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Continuity statements and counterintuitive examples in connection with

Weyl quantization
Ingrid Daubechies®

Physics Department, Princeton University, Princeton, New Jersey 08544

(Received 11 March 1982; accepted for publication 27 August 1982)

We use the properties of an integral transform relating a classical function f'with the matrix
elements between coherent states of its quantal counterpart Q f; to derive continuity properties of
the Weyl transform from classes of distributions to classes of quadratic forms. We also give
examples of pathological behavior of the Weyl transform with respect to other topologies (e.g.,

bounded functions leading to unbounded operators).

PACS numbers: 03.65.Ca, 02.30. + g

I. INTRODUCTION

The Weyl correspondence or Weyl transform defines a
map from the functions on the classical phase space to the
operators on the quantum mechanical Hilbert space.’

The classical phase space is here a 2v-dimensional real
vector space E, equipped with a nondegenerate symplectic
form o. It is customary to consider E as the direct sum of
position and momentum spaces:

E> Uz(Q?P)’ q,pGR",

with o of the form

ollg, Pk (g PN =4(pg —gqPp).

The Hilbert space &#” is a complex Hilbert space carry-
ing an irreducible representation of the canonical commuta-

tion relations. Explicitly, 3 W (v), unitary operators on 7,
labeled by the points v of E, such that

s-limW)=1, ,

-0

W)W (0g) = €W (v, + vy) -
One usually writes the W (v) as

W(p,q)=expli(p-Q—q-Pl]

= exp( — } ipglexplip-Q Jexp( — ig-P),

where @, (P,) are the generators of the v-parameter group
W0, p) (W(— q,0)); Q; and P, are called the position and
momentum operators, respectively, and satisfy the usual
commutation relations

[Q)Pi] =161
on a common core.

The Weyl transform of a function fon E is then an
operator Q f defined by (formally)

0f=2" [ dv Flwi—o/2), (n

E

where fis the symplectic Fourier transform of £
floy=2" j dv' e

One can check' that Eq. (1) defines an unambiguous exten-
sion (“‘symmetric ordering”) of the usual correspondence

* On leave from Dienst voor Theoretische Natuurkunde, Vrije Universiteit
Brussel, Belgium, and from Interuniversitair Instituut voor Kernwetens-
chappen, Belgium.
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Slar=¢,=0,=0,

glgp)=p, =08 =F;.

To give a precise sense to Eq. (1), one has to specify in
what sense the integral converges. It can easily be shown that
this integral is well defined in the usual weak sense for
fe L'+ L? however, one can give a meaning to Eq. (1) for
much larger classes of f (see below).

It is possible to write the map f— Q fwithout involving
Fourier transforms?

Qf:yfmmmwamr 2)

Here /1 is the parity operator, i.e., an involutive, unitary
operator satisfying

IIW (v) = W{ — o)l ;

the operators /7 (v) = W (2v)II used in Eq. (2) are called
Wigner operators.® Like the Weyl operators, they satisfy
specific multiplication rules; moreover, they are self-adjoint.

The inverse map, from the operators on #” to the func-
tions on E, is the Wigner transform.* Formally this trans-
form can be written as

So)=2"Tr[Q T {v)] . (3)
One sees immediately that Eq. (3) is well defined for Q f
trace-class; again, we shall see below how this correspon-
dence can be extended to more general classes of operators.

The Weyl correspondence and its inverse have been
used in several different contexts. One obvious field of appli-
cations has been the study of classical limits.> In Ref. 7 the
Weyl correspondence and its properties are used to find the
equations of motion for a particle with spin ! in an electro-
magnetic field in a semirelativistic approximation, in parti-
cular to derive the correct magnetodynamic effect. An ap-
proach of quantum mechanics related to the Weyl transform
can be found in Ref. 8, where quantum effects are studied
using only functions on phase space (no Hilbert space pic-
ture), with a noncommutative product, which is usually
called the twisted product, and which is the transposition,
through the Weyl correspondence, of the noncommutative
operator product. See also Ref. 3 for several beautiful appli-
cations, and discussions of quantum phenomena by means of
the Wigner transform.

We shall be concerned here with the “topological” pro-
perties of the Weyl correspondence. We have many topolo-
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gies at our disposal, both on the functions on the classical
phase space, and on the operators on the Hilbert space; it is a
natural question to ask for the continuity properties of the
Weyl correspondence with respect to these topologies. Some
answers to this question were given in Ref. 9, showing that
the Weyl correspondence maps L ? unitarily onto 7,, the
space of Hilbert—-Schmidt operators, and in Ref. 10, where it
was proved that all Schwartz functions yield trace-class op-
erators, and all L ' functions compact operators. There also
exists an extensive literature on the properties of the Weyl
transform and its inverse when attention is restricted to the
pseudodifferential operators (see Refs. 5, 11, 12, and the re-
ferences quoted therein).

