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(Received 26 November 1979; accepted for publication 25 January 1980) 

Using a family of coherent state representations we obtain in a natural and coordinate
independent wayan explicit realization of a projective unitary representation of the symplectic 
group. Dequantization of these operators gives us the corresponding classical functions. 

1. INTRODUCTION 

Canonical transformations and their relations to quan
tum mechanics have been studied extensively and in many 
different settings. 1-10 See, for instance Refs. 2 and 3 for a 
representation in terms of coherent states, Ref. 4 for applica
tions of this treatment of the homogeneous linear canonical 
transformations, Ref. 5 for an application of the inhomoge
neous linear canonical transformations, and Ref. 6 for a rela
tion with Bogoliubov transformations and quasi-free states 
on the CCR algebra. In Ref. 7 it was advocated that the most 
natural way to study canonical transformations (we are only 
concerned with the linear ones here, even if we don't specify 
so further on) is (1) to work in a phase space realization, and 
(2) to consider a suitable family of closed subspaces of 
L 2(E;dv), the square integrable functions on phase space, 
instead of only one Hilbert space as the basic setting. We 
follow this point of view here, and use it to derive a simple 
and natural expression for the operators of the symplectic 
group, the so-called metaplectic representation. This meta
plectic representation was constructed already some ten 
years ago by Bargmann2 and Itzykson3 independently, who 
both used a holomorphic representation of the canonical 
commutation relations. Another approach can be found in 
Ref. 4. In this latter treatment, however, a certain class of 
linear transformations cannot be treated by the direct for
mula, and can only be recovered by taking products oflinear 
transformations outside this class; this is not the case in ei
ther Refs. 2, 3, or the present paper. Our treatment differs 
from the ones given in Refs. 2 and 3 in that we obtain the 
representation almost automatically from the structure of 
the family of closed subspaces of L 2(E;dv) mentioned above. 
In fact, for any state 1/1 with wave function ¢J", in the coherent 
state representation, we obtain the image Ws¢J", of ¢J", under 
a canonical transformation S simply by a substitution 
(Us¢J",)(v) = ¢J",(S -I v), followed by a projection. This pro
jection has to be introduced because the naive substitution 
above does not always leave invariant the Hilbert space of 
coherent states. It turns out that this succession of two sim
ple operations (a naive substitution, and a projection back 
onto the right space when things threaten to go wrong be-
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cause the substitution has taken us out of it) is, up to some 
constant factor, a unitary operator. The family of these oper
ators gives us our projective representation. We work with 
intrinsic and coordinate-free notations differing from the no
tations used in Refs. 2, 3, or 4. At the end of the paper we 
rewrite some of the results in the more familiar x-p 
notations. 

Following the prescription given in Ref. 11 for the de
quantization of these operators, we proceed then to compute 
the classical functions corresponding to the symplectic 
transformations. This calculation of classical functions for 
symplectic transformations has been done for one-param
eter subgroups of the symplectic group.8.9 One then only 
catches a small part of the symplectic group at a time; more
over, since the group is not exponential, not every symplectic 
transformation can be considered as an element of such a 
one-parameter subgroup. In Ref. 10 a general formula for 
the classical functions corresponding to symplectic transfor
mations is given, valid whenever the symplectic transforma
tion S is nonexceptional, i.e., whenever det(l + S) # O. The 
case of an exceptional S is also tackled in Ref. 10 but in an 
indirect way. In this paper we derive an explicit expression 
(7.1) or (8.1) which holds for all cases, whether S is excep
tional or not. Of course, if we assume S to be nonexceptional, 
our result simplifies, and we fall back on Huguenin's result 
[see Eq. (7.2)]. 

The paper is organized as follows: In Sec. 2 we intro
duce some definitions and notations, which are essentially 
those used in Refs. 7 and 11. We also state our results at the 
end of this section. In Secs. 3-6 we construct a unitary pro
jective representation of the symplectic group using the fam
ily of Hilbert spaces mentioned above. In Sec. 7 we dequan
tize these operators to obtain the corresponding classical 
functions. Up to Sec. 7 everything is written in intrinsic and 
coordinate-free notations. In Sec. 8 we show in which way 
the results can be rewritten in the usual x-p notations. Sec
tion 9 contains some applications: calculation of the classical 
functions for some one-parameter subgroups of the symplec
tic group; a method for calculating any matrix element of the 
evolution operator associated to a quadratic Hamiltonian. 
We end with some remarks. 

2. DEFINITIONS AND NOTATIONS 

Note: Following A. Grossmann, we are borrowing most 
of the following notations from D. Kastler, who introduced 
them in a slightly different setting. 12 
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We denote by E a real vector space of even dimension 
2n < 00. On this vector space a symplectic form a (i.e., a 
bilinear, antisymmetric map from E xE to R) is defined, 
which we assume to be nondegenerate [i.e., a(u,v) = 0, 
't/uEE:=;.v = 0]. Using this symplectic form we can define an 
affine function q:J on E xE XE 10.13: 

q:J (u,v,w) = 4(a(u,w) + a(w,v) + a(v,u», 

which can be interpreted as the surface of the oriented trian
gle with vertices u,v,w, and which plays a role in the so-called 
twisted product (see for instance Ref. 11). 

We normalize the invariant measure dv on E by requir
ing F2 = 1, where F is the symplectic Fourier transform 

(F f)(v) = 2 -" f dw eia(v,w) few) . 

Let JY be the Hilbert space L 2(E;dv). 
On JY we define a family of unitary operators 

I W(a);aEE J by 

(W (a)t/!)(v) = eia(a.v)t/!(v - a) . 

These operators W(a) satisfy the relation 

W(a) W(b) = eia(a.b)W(a + b); 

hence, they form a representation of the Weyl commutation 
relations. This representation is not irreducible, but we can 
build a family of irreducible subrepresentations by introduc
ing complex structures. 

A linear map J:E -+ E is said to be a a-allowed complex 
structure if 

J2 = -1, 

a(Jv,Jw) = a(v,w), 't/v,w,EE, 

a(v,Jv) > 0, if v:;fO. 

For any such a-allowed complex structure we define the 
function 

flAv) = exp [ - ~ a(v,Jv)] . 

These fl J are elements of JY. We define now the following 
subs paces of JY: 

JYJ = I t/!.flJ It/! is holomorphic w.r.t. J 

(i.e., VJat/! = iVat/!, 't/ aEE) and t/!.fl JE.!irJ . 

These JYJ are closed subspaces of JY, 14 which are left 
invariant by the W(v). Furthermore, the restrictions WAv) 
= W(v) I W J of the W(v) to the spaces JYJ form irreducible 

representations of the W ey I commutation relations. 14 (The 
notations used in Ref. 14 are different from the ones used 
here. The reader who would want to compare should make 
the obvious unitary transformation.) 

In each of the JYJ we can consider the elements 

fl ~ = W(a)flJ; 

they are in fact the coherent states with respect to the choice 
of complex structure (or equivalently of complex polariza
tion) J. The closed span of the fl ~ is the Hilbert space JYJ ; 

the fl ~ have moreover the following useful "reproducing 
property,,14.15: 

(2.1) 
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As a result of this any operator AJ on JYJ can be represented 
by its matrix elementsAAa,b) = (fl~, AJfl ~): 

'PE.!irJ:=;.(A J 'P)(a) = f dbAAa,b)'P (b) . 

Because of this property we also call A (-,.) the kernel of the 
operator A. 

Whenever a functionf on phase space is given, we can 
compute its quantal counterpart on the Hilbert space JYJ : 

QAf) = 2 -" f dv(F f)(v) WA - v/2); (2.2) 

this is the usual Weyl quantization procedure when an irre
ducible representation of the Weyl commutation relations is 
given. We can rewrite this expression as l5 

QAf) = 2n f dvf(v)IlAv) , (2.3) 

wherellAv) = WA2v)ll,and(1l 'P)(v) = 'P( - v) for any 'P 
inJY. 

