201)
Dy is dense). Now, the same continuity argument implies thal, the other handy € eigspacemax(WM;p, ¢) that implies
Io, = I, and, furthermore, on the common boundary the eigenvalues div M|, should be the largest eigenvalues
V(t,s)=span{fi(t,s),i€l,, =1a,}, (t,5)€E0H,, ﬂaHaz of WM. In particular, because of periodicity, we should have

wheredH, = H, \ H, is the boundary of{,. This ends the trace{WM|V(t0,50)} — trace{WM|V(t0+(1/q)750+(1/p))}.

proof of the lemma. But this contradicts (201) and the proof is complete. &

Remark 40: The two essential ingredients in this lemma are  Proof of Lemma 42:Note first that sincd¥ (s + (1/p))
the continuity of’ and the fact that the arcwise-connected conis equivalent toW (s), if (¢o,s0) € Do then(to + (1/g), so +
ponents ofD, are not isolated. Thus for every continuous curvél /p)) € Dy as well. OnDy, V is spanned by somgvectors of
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{v0,¥1,---,up—1}, Wherey, is defined in (181). Note the cor-  2) Asinthe standard Balian-Low theorem, the second part of
respinding eigenvalues ¥ arew,.(s) = w(s + (¢/p)). Sup- nonlocalization (i.e.g ¢ Q) does not come automati-
pose the conclusion of this lemma is fale. Then there is a con-  cally from G discontinuous via a Sobolev embedding ar-
tinuous curvey connectingto, so) to (to + (1/9), so + (1/p)) gument, because Sobolev embedding theorem in dimen-

such thatV|, is continuous. In particular, using Lemma 39, it sion2 does not require continuity for functions W *-2.
follows the eigenvalues of

Wy tto+(1/0),50+/pn(to + (1/), s0 + (1/p)) V. NEAR-OPTIMAL SOLUTION AND DISTORTION-RATE
arew,,(so+(1/p)),...,wr,_, (s0+(1/p)) whererg, ..., 741 ESTIMATES
are the indexes of the largegteigenvalues oW at (to,50).  The previous section showed that the optimal solution is not
Because of (184) well-localized in the time—frequency domain. Moreover, in the
Eliy 1 " frequency-shift division cases, the optimal solution does not sat-
lz%w” <S° + 5) a lz%w”(so) isfy, in general, the frame conditioH(g; o, 3), unless some
which is a contradiction with the maximality of the eigenvalue¥"y Strong geometric conditions are satisfied. Naturally, in such
of W|y. ¢ caseswe can try to find a near-optimal solution. In this section
we show, in a case study, how to design or choose a near-op-
These two lemmas lead to the following conclusion. timal solution and also obtain some asymptotic estimates re-

Theorem 44:Suppose the datéR,w;p,q) is nondegen- garding the tran_smiss?on rat_e Whe_n a “nice” window is_ used
erate on a dense subset. Additionally, suppose that eitkief-» & well-localized window in the time-frequency domain). In
W (s) = w(s)I, or M(t) = po(t)L,. Then any window defined fact, the TF_Iocallzat|on of the window is aflrs_t |mp0r.tant factor
by I(t,s) = F(t,s)L(t,s) with F € eigmax(WM;p,q) and " determining the rate. Thus for better localized windows, the
L € L=(0; GL,(C)) is bad-localized in the time—frequencyf”ter lengths used to implement thg enchers and decoders are
domain, in thag & C(L*°, 1" YUQ ! andg ¢ C(L>, 11 )UQ?. gmaller and the _number of coe_fﬁuents in the frequ_ency label

Proof: If the data(R,w; p, ¢) is not sufficiently regular, (i.e., them label) is smaller than in the non-well-localized case.

then the spectral projector onto the eigenvectors correspond'Klg

to the largesy eigenvalues is discontinuous and themill have '

even less regularity than in the case when the data is sufficently-€t us study more closely the example introduced in Sec-

regular. Thus we can assume the data is sufficiently regular. tion IV-E. Consider a signaf whose autocovariance function is
We have to prove two conditions is discontinuous and given by (190) and for the weight we choose= 1 24. Con-

Near-Optimal Solutions: A Case Study

OG /8t or G/ s is not square-integrable ovet. sider/3 = 0.05 (half the value considered in Section IV-E) and
The discontinuity of7 comes directly from the previous twol€t us concentrate on the time-shift division optimal problems.
lemmas because otherwise More specifically, we consider the TSDED problem where the
V = RanT € eigspacemax(W M;p, q) encoder is characterized by a windgwand the decoder is deter-

would be continuous. mined by a window;#. As proved in Theorem 22, the optimal

The nonintegrability condition is proved as followsProblemreduces to a one-channel problem withiiy = 2/ =
First note that in any of the two cas#¥(s) = w(s)I, or 0.1. This latter problem was analyzed in Section IV-E. Figs. 7-9
- p

M(t) = po(t)L,, G is discontinuous on at least a straigh?how some real-valued optimal windows. In general, any op-
segment(to, 5), |5 — so| < e} Or {(£, 50), [t —to| < ¢} parallel timal solution is bad-localized in the TF plane, as we proved in
with one of the axes. Then by Fubini theorem Theorem 44. On the other hand, we know that for any 0

2 anda there is a near-optimal solutidg, g*) in that the crite-
rion J(g, g%; R, w; a, B) is not larger tharl + ¢ times the op-
timal valueJ; 2P (R, w; o, 3) given in (140). Our problem

2 here is to find well-localized near-optimal solutions. Suppose

emax = 5% is the allowed tolerance to the optimal criterion.

wheren is the normal direction to the segmentiii the first Ve Start by choosing a particular window for the encoder and
case, ands in the second case). Then one of the inner int€2MPUtNg the best associated decoding window. For this we
grals szoo:r; (8G/0n)|? ds or fto-i-c ((8G/m)|? dt is infinite use the solution of the partial optimal problem TSDED given in

to—e . .
(because a discontinuous function on the line cannot have AE0rém 5, case B13. We choose a Gaussian function for the

square-integrable derivative) and therefore the left-hand sigigcoding window. More specifically, consider

oG

oG
an an

2 tote sote
= / dt / ds
to—e 80—¢

so+< to+e aG
s0—¢& tog—e 871

// Cdtds
[t—to|<e

|s—sg|<e

is infinite as well. In conclusion, we obtain that bo#e /ot) g(x) = ¢71000=" (202)

and (0G/ds) cannot be inL?(0; C) which is equivalent to for the encoder. For the partial optimat we use (90) and for

g € QY. This ends the proof of the Theorem. { the criterion (91). The numerical results are compared in Table |
Remark 45: (note that/,ax = 2||wl| L1 R(0) = 26.88 would be obtained for

1) The discontinuity ofZ comes as a result of the discontit3 = o<).
nuity of V € eigspacemax(W M; p, ¢). This means that ARies. and Bries, are the Riesz basis bounds obtained for
the rankg projector-valued function associated With {9mn;a,26}, Whereasisame and Byame are the frame bounds
that is uniquelly defined oDy, cannot be extended toobtained fo{ g,.n;a g} With 28 = (p/q) and
a continuous projector-valued function @h e = (e BTSPED _ A2 ISDEDy /1427 ISDED,

st,so st,opt st,opt
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TABLE |
NUMERICAL RESULTS FOR THEPARTIAL OPTIMAL PROBLEM WITH GAUSSIAN WINDOW (202)