It is our purpose here to prove some new continuity
statements (“‘positive results”’) and show the existence of
counterexamples illustrating the breakdown of continuity if
other topologies are chosen (“‘negative results”). To derive
these results, we use extensively the properties of the har-
monic oscillator coherent states'*'* and of an integral trans-
form'’ relating the function f with the matrix elements of Q
between these coherent states. Basically this integral trans-
form maps functions to analytic functions; it is well known
that such integral transforms have very special properties,
which we shall exploit in our proofs, using ideas going back
to Refs. 16, 17, and 18. A first application of our integral
transform can be found in Ref. 19, where we exhibit a larger
class of functions than %, yielding trace-class operators,
and, by duality, put some restrictions on the distributions
corresponding to bounded operators. The mathematical
properties of this integral transform were studied in some
more detail in Ref. 20; using the resuits obtained there, we
shall see that we can sharpen the results of Ref. 19, and de-
rive some new ones. These results constitute the first part of
this article.

While the first part contains mostly continuity results,
which can be considered to be “positive” results, the second
part contains essentially “negative results,” i.e., counterex-
amples and no-go theorems showing which kind of contin-
uity cannot be expected. For instance,

3 fe L = such that Q fis unbounded,
3 A trace-class for which Q ~'4¢ L '(E).

{l. POSITIVE RESULTS: CONTINUITY STATEMENTS

We shall derive here some continuity properties of the
Weyl transform and its inverse, using an integral transform
introduced in Ref. 15, connecting the function f with the
matrix element of Q f between coherent states. We there-
fore start by giving a short review of the definition and prop-
erties of the coherent states and of the integral transform in
question; for more details the reader is referred to Refs. 15
and 20.

A. The coherent states 27 the integral transform
f— (2%, Q 12°)

Let 2 be the ground state of the harmonic oscillator
P? 4+ Q?[alternatively, one can define {2 as the vector for
which (P, — iQ; )2 =0 ¥ j]. We define then

VacE 0°=W@.
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It is well known'? that the following resolution of the identi-
ty holds:

[ daiena =1, . @)

withda = [1/(27)"] d>x,d p, , and where the integral con-
verges in the weak sense. Inserting Eq. (4) twice, one sees that
for every (bounded) operator A

AzLdaLdb 29027, A02°) 2], (5)

which means that every (bounded) operator can be recon-
structed from its matrix elements between coherent states
[alternatively, one can say that in the Bargmann representa-
tion of the canonical commutation relations every (bounded)
operator is given by an integral kernel]. Actually, the recon-
struction of 4 from its coherent state matrix elements
(£2%, A2 *) works for much larger classes than only the
bounded operators (it works, e.g., for all closed operators for
which the span of the coherent states is a core).

Applying Eq. (5) to Eq. (2), we see that (formally)

Qf= J- daJ db |29 J- dv f(v)2"(02° W (2u)[12°)12°] .
E E E
(6)

In Ref. 15 we used the notations
fa,b v} =2¥(02° WQRuIIN %)

=2"exp[Li{ pox, — PoXa + 2D, X,

- 2paxv + 2pbxb - 2Puxb)

- }1 (2xu — Xy — xa)z - }1 (zpu —pb _pa)z]

and introduced the integral transform

(If ab) = j dv fiv){ab v} . )

What Eq. (6) is telling us then is that the integral transform /
can be used as a tool to study the Weyl correspondence
f < Qf This integral transform was studied in some detail
in Ref. 20. We review here some of its properties. Since, for
fixed a,b, the function {a,b |-} is C *, with Gaussian de-
crease, the integral transform 7 can be defined for all tem-
pered distributions, and also for some classes of nontem-
pered distributions. The images If have quite remarkable
analyticity properties:

Iflab)=exp[ —}(xz +p; +x; +p,)]

XF(py + Xy, pp —1X4), (8)
where F'is an analytic function (depending on f; of course) on
"% C". The set of all functions which can be written in such
a form we denote by Z (E,).

