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Continuity statements and counterintuitive examples in connection with 
Weyl quantization 

Ingrid Daubechiesa) 

Physics Department, Princeton University, Princeton, New Jersey 08544 

(Received 11 March 1982; accepted for publication 27 August 1982) 

We use the properties of an integral transform relating a classical functionJwith the matrix 
elements between coherent states of its quantal counterpart Qf, to derive continuity properties of 
the Weyl transform from classes of distributions to classes of quadratic forms. We also give 
examples of pathological behavior of the Weyl transform with respect to other topologies (e.g., 
bounded functions leading to unbounded operators). 

PACS numbers: 03.65.Ca, 02.30. + g 

I. INTRODUCTION 

The Weyl correspondence or Weyl transform defines a 
map from the functions on the classical phase space to the 
operators on the quantum mechanical Hilbert space. I 

The classical phase space is here a 2v-dimensional real 
vector space E, equipped with a non degenerate symplectic 
form a. It is customary to consider E as the direct sum of 
position and momentum spaces: 

E 3 v = (q, p), q, p E IR" , 

with a of the form 

a((q,p), (q',p')) = ~ (p.q' - q. p'). 

The Hilbert space JY is a complex Hilbert space carry­
ing an irreducible representation of the canonical commuta­
tion relations. Explicitly, 3 W(v), unitary operators on JY, 
labeled by the points v of E, such that 

s-lim W(v) = 1 h' , 
v-_o 

W(VdW(V2) = eiaiv"V,IW(v l + v2)· 

One usually writes the W(v) as 

W(p, q) = exp[i(p.Q - q·Pl] 

= exp( - ! ipq)exp(ip'Q )exp( - iq'P) , 

where Qj (Pj ) are the generators of the v-parameter group 
W(O,p) (W( - q,O)); Qj and Pj are called the position and 
momentum operators, respectively, and satisfy the usual 
commutation relations 

on a common core. 
The Weyl transform of a functionJ on E is then an 

operator QJ defined by (formally) 

QJ=2-"LdV/(V)W(-VI2), (1) 

where/is the symplectic Fourier transform off 

/(v) = 2 - 'f dv' eiajl',"Y(v') , 

One can check l that Eq, (1) defines an unambiguous exten­
sion ("symmetric ordering") of the usual correspondence 

'IOn leave from Dienst voor Theoretische Natuurkunde, Vrije Universiteit 
Brussel, Belgium, and from Interuniversitair Instituut voor Kernwetens­
chappen, Belgium. 

jj(q,p) = qj =? Qjj = Qj , 

gj(q,p) = Pj =? Q gj = Pj , 

To give a precise sense to Eq. (1), one has to specify in 
what sense the integral converges. It can easily be shown that 
this integral is well defined in the usual weak sense for 

/ ELI + L 2; however, one can give a meaning to Eq. (1) for 
much larger classes ofJ (see below). 

It is possible to write the mapJ 1--+ QJwithout involving 
Fourier transforms2 

QJ=2V f dvJ(v)W(2v)/l. 

Here /l is the parity operator, i.e., an involutive, unitary 
operator satisfying 

/lW(v) = W( - v)/l; 

(2) 

the operators /l (v) = W(2v)/l used in Eq. (2) are called 
Wigner operators. 3 Like the Weyl operators, they satisfy 
specific multiplication rules; moreover, they are self-adjoint. 

The inverse map, from the operators on JY to the func­
tions on E, is the Wigner transform.4 Formally this trans­
form can be written as 

J(v) = 2" Tr[Qj7l(v)] . (3) 

One sees immediately that Eq. (3) is well defined for QJ 
trace-class; again, we shall see below how this correspon­
dence can be extended to more general classes of operators. 

The Weyl correspondence and its inverse have been 
used in several different contexts. One obvious field of appli­
cations has been the study of classical limits. 5.6 In Ref. 7 the 
Weyl correspondence and its properties are used to find the 
equations of motion for a particle with spin! in an electro­
magnetic field in a semirelativistic approximation, in parti­
cular to derive the correct magnetodynamic effect. An ap­
proach of quantum mechanics related to the Weyl transform 
can be found in Ref. 8, where quantum effects are studied 
using only functions on phase space (no Hilbert space pic­
ture), with a noncommutative product, which is usually 
called the twisted product, and which is the transposition, 
through the Weyl correspondence, of the noncommutative 
operator product. See also Ref. 3 for several beautiful appli­
cations, and discussions of quantum phenomena by means of 
the Wigner transform. 