Note that both expressions (2.2) and (2.3) can be used to 
define Q (f) as an operator on the big space JY (at least for 
reasonable f) which, when restricted to the different JYJ , 

yields QJ(f) again.? The correspondencef -+ QAf) can be 
inverted, i.e., an operator AJ onJYJ can be "dequantized" as 
follows I I: 

(2.4) 

with 

(2.5) 

It is easy to check that the dequantized function of QJ (f) is 
always f, regardless of the chosen J. 

In these notations our results can be stated as follows: 
For any symplectic transformation S (i.e., any linear map on 
E leaving a invariant; see Sec.4) we have a classical function 
Ws given by 

ws.Av) = (det[(1 - iJ) + S(1 + iJ)]) 1/2 

X f dbflAb + Sb - 2v)ei<p [(b 12).v,(Sb 12)] 

[see Eq. (7.1); we have chosen one fixed complex structure 
J]. Here one can choose either of the two square roots of the 
determinant. If there is no good reason to do otherwise, we 
choose the one with argument in] - 11"/2,11"/2]. If 
det(1 + S):;fO, this simplifies to give [see Eq. (7.2)] 

2" WSJ(v) = e4ia(,'.(I+S) 'd 

, V det(1 +S) 

which is the result obtained in Ref. 10. 
The operators WJ (S) in JY J which are quantizations of 

these functions are given by 

WJ(S) = 2 - n(det[(1 - iJ) + S(1 + iJ)]) 112 

X f db Ifl ;b)(fl ~ I 
[see Eq. (7.4)]. Another form of this operator can be found in 
Sec. 6. These operators form a unitary projective representa
tion of the symplectic group: 
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WAS\)WAS2) = pAS\,S2)WAS\,S2)' 

The multiplier p takes only the values ± 1; given S\,S2 it is 
possible to determine the sign of P(S\,S2) once one has fixed 
one's choice of the square roots of the corresponding deter
minants det[(1 - iJ) + S (I + iJ)] (see Sec. 6). 

Moreover, the operators are the representation on the 
quantum level of the linear canonical transformations on 
phase space. We have indeed for any symplectic transforma
tion S (the symplectic transformations are in fact just the 
linear canonical transformations) and for any functionf on 
E: 

WJ(S)QJU)WY(S) = QASf) with Sf(v) = f(S -IV) 

[see Eq. (6.4)]. Analogous relations hold for the ws.J : 

WS"Jows,.J = pASI,S2)WS,.S,.J , 

ws.Jo fow!.J = Sf , 

where ° denotes the twisted product (see, for instance, Ref. 
11). These formulas depend on the choice of J. The relation 
between the WS,J and the wS,J' are given in Sec. 9. 

3. PROJECTION OPERATORS ON THE!It"J 

Since the!lt"J are closed subspaces of !It", there exist 
orthogonal projection operators PJ mapping !It" to !It''J. 
With the help of the n~, these projection operators can be 
explicitly constructed. 

Indeed, since the n ~ span the subspace !It''J' we have 

PJ I/' = O¢=:::?(n~, 1/') = 0 . 

On the other hand, we have also Eq. (2.1): 

PJ I/' = I/'<;=:::::>I/' (a) = (n~, 1/') . 

It is now obvious that PJ is given by 

(PJI/')(a) = (n~,I/'). (3.1) 

Written more explicitly this means that the projection PA' of 
any square integrable function I/J on K J is given by 

(PJI/J)(a) = f dv n a(v) I/J(v) . 

This function PJI/J has automatically the right holomorphy 
properties. 

This can also be written as (in Dirac's bra-ket notation) 

PJ = f InDda(n~l· 
Since on the other hand the K J are invariant under the 
W(v), we have 

PJ W(v) = WAv)PJ, 'VvEE. (3.2) 

4. THE SYMPLECTIC GROUP AND ITS NATURAL 
REPRESENTATION IN L 2(£;dv) 

The symplectic group Sp(E,o) is defined as the set of 
real linear maps from E to E which leave 0 invariant: 

SESp(E,o)<;=:::::>o(Sv,Sw) = o(v,w), 'Vv,wEE. 

Note that for any given complex structure J, and for any 
SESp(E,o), the map SJS - I is again a complex structure. 
The converse is also true: Whenever two complex structures 
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J, J' are given, there exists a symplectic transformation Sin 
Sp(E,o) such that J' = SJS - I [For any J one can construct 
aJ-symplectic basis of E, i.e., a basis! el, .. ·,en ,fl, ... ,fn I in E 
such that o(ejte) = 0 = o(/;,fj)' o(e;,fj) = Dij andfj 
= Je j' The map S mapping a J-symplectic basis to a J'-

symplectic basis is in Sp(E,o), 16 and satisfies SJS - I = J'.] 
A symplectic transformation always has determi

nant 1. 16 Since any complex structure J is obviously in 
Sp(E,a), we have in particular det J = 1. This will be used in 
calculations later on. 

As in the case of the Galilei group or the Poincare group 
we can define the inhomogeneous symplectic group 
ISp(E,a) by taking the semidirect product of Sp(E,a) with 
the translation group on E: the elements ofISp(E,a) are pairs 
(S,a) with SESp(E,a), aEE; the product of two such pairs is 
defined as 

(S,a)(S',a') = (SS',sa' + a). 

The natural representation of Sp(E,a) on L 2(E;dv) is 
given by 

(Us!f/)(v) = !f/(S -IV). 

This is obviously a unitary representation ofSp(E,a). Note 
that the K J are not invariant under Us unless SJS -\ = J. 
An easy calculation yields 

(4.1) 

Taking into account the definition (3.1) of the orthogo
nal projection operators PJ , we see that this implies 

(UsP1'n~)(a) = (n~.-la,nD 

hence, 

= (n~1's I ,n~~s I) 

= (PSJ 'S' UsnD(a); 

UsoP1' i,;vJ = PS1's I oUs i;fJ . 
It is easy to see that 

Us W(v) = W(Sv)Us . 

(4.2) 

(4.3) 

Hence, we have also a unitary representation ofISp(E,a) on 
L 2(E;dv) given by 

US.a = W(a)Us ' 

5. INTERTWINING OPERATORS BETWEEN THE K J 

(SEE ALSO REF. 7, AND IN A SOMEWHAT DIFFERENT 
CONTEXT REF. 17) 

We will use the natural representation ofSp(E,a) on 
L 2(E;dv) to define a projective representation on each K J. 
Since the Us map each K J to KSJS 1, we will need some 
device to map everything back from KSJS I to K J. This 
device will be given by the maps intertwining the WAv): 
moreover, we will be able to construct these intertwining 
maps explicitly. 

Let any two J, J' be given. Since the WAv) form an 
irreducible representation of the Weyl commutation rela
tions on K J, and the same is true for the W1' (v) on 71"1" von 
Neumann's theorem tells us there exists a unitary map Tj' J 
fromKJ to 71"1' intertwining the WAv) and W1'(v). Henc~, 

T1'.J WJ(v) = W1'(v)T1'.J . (5.1) 
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We proceed now to compute these TJ'", 
Combining T ,~,; [Eq. (5.1)] T ,~,; with Eq. (3.2), we see 

that 

PJ' IwJ ;;,; WJ' (v) = PI' lx, W,(v)T ,~,; 

= WAv)PJ' I}(,T ,~,; . 