Two special sets of elements of Z (E,) are given by
Uimmi(@b)=exp[ —}(x2 + P +x, +P)]
1 ( Pa + 1%, )[m]( Py — IX, )["]
X([m!][n!])'“\ V2 %) '

@“Nab)=exp{}{{ p-X, — PaX. + PsXa — PaXs)

2 2 2 (9)
+ 3 [660 = %)+ (Pa =P + (%, —x,)

+ (P _Pd)z]} .
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For every element ¢ of Z (E,), one can write a Taylor series
for its analytic part, which can be considered as an expansion
of ¢ with respect to the u,, , :

peZ(E)=dlab)= [ z{ ]¢[m,n]u[m,n](a!b) (10)
m],[(n

with uniform and absolute convergence on compact sets.
One can, moreover, show?° that

Bimn =fdafdb¢(a,b) =YY

=Jdaf db ¢ (a,b)u,,,. (ab) (11)

for all ¢ in Z (E,) such that the integral on the right-hand side
converges absolutely (this is the case, e.g., for the elements of
the .# P-spaces defined below).

Analogously one shows that the following reproducing
property holds®’:

dlc,d)= Jf dadb ¢ (a,b) ©“(a,b)
_ f f dadb ¢ (a,b )0 (c, d ) (12)

for all ¢ in Z (E,) for which the integrals converge absolutely.
The u(,, ,, and ©'“?' are related to the coherent states 2 in
the following way:

2402902 2°) =" ab),

(13)

<ﬂa| [m])([n], Qb) = u[m,,,](a,b) .

In Ref. 20 we defined, V p € R, the spaces & #and W ?
as

Fr=loczExiol;

- Jf dadb (1 + |a]> + |b ) ?|¢ (a,b)|* < oo]

[where |a]> =} (x2 + pl)] (see also Ref. 14 for the definition
of F #),

W £ = closure under || |7 of

(fe ZE) (AP
=@ =14, +p" =44, +V)*f)< o}

(the W # are Sobolev-type space with respect to the operator
X*4+pP—14,-14 »; they are the same spaces as used in
the N representation of .¥ and .#"'). One can then show
that, V p € R, I defines an isomorphism from W ? to % *.

We shall now proceed to derive some properties of the
Weyl correspondence from these properties of the integral
transform 7.

B. The Weyl transform as a map from the (tempered)
distributions to quadratic forms on the span of the
coherent states

For notational convenience, we define
D, = linear span of the coherent states £2°.

D, is obviously dense in #°. For any quadratic form ¢ on
D, , we shall use the notation:

1455 J. Math. Phys., Vol. 24, No. 6, June 1983

K,lab)=¢(2°02°%).

In what follows we shall only consider quadratic forms ¢ for
which the associated function K, is an element of Z (E,). In
doing so, we do not put too severe a restriction on ¢: For
instance, all the quadratic forms associated with Schro-
dinger operators p? + V(x), with ¥ a tempered distribution,
fall into this class {this includes, e.g., the Coulomb potential
as soon as v>2). The ¥ #-topologies can then be used to
define topologies on the quadratic forms on D_,,:

G ? = {¢ quadratic form on D,,,; K, € ¥ *}

Equipped with the corresponding norm, ||¢ ||, = ||K,]|,, the
G * constitute then a nested Hilbert space? of quadratic
forms. One can now define the Weyl transform for all of .’
by means of the integral transform 1

Y Te ¥'(E), QT isaquadratic form on D, defined by

Kor =IT. (14)
It is easy to check that this definition of Q7 coincides with
the direct definition by Egs. (1)or (2)for fe L 'or fe L3 i..,
that

fdvf(v)ia,b v} = (27, Qf02°)

for fin these classes, which justifies our definition (14) as an
extension. This can be verified also for the pseudodifferential
operators. The fact that / is an isomorphism from W, to %,
now easily translates to Q:

VpeR, Q W*’—>G”*
is an isomorphism; one has*®

197, <K IIT[;

and (15)
1o ~'gIls<K 1,
with
K :e—P/2.{1’ p<0,
P \/E(l +p/2v)v+p/2’ p>0,

P {(1 +p/2W'2, p>0,
r \/Ee—lp\/Z(l + |p|/2v)v+p/2, p<0

Remarks

1. The quadratic forms thus obtained need not be closa-
ble! A striking example of a nonclosable form is given by
T (g, p) = 6(g). While both T'(g, p) = 1 and
T,(g, p) = 8( p)blg) lead to nice, in this case even bounded
operators, the quadratic form QT [as defined by Eq. (14)] is
not closable, and hence not associated with an operator.