P/q ARiesz - 10? BRiesz + 102 Aframe - 102 Bframe -10? %:—Z":—Z‘ ei;,’—fj,TSDED e;:gﬂspED 3

7/6 0.4309 8.5715 4.919 9.4805 1.92 3.9264 3.679 6.72%
6/5 0.5149 8.333 4.7907 9.6833 2.02 4.542 4.308 5.43%
5/4 0.6509 8 4.6195 10.207 2.21 5.396 5.218 3.41%
4/3 0.9002 7.5 4.397 10.981 2.50 6.644 6.492 2.34%
7/5 1.1139 7.1435 4.2834 11.365 2.65 7.533 7.3528 2.45%
3/2 1.444 6.669 4.2325 11.621 2.75 8.736 8.524 2.49%
5/3 1.983 6.01 4.4729 11.447 2.56 10.47 10.24 2.24%
7/4 2.233 5.7323 4.721 11.188 2.37 11.208 10.86 3.20%
2/1 2.827 5.136 5.653 10.271 1.82 13.254 12.984 2.08%

The decoding window? is plotted in Figs. 13—16 for each casewhere all these steps are effectively applied to obtain windows

Note how well-localized is each window in the TF domain. Bawell localized in the TF plane.

sically, we can very well approximate the window by compactly

supported functions in both time and frequency domain. Pragi- Rate and Distortion Estimation

cally, this implies short filters for both the analog encoder and

analog decoder. Let us return to our transmision scheme in Fig. 1. The digital
We would like to have the criterion smaller than 1.05 timegncoders will encode only meaningful coefficients. By mean-

the optimal value. Notice that the Gaussian window (202) sati8gful we mean those coefficients whose variance is greater than
fies this condition for all the redundancy values except ¢ @ threshold. The labels of these coefficients can be determined
ept -

andZ = I. For these particular values we have to choose dff Priori, based on the autocovariance functisirand the en-
q

T S oarant )
ferent encoding windows. Here is how we proceed for the§8JiNg windowg. SupposeA®/12 is this threshold. (This cor-

two cases. In the first step we analyze the optimal window ahgSPONds to a uniform quantizer with interlevkl) The lower
threshold, the larger the number of coefficients to be encoded

find some frequency conditions. In the second step we desi . . -
an encoding window satisfying these constraints Finally, in tr?é‘d transmitted, and hence the higher the rate. At the other limit,

third step we adjust, if needed, the decoding window to havdlg higher the threshold the larger the distortion (i.e., the recon-

better time—frequency localization satisfying at the same tirﬁguctlon_error). Th_us there is a tradeoff be_tween distortion and
the near-optimality condition. rate realized by this threshold. However, in our case we want

; . : ; to keep the threshold fixed and realize the tradeoff by changing
The optimal encoding windows given b
P g g y the redundancy of the encoding scheme. In the following, the
= F(t) - L(t, 5) threshold is assumed fixed and the redundancy is the free pa-
’ rameter. However, to obtain analytic expressions, we need to

with F € eigmax(M; «,2/3) (recall thatW = I,, in our case) consider the asymptotic limih — 0. _

and L € L*(03; GL,(C)) as in (192), are represented in The analysis is done in the following steps: first we compute
. ’ o . i A 1 2

Figs. 17 and 18. Note the symmetry axis in the time domaifié variance of the coefficienty’, g,,,,) and(f, g,..,,) that are

has an offset from the origin. Thus the Fourier transform QuUtput from the analog encoder. Next, using a Gaussian model

the window has an imaginary component too. In any case, #9 the signal, we can estimate the number of bits (on average)

frequency plots suggest encoding windows that have no heeded to encode this coefficient when the entropic encoder is

components. used. Thus we obtain an exact formula for the rate. Also we
The previous frequency constraint necessitates the choicé&8f ©Ptain an upper bound for the distortion when only a finite

awindow of zero mean. TheRiesz basis and frame constraint@umber of coefficients are sent. However, to obtain the qualita-
require the measure of the window support to be at léAst tive behavior of these we shall perform asymptotic' analysis for
One simple choice satisfying these constraints is A — 0. We also make the assumption that the signal is real.

This implies the autocovariance is a real and even function.
—1, ze[-43,0] Here we present the analysis for a single channel. The same
g(x) = { 1, z €[0,4] (203)  result holds for all two-channel cases, although some adjust-
ment of the formula might be necessary because of different en-
shown in Fig. 19. For this choice we obtain the results a@oding windows. We assume that the encoding window is suf-
Table II. ficiently well localized in the time—frequency domain. For in-
The approximation error is less than 3% larger than the ogtance, the frequency band of the window is much smaller than
timal value. The time-domain plots of the partial optimal dualhe frequency range of the stochastic process (i.e., of the spec-
for (203) are shown in Fig. 20. Note the time localization dfral power).
both the encoding and decoding windows is very good. The fre-First, let us evaluate the variance of the coefficents. We denote
guency localization is not so good, but this is due to the tempotal g the window that defines the encoder. Thus we are interested
discontinuities of these windows. For practical purposes, théirestimating
form is good enough. Hence we do not need a third step to filter
the decoding window function. Anther example is given in [2], E[lconl?], E[Re(cmn)?], E[Tm(Cmn) %]
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First window — time domain
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_5 L | | H L 1 1 1 ] _5 ] L L 1 | 1 i 1 1
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(b) ()

Fig. 13. The Gaussiapgiven by (202) (a) and the partial optimgf found in time domain for various choicespindg. (b)p = 6,¢ =5.(C)p = 5,9 = 4.

wherec,n, = (f, gmn:a,g). AssumingR € L*(R) andg €
LY3(R) N L*(R) these vari-ances are easily obtained as (for  #mn = E[[Re(cmn)|’]
details see [2])

P = Bl 1= V27 [ de ROIate ~ 2eman? = 2 [ e Rl — 2mma)

< Vr||Rl| 12|97 < V27| Rl llgllze.  (204) +emPmmnedg(—¢ — 2mma)? (205)



BALAN et al: ANALYSIS AND DESIGN OF MULTIPLE DESCRIPTION SOURCE CODING SCHEMES 2521

Time domain Time domain
35 I T T T T ¥ 1 T T 30 T 1 T T I 1 T 1 1
30r 1 %l
28 .
20r
20r
15F
15f
10F
10F -
5 s
5 L
0 0
1 1 1 L 1 1 1 I 1 ! L 1 i 1

_5 L 1 _5 | |
05 -04 03 02 00 0 01 02 03 04 05-05 04 -03 -02 00 0 01 02 03 04 05

Time domain Time domain
(@) (b)
Time domain Time domain
25 T T T T T T T T 25 T T T T T T T T
20+
15r
10r
5 L
0
1 | L ! 1 1 L 1 11 I L L 1 1

_5 | 1 i _5 |
-05 -04 -03 -02 -01 0 01t 02 03 04 05-05 -04 -03 -02 -0 0 01t 02 03 04 05
(© (d)
Fig. 14. The partial optima}# found in the time domain for various choicegoindg. (Q)p = 4,¢q=3.(0)p=3,¢g=2.(C)p=5,¢q=3.(d)p=2,9g = 1.

