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Regularity of Refinable
Function Vectors

Albert Cohen, Ingrid Daubechies, and Gerlind Plonka

ABSTRACT. We study the existence and regularity of compactly supported solutions ¢ = (¢, ;;})
of vector refinement equations. The space spanned by the translates of ¢, can only provide
approximation order if the refinement mask P has certain particular factorization properties. We
show, how the factorization of P can lead to decay of Ia)u(u)l as |u| — o0o. The results on decay

are used to prove uniqueness of solutions and convergence of the cascade algorithm.

1. Introduction

In this paper we discuss the smoothness of refinable function vectors. These are solutions to
functional equations of the type

N
d(x) =Y P,p2x —n), (1.1)

n=0
where the “coefficients” P, are (r x r) matrices (r € N, r > 1) and ¢ := (¢o, ... , d,—1)T is an

r—dimensional function vector. Equations of type (1.1) are natural generalizations of the refinement
equations studied in, for example, [4], where r = 1; therefore, we shall call them refinement equations
as well, or occasionally vector refinement equations.

Vector refinement equations have been mentioned in several papers. The oldest example is
probably the multiwavelet construction by Alpert and Rokhlin [2] (see also [1]), where the ¢, are
all supported on [0, 1] and are polynomials of degree r — 1 on their support. In this example the
smoothness of the ¢, is, of course, known; (1.1) is useful as a computational tool in going from
one multiresolution level to the next. Matrix generalizations of type (1.1) were also discussed in
more generality in [13, 14], including how to define wavelets once the scaling functions were known.
However, it was not clear how to construct smooth nonpolynomial examples, let alone how to connect
smoothness with properties of the P,. This was in marked contrast with the case r = 1, where the
link between smoothness of ¢ and properties of the P, or of the refinement mask

P) = %Z P,e i (1.2)

is well understood and this connection can be exploited to construct ¢ with arbitrary pre—assigned
smoothness as well as many other properties (see [9]). Donovan, Geronimo, Hardin, and Masso-
pust [10] (hereafter referred to as DGHM) were the first to construct continuous nonpolynomial
refinable function vectors. They gave examples of special bases of self-similar wavelets, generated
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by continuous scaling functions that satisfy an equation of type (1.1). In their paper, the iterated
function technique used in the construction was the key to derive smoothness rather than properties
of the P,. This first example triggered several other constructions (e.g., [25, 26]) as well as work
on the filter bank implications of (1.1) [27, 18] and a systematic study of the approximation order of
solutions of (1.1) [17, 23]. This last work contains the key to understanding how solutions of (1.1)
can be smooth.

As shown in [23], the space spanned by the functions ¢,(x — n) (n € N) can only have
approximation order m if P(u) has certain particular factorization properties. (We assume that the
¢, (x —n) are also (algebraically) linearly independent.) This is reminiscent of the case r = 1, where
similarly linearly independent translates of a refinable function ¢ can only provide approximation
order m if the refinement mask, often denoted by m((u), can be factored as

1 —iu\m
mo(u)=( - ) q@) , (13)

where g(0) = 1 and q is 2w —periodic and nonsingular for u = . By iterating the formula

n U\ ~/u
by =mo(3) 4(3).

which is obtained by Fourier transformation from (1.1), and exploiting the factorization (1.3) one

then finds

1p@)| =

[[mo@ w
j=1

where the infinite products converge uniformly on compact sets if m¢ or, equivalently, g is Holder
continuous in ¥ = 0. Together with estimates of the type sup,|q(u)| < B or, more generally,
sup, |9 (2*"1u) ¢(2*~2u) - - - q(u)| < B* for some k € N\ {0}, this leads to

<Cc+uh™ [Jla@ 7w,
Jj=1

|P(u)| < C (1 + |uf) ™88 (1.4)

(see, e.g., [8, 9, 5]). The factorization (1.3) together with estimates on the factor q(u) therefore
lead to decay for # and, hence, to smoothness estimates for ¢. Using more sophisticated methods
involving transfer operators, one can refine the brute force estimates (1.4) and formulate necessary
and sufficient conditions on g (#) ensuring that ¢ lies in some Sobolev space W* (see 7, 28, 12, 15,
19, 6]). Here again, the factorization (1.3) is a key ingredient.

In this paper, we shall see that the factorization for the matrix P(u) discovered by Plonka [23]
for the case r > 1 can play a similar role, although the discussion is more intricate.

We shall assume that the ¢, (x —n),v =0, ... ,r —1,n € Z, form alinearly independent basis
for their closed linear span Vj and that they provide approximation order m; that is, for f € W™ one
has

If —Projy, fll2 < C27™ || fliwm,
where V; is the scaled space
V; ={g € L’(R); g(277") € Vo). (1.5)

Then, itis shownin [23] that there exist ( xr) matrices Co(u), ... , C,,—1(u) (constructed explicitly
in [23]; see also below) such that P(u), defined in (1.2), factors as

Pu) = 5‘; CoQu) -+ Cp1(2u) P™ W) Cpoy(w)™' -+ Co(w)™!, (1.6)
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where P™ () is well defined. Taking the Fourier transform of (1.1) we obtain

dw = P(3) $(3)- 1.7
This can be iterated again, and we find
b= p(5) P(5) - P(&)4(2)
Substituting (1.6) in (1.8) leads to
) =27 Cow)- -+ Cuaa@) P (3) - P™ () (1.9)

u\-! U\l ~su
Cni(3) o Co(3) 0(5) -
Even at this stage, the case r > 1 is more complicated than » = 1. The matrices P(2 /u) or
P™ 2=/ 4) do not commute, and the discussion of the convergence of an infinite product definition

for &)(u) is therefore more complex.
Hervé [19] studied the convergence of the matrices II,(u)

u u u

0, (u) = P(E) P (Z) P (2—) (1.10)
as n — oo and showed that convergence is assured if P(0) = diag(l, wy,..., 4,—1), with
|l < 1forl = 1,...,r — 1, or if P(0) is similar to such a matrix, that is, P(0) =
M diag(1, w1, ..., pr—1) M for some nonsingular M. This already excludes the case where

P(0) is not diagonalizable. Moreover, our matrices P™ (0) may well have a spectral radius larger
than 1, so Hervé’s results cannot be used for the products P™ (u/2)--- P™ (2~"y4) in (1.8). Heil
and Colella [16] discuss not only the convergence of II,(u) (with results similar to Hervé [19]) but
also the convergence of II,(u) v, where v is a fixed r—dimensional vector. If v is an eigenvector
of P(0) with eigenvalue 1, then II,(x) v may converge even if the spectral radius py of P(0) is
strictly larger than 1; Heil and Colella call this constrained convergence. They prove constrained
convergence if pp < 2 and if the largest eigenvalue of P(0) is nondegenerate. We use a different
technique that proves convergence of I, (x) v if py < 2, without the nondegeneracy condition,
and that extends to some cases where pp > 2 if P(u) has vanishing derivatives at u = 0. Once
the convergence of (1.8) or (1.9) is established, we can proceed to the main topic of this paper,
namely how the factorization (1.6), together with estimates on P™ () can lead to decay of |, ()|
(w=0,...,r —1)as jufl > oo. Asin the case r = 1, this can be exploited to prove L2
convergence and pointwise convergence theorems (in the “x—domain”) similar to those in [8]. One
can also introduce matrix transfer operators to prove a more precise estimate like in the case r = 1.

This paper is organized as follows. In §2 we recall the precise results on the factorization of
P(u) obtained in [23]. We also show that this factorization is necessary in order to obtain smooth
functions ¢y, ..., ¢,—;. In §3 we discuss the pointwise convergence of II,(u) a, as n — oo,
for a fixed vector a. In §4 we exploit the factorization (1.6) to prove, under certain additional
conditions, that lim,_, o IL,(#) a decays, as a function of u, for [u| — oo. We show, in §5, how
transfer operators can also be used to evaluate the regularity of the scaling functions. Section 6
gives a short uniqueness discussion: in the previous sections an infinite product solution for (1.7) is
constructed; if this has sufficient decay, then its inverse Fourier transform gives a solution to (1.1).
Theorem 6.1 shows that, under certain conditions on the mask, this solution is unique in a wide
class of functions. In §7 we show how the decay estimates proved earlier can be used to translate
the pointwise convergence of IT,(u) a to convergence of the cascade and subdivision algorithms
in the “x—domain.” Finally, §8 studies several examples; we apply our analysis to see how the
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(known) smoothness of spline functions and of the DGHM scaling functions can be recovered, and
we construct some new examples with controlled smoothness.