We shall be concerned here with the "topological" pro­
perties of the Weyl correspondence. We have many topolo-
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gies at our disposal, both on the functions on the classical 
phase space, and on the operators on the Hilbert space; it is a 
natural question to ask for the continuity properties of the 
Weyl correspondence with respect to these topologies. Some 
answers to this question were given in Ref. 9, showing that 
the Weyl correspondence maps L 2 unitarily onto 7 2, the 
space of Hilbert-Schmidt operators, and in Ref. 10, where it 
was proved that all Schwartz functions yield trace-class op­
erators, and all L 1 functions compact operators. There also 
exists an extensive literature on the properties of the Weyl 
transform and its inverse when attention is restricted to the 
pseudodifferential operators (see Refs. 5, 11, 12, and the re­
ferences quoted therein). 

It is our purpose here to prove some new continuity 
statements ("positive results") and show the existence of 
counterexamples illustrating the breakdown of continuity if 
other topologies are chosen ("negative results"). To derive 
these results, we use extensively the properties of the har­
monic oscillator coherent states 13.14 and of an integral trans­
form 15 relating the functionfwith the matrix elements of Qf 
between these coherent states. Basically this integral trans­
form maps functions to analytic functions; it is well known 
that such integral transforms have very special properties, 
which we shall exploit in our proofs, using ideas going back 
to Refs. 16, 17, and 18. A first application of our integral 
transform can be found in Ref. 19, where we exhibit a larger 
class of functions than Y, yielding trace-class operators, 
and, by duality, put some restrictions on the distributions 
corresponding to bounded operators. The mathematical 
properties of this integral transform were studied in some 
more detail in Ref. 20; using the results obtained there, we 
shall see that we can sharpen the results of Ref. 19, and de­
rive some new ones. These results constitute the first part of 
this article. 

While the first part contains mostly continuity results, 
which can be considered to be "positive" results, the second 
part contains essentially "negative results," i.e., counterex­
amples and no-go theorems showing which kind of contin­
uity cannot be expected. For instance, 

3 fE L 00 such that Qfis unbounded, 

3 A trace-class for which Q -IA Et L I(E) . 

II. POSITIVE RESULTS: CONTINUITY STATEMENTS 

We shall derive here some continuity properties of the 
Weyl transform and its inverse, using an integral transform 
introduced in Ref. 15, connecting the functionfwith the 
matrix element of Qf between coherent states. We there­
fore start by giving a short review of the definition and prop­
erties of the coherent states and of the integral transform in 
question; for more details the reader is referred to Refs. 15 
and 20. 

A. The coherent states na; the integral transform 
f f--+ (na , Q f[Jb) 

Let fl be the ground state of the harmonic oscillator 
P 2 + Q 2 [alternatively, one can define fl as the vector for 
which (p) - iQ))fl = 0 \:;/ j]. We define then 

\:;/ a E E: fl a = W (a)fl . 

1454 J. Math. Phys., Vol. 24, No.6, June 1983 

It is well known 13 that the following resolution of the identi­
ty holds: 

LdalflaHflal=l;7-, (4) 

with da = [l/(21T)V] d vxad 'Pa ,and where the integral con­
verges in the weak sense. Inserting Eq. (4) twice, one sees that 
for every (bounded) operator A 

(5) 

which means that every (bounded) operator can be recon­
structed from its matrix elements between coherent states 
[alternatively, one can say that in the Bargmann representa­
tion of the canonical commutation relations every (bounded) 
operator is given by an integral kernel]. Actually, the recon­
struction of A from its coherent state matrix elements 
(fl a, Afl b) works for much larger classes than only the 
bounded operators (it works, e.g., for all closed operators for 
which the span of the coherent states is a core). 

Applying Eq. (5) to Eq. (2), we see that (formally) 

Qf= L daL db Ifla) L dvf(v)2Vl a, W(2v)llflb)(fl b l· 

(6) 

In Ref. 15 we used the notations 

!a,blv) =2Vl a, W(2v)llflb) 

= 2V exp [! i( PaXb - PbXa + 2Pvxa 

- 2Pa x v + 2Pb Xb - 2Pv Xb) 
- ! (2xv - Xb - xa)2 - ! (2pv - Pb - Pa)2] 

and introduced the integral transform 

(IfHa,b) = f dvf(v)!a,b Iv) . (7) 

What Eq. (6) is telling us then is that the integral transform I 
can be used as a tool to study the Weyl correspondence 
f +-+ QfThis integral transform was studied in some detail 
in Ref. 20. We review here some of its properties. Since, for 
fixed a,b, the function! a,b I·) is Coo, with Gaussian de­
crease, the integral transform I can be defined for all tem­
pered distributions, and also for some classes of nontem­
pered distributions. The images If have quite remarkable 
analyticity properties: 

If(a,b)=exp[ -!(x~ +p~ +x~ +p~)] 

XF(Pa + iXa,Pb - ixb) , (8) 

where Fis an analytic function (depending onf, of course) on 
CV X C". The set of all functions which can be written in such 
a form we denote by Z (E2 )· 