12 = Ef|lm(cpm) ] Note that, in general, the variances pf the real and_imaginary
o [ ) ‘ parts may depend am. In any case, this dependencyiperi-
=— / dé R(&)|e™ 7 §(€ — 2mma) odic.
4 /oo The scheme works in the following way: ig& time interval,
— T Fmmnala ¢ orma)|®. (206) say[Nj, (N + ¢+ 1)p), the transmitter has to send the mean-
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First window — frequency domain

0.025 T T T T T T T T T
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0.015 =
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(@
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1 1 L 1 L 1

-0.5 -04 !
-300 -200 -100 0 100 200 300 -300 =200 -100 0 100 200 300

1 1 1

(b) ©

Fig. 15. The Gaussiam given by (202) (a) and the partial optimgf found in the frequency domain for various choicepaindg. (b) p = 6,4 = 5. (c)
p=35.q=4

ingful coefficientsc,y, ,, (OF ¢y, »—q fOr some fixed delayl > 0) that for everyjm| > M, 2, < A?/12. Thus we have to send

forn € {N,N +1,..., N + q}. The meaningful coefficients only a finite number of quanﬁzed values.
are those given by?,. > A?/12orv2,, > A?/12(wheneach  Inthe second step of our analysis we have to assume a partic-

real and imaginary part is quantized separately). Using the Ridar distribution for the signal. Suppose the signal is Gaussian.
mann-Lebesgue lemma (see [41]) there existdZar 0 such Then, when the entropic encoder is used, for the threshold
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Frequency domain Frequency domain

-04 1 L 1 1 I =03 1 L 1 L 1
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Frequency domain Frequency domain
07 T T T T

06r

05r

04r

0.3r

02r

01r

=01r

! 01 i I I ! I
-300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300
© (@)

| ) | !

-02

Fig. 16. The partial optimag# found in the frequency domain for various choicepaindg. (a)p = 4,9 = 3. (b)p = 3,¢ = 2. (¢)p = 5,9 = 3. (d)
p=2q=1.

the number of bitsk?,, needed to quantize a Gaussian randofsee [15]). This yields the following rate:
variablez with zero mean and variandg{|z|?] is given by Rate— 1 Z 12,
- 2 /3 082 AQ Homn

m,n

2
2 A
Homn 2 T3

AQ
Ella]’) = 75 2°% (207)
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Optimal window - time domain Optimal window - frequency domain, real part
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Fig. 17. The optimal encoding window fer= 6 andg = 5.

1 12 2 \V?
— log, | ~51/2 208
top 2 Tom(aha) @B vi S gt
V2 A2 (m.n)¢S> L2
where we assume we encode independently the real and imagi-
nary parts of,,,. + | E Z (Re({f, gmn))
Let us analyze now the distortion obtained through this (m,n)csy
scheme. In (31) we obtained an upper bound for the distortion — QaRe({f, gmn)))) g, +i Z (Im((f, Grn))
in this transmission scheme. We now analyze further the terms ’ e (S ’
in that formula. Lo\ 12

Let ¢# be the decoding window. Let
St = {(m,n) | i, > A?/12}

S — m.n ]/2 ;AQ 12

Then the reconstructed signal has the following form:

— Qa(Im((f, gnm))))gﬁn

where.J representshe stochastic approximation erratue to

=% QaRe((f gmn)))9ihn the incompleteness of the Sgfu.;m,n € Z} in L*(R); J.
(m,n)ES is the truncation errorand represents those coefficients that are
+i Z QA(Im({f, gmn)))g¥... excluded from encodingl, is the quantization erroand is due
(m,n)ES: to the uncertainty introduced by the quantizer. Our problem is

to bound and control each term.

Then Now recall the upper bound given in Lemma 59, Appendix B.

v Distortion Let B# denote the norm of the reconstruction operator

2\ /2 Tr, [2°° — [2. By the lemma above, an upper bound for
<|E|f- Z Cng? this norm is
m,n Liv B# S BQ,oo

k k 2
B S Rel(f gma))et, =3 [T w ( ; a) ‘g# ( PR nﬁ)
(m,n)gZS n k LW(O,%)
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Optimal window - time domain Optimal window - frequency domain, real part
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Fig. 18. The optimal encoding window fer= 7 andg = 6.
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Fig. 19. The encoding window given in (203) in (a) time and (b) frequency domains.

For an arbitrary distribution of(f,g...), the difference relation holds true for the imaginary part as well. However,
[Re({f, gmn)) — QaRe({f, gmn}))| < A/2 which implies if we assume the signaf is Gaussian, the upper bound
E[|Re((f, gmn)) — QaRe({f, gmn)))|?] < A?/4. The same becomesA?/12 instead ofA? /4. The same result is obtained
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TABLE I
NUMERICAL RESULTS FOR THEPARTIAL OPTIMAL PROBLEM WITH THE CHARACTERISTIC FUNCTION WINDOW (203)
P/q ARiesz . 102 BRiesz . 102 Aframe : 102 Bframe . 102 % i:f&TSDED i;g;?SDED €
7/6 8.5714 17.143 17.143 25.714 1.5 3.7534 3.679 2.02%
6/5 8.333 16.667 16.667 25 1.5 4.406 4.308 2.27%
Decoding window - time domain Decoding window - time domain
15 T T T T T T T 15 T T T T T T T
10F 1
5r 1
2 2 L
* *
o o
_15 | | | 1 ¢ 1 ! _15 | | L i | I i
02 -0.15 -0.1 -0.05 0 0.05 01 0.15 02 <02 <015 -01 -0.05 0 0.05 0.1 0.15 02
X X
(@) (b)

Fig. 20. The decoding window# obtained as the partial optimal dualgosia (90) for (a)p = 6 andg = 5 andp = 7 and (b)q = 6.

if we assume théf, g..,) are uniformly distributed on each For the truncation error, using again Lemma 59 (see Ap-
guantization interlevel. In general, we obtain pendix A) we obtain a first estimate of the form

AQ
Jg < B#T sup(#S1n + #S2n) (210)

J. < B> | sup Z
" omgsSy,

[|Re( Cmn)| ]
where Sy, = {(m,n) < Sl},SQn = {(m,n) < 52} As-
suming symmetry between the distribution of real and imagi-
nary parts of the Coefficientsnn we get

(#S) Next, assuming again a symmetry in the distribution of the real
whereS = {m|E[|c,nn|?] > A2/12}. We give now a rough and imaginary part we obtain
evaluation of the cardinality of based on (204) and the fol- 2 00 200
lowing assumptionsk(¢) is concentrated in a band of si2kx Je 2B Sup Z Ellepn|*] = 2B> Z Tpun
(2 becausek is even in the frequency domain—recall that we mEs mes
assumed real-valued signals) and the suppojtisfmuch nar- with S = {m |02, > A?/12}. AssumingS = [~ M, M] we
rower thar2bg. Then the number of coefficients is roughly conebtain
stant and it is given by

+ sup Z

n
mESan

[|Lin(cmn | ]

J, <2B* o B (211)

J. S2V/2rB>> Y / R(&)|9(6 —2mma)|? d¢. (213)

#S ~ ;ﬁ = b—R |m|>M
T T
Thus The assumptions made before to obtain (212) would now give
b B2 J. = 0. Thus if we assume that both the autocovariance func-
Jy = WAQ ~ CA? (212) tion and the window are band-limited, we get rid of the trunca-

tion error provided we take into account all the (finite) nonzero

which says that/, decays td® asA? whenA — 0. coefficients.
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Another (more realistic) model ok andg is to assume that TABLE Il
both decay in the frequency domain as NUMERICAL RESULTS FOR THERATE ESTIMATION
Gaussian window Step window
A Cy . Co p/¢ | o [ ML [ Ma | Rategauss | ML | Ma | Ratege,
[R(O] < (1+[¢))e 19(8)] < (1+|eDP (214) 7/6 | 11.66 | 96 16 119.7 102 | 17 115.4