2. Factorization of the Refinement Mask

We want to recall some results of Plonka [23]. We start by some definitions. Let r € N be
fixed, and let y € R” be a vector of length r with y # 0. Here and in the following, 0 denotes the
zero vector of length ». We suppose that y is of the form

y=00---»%-1,0,...,0)7 2.1)
withl </ <randy, # Oforv=0,...,/ — 1. Introducing the direct sum of square matrices
A & B :=diag( A, B), we define the matrix C y by

Cyw) = Cyw P I, (2.2)
where I,_;isthe (r — 1) x (r —I) unit matrix. If/ > 1, then C y (u) is defined by

v -y 0 0
0 yl—l _yl 1 .
CyW) = : R | ; (2.3)
0 BRI TS it
—e_iu/}’I—l 0 . 0 yl"_l1

if | = 1, that is, if 3 := (30,0,...,0)T with yo # 0, then C y(u) is the scalar (1 — e=*)/yp, so
C y(u) is a diagonal matrix of the form

1— —iu
Cy(u):=diag( ¢ ,1,...,1).
Yo

It can easily be observed that C' ¢ (u) is invertible for u # 0. Further, the matrix C y is chosen
such that
y" C y(0) = 0".

We introduce

Eyw :=(1-e) Cyw. (2.4)
Assuming that y is of the form (2.1), we obtain that E () = E y) & (1 - e~ ™) I,_; with
Yo Y1 »n cee Yi-1
Yoz 1 )2 .
Eyw:=| . . oy, (z:=e). (2.5)
Yz yiz - ¥z Y-
YoZ YVZ ... Y122 Yi-1
Note that E g can be written in the form
Ey)= Ey0)—i(1—e™)(DE y)©0), (2.6)

where D denotes the differential operator with respect to w, D := d/ dw. The vector y need not be
such that its zero entries always occur at the tail. If the nonzero entries of the vector y are given in
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a different order than in (2.1), then the matrices C y and E y are defined just by reshuffling the
rows and columns accordingly.

We can now formulate the factorization results for P(u). The following theorem is a special
case of a theorem proved in [23].

Theorem 2.1.
Let ¢ := (¢v):;(1) be a refinable vector of compactly supported functions, and let {¢,(- — n) :
nezv=_0,...,r—1}forma Riesz basis of their closed linear span Vy. Then Vy provides

approximation order m if and only if the refinement mask P of ¢ satisfies the following conditions.
The elements of P are trigonometric polynomials, and there are vectors y, € R"; y, # O

k=0,...,m—1)suchthatforn =0, ... ,m — 1 we have
= (n ket v _
3 (k)(yk)T @) @ P)(©0) = 27" (y,)", @7
k=0
. (n
> ( )(yk)T @iy (D" P)(w) = 0.
k=0 k
Furthermore, the equalities (2.7) imply that there are vectors Ty # 0 (k =0, ... ,m — 1) such
that P factorizes
1
Pw) =5 Cgyu) -+ Cg, ,Qu) PPW) Cg, 7" -+ Ca™", (2.8)
where the r x r matrices C g, are defined by x; (k =0, ... ,m — 1) via (2.2) and P('")(u) isan

r X r matrix with trigonometric polynomials as entries.

Thevectors x; (I =0, ... , m—1)in Theorem 2.1 are completely defined in terms of the vectors
Yy (k =0,...,m —1). In particular, we have (o)™ = (y,)", ()T = (—i)(y0)" (D C y,)(0) +
y)' C y,(0) (cf. [23]). With the assumptions in Theorem 2.1, approximation order m is equivalent
with exact reproduction of algebraic polynomials of degree m — 1 in Vj. Vice versa, if algebraic
polynomials of degree m — 1 can be exactly reproduced in V,, that is, if there are vectors y; € R’
(le€eZ,n=0,...,m— 1) such that

Z(y?)TdJ(X—l):x” xeR n=0,...,m—-1),
leZ

then y7 can be written in the form

n n e
y7=2(k)l “ oyt

k=0
and the vectors y’é (k =0,...,m — 1) satisfy the equalities (2.7) with respect to the refinement
mask P of ¢.

Now, assume that ¢ is a refinable function vector with a refinement mask P satisfying the
conditions (2.7) for the vectors ¥, ..., Yn—1 (Yo # 0). Further, let M € R be an invertible
matrix and

¢'(x) == M $(x).

Then ¢” is also a refinable function vector with the refinement mask P”(u) = M Pu) M -1
since

Fo= ariw = p(2) 3(2) = o1 P(5) 20 (3.



300 A. Cohen, I. Daubechies, and G. Plonka

Observe that P is obtained by a similarity transformation from P, that is, P and Pt possess
the same sdpectrum. Furthermore, P*(u) satisfies the conditions (2.7) forn = 0, ... ,m — 1 with
vectors ¥, ... , yfn_l given by

WH'=w,)" M  @w=0,...,m—1).

Hence, P" canalsobe factoredasin (2.8) with C—matrices defined by certain vectors :z;g, e, mfn_ 1

In particular, we have ( {I:g)T = ( yg)T = (yo)T M. Note that this implies that the factorization
(2.8) is not invariant under basis transformations. For instance, in the case where we consider a
single factorization,

P@u) = -;- C y,2u) PO ) C y, ()™ (2.9)

with y, = (yv);;f, (yo # 0), we could choose instead to carry out first the basis transformation

Yo yir Y2 ... Yr-il
O 1 0 ... 0

M = 0O 0 1 . 0 . (2.10)
O 0 o0 ... 1

For P*(u) = M P(u) M~ the equations (2.7) now hold with (yg)T =(1,0,...,0) and we can
factor P*(u) accordingly. Multiplying the factored expression by M ~!on the left and M on the
right, we obtain

1
P() =5 D y,u) Q) Dy w7, (2.11)
where D 4 () is now defined by
— -u _x .
1-2z yclyz yzz yolz
0 1 0 ... 0
Dy,w:= M diag(1-z1,....1)=] 0 0 1 .. 0
0 0 0o ... 1

Other choices of M would lead to yet other factorizations. In most applications, the original
factorization (2.8) turns out to be the most useful. We shall use the existence of this different
factorization (2.11) as a tool to study the spectrum of PD(0).

In the second part of this section, we show that the factorization of the refinement mask is
necessary to obain smooth functions.

Lemma 2.2.
Let ¢ := (¢,,):;(1) be a refinable vector of compactly supported functions, that is, we have
N
B(x) =) P,pQx —n). (2.12)
n=0

Further, let {¢,(- —n) : n € Z, v =0, ... ,r — 1} form a Riesz basis of their closed linear span
Vo. If ¢, € C™ '(R) (v = O,...,r — 1), then Vy provides approximation order m. In particular,
there are vectors Xy, ..., Tm—1 (X, # 0) such that the refinement mask P of ¢ factorizes in the

form (2.8).



Regularity of Refinable Function Vectors 301

Proof. From the Riesz basis property, there exist dual scaling functions ¢, € Vp, v =
0,...,r — 1, such that

(@u(- = k), (- — 1)) = 8, ,8¢1,

where (-, -) denotes the usual scalar product in L2(R). These functions are defined by

o). ... .y )T = Gu)™ dw),

where the matrix elements of G(u) are defined by

Buw @) =) Guu+2nm)dy (u + 2n7)

neZ

=) (B b — k)™ (uv=0,...,r—1).
keZ
The Riesz basis property is equivalent to the fact that G'(u) is uniformly nonsingular. Since its
entries are trigonometric polynomials, it follows that the functions ¢, have exponential decay. We
thus can define the polynomials

pn,v(x) =/ yn &v(y _'x) dy

o0

We shall prove that for n < m we have

r—1
X" =YY pauk)g(x — k) (2.13)

keZ v=0
for all x € R. (Note that for a fixed x, the above sum has a finite number of nonzero terms.)