Two special sets of elements of Z (E2) are given by 

u 1m•n l(a,b) = exp[ - Ux~ + p~ + x~ + p~)] 
1 ( Pa + iXa )Iml( Pb - iXb )Inl 

X ([m!] [n!])I!2 vL vL' 

(9) 
+! [(xa _xc)2+(Pa -pJ+(xb -Xd)2 
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For every element ¢J of Z (E2 ), one can write a Taylor series 
for its analytic part, which can be considered as an expansion 
of ¢J with respect to the u[m,n I: 

¢J E Z (E2 ) =;, ¢J (a,b) = L ¢J[m,n IU[m,n I(a,b) (10) 
[m],[nl 

with uniform and absolute convergence on compact sets. 
One can, moreover, show20 that 

¢J[m,n I = f da f db ¢J (a,b) u[m,n I(a,b) 

= f da f db ¢J (a,b )u[n,m I(a,b) (11) 

for all ¢J in Z (E2 ) such that the integral on the right-hand side 
converges absolutely (this is the case, e.g., for the elements of 
the Y P-spaces defined below). 

Analogously one shows that the following reproducing 
property holds20

: 

¢J (e, d) = f f dadb ¢J (a,b) wiC,d)(a,b) 

= f f dadb ¢J (a,b )wia,b)(e, d) (12) 

for all ¢J in Z (E2 ) for which the integrals converge absolutely. 
The u[m,n I and Wic,d) are related to the coherent states fJ a in 
the following way: 

(fJ a, fJ C)(fJ d, fJ b) = Wic,d I(a,b ) , 
(13) 

(fJ al [m])( [n], fJ b) = u[m,nl(a,b). 

In Ref. 20 we defined, V pER, the spaces Y P and W P 

as 

YP= {¢JEZ(E2); II¢JII~ 

= f f dadb (1 + lal 2 + Ib 12) PI¢J (a,b W < 00 } 

[where la 12 = ! (x~ + p;)] (see also Ref. 14 for the definition 
ofYP), 

W P = closure under II II~ of 

I fE Y(E); !llfll~)2 
= (f, (q2 -! Llq + p2 -! Llp + v) Pf) < 00] 

(the W Pare Sobolev-type space with respect to the operator 
x 2 + p2 - ! Ll x - ! Ll p; they are the same spaces as used in 
the N representation of Y and Y'21). One can then show 
that, V pER, I defines an isomorphism from W P to Y p. 

We shall now proceed to derive some properties of the 
Weyl correspondence from these properties of the integral 
transform I. 

B. The Weyl transform as a map from the (tempered) 
distributions to quadratic forms on the span of the 
coherent states 

For notational convenience, we define 

Dcoh = linear span of the coherent states fJ a. 

Dcoh is obviously dense in JY'. For any quadratic form ¢J on 
D coh , we shall use the notation: 

1455 J. Math. Phys., Vol. 24, No.6, June 1983 

K", (a,b ) = ¢J (fJ a, fJ b) , 

In what follows we shall only consider quadratic forms ¢J for 
which the associated function K", is an element of Z (E2 ). In 
doing so, we do not put too severe a restriction on ¢J: For 
instance, all the quadratic forms associated with Schro­
dinger operators p2 + V (x), with Va tempered distribution, 
fall into this class (this includes, e.g., the Coulomb potential 
as soon as v;>2). The YP-topologies can then be used to 
define topologies on the quadratic forms on D coh : 

G P = I ¢J quadratic form on D coh ; K", E Y P] 

Equipped with the corresponding norm, II¢J lip = 11K", lip, the 
G P constitute then a nested Hilbert space22 of quadratic 
forms. One can now define the Weyl transform for all of Y' 
by means of the integral transform I: 

V T E Y'(E), QT is a quadratic form on Dcoh defined by 
KQT = IT. (14) 

It is easy to check that this definition of QT coincides with 
the direct definition by Eqs. (1) or (2) for f ELI or f E L 2, i.e., 
that 

f dvf(v)!a,b Iv] = (fJ a, QffJb) 

for fin these classes, which justifies our definition (14) as an 
extension. This can be verified also for the pseudodifferential 
operators, The fact that I is an isomorphism from Wp to Y P 

now easily translates to Q: 

V pER, Q: W P ----+ G P 

is an isomorphism; one has20 

and 

IIQ -I¢J II~ <X; II¢J lip 
with 

K _ -pl2 {I, p<,O, 
P - e . ~(1 + p/2V)v+pI2, p;>O, 

K' _ {(I + p/2V)1/2, p;>O, 

P - ~e-lpll2(1 + I pl/2vt+PI2, p<,O. 

Remarks 

(15) 

1. The quadratic forms thus obtained need not be closa­
ble! A striking example of a non closable form is given by 
T(q,p) = D(q). While both TtIq,p) = I and 
T2(q,p) = D(p)D(q) lead to nice, in this case even bounded 
operators, the quadratic form QT [as defined by Eq. (14)] is 
not closable, and hence not associated with an operator. 