) 6/5 | 12 80 | 16 117.6 8 | 17 111.6
with a, b > 1. The assumption oR is particularily useful when |[ 5/4 | 125 | 64 | 16 113.2 68 | 17 107.3

we assume that our signal is the output of a linear system excil §/3 13331 42 14 108.3 37 1 123 97
by white noise. Thetk(¢) = |H (i¢)|?> whereH (s) is the linear é/g i‘; ;2 1‘21 1%?;‘4 28 }g 8%34
system transfer function. We shall give an asymptotic estimati 5§3 1666 | 36 | 12 90 4 20 | 10 786
of the rate and th_e tru_ncatlon an_d quantization errors. 774 | 175 | 40 | 10 84 40 | 10 73
We start by estimating the varianeg, , 2/1| 20 10 1 10 73 9 9 64.46

We analyze next an asymptotic approximation of the rate,

o= Var [ 7 IR(E 4 7ma)]| - (€ — mma)|? dé

< de under the same assumptions as before. We use (208) and again
< /_Oo (1+ [€ + mma))*(1 + [€ — mma|)?® replaceg,,,, andv,,,, by o,,,. We get
¢ [ dg ¢ Rate< — log <E 2 )
= (rma)? / (1+ €+ mma|)e * (rma)® B Z 52 \ Az 7mn
oo |m|<Ma
oo dé 2 12C
></0 (1+ € — mmal)2 :/—3 Z <10g2F—7’10g2m>.
od =) dS od 1<m<Ma
< (rma)? [m 1+ )" + (rma)e Note thatM o has been chosen so that
/“’ . S (215) logy(12C/A?) = rlogy Ma.
—oo (LH[EN* — mr Then, when we approximate the sum by an integral we get
wherer = min(a, 2b) and an estimate df' is or [Ma 2r
Rate < —/ (logy Ma — logy ) dz m ——MA.
O 20, /o 1 N 1 N@ 8 fln2
Loy (a—D)(xa)? ' (2b—1)(ra)*) o Thus
Nextwe estimatéd/ such thatfotm| > Ma, o2,, < A%/12. Rate< (120)1/7’27&_2/1’ AT (219)
Using (214) we obtain foid 4 the following estimate: —  f[ln2 a8’
(12C)Y" Note that the upper bound of the rate goesdavhenA — 0,

Ma = (216)

a very natural conclusion since we are going to send more and
more coefficients. For a fixed,, the rate is (essentially) propor-
tional to the redundancy/«/3, whereas, for sufficiently small

A, the distortion is given by the stochastic part which is propor-

AQ/T .
Therefore, we have to encode at mastf, + 1 coefficients.
This gives the following estimate for the quantization erfpr

(see (211): tionaltol—(1/«f3). Thus the redundangyt/«/3) parametrizes
A? L both the distortion and the rate plots, realizing a tradeoff be-
<2B¥*Z= (20, ~ 2(1-5) L ate plots, g atrac
Jo=2B 4 (2Ma +1) = Gy (217) tween two quantities in the distortion-rate characteristics.

We end this section by evaluating the rate for the stochastic

with an estimate o€, given byC, = (12C)Y/" B%°°, > > )
a9 yCy = ( ) Plocess studied in Section V-A. We analyze the rate for two en-

For the truncation error we use the following estimate (s

(213)): coding Windows_: the Gaussian (202) and the st_ep function (203),
- . bpth a_fter norming. We takA = 1.0. The numerical results are
J. <ovampre Y E ~ d”/ d_x _ C N given in Tables Il and Ill, where/£ represents the number of
|m|>Ma ' Ma X ML coefficients sent in gAtime interval 3 = 0.1 for each ghannel
- anda3 = Z) counting separately the real and immaginary parts
Now, using (216) we obtain of eachc,,. M is the average on eachtime interval, i.e.,
J. < CLA20-H) (218) Ma = MY /q, and the ratdRateis computed with (208). We

computed these values for both the Gaussian window and the
with an estimate of’, given byC, = 2C/27B%>°/(r—1).We step function. In Fig. 21, we present a typical distribution of
notice that/. and.J, are both of the same orderix. Moreover, the variance coefficients for the two windows. On the same plot
fora > 1andb > (1/2) they both decay to zero @ — 0. Thus is shown the coefficient variance for differemt Note that for

by choosing a sufficiently smath we can makeJ. + J, < J. Gaussian window there is no difference for differefst. For the

The purpose of this computation was to show that asymptasiep function, for some values of the variance is different for
cally (i.e., forA — 0), the dominant term in the distortion (209)different« (in particular, atn = 1). In Fig. 22, the rate-redun-

is given by the stochastic approximation erfowhich depends dancy and rate-distortion characteristics are shown. The redun-
on the redundancy proportional 1o- (1/«f3) (see (116). dancy isked = . Note the almost linear dependence of the rate
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Fig. 21. The distribution of the variance Bfe(c,.., ) for p = 4 andg = 3 when (a)y is the Gaussian or (b) the step function.

to the redundancy. We computed only the stochastic part of timake us to choose the same translation and modulation param-
distortion when the decoding window is the partial optimal duaters for the encoder and decoder, respectively.

to g. In Fig. 22, the distortion is measured as the ratio’,;,.x In the multiple description scheme, two channels are used to
where transmit the signal (see Fig. 1). Each channel carries a partial de-
scription of the signal, but together they form an (over)complete
representation of the original signal. The side decoders must es-

These results are for one channel. For two channels, one shot'urﬂi’"te the orlglna_l signal based on th_e partial descrlptlon tha_t
r$ach channel carries. When the signal is assumed stationary with

multiply the numbers by a factor of two. However, the depen- . . )
dence rate distortion is essentially the same. a kpown aléltocovanance function gnd the error is mea§ured asa
weightedZ“ norm, an exact analysis of the approximation error
is possible and this is what we did in this paper.
In Section Il we introduced several configuration schemes.
In this paper, we analyzed the multiple representation trarpecifically, the two encoders can be realized as a time shift
mission scheme when windowed Fourier encoders and decodera frequency shift of the other. This means that one of the
are used. Awindowed Fourier encoder is obtained by computingndows is, essentially, either a time shift or a frequency shift
first the Fourier coefficients of the signal multiplied by a transsf the other. We call the former scheme a Time-Shift Division
lated window and next by quantizing and encoding these co&hcoder (TSDE), and the latter scheme a Frequency-Shift Di-
ficients. The inverse of the product of the modulation parametésion Encoder (FSDE). The same terminology is appliable to
and window translation factor represents the redundancy of the decoder: Time-Shift Division Decoder (TDED) and Fre-
encoder. When this number is subunital, the encoder gives oglyency-Shift Division Decoder (FSDD). When the division is
a partial description of the signal, i.e., ignoring the quantizgerformed at both the encoder and decoder we have a TSDED or
tion effects, the encoder is not invertible, and no decoder wol&DED transmission schemes. These cases are shown in Figs.
be able to perfectly reconstruct the original signal. The wir24, for time-shift division.
dowed Fourier decoder is obtained by an inverse operation (eveif he one-channel distortion, in the absence of quantization ef-
though, as we mentioned before, it may not be the inverse opfeets, is simply a weighted-norm of the approximation error.
ator), namely, by making a linear combination of the quantizéd Section 1ll we analyzed this error by using the Zak trans-
coefficients with translates and modulates of a certain winddarm. In order to do so, we assume the redundancy parameter is
function. Thus a windowed Fourier encoding—decoding chanmational. This allows us to reduce the problem to a finite-dimen-
is characterized by two distinct windows: the encoding windogional matrix algebra problem. The minimization of this crite-
and the decoding window. Some natural invariance propertiésn (i.e., the purely stochastic distortion) yields an interesting

Jnax = B f[72 = RO)|Jw]|z, = 13.4.