We proceed by induction on n. For n = 0, we remark that ¢ cannot vanish at every integer; by
repeated application of the refinement equation (2.12), we would obtain that ¢ vanishes at all dyadic
rationals 277k (j € N, k € Z) and thus is identically zero. Let / and vy be such that ¢,,(!) = C # 0,
and define f; = ¢, 27/ - +1). For j > 0, we have f € V_; C Vo (with V_; as in (1.5)) and thus

r—1
@) =) (i, 6ol — D)o (x — k). (2.14)
k€Z v=0
As j goes to +00, fj(x) tends to C uniformly on every compact set; and for a fixed k € Z,
(fis &,(- — k)) tends to C Po,v(k). We thus obtain (2.13) from (2.14) by letting j go to infinity.
Now suppose that (2.13) is proved up to order n — 1. For the same reason as above, we can
find [ and vg such that D"¢,,(I) = C # 0. We then define

n—1
fi(x) =2"n! [¢v0(2‘jx +1) = Y D¢y, () (2"jx)’/s!:| .
0

From the recursion hypothesis, we have

r—1
£i@) =YD (fi b — )y (x — k). (2.15)
keZ v=0
As j goes to +00, fj(x) tends to Cx" uniformly on every compact set; and for a fixed k € Z,
(fi &, (- — k)) tends to C Pn.v(k). We thus obtain (2.13) from (2.15) by letting j go to infinity.
Hence, we have proved that all polynomials of degree m — 1 are linear combinations of the functions
¢, v=0,...,r—1.
By Theorem 2.2 in [23], it follows that V; provides approximation order m. Hence, by Theorem
2.1, P(u) can be factorized as in Theorem 2.1. O
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3. Convergence of Infinite Matrix Products

Ultimately, we are interested in L'-solutions ¢ (x) of (1.1) and their smoothness, if they have
any. We also want the space spanned by the ¢,(x —n) (v = 0,...,r — 1, n € Z) to have a
certain approximation order. For ¢» € L', the Fourier transform ¢ is a well-defined and continuous
vector-valued function that must satisfy (1.7) for all u. In particular, we must have

$0) = P(0)¢(0).

On the other hand, if we want any nonzero approximation order, then we must have qAb(O) # 0 since
qAb(O) = 0 would imply [ ¢,(x — n) dx = O for all v, n, making it impossible to construct the
function 1 as a combination of the ¢, (x —n). Together, these two observations imply that we should
take «;?;(O) = a, where a is a right eigenvector of P(0) for the eigenvalue 1. Note that we know 1
has to be an eigenvalue of P(0) because of (2.7). In all the examples we shall consider in practice,
¢ will be compactly supported; more generally, ¢ should have good (exponential) decay so that (Ab
will be smooth. This means we expect that in

bw=P(3) P(3)3(5)
= P(3)-- P(;—n) a+ P(3)- p(%)[a)(;_n)_&(o)]

the second term should become negligibly small in the limit for n — oo. This suggests that we

define

X,u):= P (-';-) P (21) a=M,ua
and study its limit forn — oo. In this section, we shall discuss the existence of this limit, pointwise in
u. In what follows, || v|| will denote the Euclidean norm of v € R?, thatis, || v|| = [v3+- - -+v2_ ]2,
and | V|| := max || V v||/| v|| will be the corresponding matrix norm (spectral norm) for V' € R"*".
Recall that the spectral norm of a matrix V' can be defined by the spectral radius of -VT V, that is,

IVI=1Vip= (V' V)2

Lemma 3.1.
Suppose that a is an eigenvector of P(0) for the eigenvalue 1. Further, suppose that P
satisfies

| Pw) — PO < Clul® 3.1
for some a > 0 and that
I PO <2%.
Then the infinite product
Y@ := lim M@ a (3.2)

converges pointwise for any u € R. The convergence is uniform on compact sets.
Proof. The estimate (3.1) implies that
I P@l < | PO+ Clul* < || PO)]| ™"
Hence, we have

| P 3)- P(3) | s ecrrEE Ty P < S PO
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since [27% 4 --- 427" < 2;,, < oo for @ > 0. Using this estimate and observing that

=
O, (u) a — a=[P(-;-)... P(%)_. P(O)k] a

- r(@) ) [P(E)- Po] Porre. 09

=1

~

it follows that for any k € N

o8
4 P
I ) a— af < Ce“M juf " [ﬂ_ﬁ

!
] < CeSH T ul,
=1

where we assume that a is normalized, || a|| = 1, for the sake of convenience. Now, remarking that
Oy a— Tyw) a= yw)[ ;2 Vu) a— a], we obtain

N
I Tn () @ — TIy(w) @ff < €Sl py e (———" Zﬁo)") :

and hence

lim || IL,(«) @ — II,(u) al| =0.
m,n—00

Thus, (3.2) converges pointwise for all u € R. The convergence is uniform on compact sets.  []

This result is often sufficient. Note that when the entries of P(u) are trigonometric polyno-
mials, (3.1) is always satisfied with @ = 1 and can be satisfied for integer values o > 1 if and only
if P(u) has vanishing derivative at the origin. The argument can be pushed a little further, allowing
for the replacement of || P(0)|| by the spectral radius of P(0),

po = p(P(0)) :=max{|A| : PO) x=A x, = # 0}.

Theorem 3.2.
Let a be an eigenvector of P(0) for the eigenvalue 1. Suppose that P(u) satisfies (3.1) and
that

oo < 2%. (3.4)

Then ¥ (u), defined by (3.2), converges pointwise for all u € R, and the convergence is uniform on
compact sets. Moreover, X (u) is Hélder continuous in u = 0.

Proof. 1. Again, we assume || a|| = 1 for the sake of convenience. Let Q) := P(u) —
P(0). Then it follows from (3.1) that ||Q(u)| < C |u|* with « > 0. Further, observe that
| PO)¥|| < Cc (pg + €)X. Then we have

u

I @i =|P(3) - P(57)|

=[[ro+e(3)]-[Po+a(F)]l

S Y PO Q) PO™ Q) -

1=0 m+--+mp=N-I
u
. —_ miyy
Q (2m|+m2+m+m1+l) P(0)
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The second summation above is taken over all positive integers m,, ... , m; such thatm; + --- +
my+1 = N — . Introducing b = 27* < 1, this leads to

N

!
IMy@ll <> Y CH oo+ eV € ul* 27 Ticomt DU+
1=0 m+--+mp=N—I

N
< Ceb_N_H bl(l+l)/2 Z(po +6)N—l (Iu'acec)l
1=0

plmi (4D tmy]
my+-+mp 1 =N—-Il

2. Next we find an upper bound for the sum over my, ... , m;y;. Consider the sum
Ayp = ) bmtmtetlm (3.5)

my++mp=M

For Ay, we find the recursion (putting m = m,)

M M
ApL = ZbM AM-mi-1 =b" Z AM-m,L-1

m=0 m=0
with Ay, = bM and A, = 1. We show by induction that
bM
AL < ———.
ML =1 "pyL1

For L =1and M € N, (3.6) is satisfied. Now, assume that (3.6) holds for L > 1 and M € N. Then
by the recursion formula we obtain

(3.6)

y M M M M
Appo =" Apymr < — S bm < 2
ML+l :L:B Mol =1 —pyE-t ,;) = (1-b)E

3. Substituting (3.6) into the expression for || Iy (#)|| obtained in part 1 of this proof, we find

N
ITIN @)l < Ce Y (oo + OV (ul* COY b~V H B ED2 Ay
1=0

plU+D/2
1 -b)

N
<Ce ) (po+ eV (lu* C.C)
1=0

N uec.c 7
< Ce(po+€)" IZE [m] D2, (3.7
The sum in (3.7) converges uniformly for |u| < 2 since b < 1. Hence, we can estimate
ITIy )]l < Ceq (0o + €)". (3.8)
4. Now, with the same argument as in the proof of Lemma 3.1, by (3.3) we have

k o
I () a— all <C ZCW (0o + €)™ (l_u_l)