2. If however a quadratic form ¢ in G * js closable, then
alltheeigenstates |[m]) of ] (P* + Q ?)arein the form domain
of the closure ¢ of ¢, and

S(Im1), 1 1n])) = (Ky)inm, » (16)

where the (K;),,,, .| are the coefficients in a Taylor expansion
for K, [see Eq. 10)]:

Kyab)= 2 (K )mn ¥ (mn (@) (17)
[m],[n]

Ingrid Daubechies 1455



[Eq. (16) can easily be proved from the fact that suitable
differentiations of the {2 ? yield the eigenvectors |[m]), in the
same way as the (K, ) ,,,., | can be obtained from K, by differ-
entiating].

3. Actually one can give asense to ¢ (|[m]), |[#])) for all
¢ in G *, even if ¢ is not closable, in the following way. For
1>0, we define

D, = |we s lulz = [ da w201 + af?)# < o

= [¢e%,|l/1|i = 21(1/r|[m])|2(|m| +v)“ < oo} . (18)

{m]
For i <0 we define the norms | |, | |, in exactly the same
way; in this case D, is defined to be the closure of % with
respect toeither | |, or | |, (these two norms are equivalent
for all ). From the definitions of the D, one immediately
sees that, forany u, D, is the dual space of D _ . With respect
to a suitable extension of the inner product on %"

(. ) = f da (U, 2%, ) .

On the other hand, one can show that for any ¥ € G
V ¢l’ l/}ZEDcnh ’

by o) = f dadb K, (@b )b 292% b)) (19)

[one has only to show this, for ¥, = 2, 1, = 2% the state-
ment then follows from Eq. (12)].

Since (1 + {a|*)'*(1 4[5 [})"2<1 + |a|* + 67
<(1 4+ |a]’)(1 + |b |?), it is then obvious from our definitions
and from the duality of D, and D _, thatevery ¢ in G # can
be extended, using Eq. (19}, to a continuous map from D _,
to D, if p<0, from D _ , to D,,, if p>0. Alternatively, one
can also say that in this way we have extended ¢ € G *to a
quadratic formon D _  ifp<Oandon D, ifp>0.In
particular, since the |[m]) are elements of all the D,,, this
means we have givenasense tod (|[m]), |[#])), whichis again
given by (K, )i, :

$(I[m1), unm=”dadb1<¢(a,b)<[m1|m><mun]>

= ff dadb K 4(a,b)u,,, . (a,b) [see Eq. 13)]

= (K4} inm) [see Eq.(11].

4. From Eq. (18) one easily sees that D, is exactly the
domain of (P2 4+ Q?)*/?, or equivalently, the form domain
of (P2 4+ Q7)~

Take p>>0. Then, by the extension defined above,
¢ € G ~? defines a continuous, more precisely a Hilbert—
Schmidt map from D, to D _,. This means that ¢ is a qua-
dratic form, relatively form-compact with respect to
(P? 4+ Q2 *.(See Ref. 23 for the definition of relatively form-
compactness}.

5. Translating all this to the Weyl transform, we see
nowthatV p>0, Y T e W —*: QTis a quadratic form, rel-
atively form-compact with respect to (P2 4 Q*)”.

6. In Ref. 20 the action of I on some classes of distribu-
tions “‘of type S,” which contain also nontempered distribu-
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tions, was studied. One can perform the same constructions
and extensions as above for these larger classes; as a result
one gets that Q, when applied to a H (@, 4 )**** yields qua-
dratic forms relatively compact with respect to

expl7(P? + 0],

for a>, ¥ r>24 """,

C. The distributions corresponding to bounded
operators

Let 4 be a bounded operator. Equation (14) provides us
with a simple rule to find the function or distribution Q ™ '4,
via the coherent states. We define K ,(a,b ) = (£2°, A02°").
One can easily check, from the properties of the coherent
states, that K, is an element of Z (E,). Moreover [use Eq. (4)],

| da K tabl = a2 <Al
E
hence, V €>0,

Jda[avitrial +167) K b

< fdb(l b AR

» 2 (" x* 1
= 41l F(V)J:) a (1+x7)7
=|A|’T (e (v+e .
This implies that A, considered as a quadratic formon D_,,,
is an element of n,_, G " * 9, with
Vex0, |4 . o<IT(e/T(v+el?|4]l.

As a consequence of this, we can formulate the following
restriction on the distributions corresponding to bounded
operators: The Weyl transform QT of a distribution

T e #"'(E) can be a bounded operator only if

TG n W‘("+6'

€0
and 3 K>0 such that
Vex0, TI . q

<e—(v+e - l)/2[(3 +6_/1/)/2](3\’+eb/Z‘F(e)/F(v+6)|1/2K'
(20)

The “only if " in this statement cannot be replaced by an ““if
and only if.” This is again illustrated by the distribution

T (g, p) = 6(g): it turns out that T is an element of

Ne.o W ~ ™9 and satisfies Eq. (20), though QT is not even
closable, and certainly not bounded.