2, If however a quadratic form ¢J in G P is closable, then 
all the eigenstates I [m]) oq (P 2 + Q 2) are in the form domain 
of the closure ¢ of ¢J, and 

¢ (I [m]), I [n])) = (K"')ln.m J ' (16) 

where the (K", )Im.n I are the coefficients in a Taylor expansion 
for K", [see Eq. 10)]: 

K",(a,b) = L (K"')lm,n IU[m,n I(a,b) (17) 
Iml,[nl 

Ingrid Oaubechies 1455 

Downloaded 25 Apr 2012 to 147.65.105.210. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



[Eq. (16) can easily be proved from the fact that suitable 
differentiations of the fl a yield the eigenvectors I [m]), in the 
same way as the (K.p )Im.n J can be obtained from K.p by differ­
entiating]. 

3. Actually one can give a sense to tP (I [m]), I [n]» for all 
tP in G P, even if tP is not closable, in the following way. For 
fl ;;'0, we define 

Dli = {I/' E dY'; II/'I~ = I da 1(1/', fl aW(1 + lal l )}1 < 00 } 

= {I/'EdY';II/'I~ = II(I/'I[m])ll(lml +V)li< oo}. (18) 
1m] 

For fl < ° we define the norms I Iii' I 1}1 in exactly the same 
way; in this case Dii is defined to be the closure of dY' with 
respect to either I 1}1 or I 1}1 (these two norms are equivalent 
for all f1). From the definitions of the D}1' one immediately 
sees that, for any fl, D Ii is the dual space of D -}1 with respect 
to a suitable extension of the inner product on dY': 

(1/'1,1/'1) = I da (1/'1' fl a)(fl a, 1/'1) . 

On the other hand, one can show that for any I/' E G P 

tP(I/'I,l/'l) = II dadbK,p(a,b)(l/'l,fla)(fl b, 1/'1) (19) 

[one has only to show this, for 1/'1 = fl c, 1/'1 = fl d; the state­
ment then follows from Eq. (12)]. 

Since (I + lal l )1/2(1 + Ib 12)1/2<1 + lal 2 + Ib 12 
«1 + lall)(1 + Ib 12), it is then obvious from our definitions 
and from the duality of D}1 and D -}1 that every tP in G P can 
be extended, using Eq. (19), to a continuous map from D _ P 

to Dp if p<O, from D _ 1'/2 to DpI2 if p>O. Alternatively, one 
can also say that in this way we have extended tP E G P to a 
quadratic form on D _ p if p<O and on D _ p/2 if p;;,O. In 
particular, since the I [m]) are elements of all the D}1' this 
means we have given asensetotP (I [m]), I [n]»), which is again 
given by (K.phn.m]: 

tP(l[m]), I[n])) = II dadbK,p(a,b)([m]lflU)(flbl[n]) 

= I I dadb K,p(a,b )U lm .n ](a,b) [see Eq. 13)] 

= (K.phn.m] [see Eq. (II)] . 

4. From Eq. (18) one easily sees that D}1 is exactly the 
domain of (p l + Q 1) lill, or equivalently, the form domain 
of(P2 + Ql)}1. 

Take p ;;,0. Then, by the extension defined above, 
tP E G -- I' defines a continuous, more precisely a Hilbert­
Schmidt map from Dp to D __ p' This means that tP is a qua­
dratic form, relatively form-compact with respect to 
(P 1 + Q 2) p. (See Ref. 23 for the definition of relatively form­
compactness). 

5. Translating all this to the Weyl transform, we see 
now that 'If p;;,O, 'If TE W-P: QTis a quadratic form, rel­
atively form-compact with respect to (P 2 + Q 2) p. 

6. In Ref. 20 the action of Ion some classes of distribu­
tions "of type S," which contain also nontempered distribu-
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tions, was studied. One can perform the same constructions 
and extensions as above for these larger classes; as a result 
one gets that Q, when applied to a H (a, A )20.14 yields qua­
dratic forms relatively compact with respect to 

exp[ T(P 2 + Q 2)1/2a], for a>!, 'If T> 2 Alia 

C. The distributions corresponding to bounded 
operators 

Let A be a bounded operator. Equation (14) provides us 
with a simple rule to find the function or distribution Q - lA, 
via the coherent states. We define KA (a,b ) = (fl", Afl h). 
One can easily check, from the properties of the coherent 
states, thatK4 is an element of Z (El)' Moreover [use Eq. (4)], 

Lda IKA (a,b W = IIAfl h 112<IIA 112 ; 

hence, 'If E> 0, 

I da I db(I+laI 2 +lbI 2
) v <IKA(a,bW 

< I db (I + Ib 12)-VEIIA 112 

_ A 2 2 (OC dx x 2
,' - I 

- II II r(v) Jo (I + x")'·+< 

= IIA 112T(E)T(v + E) .-1. 