1
=1 2

k !
, pPo+€
<Ciglul*) ( > ) (3.9

I=1
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Hence, uniform boundedness of || IIy(#) @ — al| is ensured, if pg < 2%, by choosing € sufficiently
small. Again, it follows that

ul* & +e\
"HNHOOa-H~w>anscggc;ﬁmV+a”zia?; o

po+e€\"
2¢ ’

sc&mw(

where the last term is uniformly small in k if N is sufficiently large. Thus, for fixed u, Il;(x) aisa
Cauchy sequence for py < 2%, implying that we have pointwise convergence of Y (u). Moreover,
the convergence is uniform on compact sets. The Holder continuity of Y (u) in u = 0 directly
follows from (3.9). O

4. Decay of Infinite Matrix Products

Having shown that 'i'(u) is well defined (under some conditions on P(u)), we now proceed
to study how the factorization (2.8) of the refinement mask P(u) can lead to decay in u of Y (u)

for |u| — oo. Let us suppose that P(u) can be factored in the form
1
Pu) = m C z,Qu)--- Cg,_,(2u) P(m)(u) Eg, (u)--- Eg,u),

where the C— and E-matrices are defined as in (2.2) and (2.4), respectively, and where the vectors
o, ... , Tm— are all different from the zero vector. We can now rewrite Y (u) as

Y@):= lim IL,u) a
n—oo

. 1 "
=t {[ e | CawCanw

P (E) 0 (E) B (2 () o]

We note again that, since wg P0) = :z:g with xg # 0, 1 is an eigenvalue of P(0), and we take
a to be a right eigenvector of P(0) for that eigenvalue. We also assume that :cg a # 0; if the
eigenvalue 1 of P(0) is nondegenerate, then this is automatically satisfied. Note that for u = 0 we
have 'Y(O) =1lim, o P(0)" a = a. We will establish conditions under which

P (5) P (1) B, (%) Bau(2) o

tends to a finite limit for n — 00; since lim,_,00 [27" (1 — e~*/2")~1| = |u|~! for u # 0, this then
implies

I XY@l <A+ k)™ Caw:-- Ca, @I “4.1)

[ (2) P () Ba () B (3) o

Let us define the vectors e := (ek,v);;z, by

1A xe, #0,
kv "[ 0 if xc,=0, “2)

where x;, are the components of the vectors & (k =0, ... ,m — 1) introduced above.



306 A. Cohen, I. Daubechies, and G. Plonka

Theorem 4.1.
Let P be anr x r matrix of the form

P(u) = 51; C x,2u)--- C g, (2u) P™u) Cg, )" - Cg,w",

where the matrices C g, are defined by the vectors xx # 0 (k = 0,...,m — 1) via (2.2)
and where P™ (u) is an r x r matrix with trigonometric polynomials as entries. Suppose that
P™(0) e,,_1 = e,_| where e,_, is defined by (4.2). Further, suppose that

pm = p(P™(0)) <2 4.3)
and let for k > 1
1 u u
e _ m (ZY... pm (2
wi=g o s | P2 (3) - P2 ()] @)
Then there exists a constant C > 0 such that for all u € R
1Y@ < C A+ up™™", 4.5)

Note that the requirement P™ e, | = ep_;is automatically satisfied in the case of interest
to us, that is, if P(u) is the refinement mask for the vector of functions ¢o(x), ... , ¢,_;(x) whose
integer translates provide approximation order m; see [23].

Proof. 1. From (2.6) it follows that

E L (u) ... B wo(u) = F T, (O) ... B zo(o) + Z(l - e—i")k G(;):m—lv--- o
k=1

with some matrices G";,QM_M x, depending on E z,(0) and D E' ,)(0) (v =0,... ,m —1).
Hence, we can write

P (2) P (=) Ea,,(5) Eo(3) 6= Tin@ + Tontw)

2 2on o 2n
with
= pm(%Y... pm (%
Ty, () = P (2) P (2) Eg 0 Ez,0 a
and
m
= _emiw2yk pem (XY pm (%
Tyn(u) = g(l emw/2ye p (2) P (2) v,
where vy 1= G(gm_hm_ x, atk=1,...,m).

2. We can estimate the second term T, ,(u) with the same argument as in (3.8),

I Tan@ll <€ 27l | P (4. P (4)
k=1

ol

< Cu 27"

pm (%) ... pm (2”_")” < Ceu 27" (o + €)".

Since the spectral radius p,, of P™(0) is supposed to be < 2, it follows that for all u € R
lim || T, ()| = 0.
n—oo
3. We now concentrate on T'; ,(«). From the structure of E g, (0) and the definition (4.2) of
e; it follows that, for any vector b,
Ez 0 b=(x)"Tbe, (k=0,...,m—1).
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Repeating this argument, we obtain

Egz, (0 Eg,0) a=[(z0) " all(z1)" eo] - [(Xm-1)T €m-2] €m_1.
This leads to

T1aw) = [(20)" al (@) €0l [(@n-1)" em-al P™ (3) - P™ () ens.
2 2n
Since P™(0) €1 = en—; and p, < 2, we find by Theorem 3.2 that lim,_, o T'1,(u) is well
defined for all ¥ and uniformly bounded on compact sets.
4. Now take any u € R. If |u| < 1, then by the Holder continuity of P (x) with Holder
exponenta > 1thereisaC suchthat || T ,(#)|| < C. If ju| > 1,define L suchthat2L~! < |u| < 2L.
Thus,

I Jim Tyal < | P (3) - P ()]

<c| P () P 5)

Jim T, (57)]

By the definition of y; it follows that
| lim Ty, < C'2E% < C” A + |u))*,
n—>oo

that is, by (4.1) and the observations above we find a constant C such that
IX@i <ca+wup™r O

Remarks. 1. It follows from (4.5) that the components of Y (x) are continuous if P
satisfies the above conditions and if y, < m — 1.

2. For the proof of Theorem 4.1 we have assumed that p(P™(0)) < 2. As we will see in
Lemma 4.3, this can be ensured if the largest eigenvalue of P(0) apart from the eigenvalue 1 is
smaller than 2™+1,

3. In order to avoid that T'; ,(u) collapses to 0 as n — 00, that is, lim,_, || T'1,. ()| = O,
which would imply Y (4) = 0, we have to make sure that

[(zo)" al[(z1)" €p] - [( Tm—1)T €m—2] #O. (4.6)

Note that this is already satisfied if there is an index v (0 < v < r — 1) such that the vth component
of x; does not vanish forallk =0, ... , m — 1. On the other hand, since z; is a left eigenvector and
e;_; aright eigenvector of P®(0), both for the eigenvalue 1, (4.6) is also satisfied if the eigenvalue
1 of PY(0) is nondegerate forall /. [

More detailed estimates show that the decay of T(u) is also possible in some cases where
p(P™) > 2.

Corollary 4.2.
Let P be again anr x r matrix of the form

P@) = -21,; C oyu) -+ C g, Qu) P™w) C o, @) C o),

where the matrices C g, are defined by the vectors xx # 0 (k = 0,...,m — 1) via (2.2)
and where P™ (u) is an r x r matrix with trigonometric polynomials as entries. Suppose that
P"(0) en—1 = epn—1. Further, suppose that

| P™ @) — P™©)] < Cul* 4.7)
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and that the E-matrices defined in (2.4) satisfy
IlEx, @) Eg,w— Eg, (0) Eg0)| <Cluf. (4.8)
Now, if pm < 2™ BY then there exists a constant C > 0 such that for all u € R
I X @I < €A+ fuh™,
where yy, is defined in (4.4).

Proof. Observe that
[ P™(5)- P™ (5) Eawi(55) - Bao(55) af <1 Su@l+ 1 Tual,
with

S,(u) := P™ (;) .. pm (21)

u u
[Fa(f) Pa(l)- Ban0 Ba0] o
and where T'; , is defined as in the proof of Theorem 4.1. With the same argument as in Theorem
3.2 (cf. (3.8)) we obtain by (4.8) that

I S.i < | P (3) - P (5)]

J[E (&) B () - Bari0- E20] o]
|u|P

=< CE,Q (pm + 6)n C 2nﬂ .