The topology induced on B (%) by the || || _, . -
norms is much weaker than the norm topology. Actually, it
is even weaker than the strong topology: if 4, —, . A4
strongly, then the ||4,, || are uniformly bounded (by the prin-
ciple of uniform boundedness, e.g., Ref. 21).

Hence

fda(l a4 B P K k) — Ky (ab)?

<+ 167) 7 (42" —4,0°|F
ST+ 161) " “sup(4li4, ],
which is integrable in . Together with
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|42°% — 4,02°%) —,_. Othisimplies
l4—A, | _vio —nsw O V €>0; hence
Q '4,—,..  Q 'dineach W "9 €>0.

Remarks

1. Note that this argument can also be used for un-
bounded operators: Whenever 4,, and A are unbounded op-
erators such that

(2°4,02°) - (2°402°)

and 3 K,/ for which |(2% 4,2°)’<K (1 + |a)* + b ¥
uniformlyinnthenQ ~'4, —, . @ ~'4 in #(E)(i.e., “in
the sense of the distributions”).

2. Actually, the bound Eq. (20) can still be sharpened a
little bit. Defining, for p € R, the norm | |} (equivalent to
I 1I5) by

IT], =(T,@> — {4, +p* —44,)°T)'"? (21)
(we omit the extra v in the definition of || ||}, which makes
this norm larger than || ||, for p<0), one can show”’ that

Y ab

ITV 0y g<T W)~V (14 €K,

where { is Riemann’s zeta function: § (x) = 22_, k —*.

D. A class of functions yielding trace-class operators

The restriction (20) on the class of distributions corre-
sponding to bounded operators is sharper than the one der-
ived in Ref. 19. We can consequently also find a larger class
of functions leading to trace-class operators.

To do this, we shall follow essentially the same method
as in Ref. 19: we need as a preliminary lemma that

V B trace-class, TrB= fda (£2¢ B2°). (22)

(This is fairly easy to prove; see, e.g., Ref. 19. Note that the
absolute convergence of the integral on the right-hand side
for a given operator B does not imply that B is trace-class).

Take now fe S (E). We know'® that Q fis trace-class.
Moreover, the trace-norm of Q f'is given by

IQf Nl =Tr|Qf|= sup |l4]|7"|TrA-Qf)|.

(20) can be replaced by ACB(F) A %0
QT bounded only if 3 K>0 such that | But, by Egs. (22) and (4),
Tia-0s)| = | [ dar2e, a0

= } Jdafdb(ﬂ”,A!)b)(ﬂb,Qf.Q")

172

<( [ dads 1+ 1o + 18 1y 2, 427

x( [ [ daas 1+ 1ar + 16 P22, 0s7)

<|Te/T v+ e M, ..

<L/ v+el e <=2 3 +evp/21™ Al LI e s
which implies filg,p) =flg) (independent of p),

1Ol <e™ T V2[(3 4 e/v)/2]0" T 972 folg, p) =g(p) (independent of g) .
X[ (e/Tiv+el"?|fI 4 - (23)  Define

Since (E )is densein W * ¢, this implies then that all func-
tionsinu, ., W * yield trace-class operators, with a bound
on their trace-norm given by Eq. (23).

Remarks
1. Again, the bound Eq. {23) can be sharpened to

1l <™ (1+ &2 £, (24)

with | f|3 . defined as in Eq. (21).

2.Notethat all theelementsof W # (p > v)are L '-func-
tions (they are, of course, also square-integrable, which was
to be expected since @ maps L ? unitarily onto the Hilbert—
Schmidt operators,”'® and since every trace-class operator is
also a Hilbert-Schmidt operator).