This implies thatA, considered as a quadratic form on D coh , 

is an element ofnEc,o G Iv" E), with 

'If E>O, IIAII_1"+<i<[T(E)lr(V+E)]1111IAII. 

As a consequence of this, we can formulate the following 
restriction on the distributions corresponding to bounded 
operators: The Weyl transform QT of a distribution 
T E .Y'(E) can be a bounded operator only if 

TE n W-I"+fl 

and 3 K>O such that 

'If E>O, IITII'-IVH) 

<e - Iv + < - 1)12[(3 + dv)l2]13V+ E)
/2 Ir(E)lr(V + E)1 1/2K. 

(20) 

The "only if" in this statement cannot be replaced by an "if 
and only if." This is again illustrated by the distribution 
T(q,p) = b(q): it turns out that Tis an element of 
nE> 0 W - Iv + E) and satisfies Eq. (20), though QT is not even 
closable, and certainly not bounded. 

The topology induced on B (dY') by the II 11_ Iv ;- <1-

norms is much weaker than the norm topology. Actually, it 
is even weaker than the strong topology: if An->n>oc A 
strongly, then the IIAn II are uniformly bounded (by the prin­
ciple of uniform boundedness, e.g., Ref. 21). 

Hence 

I da (I + lal" + Ib 12) V-EIKA(a,b) - K A .. (a,b W 

«I + Ib 12) - v- EllAfl b _ AnD h 112 

«I + Ib 12) - v c Sup(41lAn 11"), 

which is integrable in b. Together with 

Ingrid Daubechies 1456 

Downloaded 25 Apr 2012 to 147.65.105.210. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



IIAn b - Ann b II----+n-oo 0 this implies 
IIA - An II-Iv + E) ----+n_oo 0 V € > 0; hence 
Q -IA Q -IA in each W - Iv + E) € > O. 

n --+n--.oo ' 

Remarks 

1. Note that this argument can also be used for un­
bounded operators: Whenever An and A are unbounded op­
erators such that 

and 3 K, I for which l(na,AnnbW<K(l + lal z + Ib IZ)I 
uniformly in n then Q -IAn ----+n-oo Q -IA in Y'(E) (i.e., "in 
the sense of the distributions"). 

2. Actually, the bound Eq. (20) can still be sharpened a 
little bit. Defining, for p E JR, the norm I I~ (equivalent to 
II II~) by 

IT/; =(T,(qZ-!Llq +pz_!Llp)PT)I/Z (21) 

(we omit the extra v in the definition of II II~, which makes 
this norm larger than II II~, for p<O), one can show25 that 
(20) can be replaced by 

QTbounded only if 3 K>O such that 

which implies 

II Qfll'r <e -1"+ E - 1)/
2 [(3 + dv)/2]13v H )/2 

X[r(€)lr(v+€)]1/2I1fll~+E' (23) 

Since Y(E) is dense in WV + E, this implies then that aH func­
tions in u W P yield trace-class operators, with a bound p>v 

on their trace-norm given by Eq. (23). 

Remarks 

1. Again, the bound Eq. (23) can be sharpened to 

IIQfll'r<r(v)-1/2~(1 + €)1/2Ifl~+E (24) 

with Ifl~+E defined as in Eq. (21). 
2. Note that all the elements of W P (p > v)areL I-func­

tions (they are, of course, also square-integrable, which was 
to be expected since Q maps L 2 unitarily onto the Hilbert­
Schmidt operators,9.19 and since every trace-class operator is 
also a Hilbert-Schmidt operator). 

3. In the same way as Eq. (23) one can also derive the 
following inequality25: 

1457 J. Math. Phys .. Vol. 24, No.6, June 1983 

ITIS ,;..r(v)-I/2t-(l + €)l/ZK 
-~+~~ ~ , 

where ~ is Riemann's zeta function: ~ (x) = };k' ~ 1 k - x. 

D. A class of functions yielding trace-class operators 

The restriction (20) on the class of distributions corre­
sponding to bounded operators is sharper than the one der­
ived in Ref. 19. We can consequently also find a larger class 
of functions leading to trace-class operators. 

To do this, we shaH foHow essentiaHy the same method 
as in Ref. 19: we need as a preliminary lemma that 

V B trace-class, Tr B = f da (n 0, Bn 0) . (22) 

(This is fairly easy to prove; see, e.g., Ref. 19. Note that the 
absolute convergence of the integral on the right-hand side 
for a given operator B does not imply that B is trace-class). 

Take now fE Y(E). We know 10 that Qfis trace-class. 
Moreover, the trace-norm of Qfis given by 

IIQfll'r = TrlQfl = sup IIA 1I-1·ITr(A·Qf)l· 
AEB (YY'). A #0 

But, by Eqs. (22) and (4), 

fM,p) =f(q) (independent ofp), 

f2(q,P) = g(p) (independent of q). 