Thus, S, (u) tends to zero forn — oo if p,, < 2P. Further, since e,,_ is an eigenvector of P™(0),
we can apply Lemma 3.1 to show that T'; , is convergent for (o, + €) < 2%. Hence,

pm (%) P(m)(_z_”_‘;) Eg, (2“_") E g, (;—”) a

is well defined if p,, < 2™irl® 8}, Following point 4 of the proof of Theorem 4.1 we can find a
constant C such that

1Y@l <Cca+up™r 0O

Since P (u) is completely determined by P (), the conditions p, < 2 or p,, < 2 are
restrictions on P(u). The following lemma shows that there is a simple connection between the
spectra of P(0) and P™(0), which makes it possible to recast bounds on p,, as spectral bounds
on P(0) as well.

Lemma 4.3.
Let P(u) be anr x r matrix of the form

1
P) =3 Cg,(2w) PYw) C g, 4.9)
where C g, is defined by xy # 0 via (2.2), and assume that PO0) ey = ey (with e defined

by xq via (4.2) ). Then, P(0) possesses a spectrum of the form {1, uy, ..., nr—1} if and only if
PY(0) possesses a spectrum of the form {1,21, ... , 244,_1}.
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Proof. 1. First, observe that the factorization (4.9) implies that P(0) has the eigenvalue 1
with left eigenvector xo. At the same time, x is a left eigenvector of P(rr) for the eigenvalue 0,
that is, we have

(o))" PO) = (z0)",  (x0)T P(m)= 0T

(cf. [22, Theorem 4.1]).

2. Without loss of generality, we assume that x is of the form x¢ = (x¢0, ..., X0-1, O, ...,
0)Twith1 <l <randxy, #0forv=0,...,l — 1. Now, consider P*(u) := M P(u) M™!
with

X0,0 Xo,1 ... X0,-1
M = 0 ! - 0 @ I,
0 o ... 1

where I,_; is the (r —[) x (r — I) unit matrix (cf. §2). Since M is invertible, P*(0) possesses the
same spectrum as P(0). The lefteigenvector of P*(0) forthe eigenvalue 1is ¥ := (x)T M™! =
(1,0,...,0)T. Analogously, z* is the left eigenvector of P*(r) for the eigenvalue 0. Hence, we
find the factorization

P'u) =% C'Qu) P*Ow) C*u)™! (4.10)
with
C'(u) :=diag (1 —e™™, 1,...,1).

Observe that P*"(0) has the structure

Pi0) = ,
r(0) R(0)

where 7(0) is a vector of length r — 1 and R(0) an (r — 1) x (r — 1) matrix. It follows by the
factorization (4.10) that P*((0) is of the form

Pﬁ(l)(o) =

0 2 R(0)

Consequently, pt® (0) has the spectrum {1, 2u1, . .. , 2i,—1} if and only if P*(0) has the spectrum

{17 l‘lflw AR ) ﬂr—l}-
3. We show next that P*®(0) and PV (0) have the same spectrum. The factorizations (4.9)
and (4.10) imply the following connection between P*((0) and P (0):

POw) = AQu) P*Pw) Aw)™!,

where
A() = C g,(w)™' M~' C*(w)

10 0 ... 0
Z Xo,1 X02 --- X0r—1
= z 0 X02 .- X0r—1 @ I, (z:= e"i“).

z 0 ... 0 X0,r—1
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Since A(0) is invertible, it follows that P*((0) and P (0) are similar, and thus the spectra of
P(0) and PV(0) are connected as givenin Lemma 4.3. [J

It follows that the spectrum of P (0) is likewise given by {1,2"u1, ... ,2"u,_;}. The
requirement that p,, < 2* (as in Corollary 4.2) thus translates into

max{|pl, ..., [pr—1l} < 227" (4.11)

Remark. If m > A, which need not to be true in general, but which we expect to be true
in most cases (A = 1 except if both P(u) and E g, (u)--- E g,(u) have vanishing derivatives
at u = 0), then (4.11) automatically implies that py, the spectral radius of P(0), equals 1. It also
implies that the eigenvalue 1 of P(0) is nondegenerate. Sincie yr > O for all k, we need to have
m > 2 in order to ensure decay faster than (1 + |u|)~'~¢ for | Y(u)|. O

5. Transfer Operators

In this section, we want to investigate regularity estimates for Y in terms of Sobolev estimates,
using transfer operators. The Sobolev exponent s of Y is defined by

s = sup{s; f I Y@ A+ u)? du < +oo).

oo

We assume that the factorization (2.8) and the hypothesis (4.3) of Theorem 4.1 are satisfied. As we
saw in the proof of Theorem 4.1, we have

I Y@l < C+ u)™ITi@l,
where

T](u)= lim Tl,,,(u)
n—+00

and
u

T\ o) := P™ ( :

) pm (;_n) Eg,  0)-- E z,0)a.

It follows that if we can prove an estimate of the type

2"
f | T1@)I* du < C 2%, (5.1)

2"

then Y is in the Sobolev space H® foralls <m — y.
The estimate (5.1) is related to the spectral property of the transition operator 7 that acts on
27 -periodic (r x r) matrices M (u) according to

(T M)Qu) := P™@w) Mw)( P™)*u) + P™w+n) M@ + 7)( P™) (u +7n), (5.2)

where (P™)* := (P™)T. As in the scalar case, this operator leaves a finite-dimensional space E
containing the identity invariant if P has trigonometric polynomial entries (cf. [6]). Let o' be the
spectral radius of 7 restricted to E.

Theorem 5.1.

The estimate (5.1) holds for all y > 12—"1;‘(—:5). Consequently, Y isin H® foralls < m — '2—"150%2).



Regularity of Refinable Function Vectors 311

Proof. Forall n > 0, we have

T" M(u) du = TT" ! Mu) du

-7 -7

<[ G o (@)

2"r u
- / p™ (5) oo P™ Q) MQu)(P™)* 2 y) - - -
2II
(Pm)* ( ) du.
If we take M = I and apply the trace operation, we thus obtain the estimate
2"r
/ Tr[P(”') (E) co P (PMY* Q) . . (PM)* (5)] du < Ce(o +€)"
o 2 2
foralln > 0. Since || A, = +/Tr( A A*) is an equivalent norm for finite matrices, it follows that

/ " pm (g) P("')(Z""u)“z du < C.(o +e)".

-2"n

This last estimate clearly implies (5.1) for all y > Zi’f:% if we observe that Ty () = P™ (u /2)---

P™27"y) T1(2""u) and that T (u) is uniformly bounded on compact sets. [

6. Uniqueness

If the conditions of Theorem 4.1 are satisfied, with Y, < m — 1 for some k < 1, then ¥is
vgell defined and integrable; so Y'(x), its inverse Fourier transform, is well defined as well. Since
Y (u) is obviously a solution to (1.7), Y(x) is a solution to (1.1). Is it the only one? The following
theorem lists some conditions that ensure uniqueness.

Theorem 6.1.

Suppose that the conditions of Theorem 4.1 are satisfied, with infy>1 yx < m — 1, and that
the eigenvalue 1 of P(0) is nondegenerate. Then Y (x) is a compactly supported continuous
solution to (1.1). Moreover, if ¢(x) is any other L-solution to (1.1) such that f ¢(x) dx # 0and
f(l + [xDlld@)| dx < 00, then ¢d(x) is a multiple of X (x).