Hence, the operator PI' I ,w ,T ,~';E,qjJ (dY'r ) commutes with 
all the WI' (v) , which implies that it is a multiple of l w ,., or 

PI' I )( , = YJ',J TJ',J . (5.2) 

The constant Yl',' is always different from zero: If it were 
zero, we would haveJY'l'lJY',; hence, (fl",fl,) = 0, which 
is impossible since this inner product is the integral of a 
strictly positive function. On the other hand, if lyJ',' I = 1, 
then IIPl' IJIII = IIIJIII; hence, Pl' IJI = IJIfor any lJIin JY'" or 
JY'" = JY',. From Eq. (2.1) we see that this implies that the 
JY', are all different (J' =l=J =? JY'J' =l=JY',), have trivial in
tersection (this is essentially Schur's lemma), but that no 
nontrivial vector in JY', can be orthogonal to all vectors 
JY'l' . 

Note also that Eq. (5.2) implies that, up to some con
stant, PI' P, is a partial isometry in JY' with initial subspace 
JY', and final subspace PrJ' which, as a map from Prj to 
,'}'f'l" intertwines WJ with Wj" From Eq, (5.2) we see that 

IY1',J 12 = II Pl'il,1I 2 = (il"Pl'fl,) 

= f dal(fl~"flJ)12. (5.3) 

For the time being, we choose Yl',' = I YJ',J I. This amounts 
to fixing the up to now undetermined phase factor in Tl'". 

Putting now f3l',J = Y,~'; (which we are allowed to do, 
since Yl',J =1=0) we have 

T1',' = f3l'"P, , Iff, . (5.4) 

We can use Eq. (5.3) to computef3l','; after some calculation 
[see Eq. (A16)] we get 

f3J ',J = 2 - ,,/2 [det(J + J ')] 114 • 

It is obvious from Eq. (5.5) that 

13]'" = f3l',J , 

f3s1's ',SJS • = f3l'," 'v'SESp(E,o) , 

(5.5) 

Moreover, if we consider three subspaces JY'J' JY'1" JY']" , 
then the map TJ",,' 0 Tj,j is a unitary map intertwining the 
WAv) and the W]" (v). Owing to the irreducibility of the 
Wj(v), this implies the existence ofa phase factora(J" ,J',J) 
such that 

TJ",j,oTl',J = a(J ",J',J) TJ" " . (5.6) 

With our choice for f3J',J' this a is given by 

a(J" ,J ',J) = IIPl' ,fl, 11-1I1PJflJ" 11- 1 PJ" ill' 11- 1 

Since 

X (P,,, fl"P"fl,) 

(Pl" flJ ,Pl'fl,) 

I (Pl',flj,Pl'flJ) I 

(PJ"ilJ,Pl'il,) = f da(fl"fl~" )(fl ~"fl,) 
= f da(fl j- a,ill" )(ilJ' ,fl ,- a) 

1380 J, Math, Phys" Vol. 21, No.6, June 1980 

(5.7) 

= (flj"PJilJ")' 

we can also write a as 

(fll' P,il],,) 
a(J" ,J',J) = --'---

I (fl l' ,P,fl r ) I 
(5.7') 

In particular, a(J" ,J,J) = a(J,J' ,J) = a(J',J' ,J) = 1. 
Note, incidentally, that as a by-product of our reason

ing above we have proved that 

l(fll',PJilr ) I 
= I(Pj" flJ,P",ilJ) I = IIPJ,il,IIIIPJilJ" IIIIPj"ilj' II, 

Since a(J,J',J) = 1, we have 

TT',J = T ;:,; = TJ,1' . (5.8) 

Inverting Eq. (5.6) and using Eq. (5.8), we get 

a(J,J',J ") = a -1(J ",J',J) = a*(J ",J',J) , 

Combining this with Eq. (5.7') one can easily show that 

a(J",J',J) = a(J',J,J") = a(J,J",J'). 

From Eq. (5.7) or (5,7') one sees again that 

a(SJ "S -1 ,SJ'S -1 ,SJS -1) = a(J" ,J',J), 'v'SE Sp(E,o-). 

We have of course also 

a(J"',J ",J') a(J"',J',J) = a(J"',J" ,J) a(J ",J',J) , 

We can calculate a explicitly from Eq. (5.7') (see Appendix 
A), The result is 

a(J" ,J',J) 

= lim (exp(iargY det(2J+J'+J" -ifll-isJ'J") ): 
,. 1 

S • (5.9) 

Here the argument of the square root of the determinant is 
determined by the requirement that it be continuous in sand 
equal to zero for S = ° (see Appendix A). 

6. A PROJECTIVE REPRESENTATION OF THE 
SYMPLECTIC GROUP ON THE PrJ 

We have now a device to map from a Prj to a Yt'j': It is 
given by the orthogonal projection operator onto ,WOj' , 
which, when restricted to Pr" is a unitary map up to some 
constant we can compute. This device will now be used to 
define a family of maps! VJ (S); SE Sp(E,o) I which will be 
unitary maps from Prj to itself: 

VJ(S) = TJ,SJS • oUs I}(, 
= f3J,SJS I PIoUS I )(, ' (6.1) 

Here 13 is given by Eq. (5,5): 

13 = 2 - nI2[det(SJ + JS)] 1/4, ',SJS • 
Since both the Us and the Tl'" are unitary, and since UsYt'J 
= PrSJS 1, the VJ(S) are obviously unitary maps. In some 
sense they are even the most natural unitary maps in 
,qjJ (JY'J) representing the symplectic transformations: For 
any S, we simply apply Us; since Us does not leave JY'j 
invariant in general, we project back onto JY'J' and we 
normalize. 

The VAS) form a projective representation ofSp(E,a), 
and we can even give an expression for the multiplier. In
deed, we have 
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UsoTJ',J = /3J',J UsoPJ' IJI"'J = /3sJ's -I ,SJS -I P SJ'S -I oUs IJI"'J = T SJ'S -I ,SJS -I oUs IJI"'J ; 
Hence, 

VJ(SI)O VAS2) = TJ,S,JS I I o Us, oTJ,S,JS
2 

I o Us, IJI"'J = TJ,S,JS I I o TS,JS I-I ,S,S,JS
2
- ISI 1 o Us, o Us, l,w'J 

= a(J,SIJS I-I ,SIS~S 2-IS 1-I)TJ,s,s,J(S"S,)-' oUs,s, IJI"'J 
= a(S I-IJSI,J,S~S 2-I)VASIS2)' 

SO we have indeed a projective representation ofSp(E,u), with multiplier ii(SI,S2) = a(S I-I JSI,J,S~S 2-
1
), where the right

hand side is given by Eqs. (5.7') and (5.9): 

ii(SI,S2) = a(S I-IJSI,J,S~S 2-
1) = exp(i arg(JJsI-'JS, ,PJJJs,JS 2-

1 » 

= eXP(iarg( f da(JJJ,Us,JJD(JJ~,Us,JJJ») 
= lim (exp(i argY det(2J + S~S 2- 1 + S I-IJSI - isI- iSS I-IJSIS~S 2-

1») . 
s~1 

Here the argument of the square root of the determinant is 
determined by the same continuity requirement as at the end 
of the preceding section. 

These ii have the usual multiplier property 

ii(SI,S2S3)ii(S2,S3) = ii(SI,s2)ii(SIS2,s3) . 

The properties of the a(J " ,J' ,J) listed at the end of the pre
ceding section imply 

ii(S,I) = 1 

or even 

Also 

ii(S 1- I ,S 2- I) = ii*(S2,s I) , 

ii(S,S - I) = 1. 