3. In the same way as Eq. (23) one can also derive the
following inequality>*:

1457 J. Math. Phys., Vol. 24, No. 6, June 1983

HLAIL = [(f @ =14, +v/2)70)]"2,
with an analogous definition for ||| /5||[;. Then
12/ £«

V[l (e/T(v+ele "< V[(3+e/v)/2]+¢

XA+ HAHE L. -

This condition on f, and f; is reminiscent of, but stronger
(and our result therefore weaker) than the condition in
Theorem X1.21 in Ref. 26. The reason why our condition is
stronger is that our treatment, and hence this condition, are
invariant under Fourier transforms (see below), while the
condition in Ref. 26 is not.
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E. The functions corresponding to the dyadics
|lmD> <[]

Again we use Eq. (14) to find the functions correspond-
ing to these dyadics (remember that the |[n]) are the eigen-
states of the harmonic oscillator P* + Q%4 (P} + Q7)|[n])

=(n; + )l [n])):
Ky, 1n1l@) = {2°|[m])([n] |2°%)
= Uppmn(@,b) [see Eq.(13)] .

v min(k,1)

hirs (@, p) = ACHR H 2 (—2) 92tk +14)2

i=1 s/-=0

and they have many interesting properties, as, e.g.,”
(—id4, -4, + g +P2)h[k.1 y=(k|+ 1]+,

which means they are related to the Hermite functions. Like
the Hermite functions, they form an orthonormal base in

L ??° There exists also a connection with the Laguerre poly-
nomials. One has, for instance, in the case v = 1,

hialg: p) = 2( — 1)'e =%+ PIL, (267 4 2p7), (25)

while the nondiagonal 4, can be related to generalized La-
guerre polynomials.>’

It is amusing to note that the functions we denote by
hx1  have been discovered and rediscovered several times in
the literature. The diagonal 4, can already be found in Ref.
28 (25 years ago!); in Ref. 29 they are rediscovered, and used
in a very elegant way to derive properties of the Laguerre
polynomials from the properties of the Weyl transform.
They were again found in Ref. 8. It is quite likely that these
are not the only places in the literature where they were
discovered... . The nondiagonal 4,, seem to be less popular;
they can, nevertheless, also be found in Refs. 27 and 3. One
can probably extend the methods used in Ref. 29 and use the
h,, and their relation with the Weyl transform to derive pro-
perties of the generalized Laguerre polynomials.

Their main interest to us, here, is that they can be used
to compute matrix elements between harmonic oscillator ei-
genstates (such matrix elements are often used, e.g., in nu-
clear physics). Indeed, for any T € %(E ) one has (see Sec.
IIB)

([m]|QT [n])

= (KQT)[n,m]

=UT),m [useEq.(14)]

= JJ dadb IT (a,b )u,,, . (a,b) [see Eq. (11)]

= f dv T(v)h,,,, (v) (see Ref. 15), (26)
where the last integral has to be understood as T'(4,,, ), if
the distribution 7'is not given by a genuine function. This

means one can compute the matrix elements of Q7 between
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Hence

Q "N ImD () =1 "up,,,, =h

— "lnm]

(see Refs. 13, 15).

These functions 4, ,,, | were studied in Refs. 15, 20, and 25
(among other things). They can be calculated explicitly:

JEI

5k, — ;M —s;)

-, +ig) v —ig) ],

harmonic oscillator eigenstates by a direct integration on the
classical phase space.

F. The relation between Q and the Fourier transform

As was pointed out in Refs. 15 and 20, the integral ker-
nel {a,b |-} satisfies the following invariance property under
Fourier transforms:

Fyfab|-)fv) = {a, —b v},

where

(Fo fv) =2""]al” J dv' eI (V')

(F, is exactly the symplectic Fourier transform ~already de-
fined in the introduction). This then implies, V Te *'(E)
[also for all the nontempered distributions in the H (@, 4 )
spaces; see Ref. 20]

Y ab, I(F_,T)ab)=1IT(a, —b).
Translated to the Weyl transform language, this means that
QF_,T)=90T1l (27)

(QT-1I can be defined as a quadratic form on D_; , and, if
Te W*,onD _,, without any problems, since these do-
mains are invariant under /7). This also means that one can
enlarge every class of distributions (providing it is not al-
ready invariant under F_,), yielding operators with a specif-
ic property (provided this property is invariant under multi-
plication by the parity operator), just by applying F_,, and
so produce a new set of distributions with the desired proper-
ty.

The classes of distributions we introduced in the pre-
ceding sections are invariant under F_,, but this is not the
case with other characterizations found in the literature. For
instance, we know!'° that

V feL'(E), Qf compact and ||Qf|<2"|| 1}, (28)
[this can also be derived from Eq. (23): the bound Eq. (28)

obviously holds for all fin L '—see Eq. (2)—; since '~ * “is
dense in L', Eq. (23) implies then that, V fe L', Qfis the
norm-limit of trace-class operators, and hence compact). Us-
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ing Eq. (27), we see then that

VY felL', Q{(F _,f) compact and ||Q(F74f}||<2"”f||l .
(29)
Remark

Equation (29) can already be inferred from the formal
expression (1); the invariance property of the kernel {a,b |-}
under F__, is another way of saying that Egs. (1) and (2) are
equivalent: formally [F,W (2-)]{v) = W (2v)/1.