Define 

IIlfllll~ = [(f, (q2 -! Llq + v/2)Pf)] 1/2, 

with an analogous definition for III f2111~. Then 

This condition onfl andfz is reminiscent of, but stronger 
(and our result therefore weaker) than the condition in 
Theorem XI.21 in Ref. 26. The reason why our condition is 
stronger is that our treatment, and hence this condition, are 
invariant under Fourier transforms (see below), while the 
condition in Ref. 26 is not. 
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E. The functions corresponding to the dyadics 
I [m]> <[n] I 

Again we use Eq. (14) to find the functions correspond­
ing to these dyadics (remember that the l[nJ) are the eigen­
sta tes of the harmonic oscillator P 2 + Q 2:~ (P J + Q J) I [n ] ) 
= (n) +!JI [n]»): 

K[m]. [n I(a,b) = (n al [m]) ([n ]In b) 

= U[m.n I(a,b) [see Eq. (13)] . 

and they have many interesting properties, as, e.g.,25 

( -!..::1q - !..::1 p + q2 + p2)h[k.l 1= (Ik I + III + V)h[k,J I 

which means they are related to the Hermite functions. Like 
the Hermite functions, they form an orthonormal base in 
L 2.20 There exists also a connection with the Laguerre poly­
nomials. One has, for instance, in the case v = 1, 

while the nondiagonal hkl can be related to generalized La­
guerre polynomials. 3,27 

It is amusing to note that the functions we denote by 
h[k.l I have been discovered and rediscovered several times in 
the literature. The diagonal hkk can already be found in Ref. 
28 (25 years ago!); in Ref. 29 they are rediscovered, and used 
in a very elegant way to derive properties of the Laguerre 
polynomials from the properties of the Weyl transform. 
They were again found in Ref. 8. It is quite likely that these 
are not the only places in the literature where they were 
discovered .... The nondiagonal hkl seem to be less popular; 
they can, nevertheless, also be found in Refs. 27 and 3. One 
can probably extend the methods used in Ref. 29 and use the 
hkl and their relation with the Weyl transform to derive pro­
perties of the generalized Laguerre polynomials. 

Their main interest to us, here, is that they can be used 
to compute matrix elements between harmonic oscillator ei­
genstates (such matrix elements are often used, e.g., in nu­
clear physics). Indeed, for any T E Y/(E) one has (see Sec. 
lIB) 

([m]IQT [n]) 

= (KQT)[n.m I 

= (IT)[n.m I [use Eq. (14)] 

= J J dadb IT(a,b )u[m.n I(a,b) [see Eq. (11)] 

= J dv T(v)h[n.m I(v) (see Ref. 15) , (26) 

where the last integral has to be understood as T(h[n.m I)' if 
the distribution T is not given by a genuine function. This 
means one can compute the matrix elements of QTbetween 
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Hence 

Q-I(I[m])([n]I)=I-lu[m.nl
dd 

=h[n.ml 

(see Refs. 13, 15) . 

These functions h[n,m I were studied in Refs, 15,20, and 25 
(among other things). They can be calculated explicitly: 

harmonic oscillator eigenstates by a direct integration on the 
classical phase space. 

F. The relation between Q and the Fourier transform 

As was pointed out in Refs. 15 and 20, the integral ker­
nel I a,b I·) satisfies the following invariance property under 
Fourier transforms: 

F4Ua,b I'))(v) = la, - b Iv) , 

where 

(Fa f)(v) = 2 - "Iall' J dv' eiaoiv.vy(v') 

(FI is exactly the symplectic Fourier transform -already de­
fined in the introduction). This then implies, 'rJ T E Y'(E) 
[also for all the non tempered distributions in the H (a, A) 
spaces; see Ref. 20] 

'rJ a,b, I(f_4T)(a,b)=IT(a,-b). 

Translated to the Weyl transform language, this means that 

Q(F-4T) = QT·II (27) 

(QT·II can be defined as a quadratic form on D coh ' and, if 
T E W P, on D _ p' without any problems, since these do­
mains are invariant under II). This also means that one can 
enlarge every class of distributions (providing it is not al­
ready invariant under F -4)' yielding operators with a specif­
ic property (provided this property is invariant under multi­
plication by the parity operator), just by applying F -4' and 
so produce a new set of distributions with the desired proper­
ty. 

The classes of distributions we introduced in the pre­
ceding sections are invariant under F -4' but this is not the 
case with other characterizations found in the literature. For 
instance, we know 10 that 

'rJ fEL I(E), Qf compact and IIQfll.;;2l'llflll (28) 

[this can also be derived from Eq. (23): the bound Eq. (28) 
obviously holds for all/in L I-see Eq. (2)-; since W" + < is 
dense in L I, Eq. (23) implies then that, 'rJ f ELI, Q f is the 
norm-limit oftrace-class operators, and hence compact). Us-
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ing Eq. (27), we see then that 

'rJ fELl, Q(F~4f) compact and IIQ(F~4flll<2VI!flll' 
(29) 

Remark 

Equation (29) can already be inferred from the formal 
expression (1); the in variance property of the kernel [a,b I,] 
under F ~4 is another way of saying that Eqs. (1) and (2) are 
equivalent: formally [F4 W(2.)](v) = W(2v)/1. 