(6.2a) 

(6.2b) 

(6.2c) 

(6,2d) 

The operators VJ(S) thus form a projective representatiOn 
of Sp(E,u) which is, however, not the metaplectic represen
tation. In this latter representation one deals in fact with a 
true representation R of a two-sheeted covering ofSp(E,u) in 
which the representation images of the two lifts.2' 1,.2'2 of the 
same symplectic operator S differ only by a sign: 
R (.2'1) = - R (.2'2)' This implies that the multiplier of the 
projective representation of Sp(E,u) induced by the meta
plectic representation takes only the values ± 1, which is 
not the case for our multiplier Ii. We can, however, reduce 
our representation above to the metaplectic one. To do this, 
one should define 

WAS) = tJ,S VJ(S), 

where tJ,S is a phase factor (ItJ,s I = I), These WAS) form 
again a projective representation of Sp(E,u) with a new 
multiplier: 

P(SI,S2) = tJ,S, tJ,s,t J--:s:S,ii(SI,S2)' 

We want this multiplier to take only the values ± 1; hence, 

[ii(SI'S2)] 2 = t ]'s,s,t 1.~, t 1.~, . 
So any decomposition of ii2 in this form will give us a 

possibility to reduce our representation to the metaplectic 
one. However [see Eq. (B5)], one has 

[ii(SI'S2)] 2 = exp(i arg(det(I - iJ) + SIS2(l + iJ) 
·det[(1 + iJ) + SI(l - iJ)] 
.det[(1 + iJ) + S2(l- iJ)] . 
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This decomposition has exactly the right form. Moreover, 

I det[(1 - iJ) + S(I + iJ)] I = 2n [det(SJ + JS)] 1/2 

22n /3 2 = J,SJs- I 

[see Eq. (B6)], 
Hence, we can define 

TJJ,S = 2 - n(det[(1 - iJ) + S (1 + iJ»)) 112 (6.3a) 

(since ITJJ,s I = /3J,SJs -I, this is always different from zero) 
and 

WJ(S) = exp(i argTJJ,s)VJ(S) 

= TJJ,SPJoUS L*"J . (6.3b) 

In the definition of TJ J,S we choose the square root with argu
ment in] - 17'/2,17'/2]. [A continuity procedure to determine 
the phase ofthis square root would not be unambiguous for 
all S: There do exist S for which det(I + S) = 0.] In fact, 
there is absolutely no reason to prefer the root with positive 
real part to the one with negative real part. It is just a topo
logical fact of life that it is impossible to choose the signs of 
the TJJ,S in such a way that the projective representation of 
Sp(E,u) becomes a true one. Changing the sign of TJJ,S for a 
subfamily of Sp(E,u) means only changing some signs of 
multipliers where elements of this subfamily occur. We will 
use this freedom in the choice of the sign of TJ J,S in the treat
ment of nonexceptional S later on. 

Note that our constant TJJ,S leads to the same matrix 
elements as Bargmann's constant Vg 2 (see Appendix B), 

By construction the WAS) form a projective represen
tation of Sp(E,u) with a multiplier which takes only the val
ues ± 1: 

WJ(SI)WAS2) = pASI,S2)WASIS2) , 

pJ (SI,S2) = ii(SI,S2)exp [i arg(TJJ,S, TJJ,S, TJJ--:S:s,)] = ± 1 . 

Note that the constant TJJ,S depends explicitly on S and not 
only on SJS - I . Indeed it may happen that SJS - I = J, and 
hence/3J,SJS ' = l,yet TJJ,s;(= 1. As a consequence of this p 
does not inherit ii's nice property (6,2b). Properties (6.2c) 
and (6.2d) also fail to hold in general for p: One can find S 
such that TJJ,S = i, and hence TJJ,s ' = i, which implies 
peS,S - I) = - 1. So the only property of ii which passes on 
to pis Eq. (6,2a). 
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Using Eqs. (4.3) and (5.1) we see that for any 
SE Sp(E,o), 

W,(S) W,(v) = 'TI,.s f3 J-:~s I TJ,sJS I W SJS I (Sv)Us \.w J 

= WASv)WAS) 

or 

WAS)WAv)WAS)-1 = WASv). (6.4) 

Combining this with Eq. (2.2) or (2.3), we see that 

WAS)QAf)WAS)-1 = QJ(Sf), (6.5) 

where Sfis the function defined by (Sf)(v) = f(S -I v). 
Of course, we can extend all this to the inhomogeneous 

group ISp(E,o). We have 

WAS,a) = WJ(a) WAS) , 

with 

WASI,a l )WAS 2,a2) 

= eia{a"s.a')W;(a l + S la2)p(ShS 2)WAS\S2) 

= eia{a .. S.a,) P(SI,S2)W;(Sha \)(S2,a2» . 
Generalizing Eq. (6.4), we get 

WAS, a) WAv) WAS, a) -I = e2ia{a.sv)WASv) 

or 

WAS,a)ll;(v) WAS,a) -I = llASv + a); 

hence, 

WJ(S,a)QAf) WAS,a) -I = QJ«S,a)f), (6.6) 

with 

«S,a)f)(v) =f(S-IV - S-Ia). 

Note that, for n even, the operators W( ± 1,a) are the 
W ( ± ;a) introduced in Ref. 13, and that, as was to be expect
ed, this representation ISp(E,o) is thus an extension of the 
Wigner-Weyl system as defined in Ref. 13. [For n odd a 
phase factor has to be introduced: in this case we have indeed 
WJ = (- 1,0) = iIlJ = i W( - ;0).] 

From Eqs. (6.4) and (6.5) we see that our operators 
WJ(S) are exactly the quantal counterparts of the functions 
w in Ref. 10, up to some phase factor. Hence, we can apply 
the dequantization procedure given in Ref. 11 to calculate 
these functions. This will be done in the next section. 

7. DEQUANTIZATION OF THE OPERATORS WJ(S) AND 
WJS,a) 

To apply the dequantization procedure sketched in 
Eqs. (2.4) and (2.5), we have to compute first the matrix 
elements of the operators WJ(S) with respect to the coherent 
states: 

WAS)(a,b) = (il~,WAS)iln = 'TIJ,s(il~,il~SI)' 
We calculate now the corresponding function WS: 

Ws(v) = 2n'TIJ,S f f da db (n ~,ll (v)il n(il ~,il ~~SI ) 

= 2n'TIJ,S f db(il~,ll(v)il~~s-I)' 
A straightforward calculation (Appendix C), using FilJ 

WS(v) = Idet[(I- iJ) + S(l + iJ)] ll12 

X f dbilAb + Sb - 2v)eilp (b12.v.Sb/2) , (7.1) . 

where ip is defined in Sec. 2. 
Formula (7.1) is valid for any Sin Sp(E,u). If Sis excep

tional, i.e., if 1 + S is singular, we see that for some direc
tions in EtheilJ factorin theintegrand ofEq. (7.1) plays no 
role, which leaves us with an integral of the phase factor ei'P, 
and hence gives us {) functions in the final result. If, however, 
1 + S is regular, we can always find u = (1 + S) - I v such 
that v = (I + S )u; hence, 

ws(v) 

= 2n'TIJ.s f dbilJ[(1 +S)(b_2u)]ei'P(b12,u+su.Sb/2) 

= ( 2n'TIJ,S f dbilJ [(1 + S)b ]e,a{b.Sb»)e4ia{SU'U) 

= Ks exp[ 4iu(v,(1 + S) -IV) 1 

=Ks exp (2iu(V, ~ ~~v)]. (7.2) 

Since S is nonexceptional, we can use our freedom in the 
choice of a sign for 'TIJ.s to redefine 'TI as 

'TIJ.s = 2 - n 
X lim (exp(i argY det[l + S - iSl(l - S)] l), 

S--I 

with again the assumptions that the root of the determinant 
is continuous in 5 and positive for 5 = O. With this choice for 
the sign of'TI, we have 

,----
Ks = 2nN det(l + S) . (7.3) 

The calculation is given in Appendix A. 
Note that the result (7.2) and (7.3) is exacly what was 

obtained in Ref. 10 for the classical functions corresponding 
to nonexceptional S. 