VI. CONCLUSION
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Fig. 22. (a) The rate-redundancy and (b) rate-distortion characteristie$or the Gaussian ang is for the step function.

optimization problem. In Section IV, we analyzed all the eighthe redundancy parameter is shown to trade off between distor-
optimization problems and we obtained explicit parametrizéon and rate.

tion in all cases, except the FSDD case. The parametrizatiorBome problems are left for further study. We mention here
is a Karhunen—Loéve-type formula: the window is obtained kiwo such open problems. First is the nonlocalization phenom-
solving an eigenvalue—eigenvector problem for a self-adjoiahon proved in Section IV-F. There, we proved this result as-
matrix of functions. The distortion is obtained by summing ansliming some extra conditions (eithéf(¢) is diagonal o#¥ (s)

then integrating the lowest eigenvalues of this matrix (the exastToeplitz). Thus we naturally ask whether this result holds in
formulas are obtained in Section IV-B). In the FSD cases, tliee general case. The second problem concerns the near-op-
optimal solution is shown not to satisfy generically the contimal case. A better solution to the design problem would be
pleteness hypothesis on the encoders. Specifically, the encodensinimize a criterion containing not only the approximation
are optimal and the two channels do not give an (over)compleeor measure but also a time—frequency localization norm of
description of the signal. Thus even though each channel wotihe window (for instance, some mixed Sobolev norm).

have the lowest distortion, when both channels work, the recon-

struction stochastic error (i.e., neglecting the quantization ef- APPENDIX A
fects) is nonzero. However, a near-optimal solution always ex- KNOWN RESULTS ONWEYL—HEISENBERG FRAMES
ists and satisfies the (over)completeness requirement. A second AND RIESZ BASES

negative property of the optimizer is established in Section IV-F, The abstract concept fmehas been introduced in the sem-
where a nonlocalization result (either for TSD or FSD caser}

of the optimal window is proved. These nonlocalization resullsalI paper [16] by R. J. Duffin and A. C. Schaeffer. Consiéer

are of the type of “no-go theorems” of Balian—Low and Heil2 Hilbert space andl a countable index set. Then

Walnut. However, the case of FSDD is still open. Definition 46: A set of vectors o, F = {f; }.cr is called
A case study is presented in Section V-A. It is shown thatframe (for H) if there are constantd, B > 0 such that for

well-localized windows can achieve near-optimality. The opevery f € H we have

timal window, despite being poorly localized, gives interesting ) ) )

information about certain “frequency bands” that a near-optimal AllfIF < Z IKF fl" = BIAIE (220)

window has to avoid. This suggests an algorithm for designing ict

such windows (and, therefore, encoding—decoding schemes).he constantsi, B are calledrame boundslIf we can choose
Finally, in Section V-B, we analyzed the total distortion andl = B the frame is calledight. Note that (220) immediately

the rate needed for transmission. Asymptotic formulas with ramplies thatF is a complete seti#f (i.e., the set of finite linear

spect to the quantizing interlevel are obtained in that sectiaombinations off;’s is dense inH). Indeed, if this is not so,
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there would exist a nontrivigf € H orthogonal to all off;’s.
But the first inequality would imply| f|| = 0, leading to a con-
tradiction.

Proposition 48:

A. SupposeF is a frame forH and consider the vectors
(226). Then:

The Riesz basis for its span concept generalizes the notion of 1) Tlh(al§eﬂ: =i

an orthonormal set. B A’ ) . . )
2) The synthesis operator associatedtis a left inverse

of the analysis operator associatedRoSimilarly, the
synthesis operator associated&ds a left inverse of
the analysis operatdr associated tF. Explicitly this

means that for every € H,

¢ € Il is a frame forH with bounds

Definition 47: A set of vectors o, 7 = {f;}:cy is called
aRiesz basis for its spafor ans-Riesz basisif there are con-
stantsA, B > 0 such that for every finite sequence of complex
numbers: = {¢; };cr we have

) N N
Lfafi=) (L= 1 (228)
AZ leif? < Zcifi < BZ il (221) %;( / %; /
icl iel icl
3) LetE denote the range &F in I2(I). Then
The constantsi, B are calleds-Riesz basis bound# we can B
choosed = B, the s-Riesz basis is anrthogonal equi-norm Pg =TT (229)

set Thespanof F is defined as the closure of its linear span (i.e.,
of the finite linear combinations aof;’s). If the span isH, we
simply call.F aRiesz basisNote that (221) implies ait-form

of linear independence ¢f’s. Moreover, the restriction that

be a finite sequence can be dropped; we car lein through tors fi,# defined by (227).

(). 1) The setF# = {f¥,i e I} is ans-Riesz basis ind

We introduce now several operators associated with frames with bounds;, % and with the same spafas 7 in
ands-Riesz bases (see (222)—(225) at the bottom of the page). : . . )

The right inequalities in (220) and (221) show that the anal- 2) The analysis operatdf# associated toF# is a left
ysis and synthesis operators are bounded and well defined on inverse of the synthesis operatér of 7, and the
their definition domains. Moreover, notice that they are dual to analysis operatoi’ is a left inverse of the synthesis
one another (hence the * notation). Thus the frame and gram- operatorI'#* associated to=#. Explicitly, for every
mian operators are well defined as well. The frame condition ¢ = (ci)icr € *(I)

(220) is equivalent td < S < B, where the inequalities are

in the sense of quadratic forms. Similarly, (221) is equivalent to <Z it fZ> - <Z cifi, fi> = ¢ (230)
A < G £ Bin the same sense. Note that> 0 implies that et et

S andd, respectively, are invertible. Then let us define the fol-
lowing vectors. For a framg&

is the orthogonal projection ontB. Thus Pr = TT™
and7 has the same range as7'.

B. SupposeF is ans-Riesz basis if and consider the vec-

Thus the following biorthogonality relations hold:

fi=87f, el (226) (fir £1) = 6ij- (231)

and, respectively, for an-Riesz basisF 3) The operator
Pe =T"T# 232
fF=1a"s (227) ¢ (232)

. . . is the orthogonal projection onto the sp&nof F.
(wheres; is the canonical basis ét(1), (6;); = 6;;—the Kro- Hence the following identity holds true as well:

necker symbol). Straightforward computations show the fol-

lowing result. Pe = T#*T. (233)
the analysis operatdr : H — 12(I), T(f) = {{f, fi) Vier (222)
the synthesis operatdr* : 1>(I) — H, T*(c) = Z cifi (223)
il
the frame operatof : H — H, S=1T"T, S(f)=> (f fif: (224)
il
the grammian operatd@® : I*(I) — 1*(I), G =TT*, G(c)= {<Z ¢ fis f1>} (225)
Jer iel
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4) Fis aframe for£. Moreover, the formula (226) givesturn out to be very useful in the statement:

the same vectors as (227), i.e., " ) ) )
(Sle)~Lf; = T*G~16;. (234) @ = {fe L /x @)l de < 20,

The setF defined by (228) is called thetandard dual frame / E2f(&))? d¢ < oo} (236)
(associated toF). The remarkable property (228) represents a
discrete resolution of identitycalled also aeconstruction for- (L 1) —
mula Note that (228) does not uniquely defic®e In other (L= 0) = FHIFllw e
words, there may exist margual frames which yield recon-
struction formulas like (228). In general, there are infinitely