Proof. 1. We assume, as in Theorem 4.1, that all the entries of P(u) are trigonometric
polynomials. Let us, for this point only, consider 4 to be complex rather than real. The argument
that | P (%)--- P (%) | is bounded uniformly inn > 1 and in u € {z; |z| < 1} holds for complex
u as well. Since || P(u)|| < CeRl"™«! it then follows that for any |u| > 1, 2% < |u| < 2¢*1,

“ P (g) ... P (21") a” < CheRImul(/2+1/4+-412 0 < C'(1 4 ||y 1082 € oRIlmal,

It follows that ¥ () = lim,—. P (%)--- P (%) a satisfies the same bound, implying that Y is a
compactly supported distribution. On the other hand, Y (x) is bounded and continuous because, by
Theorem 4.1, | ¥ (u)| < C(1 + |u])~~¢ for real u. Note that ¥ is a C>—function since its Fourier

transform has compact support.
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2. If ¢(x) is another L!-solution, then <2>(0) # 0 must be an eigenvector for P(0) with
eigenvalue 1; so ¢(0) = c a for some ¢ # 0. Since [ |x|||¢(x)]|dx < oo, we also have | ¢(u) —
(2)(0)” < C|u|. Hence, for any fixed u,

- wn =i | P(2) - P (%)[3(2) 40
< i | P (5) - P () B (&) B (3)

[9(z)-00]|

__<_ C’ llm [Ce,|u[(pm +€)"C1C Iul ] = 0
n—00 2-n

since p, <2. Thus,p=c Y. O

All the examples studied in the literature so far correspond to P(x) in which all the entries
are trigonometric polynomials, and that is why we have mostly restricted ourselves to this case.
Nevertheless, most of our analysis carries over to the nonpolynomial case. In [23], the original
version of Theorem 2.1 does not require that ¢, be compactly supported nor the entries of P be
trigonometric polynomials; only sufficient decay in x for ¢(x) and a sufficiently high regularity
of P(u) are required. As shown in §3 (where the P(u) were not restricted to trigonometric
polynomials), this then implies | Y(u) — Y (0)| < Clu| (since P is Holder continuous in u = 0
with Holder exponent at least 1). This, in turn, is the only ingredient necessary in point 2 of the proof
of Theorem 6.1, which establishes uniqueness of the solution within a certain class of functions with
mild decay. Compact support of Y (x) is, of course, no longer assured.

7. Convergence of the Cascade Algorithm
If P(u)ism (m > 1) times factorizable (in the sense of [23]), that is,

1

P = o = ey

Cg,u)--- Cg, (2u) P™w) Eg, () E g,u),

if the spectral radius of P™(0) is less than 2, and if for some fixed k

o (5) -0 (2)] <

then our analysis in the previous sections has shown that

—110 su|
Vk—k g2 uP

tw=tm P(%) - P(2) o

(with (x)T a = 1) is well defined and
I @)l < C (1 + |u))™™ .

Moreover, we have || ’i‘(u) - T(O)II < C |u| for |u| < 1. So far, this convergence is only pointwise
in the Fourier domain. For practical applications one is often interested in convergence of iterative
schemes that generate the function Y in the “x—domain.” One has to distinguish two types of
schemes:

N

e The cascade algorithm, introduced in [8], consists of iterating the mapping f — Y, _,

P, f(2x — n) on a well-chosen initial function vector f(x).
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e The subdivision or refinement algorithm consists of iterative refinements of a “vector se-
quence” 8y (k) by rules of the type

8.27"k) =Y P} _y, 8,127 m)
m

(see [4] or [11] for an overview of subdivision schemes).

In the scalar case, it can easily be checked that n iterations of the cascade algorithm, initiated
on the “hat-function” A(x) := max{0, 1 —|x|}, are equivalent to the linear interpolation of the points
generated by n iterations of the subdivision algorithm, initiated on a Dirac sequence 8 (k). However,
the subdivision process is often preferred because of its local nature.

In the vector case, these relations are more complex: if one iterates n times the cascade
algorithm on an initial vector function of the type A(x) b where b is a fixed vector, then the result

®, is expressed in the Fourier domain by

®,(w)=AQ ") P (%) .. P2"u) b, .1

In contrast, if one iterates n times the subdivision algorithm on an inital vector sequence 8¢ (k), the
resulting sequence s, (k) is related to 8o by

(3, )" = (30w))T P (;) o PQ"u).

Here (3, (u))T is the row vector composed by the Fou~rier series of each component of s,. After
linear interpolation, we obtain a row vector function (®,(x))T given by

(8,)" = AQ"u)(3ow))" P (5) Pe™w.

This shows that the jth component of ®, can be obtained by applying the subdivision algorithm
on the initial vector sequence (so;(k) = & ;0 (that is, the sequence - --0001000- - - in the jth
component and the zero sequence in all other components); then taking the scalar product with the
vector b and interpolating linearly gives the resulting scalar sequence.

Let us now investigate the convergence of the cascade algorithm, keeping in mind these more
sophisticated relations with subdivision schemes. In order to simplify the study of convergence, we
shall use the function E‘—“;(Z;-Q as a starting point, rather than the hat function A (x) , which is equivalent
to considering bandlimited interpolation of the sequences generated from the subdivision scheme.
We thus define

@z'l'(u) ‘= Xewm @) X (0) = Xj_nm@) @, <AI>:'1'(u) = P (;) @:il (-;-) (7.2)

Note that <AI>0 ) = ’i‘(O). The following result deals with the convergence of the cascade algorithm
in the uniform norm.

Theorem 7.1.
Let P be anr x r matrix with the assumptions of Theorem 4.1. If y; defined in (4.4) satisfies
Yk < m — 1, then we have

lim & — ¥ =0.
n—>0oo0
As a consequence @3‘1‘(x) converges uniformly to Y (x).
Proof. We have
2 bl _ u u
" W) = Xonm @ "u) P (5) P (57) a.
A bl - .
With the assumptions of Theorem 4.1, we already know that ®,  converges pointwise (and uniformly
on compact sets) to .
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Using the factorization of P (u), we obtain

1 m
Fame] CaW Caw

. pm E ... pm in E:z,',,,_, E; ---Emo in a,
2 2 2 2

19," @l < i+ W)™ xxm@™w) | P™ (3) - P™ ()]

") = Apomm 2 "u) [

and thus

Now, from the assumptions of Theorem 4.1, we have
-n (m) Z) (m) (i ” "
xerm @) | P (3) -+ PO ()] < cat +
where C, does not depend on n. We thus have the uniform estimate
A bl
1@, @l < CA+ |u)™™+%,
Since m — y; > 1, we can apply dominated convergence and the result follows.  []

Remarks. 1. Because the hat function A (x) and the sinc function f“:i%‘l agree on integers,
one easily checks that the vector functions ®, defined by (7.1) (with b replaced by a) and the
y P y
bandlimited ‘bg'l' agree in the dyadic rationals 27"Z,

®,27"k) = ®27"k), kez

Now @, is just the linear interpolation of the ®,(27"k); because Y is Holder continuous and
sup, || ®,(27"k) — Y (27"k)|| > 0asn — oo, it follows that ®, converges uniformly to Y as
well.

2. The same arguments will also give L2—convergence, assuming only y; < m — %

3. If m — y > m’ + 1, convergence results in C™ can also be obtained starting from the same
cardinal sine function.

4. The graphs for the examples in §7 are, in fact, graphs of close approximations ®, to the

true solutions ¢ obtained by the subdivision iteration described just before in Theorem 7.1. [

8. Examples

In this section we want to apply the analysis of the previous sections to various examples. We
will see that the known smoothness of B—splines with multiple knots and of DGHM scaling functions
can be recovered. Further, we construct a new example with controlled smoothness.

8.1. B-Splines with Multiple Knots

Letr € Nand m € Ny be given fixed integers. We consider equidistant knots with multiplicity
r,x; := |l/r] ( € Z), where | x| means the integer part of x € R. Let NJ*" (v € Z) denote
the cardinal B-spline of order m and defect r with respect to the knots x,, ... , Xy, given by the
following formulas.

Form =0andv =0,...,r —2let N% := D""'"8/(r — 1 — v) and N*”, := &, where
& denotes the Dirac distribution. Form > 1 and x, = x,4+» = 0, we define N according to the
distribution theory by

Dr-m—l—va

N™T o= .
v r—1-—v
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Further, let N,l’_’l = (X10,1) + X©0,11)/2. Assume that for/ € Zandv = 0,...,r — 1 we have
N‘}i,, := Ny"(- = I). Now, form > 2 and x,» > x,, let N™" (v € Z) be defined by the recursion
formula

Gm — %) NIV (x) := (6 — ) NIV (x) 4 (pm — %) NI ().