When S is exceptional, but J ker(l + S), we can again 
simplify formula (7.1) to obtain something anaologous to 
Eq. (7.2). Indeed, in this case we can decouple the degrees of 
freedom associated with ker(l + S), i.e., we can write E as a 
direct sum E = E' Ell E" [E" = ker(l + S)], such that 
a(E',E") = 0, JE' = E', JE" = E"; Scan then be con
sidered as a sum S = S' + S " , where S' is a non exceptional 
elementofSp(E', UE'XE')' andS" = - IE"' Formula (7. 1) 
can then be simplified to give (v = v' + v", with v'EE', 
v"EE") 

WS(v) = Ks{)(v")exp[ 4iu(v',(1 + S) -I v') 1 , 

o 
2 

= ilJ and formula (6.3) for 'TI, yields FIG. I 
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with 

2n'2 - n" ( 1 - ( - It" . 1 + ( _ I)n") 
Ks = +1. 

y' detE.(1 + S) 2 2 

Here n' = !dimE', n" = !dimE ". 
The extra factor gives a coefficient 1 if n" is even, and i if 

n" is odd. In particular, we have 

W _ I (v) = 2 - n£5(V)( 1 - (2- I)n + i 1 + (2- I)n ) . 

There exist, however, exceptional S for which no J can be 
found such thatJker(1 + S) = ker(1 + S). For theseS, we 
have to apply directly formula (7.1). 

Note that the integrand in the general formula (7.1) has 
the following nice geometric interpretation: Take the trian
gle with vertices O,b,Sb. The midpoints of the sides of this 
triangleareb 12,Sb 12,andb + Sb 12. Then.p(b 12,v,Sb 12) is 
exactly the surface of the oriented triangle (b 12,v,Sb 12), 
while log!] A b - 2v + Sb ) is -2 X the distance of v to the 
third midpoint (b + Sb )/2 ["distance" being defined with 
respect to the Euclidean forms(u,w) = u(u,Jw)] (see Fig. 1). 

We can of course also calculate the functions corre
sponding to the W(S,a) for the inhomogeneous group; this 
gives 

WS,a(v) 

= r'TJJ,Se2ia(a.v) f db flAb - 2v + a + Sb )ei<P(b12,V - a12,Sb12) 

= e2ia(a.v)ws (v - a12) . 

As a special case we have the well-known result 

wa(v) = wI,a(v) = e2ia(a,v). 

Requantization of the functions (7.1) along the procedure 
sketched in Eq. (2.3) yields (for the detailed calculation, see 
Appendix C) 

WJ(S) = r f dv ws(v)llAv) 

= 22n'TJJ,s f dv f dbflAb + Sb _2v)ei<p(b12,v,Sb12) 

xllAv) 

= 'TJJ,S f db I fl~b)(fl~b I 
= 2 - n [ det [(I - iJ) + S (1 + iJ)] J 112 

X f db I fl ~b)(fl ~ I . (7.4) 

This is of course again the same operator as given by Eq. 
(6.1), as one can easily check by comparing the kernels corre
sponding to Eqs. (6.1) and (7.4). 

8. THE TRANSLATION TOx-p NOTATIONS 

The translation of our intrinsic notation system to any 
particular more explicit notation system is completely deter
mined once one has given explicit expressions for E, u, and J. 

Writing everything in coordinate notations amounts to 
taking 

1383 

E = Rn Ell R n (with usually n = 3N, 
N being the number of particles), 
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E3v = (x,p), 

u«x,p),(x',p'» = ! (p.x' - x.p'), 

J «x, p» = (p, - x). 

Hence, flAv) = exp[ -! (x2 + p2)] and 

1 dv = --dnxdnp. 
(21TY 

A symplectic transformation can be represented by a matrix 
Ct: ~) ,whereA, B, C, D, are real n Xn matrices such that 

S «x,p» = (Ax + Bp, Cx + Dp). 

The fact that S is symplectic is equivalent to 

{

A tc - C tA = 0, 

BtD-DtB=O, 

CtB-DtA = 1. 

Another explicit but less frequently used notation system is 
Bargmann's. Here one takes 

E=Cn
, 

E3v=z, 

u(z,z') = Im(z.z') = ;i (z.z' - z.Z') , 

J(z)=iz. 

Hence, flAz) = exp[ -! (Z)2] and 

dv = (l/~)d (Re z)d (1m z) . 

9. APPLICATIONS 

We have computed the operators WAS) of the meta
plectic representation on one hand, and on the other hand 
the corresponding classical functions. Both these results can 
be used for applications. 

A. Applications of the classical function formula 

We give here some explicit calculations of the classical 
function corresponding to a given symplectic transforma
tion. In the first three cases the symplectic transformations 
form a one-parameter subgroup ofSp(E,u) which is defined 
as the classical evolution group for a quadratic Hamiltonian. 
Since for any quadratic Hamiltonian h the quantum me
chanical evolution operator exp(iQh t ) is exactly given by 
W (St ), where St is the one-parameter symplectic transfor
mation group associated to h, one sees that the calculated 
functions are, at least formally, the twisted exponentials of h 
(see also Refs. 8 and 18). It is to be noted that one can show, 
using some recent results,19 that these functions really are 
the twisted exponentials (not only formally), i.e., that the 
series of the twisted exponential makes sense in Y', and does 
converge (again in Y') to ws, This means that the quite 
complicated proofs (see, for example, Ref. 18) for this con
vergence in particular cases are no longer necessary. 

We give our different results in the x-p notation. Since 
we are here on the level of the classical functions, the results 
are independent of the particular representation ()fthe Weyl 
commutation relations we used: 
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(I) The harmonic oscillator (n = 1): H = ! (Xl + p2) 
gives rise to the evolution 

{
X, = Xo cos ~ + Po sin t, 

p, = -XoSlOt+Pocost; 

hence, (x, ,p,) = s, (xo,Po), with 

S = ( cos t sin t). 
, - sin t cos t 

Calculating the classical function corresponding to this, we 
find [we can apply Eq. (7.2) sinceS, is nonexceptional when
ever t =1= (2k + 1 )1T; for the special values t = (2k + 1)1T we 
have S, = - 1 and ws, =! 8(x)<5(p).] 

WS,(X,p) = (cos [t /2]) -Iexp( - i(X2 + p2)tan [t 12]) . 

This is the result found in Refs. 9 and 18. 
(2) The same for H =! (p2 - X2) gives 

and 

S = (COSh t 
, sinh t 

sinh t ) 

cosh t 

WS,(X,p) = (cOSh ~ )-l e - 2i(P'-X
2
)tanh('12). 

(3) The same for H = ~p2 + x gives (x"p,) = S,(xo,Po) 
+ a" with 

S, = (~ ~) 
and a, = ( - ! t 2, - t). We have ws,(x,p) = e - i'P'; hence, 

W (xp) = e -2i(p"/2) + 'x +, '/8). 
S,.a ( , 

Again these are the same expressions as in Ref. 9. 
In our last calculation we treat a "general" exception S. 

It is general in the sense that no J can be found such that 
J ker(l + S) = ker(l + S), which compels us to use the 
nonsimplified formula (7.1). 

(4) Take (0- 1 a_I ), with a > O. We have lIJ.s 

= (iMYV 2 + ia and 

f db ilJ(b + Sb - 2v)eio(b,Sb) +2io(Sb,v) +2io(v.b) 

. V-;V2' 1 
= (after some calculatlOn) -- ~ r- --;:=== 

2 V a Va-2i 
X8(p)e -4ix'la . 

Hence, 

ws(x,p) =! V 1Tla iVf8(p)e-4ix'a-' . 