. . L . = -1 . (237

many such duals, unlesk is a Riesz basis, in which case the 7%22 I+ Lpmenifl oo < o0 (@37)

dual is unique. Each such alternate dual frame gives an oblique , ) )
(i.e., nonorthogonal) projection onfd via (229). Theorem 49: ConsidemVH ;. s @ WH Riesz basis. Then:
The setF# defined by (227) is called thetandard biorthog- 1. The lattice{(ma,n3);m,n € Z} has uniform density
onal s-Riesz basigassociated tF). Equation (230) represents 1,ie,a = # = 1. Moreover, ifWHg., 5 is a frame
areconstruction formula in the space of coefficients and follows ~ thena < 1, whereas ifWH,., 5 is ans-Riesz basis
immediately from the biorthogonality relations (231). Note that, thenas > 1.
in general, there are many alternate biorthogsrlesz bases 2.1 (Balian—Low) The generatgthas an infinite uncertainty
that satisfy (231). Each of them will yield a reconstruction for- product, i.e.g € Q%*.
mula of the type (230), although (232) will give only an obliqgue 2.2 (Heil-Walnut) The generator is spread in the time—fre-
projection ontof and, therefore, (233) is no longer true. These quency domain, i.egZ C(L>, ') andg g C(L>,1*).00
alternate biorthogonals will have different spans.
Weyl-Heisenberg frames asdRiesz bases are simply WH
sets that are frames efRiesz bases, according to the previou
definitions. Note that the definitions in Definition 1 are simply Theorem 50: SupposeWH,1., 3 U WH,2., g is a Riesz
particular instances of Definitions 46 and 47, applied to the Whhsis of L?(R). Then

context. 1) (see [11])af = 1/2;
WH sets enjoy the remarkable property (which wavelet sets p) (see [55]) eithey® ¢ Q11 or g% & Qb:L;

do not have, for instance) that the standard dual frame or thez) (see the proof of the previous result and the Heil-Walnut

Moreover, when we have a union of WH sets, the following
gensity and nonlocalization results apply.

standard biorthogonalRiesz basis is also a WH set. This fol- proof in [6]) eitherg! ¢ C(L=>,1') andg* & C(L*,1%),
lows from the commutation relations org® & C(L*>,1%) andg? & C(L>,11).

STy =TsS SMora = MoroS. (235)
Therefore, in the WH frame case, jf = S~1g, the WH set APPENDIX B
WH ;.5 is the standard dual frame, whereas in the WRiesz APPROXIMATION OF STOCHASTIC PROCESSES BY
basis case, if WEYL—HEISENBERGSETS

Consider two WH setdVH 1., 5, WH,2., 5 and a sta-
tionary stochastic signgl of zero-mean and second-order sta-
tistics (i.e., autocovariance) given B(t) = E[f(-)f(- — t)].
Assume the analysis operators of the two WH sets are bounded
pca?:LQ(R) (this means they algessel sequence§or such pairs
f WH sets we define thfame operatodenotedS,: ;2.5 by

9" =T"G 0,0 = (Sl )9

thenWH ,« ., ¢ is the standard biorthogonaiRiesz basis.

The window g is called thestandard dual frame window
whereasy# is called thestandard biorthogonal windowNote
that, in general, there are many dual frame generators (res
tively, biorthogonal windows) that give rise to alternate WH du
frames (respectively, alternate WH biorthogosdtiesz bases). ) _ 1 2
The only case when the dual (or biorthogonal) is unique is when St 2 1) Z -G 3) G o (238)

WH,. s is aRiesz basis, in which case the standard dual frame . ) .
is alsgo the standard biorthogonaRiesz basis. Note that Sy 42.,¢ is bounded onl?*(R) and its norm is

Beside this dual/biorthogonal construction, there are also %Qunded by the product of the t.WO analyss operator norms
sults dealing with the density of the latti¢éma, ng);m,n € 250,51l I Ty2:0,5]|- The problemiis to give sense to and study
Z} and the localization of the generapm the basis case. We the boundeQness of this frame operator when applied to the
summarize these results in the following theorem. The inte‘srt—m‘fhas'[IC §|gnaf. .
ested reader may find the density results proved for the Iatti.ceF'rSt we |r_1troduce a couple. of function spaces t.hat are useful
case in [40], [14] or [30], and for nonuniform sets in [39]. Th n the following. The generaliener amalgam spagds defined
localization theorem due in its original form to Balian [3] an y
Low [34] has begn rigorously proved by Coifman and ngm%(LP 11y = 4 7111w
(see [13]) and differently (and more simply) by Battle in [5]. ’ W(LP.19)

Later it was extended to a different space of functions by Heil
and Walnut (see [6]). Statements of these results are summa- — H{Hf Ap n+11H } H < OO} (239)
rized in the theorem below. The following spaces of functions ' Pincz||,

m,n
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where the(p, ¢) norm forp, ¢ # o is defined as Therefore,S,1 2., 5 is a well-defined and bounded op-
o 2\ tq erator onW (L?,1°°). Moreover, the constard can be
" ? chosen as
Hf'l[n,n+1]H ) =<Z</ |f(37)|pd37> ) .
H{ P}n&z q ncZ »n 0(91,92;04’/3) = Ca,,8||gl||W’(L°°,ll) ’ ||g2||VV(L°°,ll)-

(240) Remark 53:1t is well-known (see [25]) that if
Forp = oo or ¢ = oo the definitions have to be adapted, 42 ¢ W(L>,I') then ¢! and g2 are Bessel sequence
in the obvious way. For instancéy’(L>,1') has been de- generators; therefores,: .., 5 is well-defined and bounded
fined earlier in (237). In particular, we are concerned witgn L?(R). However, in general, even B, ., 3 is well-de-
W (L?,15°), W(L®, 1), andW (L*, £). For more properties fined and bounded o#2(R), it does not need to be bounded
of these spaces we refer the reader to [21]. Note that thQﬁﬁW(LQJOO)_
spaces are translation- and dilation-invariant. In particular, the

space does not change (although the norm does) if instead dreémark 54: Similar results have been proved in [18] but
translation step 1 we consider the translation gtep under a stronger requirement, namely, that the generators

Another useful space is theeightedZ2, space for some non- Must belong to the Segal algebfig which is a subspace of
; ; ¢ W (L>,1') (for exact definitions see [18]).
negative functions > 0 .

) 00 ) 1/2 Remark 55: The series (238) that locally definé€g: ., g
L, ={f 1l fllw:= </ w(x)| ()] dﬂ?) <oo. (241) s not strongly convergent ifi’(L2,°°)-norm in general.

— o0

With this weightw we can construct a weighted version of the The conditiong!, 9> € W(L®,i*) in Theorem 52 is not
Wiener amalgam space necessary for the boundednessSpf 2., s onW(L?,1°°) (an

oo example is given in [2]). However, the following result shows
Wi (L3,1°) = {F 1 flwacez, 0 nieis g [2]) g

that it is a necessary condition fof € W (L%, (?).
‘= sup / w(@)| f(x = np)|*de. (242) Theorem 56:Let (g, g%; a, 3) be the given data and suppose
7 the following.
L% andWg(L2,1°°) are, in general, no longer translation-in- g
variant, but for appropriate they may be (see below). Finally,
we introduce the following notion.

