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An integral transform related to quantization. |ll. Some mathematical
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We study in more detail the mathematical properties of the integral transform relating the matrix
elements between coherent states of a quantum operator to the corresponding classical function.
Explicit families of Hilbert spaces are constructed between which the integral transform is an

isomorphism.

PACS numbers: 02.30.Qy

1. INTRODUCTION

In a preceding paper,' two of us studied an integral
transform giving a direct correspondence between a classical
function on the one hand and matrix elements of the corre-
sponding quantum operator between coherent states on the
other hand:

(@°072*)= [ dofoab o). (1)

Here E is the phase space (i.e., a 2n-dimensional real vector
space, where n is the number of degrees of freedom), and the
{2 “ are the usual coherent states, labeled by phase space
points (they can be considered as states centered round the
phase space point a labelling them, and they minimize the
uncertainty inequalities?).

Formula {1.1) was obtained in Ref. 1 from the corre-
spondence formula

Qf=2" Ldv o)W (o)l (1.2)

where the W (v) are the Weyl operators (see Ref. 1) and /7 is
the parity operator. [This formula is not the original Weyl
formula?; it gives a more direct correspondence f~Q fthan
the usual expression, since no Fourier analysis step is need-
ed. It was shown in Ref. 4 that (1.2) is equivalent to the Weyl
quantization formula.]

The integral kernel {a,b |v] in (1.1) is then defined as

{a,b v} =272 W (2u)T 2°). (1.3)

This function was computed explicitly in Ref. 1, where we
also gave some properties of both the function and the inte-
gral transform defined by it, together with some examples. A
deeper mathematical study of the integral transform was,
however, not intended in Ref. 1; we propose to fill this gap at
least partially with the present article.

Ultimately our aim is to use the results of the math-
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ematical study of the integral transform (1.1) to derive prop-
erties of the Weyl quantization procedure. One can indeed
use the well-known “resolution of the identity” property of
the coherent states,?

fdama) @9 =1 (1.4)

to see that, at least formally, any operator A is characterized
by its coherent state matrix elements

A =J daf db |29(02°|(2° 42°). (1.5)

A detailed knowledge of the properties of the integral trans-

form with kernel {4,b |v} might therefore be useful for

(1) giving a sense to the Weyl quantization formula for
rather large classes of functions (essentially, once a pre-
cise sense is given to the integral transform on a certain
class of functions, one can try to define the correspond-
ing operators from their matrix elements between co-
herent states),

(2) deriving properties of the quantum operator Q f
directly from properties of the corresponding
function f'{and vice versa).
As we shall show, the inverse of the integral transform

(1.1) is given again by using the same kernel

f(v)=LLdadef(a,b){b,a|v}. (L6)

(Actually, this integral does not converge absolutely in most
cases, and some limiting procedure has to be introduted.)
Therefore we shall also be able to use the results of our study
of the integral transforms associated with the kernel func-
tion {a,b |v} to obtain information on the “‘dequantization
procedure” [i.e. the inverse map of the “quantization proce-
dure” as defined by (1.2)]. Note that this dequantization pro-
cedure is actually the same map as the one associating to
each density matrix the corresponding Wigner function’ ex-
tended, however, to a much larger class of operators. These
applications shall be further developed in a following paper
(a first application was given in Ref. 6); in the present article
we restrict ourselves to a study of the integral transforms
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(UWW$)=J;vaHmbwL (17)

(f¢7)(v)=LLdadb¢(a,b){b,a|v}. (1.8)

We shall see that though fmay be locally quite singular (one
can even consider some classes of nontempered distribu-
tions), its image If will always be very gentle locally, with
analyticity properties in both its arguments. It therefore
makes sense to study not only the function If(a,b ), but also
the coefficients If,, , of the Taylor series for If(a,b ). It turns
out that one can construct a family of functions giving di-
rectly the link between f(v) and If,, .,

mm=Lwﬂmmw. (1.9

Actually these 4,, , are just the functions occurring in the
bilinear expansion of {a,b |v} in Ref. 1: formally (1.9) can be
seen as the result of commuting in (1.7) the integral and the
series expansion for {a,b |v}. However, (1.9) holds true for
many functions for which such an interchanging of summa-
tion and integral would be a priori pure heresy. The func-
tions 4,, , have lots of beautiful properties, most of which are
a consequence of the fact that they form a complete orthon-
ormal set of eigenfunctions for the ‘“harmonic oscillator”
x*+p*—31A, —14,0onL*E),ie., on phase space, where
we consider an explicit decomposition of the phase space
into x space p space: E=R*"=R" 4+ R" = x space + p space
(see also Sec. 2); in the context of Weyl quantization the 4,, ,
can be seen as the classical functions corresponding to the
dyadics |n) (m|, where |n) are the harmonic oscillator eigen-
states (see Refs. 1, 7, and 8). Note that the 4, , are not the
usual set of Hermite functions (though they can of course be
written as linear combinations of Hermite functions); they
are related to the Laguerre polynomials.”®