B. Applications of the expression for WJ(S} 

We have [see Eq. (6.3b)] WAS) = lIJ,sPJoUS IJY
J 

• 

Hence, for any <jJ, l/J in K" 

(q;,WAS)l/J)=lIJ.s fdV<jJ(V)l/J(S-IV). (9.1) 

Suppose we are interested in the time evolution operator ei
' H 

associated with a quadratic Hamiltonian H. Dequantizing H 
we get a quadratic function h on phase space, for which the 
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corresponding classical time evolution on phase space is giv
en by a symplectic one-parameter group (Sh)" It is easy to 
check that ei

' H = W (Sh ),. Hence, the matrix elements of the 
time evolution operator ei

' H for an at most quadratic Hamil
tonian are given by 

This formula is of course only true if the chosen representa
tion of the Weyl commutation relations is a K J representa
tion. However, we can use an extension for arbitrary repre
sentation spaces. 

Indeed, let K be any Hilbert space carrying an irredu
cible representation of the Weyl commutation relations 
[usually one chooses K = L 2(JRn

) with the Schrodinger re
presentation]. Choose a nice complex structure Jon E, (1, 

and let .oJ~be the ground eigenstate of the harmonic 
oscillator Hamiltonian corresponding to hAv) = sAv,v) 
= IT(v,Jv). [Usually one takes J (x,p) = (p, - x); hence, 

h (v) = ! (x2 + p2); .oJ is then-in the Schrodinger represen
tation-the well-known Hermite function 1T - n12 

X exp( - ! x 2
),] We define the coherent states .0 ~ to be the 

translated [by W(a)] of .oJ:1i ~ = W(a) Ii,. For any vector 
l/J in K we define the function ¢'" by 

¢J,,,,(a) = (n ~,l/J)JY . 

One can easily check that, as a function of a, these ¢J,,,, 
are elements of K J • The converse is also true: To any func
tion in K J corresponds a unique vector in K for which the 
relation above holds. The matrix elements of the evolution 
operator ei

' H for any quadratic Hamiltonian H = Qh are 
then given by 

(q;,ei' Hl/J) = 1I"s •. , L da ¢J,,,, (a)¢"", (Sh, _ ,a) . (9.3) 

So once the classical solutions of the Hamiltonian equations 
for the Hamiltonian h are known, we can compute any ma
trix element of the quantum evolution operator for the corre
sponding Hamiltonian H = Qh' This Hamiltonian H, 
though at most quadratic, may be quite nontrivial, e.g., a 
system of N particles, in a homogeneous electromagnetic 
field (with arbitrary strength), with harmonic oscillator pair 
potentials, is described by a Hamiltonian falling into this 
class. 

The procedure given above for applying our formula for 
WAS) even if the representation chosen is not a K J repre
sentation can of course also be applied if one is not interested 
in one-parameter subgroups but in the whole symplectic 
group: We can define a projective representation ofSp(E,u) 
on any Hilbert space :JI" carrying an irreducible representa
tion of the W eyl commutation relations 

(q;,W(S)l/J) = lIJ.s f da ¢"",(a)¢J,,,,(S -Ia). (9.4) 

In the case where K = L 2(Rn), with the Schrodinger 
representation 

(W(Xa,Pa)l/J)(x)=exp( - ~ XaPa)eiP"x1/J(X-Xa), 
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one can check that this yields 

(cp,W(S)t/!) = f f dx dx' cp (x) Us(x,x')t/!(x'), 

where Us(x,x') is given, up to a phase factor, by expression 
(3.27) in Ref. 4 for the cases considered there. The phase 
factor occurs because we really have a (projective) represen
tation of the whole group Sp(E,o) while in Ref. 4 only indi
vidual symplectic transformations were studied. 

10. REMARKS 

(1) In the preceding section we showed how one can 
reconstruct, using our expression in :JrJ, the metaplectic 
representation on any Hilbert space carrying an irreducible 
representation W(v) of the Weyl commutation relation. To 
do this, we introduced the coherent states (with respect to 
some J) in:Jr. We can avoid these coherent states in the 
reconstruction if we use the classical functions WS: Let nbe 
the representation on:Jr of phase space parity (v ---+ - v). 
Then define W (S) on :Jr as 

W(S) = 2n f dv ws(v)W(2v) n. 

(2) We have given explicit expression (6.3b) and (7.4) 
for the operator WAS). [In fact, Eq. (9.4) shows us that 
expression (7.4) is also valid in other representation spaces 
than :JrJ.] We can use these expressions to calculate the 
matrix elements of WJ(S) between coherent states: 

WAS)(a,b) = (fl~, WAS)fl~) 
= eia(Sb,a)(fl ~ - Sb, WJ (S)fl J ) 

= 1JJ,Seia(Sb,a) f dv fl ~ - Sb(v)flsJs ' (v). 

Using Eq. (AS) this gives 

WAS)(a,b) = (1JJ.s) -lexp[io(Sb,a) - iu(a - Sb, 

JZ(a - Sb» - u(a - Sb,Z(a - Sb »], 

with 

Z = - (J + SJS - I) - I . 

It is easy to check that this is in fact the same expression as in 
Bargmann.2 

(3) Formula (7.1) for Ws depends on the choice of J. So 
let us denote for the time being this function by WS,J' For two 
J, J' there exists of course a relation between WS,J and the 
WS,J" Since one sees easily from Eq. (6.3) that 1JJ.s 'ss' 
= 1Js'JS' ',S' a simple substitution in the integration in Eq. 
(7.1) gives us the following relation between ws,J' and WS,J 
(we put J' = S 'JS '-I): 

(10.1) 

On the other hand, we know that for any function! on phase 
space 

!(S'-IV) = S'!(v) = (ws',J o !owt,,J)(v), 

where ° denotes the twisted product (see for instance Refs. 
11 and 13). Substituting ws ' sS'.J forf, and introducing the 
multipliers p, we get 

Ws 'ss'.J(S' -IV) = pAS',S' -ISS')pASS',S' -lws,Av). 
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Combining this with Eq. (10.1), we see that 

WS,J' (v) = pAS ',S' -I SS') pASS ',S' -I )WS,J(v) . 

So, up to a sign depending on J, J', and S, ws,J' is equal to 
wS•J ' Ifwe choose to consider our representation as a double 
valued representation of Sp(E,u) instead of as a projective 
representation, this implies that the double valued represen
tation S -++ ± wS,J is independent of J. 

(4) Formula (9.4) is only valid for linear canonical 
transformations. In fact, once the canonical transformation 
Tis nonlinear, there does not exist any more a bounded oper
ator VT satisfying 'tJ I: QJVT = VTQJoT ,. (This can easily 
be seen if one realizes that up to a constant this V T would 
have to be unitary. One can then use an argument found in 
Ref. 10 to show that T cannot be linear.) One can of course 
try to find V T satisfying the relation above for just n indepen
dent functions!} (see, for example, Ref. 20). The operator 
constructed in this way is however dependent on the choice 
ofthel}· 
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APPENDIX A 

All the calculations in this Appendix are based on the 
following general principle: 

Let B be a real linear map E ---+ E such that 

o(u,Bv) = o(v,Bu), 'tJu,vEE, 

u(u,Bu) > 0, if u#O, 

(AI) 

(A2) 

then the function flB(V) = exp[ - ~ o(v,Bv)] is integrable, 
and 

(A3) 

Here we choose the positive square root of det B. 
By a simple analyticity argument one can extend (A3) 

to all complex combinations B + iC of real linear maps from 
E to E, where B is chosen as above [B satisfies both Eqs. (A 1) 
and (A2)] and C is symmetric [i.e., it satisfies Eq. (A 1)]. For 
any such complex combinations we have again 

f dv e - a(u,Bv)/2 e - ia(v.Cu)/2 = 2n [det(B + iC)] c- 1/2 • 

(A3') 

Here we have introduced the notation [det(B + iC)] c± 1/2 in 
the following meaning: let! ± : [0,1] ---+ C be a continuous 
function with! + (O)ER + and/ + (5) 
= [det(B + isC)] ± 112 • The co~tinuity of/and its initial 
value in R + select without ambiguity one of the two possible 
roots of [ det(B + iSC)] ± I as the value off ± (5) at any S. 
Then we define 

[det(B + iC) L± 112 = ! ± (1) . 
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As usual in Gaussian integrals, the integration variable in 
Eq. (A3) can be shifted by a complex vector: 

f dv I1B(V + a + ib) = 2n(det B) -112 , (A3") 

where we define O(U + iu',v + iv') to be the obvious complex 
linear extension: 

o(u + iu',v + iv') = o(u,v) - o(u',v') + io(u',v) + io(u,v'). 