Note that forv € Zand m € N
NN =N™(—=1) (e
and that form > r
N o 1
R = [ NP av=
o0 m

It is well known that for m > r we have N™" € C™""!(R). We put N,, := (N","")f,;(l) and
N, := (N™7)’Z;. In particular, we obtain
) (iu)! . T
1 T .
As shown in [3], the spline functions N)"" (- —=1) (m > r;l € Z;v =0, ...r — 1) form a Riesz basis

of their closed linear span V. Furthermore, Vj, provides approximation order m.
The vector IN,, satisfies a vector refinement equation

NnQu) = Pp) N,@),

where the refinement mask P,, is of the form

No() = (

1
P,(u) = o C z,Qu) - C g, ,(2u) Pou) C g, )"+ C g,u)™" 3.1
with matrices C g, defined by the vectors of spline knots x; := (Xm—x, ... , Xm—kar—1)T (k =
0,...,m — 1) via (2.2) and with the refinement mask of N
Po(u) := Py(0) =diag 2"°",...,2%9

(cf. [23]). In particular, we have the recursion
1
P,(u) = ) CQu) Pp_y(u) Cw)™',

with C defined by (X, ... , Xm4r_1)T, where P,,_, is the refinement mask of the B—spline vector
N,,_, oforderm — 1.

Now, let us apply the theory of the previous sections to the refinement mask P,. Repeated
application of Lemma 4.3 yields that P,,(0) possesses the spectrum {1,2"~1=™ ..., 2-™+1}, Since
| Po(u) — Po(0)|| < C|ul® holds for all @ > 0, we have by Lemma 3.1 pointwise convergence of

i [T Po(5) o

with @ := (0, ... ,0, DT for all u € R. Hence, it follows for all m € Ny that

A z u
Tp(w) = lim E P, (7) a, 82)
where a:=(0,...,0,1,..., )T forr >m+1and a:=(1,... ,DT forr <m + 1, is at least
N e’ e, e’

r—-m-—1 m+1
pointwise convergent. As we will see later, Theorem 6.1 implies that for m > r the solution Y, (x)

coincides with N, (x).
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Observe that for r = 1, we have the well-known refinement mask for cardinal B—splines

Po(u) = (1 +2€_‘") .

Now, assume that » > 2. Then p( Py(0)) = 2"~! > 2, such that we cannot apply our analysis in
Theorem 4.1 to the factorization (8.1). But using Lemma 4.3, we find that P,_;(0) with

1
P,_(u):= > Cg,, ,Qu:--- Cg, (2u) Pou) Cg, )" - Cg, . )"

possesses the spectrum (1, 1, 2-1 . ,2“’+2}, that is,
p(Pr_1(0) = 1.

Note, that P,_; isthe refinementmask of IN,_;. Thus, we can apply Theorem 4.1 to the factorization

1
P,u)=—— Cg,Qu)--- Cg, (2u) P,_yw) Cg, ()" C g, )"

m—r+1
and find that
I Xm@l < C A+ Jup=mr=tn
with
71 = log sup “ P,_, (%)“ 8.3)
Lemma 8.1.

For y, given in (8.3) we have y, = 0.

Proof. Observe that N; ™' is defined by the knots 0, ... , 0, which means Nj~"" = 2.
e e’

Further, N‘f“" (v=1,...,r — 1), defined by 0,...,0,1,...,1, coincide with the Bernstein
FEE R i —

r—v v

polynomials of degree r — 2, that is,

-2
Nr—l,r — r
v ) (v -1

Hence, the refinement mask of IN,_; can explicitly be given by

1 oT
P "““’z( 0 Ar—z(u)>

)xv—l (1 ___x)r—l—v‘

with
1 .
A, _r(u) = 5( A(,)_2 + A,1_2 e_”‘),
where A° ,and A!_, are triangular matrices of the form

wa=(5 (), A== (7))
2 \2 i i\j=0 RV AN Y i,j=0

(see, e.g., [21]). Recall that the spectral norm || V||, of a matrix V := (y; nn j=1 can be estimated
by the product of the matrix 1-norm and the matrix co—norm

n n
IVi=max Y jvl, || Vileo := max Y |vyl, (8.4)
1<j=<n = 1<i<n =
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that is,
IVIZ= 1 VI Ve
(see, e.g., [20]). Since all entries of A°_, and A!_, are nonnegative, it follows that

1 (1 () 1 (r—2—j
sup | A, 2@l = | 42Ol = max >3 (E (f ) + e ( 7 ))

0 i—J

r—2

1 <[ 1 r—=2—j7\ 1 1
:F;(i)+2r—l—j2( P >=E+—2'=1'

i=j

Analogously, we find that
sup | Ar2(Wlloo = | Ar2(0)|loo = 1.
u

Hence, we have sup, || P,_1(u)|2 = 1, and thus y; = 0. d
By Theorem 4.1 it follows forv =0, ... ,r — 1 that
1Emll < €A+ fuph™*1,

that is, the elements of Y, are (im — r — 1)—times continuously differentiable. Since y; <m —r,
Theorem 6.1, ensuring the uniqueness of the limit, yields form > r that Y ,,(x) = N, (x). Further,
we also have uniform and L2—convergence of the associated cascade algorithm.

We want to check whether the smoothness result can be improved by Corollary 4.2. By

m—r—1

IEg, @) Eg,w)— Eq, @) Eg,@l=| > A-e™* G4 4
k=1

and || G(l)m_,,..., x,/l > 0, we have (4.8) only with 8 = 1. Hence, our result cannot be improved.
8.2. DGHM-Scaling Functions

Now, we consider the example of two scaling functions treated in [10]. In the special case
s = 51 = s, of their construction, let¢ be a solution of (1.7) with the refinement mask

1 . . )
Pu) := 2 (Po+ Pie ™+ Pye ™ + Pye™), (8.5)
where
2_45-3 2—45-3
Py = —sz(siz) 1 P, = _sz(siz) 0 ,

_36=DE+DE?=3s—1)  3s24s—1

’ _36-1 !!s+1!(s2—s+3) 1
4 (s+2)? 2(s+2) 4(s+2)

0 0 0 0
P, := =D+ =s+3)  3s2+s—1 |’ Py := _3-D6tDE=3-1) o ]
4(s+2)? 2(s+2) 4(s+2)
The refinement mask P(u) can be factorized as

Pu) = % C z,Qu) C z,2u) PPWw) C z,w)™" C g,w)7™", 8.6

where C g,, C g, are defined by x := (—ﬂjir;zl), DT, z; := (1, DT via(2.2) and

1 2 0 .
P(z)(u) = = ( ) 2 2 2 ) (z:= e—“‘)‘
(s2—35—1)z2+(—10s*—8s+6)z+ (s =3s—1)
2\ TS 4s(1+2)
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Since P (0) possesses the spectrum {1, 4s}, by Lemma 4.3 the refinement mask P(0) has the

spectrum {1, s}. Observe that (1, (is:_—lzﬁ)T is a right eigenvector of P(0) for the eigenvalue 1, so

Theorem 3.2 yields that for |s| < 2 the infinite product
~ LJ u 1
$@w) = lim H P(3) ( 1y ) ®.7)
= s+2

converges pointwise for u € R. By simple computations, we find that P does not satisfy (3.1) with
a > 1, such that convergence of the infinite product cannot be shown for |s| > 2. In order to apply
Theorem 4.1, we even need that |[4s| < 2 and hence |s| < 1/2. As before, Corollary 4.2 will not
provide an improvement of the results since P® does not satisfy (4.7) with o > 1.

We apply Theorem 4.1 and obtain for k € N the estimate

el < C (1 + |u])~2tr
with

o= b | 22 (2) o (3)]

We show the following result.

Lemma 8.2.
For a fixed s with |s| < 1/2, there is a number k € N such that y, < 1.