III. NEGATIVE RESULTS: PATHOLOGIC BEHAVIOR 

In this second half of this paper we want to present 
some results showing one should be careful about Wigner 
functions and the Weyl transform, and not always trust one's 
first intuition. These results complement the continuity 
statements in part A in showing which continuity properties 
can definitely not be expected. 

A. A positive function leading to a non positive operator 

This first section is really only a remark. 
It is well known that the Wigner distribution corre­

sponding to a density matrix (i.e., a positive, trace-class oper­
ator with trace 1) need not be positive everywhere.4 [Actual­
ly, one can prove30 that the only pure states for which the 
Wigner function is positive everywhere are the Gaussian 
states, i.e., the states ofform ¢(x) = N exp[iax + f3 (x - xof] 
in the Schrodinger representation.] Note that the same 
phenomenon occurs for the so-called diagonal representa­
tion with respect to the coherent states, where one represents 
operators by an integral over dyadics la a)(fl a I: A 
= 5 da ¢ A (a)la a)(a al. Here too it may happen that A is 

positive, even though ¢ A is not positive everywhere. How­
ever, one always has 1> A ;;.0 => A ;;.0. This is not true for the 
Weyl transform, where one can have a nonpositive operator 
stemming from a positive function. 

Using the parity operator fl, we build here an example 
of a positive function f for which the Weyl transform Qfis 
not positive. Take any ¢ such that n¢ = - ¢, ¢=l0, (e.g., 
¢ = I [n]) with In I odd). Since the Wigner operators n (v) are 
strongly continuous, there exists an r;;.O such that 

Define 

{
I, 

f(v)= 0 , 
Ivl<r, 
Ivl > r. 

Then 

(¢, QI¢) = r J dv I{v){¢, fl{v)¢) 

= r ( dv (¢, fl(v)¢) 
J1vl<;r 

which shows that Qfis not positive. 
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Remarks 

1. The function I we have constructed here is clearly in 
L 2, which means Q/is a Hilbert~Schmidt operator, and 
therefore bounded. We shall show later on that there exist 
positive, bounded functions f for which (J"{Qf) is not even 
bounded below. 

2. Since the function f as we constructed it is discontin­
uous, it cannot be the Wigner distribution of a trace-class 
operator. It is obvious, however, that we could also have 
chosen f positive, Coo, with support in I v, I v I <r I, without 
invalidating the conclusion that (¢, Q f¢) < O. This shows 
that there exist positive functions in Y(E ) with nonpositive, 
trace-class Weyl transforms. 

B. Bounded functions leading to unbounded operators 

As long as we concern ourselves with functions depend­
ing only on q or on p, we know that the operator correspond­
ing to such a bounded function will always be bounded, with 

IIQfll<lIfll· (30) 

We shall show here that this is no longer the case once 
one considers functions depending on both q andp: Not only 
does the bound Eq. (29) not hold any longer, even with an 
extra constant K on the right-hand side, but there actually 
exist bounded functions whose WeyJ transform is an un­
bounded operator. 

We shall prove this in two steps. In a first step we con­
struct a sequence of functions f" such that II In II <XC = 1, 
II Q In II ~ n-' 00 00, showing thereby that no K exists for 
which IIQ/II <K II IlL", . We then prove (ad absurdum) that 
this implies Q (L en) <t: B (dY). 

Take, for simplicity reasons, v = 1. Define 

{
I if hnn (v);;.O , 

f,,(v) = _ 1 
if hnn(v) <0. 

Then 

(nIQf" In) = J dvfn {v)h nn (v) [see Eq. (26)] 

= J dv Ihnn(v)1 

= (1121T) J dq f dp 2e- (q' +P'IILn (2q2 + 2p2)1 

[see Eq. (25)] 

=! J due~uI2ILn(u)l· 
To put a lower bound on this integral, we shall use asympto­
tic formulas for the Laguerre polynomials derived by Tri­
comi. 31 Let 1J be a small positive number (more specifically 
1J E ]0, ~ [). Then, for x E [1J(n + ~J, (I - 1J)(4n + 2) J, 

Ln{x) = eX12{l/{1ik sin28 )[sin(8 + n1T) + O(k ~I)] 

where 

k=n+!, 8=cos~l~x/4k, 

8 = k (28 - sin28) + 1T/4 

and where the term 0 (k -1) can be bounded by Mk ~ 1, uni­
formly in x for x E [1Jk, 4( 1 - 1J)k ]. (This last fact is not 
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stated explicitly in Ref. 31, but it can be derived from the 
details of Tricomi's proof). Consequently, 