1) Foreveryf € W(L?,1>), the series, | ([, Gin) Gon
converges unconditionally inf .

2) The frame operator is bounded BA(L?2, [°°).
Definition 51: A function f : R — C has thepersistency 3) ¢? has persistency Iengt(b_

lengtha if there is a5 > 0 and a compact sét’ congruentto  Then ¢! W (L=, 12). O

[0, a] mod a such that for every: € K, |f(z)| > 6. -
The above results refer specifically W6 (L2, I°°). However,

The following results are proved in [2]. we are interested in measuring the errofif). The transition

Theorem 52: Supposey, g% € W (L™, 1). toward this space is given by the following result.

a) Letf € W(L?,1>) anda, 3 > 0. Then Proposition 57: Suppose the nonnegative weight has
Z<f gL g2 persistency lengths andw € W(L*,). Then the norm

Il - llw(z2 1) is equivalent td| - ||y, (z2, 1) and thus the two

Banach spaces are identicHl:(L?, 1) = Wg(L2,1>°). O

m,n
2

converges unconditionally in the; . topology, i.e., for
everye > 0 and compact sek there areN., M. > 0 Note that by equivalence we mean that there are constants

such that for every finite se§ C Z*\([-M.,M.] x A, B > 0such that for every

[—Ne, Ne]) Allfllwzz 1) < I fllwy @z i) < Bllfllw(zz,ie)-
All these results show that i§',¢*> € W(L>,I') and the
Z <f, g,l,m>g,2,m <e. (243) weight w has persistency length and belongs to the space
(m,n)eS L2(R) W(L>,1'), then S,1 2., g is well-defined and bounded on

2 joo
Moreover, (243) converges also in the weak-* topolo (W@(Lw’l )- . .
W(L2 loo)(i_e_ )forevergh € W(L2,1*) ande > Oﬁhergy We would like to work withf € L2 becausef € L?(R)

areM..N. > 0 such that for everw > N., M > M. is not possible .for.stationary signgls. However, extending
W Sy g2:0.5 t0 L2 is tricky becausel?, is not well-adapted to
<h’7f_ Z Z <f7.grlnn>972nn

space). Therefore, we introdud®(L2,1°°) = Wy(L2,1°)
[mI<M [n|<N

under some mild conditions on the weight. On this space,
b) For everya, 3 > 0 there is some constant Sy g0 is Well-defined and bounded, provided the con-
C=C(g", % a,pB) ditions of Theorem 52 are satisfied. Now, our stochastic
5 oo ) ) signal is given by an elemerft of L?(Q; W (L?,1°°)) where
such that. fo_r ever)g € W(L*,1°°) the function defined (2,3, 1) is a probability space andi?(Q; W(L?,1%)) is the
by (238) is inW(L",1>) and space ofi¥ (L2, 1°°)-valued functions o that are square-in-
1591 g2:a,8f lwiz2,iy < Cllfllw(r2 109 tegrable with respect to the probability measyre Thus

> the study of translations (in general, it is not even a normed
< €.
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w € Q— f, = flw) € W(L?I~) is a realization of Proof: The “trick” is to periodize each integral on the
this stochastic process. The goal is to approximfatey the left-hand side. Notice that g*, 29> € L*(R) N L*(R). Then
coherent stochastic signal,: ,2,. sf. We still measure the [ L i

approximation error in.2, cy(m) -—/ dz fi(z)g" (x)e

L g2, = — Ogl g2: 2
7' 0%0.0) = BIf = Sy g o1 _ / " [Zfl (+2) o (++2)
0 &

which is finite and bounded as follows: ez

’](91792;a7[3) < / dji(w) sup HT,Z;(I _ Sgl,gz;a,,ﬁ)wai and the2r /«-periodic function
Q n

Y filz+(1/a))g (z + (1)
< (1 + ||Sg1,g2;a,,8||B(Wza(LiJ°°))) g

X || Fll 2wy (12, 0)) is in Ll[ (27 /)] N L2[0, (27 /r)] because of the following:

becaus&s 1 2., 3 commutes with the translation f Note that {
i Flga (e ()

Icz @

—2mimar
c

dx

1S9t 2081 BOWS (22, 1))
< Ca,,a,ngl||W(L<>°,ll)||92||W(L°°,ll)

[
1
which turns the previous relation into = lz;/ h <$ T )‘ <$ T 5)‘ dz
C
J(g', g% 0. B) < (14+Ca 8w||gl||W’(L°° ll)||92||W(L°° 11)) L
" ’ ’ = . d = 1 1
W loetite 1. (244) | 1@l i@l ds = gl

All the above are summarized by the following theorem. i I I 2
W [ g (2)] =
Theorem 58: Supposer, g= € W (L, 1") and the nonneg- o |iH o Q@
ative weightw has persistency length andw € W(L>,1*). B 5
Then, for every stochastic signfl € L2(Q; W (L?,1°°)), the Z/“ f <aj + i) gt <$+ i) de
approximation error given by the WH paig*, ¢% o, 3) is 7 Jo & &
bounded above as in (244). O 1 !
1
In the asymptotic analysis of the distortion we shall need the lz/ g <aj + E) dw]
following result (whose proof is in [2]).
_ 2 1 1 2
Lemma 59: Supposey, w & W (L I'). ThenT; : > — N /_oo A@E-lg @l de gl < 1l e iy
wv defined byF ( ) - Ern,nCZ CmnGmn, 1S well defined and X ||gl||€V(L°°,ll)'

bourlded by We denote by (m) a similar expression as fas (m) where
[ ||B(12 < I2) the productf, ¢* is replaced byf,¢%. Thus using the Parseval

1 k k 2 identity, the left-hand side in (246) becomes
« « « l
n k £>(0,1) ZCl(m)CQ( / [Z f1 <a: + ) <a: + a)
< Cogllwllw @z mllgllwze=,m)ll9loo- (245) m ez

0 !
APPENDIX C ' [%; f2 <$+ E) g <$+ E)

NOTE ON THE POISSONSUMMATION FORMULA

dx.

Now commuting all the summation symbols with the integral
The computations made in Section IlI-A used a special for(allowed because of the absolute convergence of the integrals)
of the Poisson summation formula. Actually, the formula wand extending again the integral over the entire real line, we
use is, in fact, the Parseval identity. We call it theak form of obtain the right-hand side in (246) and thus the conclusibh.
the Poisson Summation Formulid has been proved and used
by many authors before (see [25, proof of Theorem 4.1.5], or
[12,Theorem 2], or [14, Lemma 3.2]). Below we prove it for a Corollary 61: Supposef € L*(Q;W(L?1°)) is a sta-
different set of functions. tionary stochastic signal of autocovariance functiin and

1 .2 oo J1
Lemma 60 (Weak Poisson Summation Formul@uppose ¢ 9 € W(L>,I"), then
fi, fo € W(L?,1°°) andg*, g* € W(L>,1"). Then Z// dx dyw(z)R(z — y)

This lemma has the following corollary.

I X Ty ) )
:_Z/da:fl @ (+2) g (++2) (240 :azm:R(%)/dxw(x)gl(a:—nﬁ—%)m

(247)

and the integrals converge absolutely. O
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APPENDIX D Similarly, in the case wheWH 1 ;2).q,3 IS @ WH multiset,
PROOF OFTHEOREMS3 AND 5 we obtain the equation
Proof of Theorem 3:The idea is to consider the frame }(flrl* S22y = 1

operator associated to WH multiseld/H ;1 42).0.5 and
WHG 52)a,8: 511 + Sy 5. For the first two cases, we set, (1/p)IT* = I with T = [['I?] andT = [[*I2]. The

9" = 9.9 = 05" = g* org,g° = 0. In the first case, giscussion follows the previous case and we thus obtain (60)
5,1 should be the orthogonal projector onto the rang€0f  4nd (61).