1Il. NEGATIVE RESULTS: PATHOLOGIC BEHAVIOR

In this second half of this paper we want to present
some results showing one should be careful about Wigner
functions and the Weyl transform, and not always trust one’s
first intuition. These results complement the continuity
statements in part A in showing which continuity properties
can definitely not be expected.

A. A positive function leading to a nonpositive operator

This first section is really only a remark.

It is well known that the Wigner distribution corre-
sponding to a density matrix {i.e., a positive, trace-class oper-
ator with trace 1) need not be positive everywhere.* { Actual-
ly, one can prove® that the only pure states for which the
Wigner function is positive everywhere are the Gaussian
states, i.., the states of form ¥(x) = N expliax + B (x — x,)’]
in the Schrodinger representation.} Note that the same
phenomenon occurs for the so-called diagonal representa-
tion with respect to the coherent states, where one represents
operators by an integral over dyadics |£29){2°|: 4

= fdad,la)|f2°)42°|. Here too it may happen that 4 is
positive, even though ¢, is not positive everywhere. How-
ever, one always has ¢, >0 = 4>0. This is not true for the
Weyl transform, where one can have a nonpositive operator
stemming from a positive function.

Using the parity operator /7, we build here an example
of a positive function f for which the Weyl transform Q fis
not positive. Take any ¢ such that /Iy = — o, %0, (e.g.,
¥ = |[n]) with |n| odd). Since the Wigner operators /7 (v) are
strongly continuous, there exists an 7>0 such that

lo|<r = (¢, H L)3P)< — 3l[¢]1%

Define
I, jv<r,
f(U)A[O, [v]>r.
Then

(b Qff) = 2" j dv fio)e T (o))
=2 a1

<— 2" [y L

vj<r
= =27/ v+1)]¢l°,
which shows that Q f'is not positive.
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Remarks

1. The function fwe have constructed here is clearly in
L ?, which means Q fis a Hilbert-Schmidt operator, and
therefore bounded. We shall show later on that there exist
positive, bounded functions f for which o{Q f) is not even
bounded below.

2. Since the function fas we constructed it is discontin-
uous, it cannot be the Wigner distribution of a trace-class
operator. It is obvious, however, that we could also have
chosen fpositive, C =, with support in {v,|v|<r}, without
invalidating the conclusion that (i, Q f) <0. This shows
that there exist positive functions in .#’(E ) with nonpositive,
trace-class Weyl transforms.

B. Bounded functions leading to unbounded operators

Aslong as we concern ourselves with functions depend-
ing only on g or on p, we know that the operator correspond-
ing to such a bounded function will always be bounded, with

lesl<irsl- (30)

We shall show here that this is no longer the case once
one considers functions depending on both g and p: Not only
does the bound Eq. (29) not hold any longer, even with an
extra constant K on the right-hand side, but there actually
exist bounded functions whose Weyl transform is an un-
bounded operator.

We shall prove this in two steps. In a first step we con-

struct a sequence of functions f, such that || £, 1| . =1,
@ f. || —,_... «,showing thereby that no K exists for
which ||Q f||<K || f]|.. . We then prove (ad absurdum) that
this implies Q (L =) ¢ B(#").

Take, for simplicity reasons, v = 1. Define

{ 1 if 4,,(v)>0,
LO=1 1 it h <0

Then

(1@, (ny = fdvmv)hm,(v) [sec Eq. (26)]
=jdu o (0]

— (1/2m) f dq f dp2e =%+ PL, (2" + 27|
[see Eq. {25)]

=%fdu e~ "L, (u)|.

To put a lower bound on this integral, we shall use asympto-
tic formulas for the Laguerre polynomials derived by Tri-
comi.?' Let 7 be a small positive number (more specifically
n € 10, ¢ [}). Then, for x € [n(n + }), (1 — p){4n + 2j],

L, (x)=e"*1/{mk sin20 ){sin(O + nw) + O (k )]
where

k=n+1, 6=cos™Vx/4k ,

O = k(20 —sin28) + 7/4

and where the term O (k ~') can be bounded by Mk ', uni-
Sormly in x for x € [k, 4(1 — n)k . (This last fact is not
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stated explicitly in Ref. 31, but it can be derived from the
details of Tricomi’s proof). Consequently,