1'" due- UI2 ILn(u)1 

i
ll - '1114n + 2) 

> dx (l/~1Tk sin20) 
'1ln + 1/2) 

xlsin(8 +n1T)+O(k- I )1 

>(8k 1~21Tk ) [:~~~: dO ~sin20 
X ! I sin [k (20 - sin20 ) + 1T 14] I - Mk - I j 

n-::", (8~ 1{i1i) [(2/1T) [:s~~: 
XdO ~sin20 (I - 1TM 12k)] 

(by an extension of the Riemann-Lebesgue lemma). This im­
plies there exists an a > 0 such that 

V n, 1'" due- U /2ILn(u)l>arn; 

hence (31) 

IIQlnll>(nIQln In»arn. 

Suppose now that Q (L "') C B (JY). We show next that 
this implies that Q is closed from L '" to B (JY). Indeed, take 
gn E L '" such that 

Then, 

V a,b, (n a, Bn b) 

= lim (n a, Qgnn b
) 

n~", 

= !~~ J dv gn(v)!a,b Ivj 

= J dvg(v)!a,b Ivj [!a,b I·j EL I(E)] 

=(na,Qgn b
); 

hence B = Q g. This implies Q is closed from L '" to B (JY); 
hence, by the closed graph theorem, 3 K> 0 such that 
IIQIII <X II III", . This is clearly in contradiction with Eq. 
(31), which allows us to conclude that Q (L "') ct B (JY); i.e., 
there exist bounded functions with unbounded Weyl trans­
forms. 

Remark 

If lis a bounded function with unbounded Weyl trans­
form QJ, then g = I + II III '" is a positive bounded function 
with unbounded Weyl transform. Fro~g one can then con­
struct a positive bounded function h such that Qh is not even 
bounded below. Let us suppose that Q g is bounded below 
(otherwise, we simply take h = g). Then Q g is not bounded 
above, since Q g is unbounded. Take now h = II gil", - g. 
This is clearly a positive, bounded function; moreover, 
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Q g + Qh = II gil", 1, which implies Qh is not bounded be­
low. 

C. Non-absolutely-integrable Wigner distributions 
corresponding to positive, trace-class operators 

All the functions leading to trace-class operators we 
have encountered here till now were absolutely integrable 
(e.g., the hlm,n i' the class up> v W p in Sec. lID). Of course, 
this does not mean that every Wigner distribution for a trace­
class operator must necessarily be in L I. On the other hand, 
if Qlis trace-class, then 

lim ( dvl(v) = Tr QI<IIQllltr . 
R~oo Jlvl<R 

One knows, of course, that Ineed not be positive every­
where, even if Qlis positive, and hence that the integral of 
I II will be larger, in most cases, than the integral of litself. 
The connected components of the domain where lis nega­
tive (for Qlpositive, trace-class) have to be rather "small," 
however (otherwise, negative expectation values of QI 
would be possible), and are physically thought of as being 
caused by "quantum fluctuations."7 It thus does not seem 
unreasonable, at first sight, to hope that, even though 

11/111<IIQllltr 

cannot possibly hold for all trace-class operators QJ, one 
still would retain the property that for every trace-class oper­
ator A the associated Wigner distribution Q - IA would be in 
L I(E). It is a direct consequence of the result in the preceding 
section that this argument turns out to be deceiving: There 
do exist positive trace-class operators A for which 
Q -IAfiL I(E). Indeed, suppose there were none. Then 

Q -1(rl(JY)) C L I(E). 

Again, this implies that Q -1:rl(JY) ---+ L I(E )isclosed:Take 
An such that 

then 

(n a, An b) = lim (n a, Ann b) 
n~", 

= !~~ J dv(Q-IAn)(v)!a,b Ivj 

= J dvl(v)!a,b Ivj [la,b I·j EL "'(E)] ; 

hence Q -IA =1 [I:Y' ---+ Z (E2) is injective]. By the closed 
graph theorem this then implies 

3 K>O such that IIQ -IA III<K IIA IltT . 

But we already calculated that for An = In) < n I (take v = 1) 

IIQ-IAnll l = J dv Ihnn(v)l>arn, 

while IIAn IltT = 1. This is clearly a contradiction, implying 
that Q -1(r.(JY)) ct L I(E). 

Remark 

The inclusion in the other direction does not hold ei-
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ther: 

Q(L I(E)) q: 11(dY'). 

This is an immediate consequence of the fact that all Wigner 
distributions of trace-class operators are continuous. More­
over, Q -1(11(dY')) C L 2(E) (since every trace-class operator 
is Hilbert-Schmidt), which shows that not even all contin­
uous L I functions lead to trace-class operators. 
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