For any real linear mapB satisfying both Eqs. (AI) and 
(A2), we can construct B = - B-1 [B is regular because of 
Eq. (A2)]. It is ea~y to check that Eqs. (AI) and (A2) are 
again satisfied by B. As a corollary ofEq. (A3") we have now 

f dv eio(Q.V)I1B(v) = f dv eio(Ba.Bv) e - o(v,Bv)12 

= f dv e - o(v - ilJa,B (v - iBa»/2 e - o(a,Ba)12 

= 2n(det B) - 112I1B(a) . 

Finally, note that the family of real linear maps satisfying 
Eqs. (At) and (A2) is a convex cone containing the u-aI
lowed complex structures. 

We can now start with our calculations. We begin with 
f3J',J' Equation (5.3) tells us that f3J',J is given by 

( f )-112 

f3J'.J = dal(I1~·,I1J)12 . 

So we start by calculating (11 ~. ,11 J). Put Z = J + J'. Then 

(11~, ,I1J) = f dv e - io(a,v)flJ' (a)eo(a,J'v)l1J' (v)I1J(v) 

= 11J'(a) f dv eio(iJ'a-a.v)l1z{v) 

= 2n(det Z)-1I211J'(a)l1i(a - il'a) 
= 2n(det Z) -112 e - io(a,J'ia) 

Xe-a(a,(J'+i+J'iJ')a)/2. 

Since, however, Z = J + J', and J2 = 1'2 = -t, we have 
J'ZJ = - Z; hence, JiJ' = - i, or 
1'iJ'=ziJ'-JiJ'= -J'+i. (A4) 
This implies 

(11~, ,I1J) = r(det Z) -1/2 e - io(a,J'ia)11 ~(a) . (AS) 

Hence, 

f da 1(11~, ,I1J) 12 = 22"(det Z) -I f da 11 i(a) 

= 2"(det Z) -I(det i) -112 

= 2"(detZ)-I12. 

So finally 

f3J',J = (f da 1(11~, ,I1J) 12) -112 = 2 - nl2(det Z)1I4 

= 2 - n12[det(J + J')] 114. (A6) 

• We now compute a(J ",J',J). From Eq. (5.7') we see that 

a(J",J',J) = expli arg[(I1J',PJflr )] l ' 
Put ZI = J + J', Z2 = J + J". Using Eq. (AS) we can 
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now calculate arg(11 J' ,PJ I1 r ): 

arg« I1J' ,PJl1r » = arg[ f da(l1J' ,11 ~)(11 ~,l1r)] 

= arg( f da exp[ - o(a,(il + i 2)a)] 

- io(a,J (i2 - i})a») . 

From Eq. (A4) we see that Ji. = - 1 - if' hence 
J (i2 - i l) = - (i2 - il)J. Combining thi; with the fact 
tha~J,iiAsatisfy Eq. (AI), weseenowtha~both?1 + i 2 and 
J(Zz - ZI) fulfill condition (At), while ZI + Zz obviously 
satisfies Eq. (A2). Hence, 

arg«I1J "PJ l1r » = arg([det(i1 + i2 

- iJ(il - i 2)L- 1I2 ) . (A7) 

The determinant in Eq. (A 7) can be simplified. Indeed 

i l + iz = i l( - Zz - ZI)i2 , 

J(i l -i2) 

= Ji l ( - Z2 + ZI)i2 

= - ilJ( - Zz + ZI)iz + ilZI( - Zz + ZI)i2 . 

Hence, 

det(i l + i2 - iJ(il - i z» 
= deal det( - Zz - ZI - iJZz + ilZt + iZtZz - iZtZt) 

Xdeti2 

= det(i1i z)det(2J + J' + J" + il + iJ'J") . 

Finally, 

a(J" ,J ',J) = exp(i arg( [det(2J + J' + J" 

- il - i1'J")] ~/2» . (AS) 

Our last calculation concerns the coefficient in Eq. (7.2). 
We have to calculate 

1= f dbl1A(l + S)b )eio(b,Sb) 

= [det(1 +S)] -I f dbI1Ab)e- io(b,(l+S) Ib) 

= [det(1 + S)] -I f db exp [ -1 ~b,Jb + i ~ ~ ~ b )) . 

One can easily check that (1 - S) (1 + S) -I satisfies Eq. 
(AI) (see also Ref. 10). Hence, 

1= 2" [det(J+i 1 - S ))-1I2 
det(1 +S) 1 +S e 

2" --:;==== (det[J(1 + S) + i(1 - S)])e-I/Z 
V det(1 +S) 

2" --:;==== (det[1 + S - iJ(1- S)]);1/2 . 
V det(1 +S) 

Combining this with the other coefficient in ws(v), this 
yields the result stated in Eq. (7.3). 

APPENDIXB 

Our first calculation here will be the decomposition of 
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a2 (see Sec. 6). Before computing this, we derive some simple 
relations which will tum out to be very useful. 

The first of these is 

J(I±iJ)=J +il= +(1±iJ); 

hence, 

(I + iJ)(1 - iJ) = (I - iJ)(1 + iJ) = 0, 

(I ± iJ? = 2(1 ± iJ). 

(Bl) 

(B2) 

(B3) 

On the other hand, we already mentioned the existence for 
any complex structure J of J-symplectic bases, i.e., of bases 
ej,/j of E such that/j = Jej , a(ej,ek) = a(/j'/k) = 0, 
a(ej'/k) = Ojk' With respect to such a basis J is represented 
by the matrix 

M J = (~ -~). 
Hence, there exists a complex unitary matrix U such that 
UMJ U - I has the form 

Let now L be any linear map from E to itself, with matrix 
representation ML w.r.t. a J-symplectic basis. We can write 
UM L U - I as (~~), where X, Y, Z, Ware n X n matrices. 

Now, 

U«I - iMJ) + ML(I + iMJ»U -I = 2 (0
1 

(I 
U«l - iMJ) + (I + iMJ)ML)U -I = 2 \z 

U«I - iMJ) + (I + iMJ)ML(1 + iMJ»U- I 

=2(~ 2~)' 
This implies 

det[(1 - iJ) + L (I + iJ)] 

~), 

~), 

= det[U(1 - iMJ) + ML(I + iMJ»U -I] 

= 22ndet W 

and analogously 

det[(I- iJ) + (I + iJ)L] = 22ndet W, 

det[(1 - iJ) + (I + iJ)L (1 + iJ)] = 23ndet W. 

Hence, 

det[(1 - iJ) + L (1 + iJ)] 

= 2 - ndet[(1 - iJ) + (I + iJ)L (I + iJ)] 

= det[(1 - iJ) + (I + iJ)L ]. (B4) 

We can now proceed to compute the decomposition of 
a2(SI,S2)' 

Let SI' S2 be any symplectic transformations. Define 

J I = S I-IJS1> J2 = SzlS 2- 1 
, 

ZI =J +JI, Z2 =J +J2, 

i l = -z I-I, i 2 = -Z2- 1 • 

Then (see Sec. 6 and Appendix A) 
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a; (SI,S2) 

= exp{ - i arg(det[(l - iJ)i l + (1 + iJ)i2])}. 