(which is the span of th_e-Riesz basis); in the second Case, The lower bounds in (55), (57), and (59) are obtained by
S1i = 1; and in the third casey, ; + 5,5 = 1, the unit  noting that the standard biorthogogaRiesz basis and standard

operator. - . dual frame, havet /A as upper bound. O
These conditions are more transparent if we change the rep- _ _
resentation. Instead df2(R) we useL2([0,1] x [0,1/p]; C*) In order to prove Theorem 5 we first need the following

via the unitary transformation lemma.
f ®(t,s) Lemma 62: Let W, W, My, Ms bep x p honegative sym-

q a\1* metric matrices and™*,T'? be p x ¢ matrices. Suppose fur-
= [F(@ s) F <t7 s+ —> e B <t7 s+(p— 1)‘)} ther that eithe#¥,, M, are invertible and* is of full rank, or
. p p W,, M, are invertible and'? has maximal rank. Then the solu-
wherel is the Zak transform (34) of and * denotes the Her- tion of the following optimization problem:

mitian conjugation. Note also that
¢*= min J(X):=trace{W, (I -XI'"*)M;(I-T*X")

1 1
Lg?) = [ Tds [T dttrace{T' T y = (I, T s, (24 peer
Then standard computations show that, for everyf, € L*(R) ) ] ] ) (249)
(or, equivalently, for everg:, &, € L2([0, 1]x [0, 1/p]; C7)) is unique and given by the solutio¥y, of the linear system
(f1, 8,1 fa) = Z it s) (G o f2) WM T 4+ WoMoT? = Wy X TV M T 4 Wo X2 M,I2
’ oo EAEE Al IAASAaS] - . - (250)
1t 1 and the optimum in (249) is
_ s w2l
= 5/0 ds/o dt Q117 P " = trace{ Wi (I — XoT"™)M; + Wa(I — XoI'2* )My}
Thus the frame operatof, ; + S, 5 acting on L*([0,1] x (251)
[0,1/p]; C”) is given simply by the matrix multiplication with Proof of Lemma: The variation of the criterion (249) due

(1/p)(L'TT +T202%) for every(t, s). This easily implies (57) tg a variations.X is
and (59). Note that if any of (55), (57), or (59) holds true for

— Lk 1 *
t € [0,1/¢] then it automatically holds true for evetyby the 6J = trace{=Wi(I = XI"*)M, 176X
one-periodicity of the Zak transform in Note that ars-Riesz — Wo(I — XT**)MI?6X*} 4 c.c.
basis can always be viewed as a frame when one restricts = —trace{[W; (I — XT'**)M;I'*

oneself to the span of the-Riesz basis; the upperRiesz % 2 ¢ v
basis bound is then identical to the upper frame bound of this + Wl = XTT)MITI6XT + c.c.
(restricted) frame. Hence WH,,., ¢ is ans-Riesz basis then where c.c. stands f@omplex conjugated term

1 1 1 By the variational principle$J must vanish for every X,
B> ]_))\max(rr*) = ]_))\max(r*r) > ]—)F*F §X*. Thus we get (250). We have now to prove that (250) has

: : _ a unique solution. Consider the linear endomorphisn®8i?
wherel,,,...(M) is the largest eigenvalue of the matfik. Thus defined by

we obtain the upper bound in (55).
Next we compute the standard biorthogonal generator and X — T(X) = Wi XTI Mt + Wo XTI MoI2.

the _standar(_j dual _gene;g%ot In the case wheH y.q 5 IS an  This linear map defines also a quadratic form on the Hilbert
s-Riesz basis, we impo ¢ ['* to be the othogonal prolect|onspace(0pm7 (,)us) of p x ¢ complex matrices with scalar

onto the range of I'T™. This clearly implies (56).  product(A, BYys = trace{A*B}. It is straightforward to see
In the case whemVH,,., s is ans-Riesz frame, we require ot
%FF* = 1. Clearly, (58) is a solution. Now any other solution

~ _ 1/2 1% 1 yveryrl/2
will be given byT'# = [ + AT for someA[ with X, T(X0) s = trace { W/ XDV M DLW

. Ve o pl/e - + Wi AXT2 M2 X W/ 2L > 0.
(', AT") :/ ds/ dt trace{'AT"} = 0. 2 ? 2 } -
0 0

0 The hypothesis guarantees at least one of the two terms is strictly
Thus||T'#|las > ||T|ws, which can be drawn back tgs via positive. Thus
(248). Since the standard dual frame generator is the dual frame

. . >
generator with the smallest norm (see [14]) we obtainAfat= (X T(Xms 2 (X, Xns
0 and hence (58). with & > 0, and theril’ is invertible.
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The only remaining issue is to check thé§ defines the min-
imum for (249). To do this considef = Xo+A. Then, an easy
computation using (249) shows that

J(X) = J(Xo) + trace {Wf/ 2ADY AL TEA W2

+ WY AD> M2 AW 2} > J(Xo).

Thus X, is a global minimum and (251) follows. O

Proof of Theorem 5:Each of the partial optimal problems
is solved by choosing appropriat&,, Wo, My, My, 't T'? in
(249) as follows:

BL W, =W, M =MT! = %Fl,WQ =M, =0

I'? = 0.
B2. Wi=M,M =W, =iI% W, = M, = 0,
I'2 = 0.

B3. W, =W,M, = M,I'* = ]lqu,W2 =M, =0,
I'? =0 (for channel )W, =M, =0, =0, Wy =W,
M, =M]TI? = %FQ (for channel 2).

BA. Wy =MM = W' = I'¥ W, = M, =0,
2 =0 (for channel 1), =M; =0,[* =0, W, =M,
My = W,I? = 2I'*# (for channel 2).

BS. W, = W,M, = MI' = II\'W, = M, = 0,
2 =0 (for channel 1)V = M; =0, =0, W, =W,
M, = M, T2 = 1T (for channel 2).

B6. W, =W, = W, M = My = M.T" = iI'#,

r? = 1p2#,
B7. Wi = Wo = W,M, = My = M,T* = LI,
r2 = ir2,

B8. W, = MM =W.I' = LI, W, = M, = 0,
I'? =0 (for channel )W, =M, =0, =0, Wy =M,
M, =W, I? = %F# (for channel 2).

BY. Wi =W.M = MI' = il'W, = M, = 0,
I'? = 0 (for channel 1),W; = M; = 0,I'* = 0,
Wy=W, M, = N,I” = LT (for channel 2).

B10. Wy = MWy = N.M; = My = W,I'" = 1I'#,

I? = ip2#,
B11. Wy, = W, = W,M; = M, M, = N,T* = 11
2 = ir2, :

B12. W, = M,M; = W.I' = LI'*\ W, = M, = 0,
I'? = 0 (for channel 1)W; = M; = 0,T! = 0,
Wy = N, M, = W,I'* = -T# (for channel 2).

B13. Wi =Wo=W M, =M,=M T!'=I?=1T.

Bl4. Wy =Wa=M, M, =My=W, 1 =12=11#

B15. Wy =W, =W, M, =M, My=N,T*=T?=1T,

B16. Wi=M ,Wo=N, M, =M, =W T} :pfz:%’p#_
This ends the proof of the theorem. O
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