Proof. 1. Since P®(u) is of the form
) — 1 0
PP = ( a(u) bu) )

(s2=3s —1)e 2" 4+ (—10s2 — 8s + 6)e ™ + (s2 —3s — 1)
2(s +2) ’

with

a(u) :=
b(u) :=2s (1 +e¥),

we obtain

SOR0

By induction it follows that

]

SN
Q

—_

NIR

S~

+

Q

—_
INEY

S~

>

—_

[S1ES

~

S

—_
[S1HS]

~

-~ <
—~
EtS

~
SN—

u 2) (U ! 0
PR(3) P (3) = ( Shia($) T2 (3) Tib(3) ) |

2. Note that the spectral norm of a matrix V' can be estimated by the Frobenius norm of
V.= (vij)ﬁj=1, that is,

n 1/2
1V < (Z lvij|2) = V.

ij=1

We will show that for any fixed s with |s| < 1/2 there is a k € N such that

|72 (3)- P2 ()], <

1
% log, sup
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First, observe that by := sup, |]'];‘=1 b(27'u)| < |4s|*. Further, for
I—

>a(3) e (%)

ay = sup

we obtain the estimate

|4s|l—1
2(s +2)

k
laxl <supy |((s2 ~3s— 1) (1 + e 2/?) 4 (105> — 85 + 6)e—""/2’)|
=1

k

< 21s? — 35 — 102 _ -1
_2(s+2);(|s 35 — 1] + | — 10s 8s+6|)|4s|

Since |s| < 1/2, we have 2|s?2 — 3s — 1| < 9/2 and | — 1052 — 85 + 6| < 38/5. Thus, \ ,

121 = _ 12 k
— ) s
T +2) 10 Z' 30 ;m
For the Frobenius norm of P® (u/2)--- P (u/2*) we find
@ (%Y... po (% H 2 20172
sup | P (3) -+ PP (5)], = @+l + loel®

\

! 1/2
121
<( ( 214 - ‘) +|4s12") :

3. First, we consider the case that s is fixed with 0 < |s| < 1/4. Then,

o(5) - ro (@), = 2+ (24))

2
Now, choosing k such that k > 1 log, (2 + (125 ) ) (ehis is satisfied for k > 5) we obtain that

) Pl = om0 (30)) "<

4. Now, we deal with the case that s is fixed with 1/4 < |s| < 1/2. Then [ax| < 1320‘ k|4s|-1
such that

ao P2 (2) P (8], = (14 () )

Choosing k such that log, |[4s| < 1+ w (this is satisfied, for example, if log, |4s| <

1- %‘ok—giff), it follows that

121 \2
(2k — 2) log, |4s| + log, ((_3-0—,() + |4s12) <2k -1

and hence

1+ (13201 k) 45|72 4 |4s|* < 2%,
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For the Frobenius norm it follows that

P (5) -+ P2 ()], < 55 Yo (1 + (13%1")2 jasP*2 + |4s|2’<> <1 O

Since for |s| < 1/2 there is a k € N such that y, < 1, it follows that the elements of the
solution ¢ of the the vector refinement equation (1.1) with the refinement mask P defined in (8.5)
are continuous. The uniqueness of the solution is ensured by Theorem 6.1. Further, by the analysis
in §7, we have uniform and L?-convergence of the associated cascade algorithm.

1
~1
j log, sup

Remarks. 1. The continuity of ¢ and ¢, for |s| < 1/2 is also proved in [10] by means of
fractal interpolation. In their paper it is already shown that ¢, ¢, are Lipschitz continuous for |s| <
1/2, that is, there exitsan M < oo suchthatforallx, y € [0, 1] we have |¢,(x) —¢,(¥)| < M |x —y]|
(v =0, 1). Further, if 1/2 < |s| < 1, then ¢, ¢; have the Holder exponent @ = —log |s|/log 2.

2. The solutions ¢y and ¢, are symmetric, and they have a very short support. In particular,
supp ¢o = [0, 1], supp ¢; = [0, 2], and we have

$o = ¢o(1 — ), ¢1 =12 - ).

The closed linear span Vj of the integer translates of ¢ and ¢; provides the approximation order 2.
Using the results in §2, this fact is a simple consequence of the factorization (8.6) of the refinement
mask P. Note that in [10] it is proved that the hat function A(x) := max{0, 1 — |x|} is contained
in Vj, which already implies that V;, has approximation order 2.

3. In the case s = —0.2, it is shown in [10] that the integer translates of ¢y and ¢, form an
orthogonal basis of Vp. [

8.3. Scaling Functions with Controlled Smoothness

We consider solutions of the vector refinement equation (1.1) with the refinement mask

1 e~ +2e—2iu +e—3iu (e_'"—28"23i"+8_5i“)
(u) = -4_ 1 —iu
— e
32

- }1 C 2,2u) C 2,2u) POWw) C 2, C g,

where

N—

1-— —iu 0 —iu 1
Cg,u)= Cg ) := ( (;" 1 ) , PO@u) :=e ( sinw/2? ) .
—7 3

Observe that P®(0) and P(0) possess the spectra {1, 1} and {1, 1/4}, respectively. Hence, by
Theorem 3.2 the infinite product

T 1
Pw) = ,.IL“QOID P(%) ( 1/96 )

converges pointwise since (1, 1/96) is a right eigenvector of P(0) for the eigenvalue 1. Further,
considering the product

P®w) p? (u) 3 ( e~u/2 g e e ) 1—624“/2 - e~3in/2 )

2 - eAiu/Z(l_e—iu)2 + i (I_e-iu)z e‘iu/Z(l_e—m)2 + —3iu/2
e
32 32 64

we find for the matrix 1-norm and the matrix co—norm (defined in (8.4))

pow P2 (2)] <2 | P o ()

33
< —.
oo 16

sup
u
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Hence, for the spectral norm it follows that

P 7 (),

< (sup
u

Now, applying Theorem 4.1 with

sup
u

’ P(Z)(u) P® (g)“l Sl:p

POy p? (%)Ho) v < %%

1 u 1 33
— _ 2) @ (Z _ ~
v2 = 5 log, sup ” POw) P (2)”2 < 5 log, (16) 0.52219706
we have that
@)l < € (1 + lu)~2,

that is, the elements ¢g, ¢, of the solution ¢ are continuous functions. For the support of ¢ and ¢;

we obtain
2 10 1 5

Furthermore, we have the symmetry relations
02 +x) = ¢o(2 — x), $1(1 4+ x) = ¢1(1 — x).

The graphs of ¢ and ¢, are displayed on Figure 1 and Figure 2. It can be shown that the integer
translates of ¢y and ¢; form a Riesz basis of their closed linear span V;. Then factorization of the
refinement mask already implies that V, provides approximation order 2 (cf. §2). In particular, the
equalities (2.7) are satisfied with y, := (1, 0)T and y, := (2, 0)T. Actually, the approximation
order 2 is already provided by the closed linear span of the integer translates of ¢y. We have indeed

p(0)=(i ?), P<n>=(i _01),
128 4 128 4
(DP)(0)=<‘02" _OL), (DP)(n>=(g 0)

3 3

so that for odd /

$@2nl) = P(n) d(nl)
and hence &0(2711) = 0. For even [ we have

$@2rl) = P(0) p(xl),

that is, do(27l) = do(rl). Thus, $o(2rl) = O for [ € Z \ {0}. Analogously, for the derivative of ¢
it follows for odd / that

N 1 N N
(D)D) = 5 (O P)(w) d(xD) + Plx) DH(xD)).

so that (DqAbo) (2rcl) = 0. For even [ we have
~ 1 ~ a
O$)@r)) = 2 (O P)O) dixD) + PO D)D),
that is, (Do) (27r1) = 1(Dgo) (rr1). Thus, gy satisfies the Strang-Fix conditions of order 2,

do@rl)=0 (A €Z\{O]), do #0,
OHQ2rl) =0 (€z).
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FIGURE 1. Graph of ¢y.
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FIGURE 2. Graph of ¢;.
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Finally, we note that, in this example, there is no function f in the space Vj that is already refinable by
itself. In most other examples considered in the literature, even if the elements of ¢ are not refinable
by themselves, there exist refinable functions in the span of their integer translates; in the spline
example (see §8.1) the space Vj, spanned by the B—splines of order m with r—fold knots, contains
the cardinal B-splines N,,_x (k = 0,...,r — 1), in the case of the DGHM-scaling functions, Vj
contains the hat function.
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