[awe i, m
0

(1 — n)(4n + 2)
> J dx (1/y 7wk sin26 )

nln + 1/2)

X |sin(@ + nw) + O (k )|

os ™ 'Vn/4
>(8k /\27K) f d0 \/sin20
cos 'J1—7

X {|sin[k (20 — sin28) + 7/4]| — Mk ~ '}

R (8@/@5)[(2/#) f -

n—eo cos™ Y1 — 9
Xd6sin20 (1 — 7M /2k )]

(by an extension of the Riemann~Lebesgue lemma). This im-
plies there exists an @ > 0 such that

Y n, f due=“?|L,(u)|>an ;
0

hence (31)

101, 1>4nIQ f, |n)>an .
Suppose now that Q (L ©) C B (#°). We show next that

this implies that Q is closed from L = to B (). Indeed, take
g, € L * such that

le. —&ll. =0, [1Qg. — Bl — 0.
Then,

Y ab, (2°B02°)

= lim (2% Qg,°)

n— oo

= lim | dvg,(v){a,b |v}

n— o0

=fdvg<v>{a,b|v1 [{ab |} €L (E)]
=(2°QgNR’);

hence B = Q g. This implies Q is closed from L * to B (7);
hence, by the closed graph theorem, 3 K > 0 such that

1@ fII<K || fll. - This is clearly in contradiction with Eq.
(31), which allows us to conclude that Q (L *) ¢ B(#);i.e.,
there exist bounded functions with unbounded Weyl trans-
forms.

Remark

If fis a bounded function with unbounded Weyl trans-
form Q f, theng = f+ || f||.. is a positive bounded function
with unbounded Weyl transform. From g one can then con-
struct a positive bounded function 4 such that @h is not even
bounded below. Let us suppose that Q g is bounded below
(otherwise, we simply take 4 = g). Then Q g is not bounded
above, since @ g is unbounded. Take now h = || gi| . — .
This is clearly a positive, bounded function; moreover,
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Qg+ Qh = g|.. 1, which implies QA is not bounded be-
low.

C. Non-absolutely-integrable Wigner distributions
corresponding to positive, trace-class operators

All the functions leading to trace-class operators we
have encountered here till now were absolutely integrable
(e.g., the A, .}, theclass U, W *in Sec. IID). Of course,
this does not mean that every Wigner distribution for a trace-
class operator must necessarily be in L '. On the other hand,

if Q f'is trace-class, then

lim dv f(v) =Tr Qf<[|Qf|., -

R—o0 Jju|<R
One knows, of course, that f'need not be positive every-
where, even if Q fis positive, and hence that the integral of
| f] will be larger, in most cases, than the integral of fitself.
The connected components of the domain where fis nega-
tive (for Q f positive, trace-class) have to be rather “‘small,”
however (otherwise, negative expectation values of Q f
would be possible), and are physically thought of as being
caused by “quantum fluctuations.”” It thus does not seem
unreasonable, at first sight, to hope that, even though

11 <112 e

cannot possibly hold for all trace-class operators Q f, one
still would retain the property that for every trace-class oper-
ator A the associated Wigner distribution Q ~'4 would be in
L '(E).Itisadirect consequence of the result in the preceding
section that this argument turns out to be deceiving: There
do exist positive trace-class operators A for which

Q ~'4¢L '(E). Indeed, suppose there were none. Then

Q () C LE).
Again, this implies that Q ~":7,(%°) — L '(E ) is closed: Take
A, such that

HAn —4 ”trn_) 0 ’ ”Q _lAn _f”ln_) 03
then

(29 A0°%) = lim(2° 4,02°)

n—> o0

= lim | dv(Q ~'4,)v){a,b |v}

n-—+c0

=fdvf(v){a,b’v} [{a.b|-l el =(E)];

hence Q ~'4 =f [I.¥’' — Z (E,) is injective]. By the closed
graph theorem this then implies

3 K>0 suchthat ||Q '4|,<K||4], .
But we already calculated that for 4, = |n)(n| (take v = 1)

0 4, |, = jdv o) V7

while ||4, ||, = 1. This is clearly a contradiction, implying

that Q ~!(r (%) & L (E).

Remark

The inclusion in the other direction does not hold ei-
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ther:

QLYE) G 7(F).
This is an immediate consequence of the fact that all Wigner
distributions of trace-class operators are continuous. More-
over, Q ~!(r,(#)) C L *(E)(since every trace-class operator
is Hilbert-Schmidt), which shows that not even all contin-
uous L ! functions lead to trace-class operators.
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