SinceJZI = - ZIJ - 1 (see Appendix A), we have 

det[(1 - iJ)ZI + (1 + iJ)Z2] 

= det[ZI(1 + iJ) + il + (I + iJ)Z2] 
= (det Zidet Z2) -Idet[ - iZIZ 2 

+ (1 + iJ)Z2 + ZI(I + iJ)] 

= (detZIZ 2) -ldet[(1 - iJI )Z2 + (I + iJI)ZtJ 

(we have used - J + ZI = J I and ZIJ = JIZI). However, 

det[(1 - iJI)Z2 + (I + iJI)ZI](det ZI)-I 

= det[(1 + iJI) + (1 - iJI)Zz{ - ZI)] 

= det[(1 + iJI) - Z2ZI(1 - iJI)] [use Eq. (B4)] 

=det[(1 +iJI)ZI +Z2(I-iJ)](detZt)-1 

= det[ZI(1 + iJ) + Z2(1 - iJ)](det ZI) -I. 

Hence, 

a; (St,S2) 

= exp{ - i arg(det[ZI(l + iJ) + Zz{1 - iJ)])}. 

We have 

[Zt(1 + iJ) + Zz{1 - iJ)]J 

= - i(J + J I)(1 + iJ) + i(J + J2)(1 - iJ) 

= - i( - 2il + JI - J2 + iJIJ + iJzl) 

= - (I + iJl + iJ - JIJ + 1 - iJ2 - iJ - Jzl) 
= - (I + iJI)(1 + iJ) - (1 - iJ2)(1 - iJ). 

Hence, 

det[ZI(l + iJ) + Zz{1 - iJ)] 

= det[(1 + iJI)(1 + iJ) + (1 - iJ2)(1 - iJ)] 

(remember that detJ = detSt = detS2 = 1!, see Sec. 4) and 

= det[S 1-1(1 + iJ)SI(1 + iJ) 

+Sz<I- iJ)S 2-
1(1- iJ)] 

= 2 - 2ndet{[S 1-
1(1 + iJ) + S2(1- iJ)] 

X [(1 + iJ)SI(1 + iJ) + (1- iJ)S 1-1(1- iJ)]} 

= 2 - 4ndet[S 1-
1(1 + iJ) + S2(1 - iJ)] 

X det{[ (1 + iJ)SI(1 + iJ) + (I - iJ)] 

X [(I + iJ) + (1- iJ)S 2-
1(1- iJ)]} 

= 2 - 3n det[(1 + iJ) + SISz{1 - iJ)] 

X det[ (1 - iJ) + SI(l + iJ) ]{det[ (1 - iJ) 

+S2- 1(1 +iJ)]}* 

= 2 - 2ndet[(1 + iJ) + SIS2(1 - iJ)] 

X{det[(1 + iJ) + SI(I- iJ)]}* 

X {det[(1 + iJ) + S2(1 - iJ)]}* . 

So finally 

a;(SI,S2) = exp{i arg(det[(1 - iJ) + SIS2(1 + iJ)] 
xdet[(1 +iJ)+SI(I-iJ)] 

xdet[(1 + iJ) + S2(1- iJ)])} . (BS) 

This is exactly the decomposition of &2 as used in Sec. 6. 
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Our next calculation is the computation of 
Idet[(1 - iJ) + S(I + iJ)]I: 

Idet[(I- iJ) + S(I + iJ)] 12 

= det[(l- iJ) + S(I + iJ)]det[(1 + iJ) + (I - iJ)S] 

= det{[(1 - iJ) + S(I + iJ)] 

XJ [(I + iJ) + (I - iJ)S J) 
= det[2i(1 - iJ)S - 2iS (I + iJ)] 
= 22"det(iS + JS - is + SJ) 
= 22"det(JS + SJ) . 

Hence, 

I det[(1 - iJ) + S(I + iJ)] I 

= 2" [det(SJ +JS)]1/2. (B6) 

Finally, we give here the connection with Bargmann's con
stant (det A) -1/2 ? We introduce the x-p notation (see also 
Sec. 8): S «x,p» = (Ax + Bp,Cx + Dp). In Bargmann's no
tations one has A =! (D + A + iB - iC), and Vg 

= (det A) -1/2 = 2"/2[ det(A + D + iB - iC)] -1/2. This 
constant Vg is in fact the matrix element (fl" WAS)fl,) (see 
Ref. 2). We have 

(flJ,WJ(S)flJ) = 1]J.s(flJ,flSJS ,) 

(J 2 ( * ) -- I = 1]J.S J.SJS' = 1]J.s 
= 2"{det[(1 + iJ) + S(I - iJ)J}-1/2. 

However, 

hence, 

det(1 + iJ) + S (I - iJ) 

= det ( 
I +A +iB il +B-iA) 

- il + C + iD I + D - iC 

= det(A + D + i(B - C) - i(A + D) + B - C\ 
- il + C + iD I + D - iC } 

So 

(
A + D + i(B - C) 

= det 
- il + C+ iD 

= 2"det(A + D + iB - iC). 

(flJ,WAS)flJ = 2"/2(det(A + D + iB - iC» -1/2. 

Comparing this result with Bargmann's (B7) we see that 
they coincide, as was to be expected. 

APPENDIXC 

We give here the details of the calculation leading to 
formula (7.1): 

(Cl) 

with 

f db(fl~,Jl(v)fl~~s ' ) 

= f db (Jl(v)fl ~,fl~~s ,) 
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= f db f dee2io(v.b)fl;V-b(e)fl~~s ,(e) 

= f db f de e2ia(l'.b)e - 2ia(v.,,) + io(b.c) 

Xeio(Sb'c)flA2v - b - e)flJ(b - S . Ie) 

= f db f de e2io(v.b) 

Xe -2io(u.Sc) + ia(b.Se) + io(b.e)flA2v - b - Se)flAb - e) 

= f db f de ei0(2v- e - Se,b) 

xe- 2io(v.se)flJ( V2b + Se V;2V) 

fl (se +e -2V) 
X J V2 

= 2 .- " f de ( e - 2io(".Se) e - i0(2v - e - Se.Se - e - 2,,)/2 

XflJ (Se:v;2V) f dbei0(2,,--e-se.b)/VTflAb ») 

= f de e - 2io(".Se) ei0(2" - Se.e) fl; (se :v; 2v ) 

= f de ei<p(e12.v.Scl2)flASe + e - 2v). 

Combining this result with Eq. (Cl), we get formula (7.1). 
For the requantization of ws(v) we have to calculate 

2" f dv ws(v)Jl (v) 

= 22"1] f dv f db flA2v - e - Se)ei<p(e12.".Scl2)Jl (v) . 

(C2) 

We give here the calculation of this integral: 

1= f dv f db flA2v - e - Se) ei<p(b/2,".SbI2)JlAv) 

= f dv f db flA - 2v) ei<r(b.2l' + b + Sb.Sb)/4 

X WJ (2v + b + Sb )Jl 

= f dv f db fl J (2v) e - io(b,Sb) + 2io(Sb.u) + 2ia(u.h) 

X WJ (b + Sb ) WA2v)Jl e2io(l'.h + Sh ) 

= f db WAb + Sb) e - io(b.Sb) f dv flA2v) e4io(v.b)Jl (v) . 

Using the notations of Ref. 11, we have 

hence (see Ref. 11, Sec. S.B.l), 

f dv flA2v) e4io(l'.h)JlAv) = 2 -" f dvl b, - b IV]JlAv) 

= 2 2"QAlb, - b I·]) 
= 2 -2" Ifl J- h)(fl ~ I . 
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This implies 

1= 2- 2n f db WJ(Sb)WAb)lnJ-b)(n~1 

=2- 2n f db WASb)lnJ)(n~1 

= 2 - 2n f db In ~b)(n ~ I . 
Combining this with Eq. (C2), we get Eq. (7.4). 
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