One can then derive all kinds of results relating the
growthof If (a,b ) or If,, , to the behavior of £, and analogous-
ly for /¢ and ¢. The derivation of such results amounts to the
construction of suitable Banach or Hilbert spaces between
which the integral transforms 1.1 become continuous linear
maps or even isomorphisms.

Our main tool for the study of 1.1 will be the link be-
tween the integral transform I and the Bargmann integral
transform as defined in Ref. 9 (see Sec. 6 in Ref. 1). Using this
link we shall be able to translate bounds obtained in Ref. 9 to
our present context, and to obtain other bounds (for other
families of spaces) by similar techniques. As in Ref. 9, we can
give a complete characterization of the images of J(E),
'(E ) under I; by a suitable generalization we shall even go
beyond the tempered distributions. (Related results, butin a
completely different context, and concerning quantization
restricted to functions with certain holomorphicity proper-
ties, can be found in Ref. 10.)

The paper is organized as follows. In Sec. 2 we give a
survey of our notations and some properties of the kernel
{a,b |v}, in Sec. 3 we reintroduce the #,,, and state some
related results, in Sec. 4 we show how bounds on If can be
obtained starting from bounds on f, and vice versa: in Sec.
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4A we review the Banach space approach found in
Bargmann®; in Sec. 4B we go over to Hilbert spaces, which
are better suited to our purpose, and in Sec. 4C we generalize
the construction of Sec. 4B, which enables us to treat certain
Hilbert spaces of distributions “of type S’ which are larger
than #(E). In Sec. 5 we shortly discuss the integral trans-
form I when restricted to functions on phase space which can
be split up into a product of a function depending only on x
with a function depending only on p. Essentially the same
types of statements can be formulated, and a short survey of
results is given. In Sec. 6 we give some concluding remarks.

2. NOTATIONS AND BASIC PROPERTIES OF /a,b/v/

In Ref. 1 we worked with an intrinsic coordinate-free
notation system using a symplectic structure on the phase
space (basically this is the bilinear structure underlying the
Poisson brackets), and a complex structure yielding a Eu-
clidean form on the phase space, compatible with the sym-
plectic structure. By choosing a suitable basis, this could be
seen to lead to a decomposition of the phase space into a
direct sum of two canonically conjugate subspaces. This de-
composition is not unique: for a given symplectic structure,
several compatible complex structures can be constructed;
different complex structures correspond then to different de-
compositions of phase space. This freedom in the choice of
the splitting up of the phase space is particularly useful
whenever (linear) canonical transformations are discussed'’
or used (as, e.g., in the presence of a constant magnetic field).
Here we shall not need to use simultaneously different de-
composition possibilities for the phase space, and we shall
therefore fix the decomposition once and for all. We shall use
this decomposition from the very start to introduce our nota-
tions in a way that is less intrinsic but probably more familiar
to most readers. It goes without saying that the results we
shall obtain are independent of this approach, and that they
could as well be obtained in the more intrinsic setting of Ref.
1 (see Ref. 8).

The phase space E is a 2n-dimensional real vector space,
which we shall consider as a direct sum of two n-dimensional
subspaces

E = x space & p space,
(2.1)

ESv=(xp)

The x and p need not be the conventional position and mo-
mentum variables: any set of canonically conjugate coordi-
nates which are linear combinations of position and momen-
tum are equally good candidates for these x and p. On E we
have a symplectic structure

oY) = o{(x,p),(x",p')) = §p-x" — xp’) (2.2)
and a Euclidean structure
sto,v’) = s((x,p)(x',p')) = dxx" + pp’) (2.3)

[this is the Euclidean structure corresponding with the o-
compatible complex structure J ((x,p)) = (p, — x)—see Ref.
1]. For further convenience we introduce a Gaussian in the
phase space variables,

lv) = exp[ — } sw.v)] = exp[ — 4x* + p?)], (2-4)
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and a family of analytic functions

n (p+ix; \m
hmi) = (;) s (2,5)
(v) ,-1;11 72
where we have used the multi-index notation
[m) = (m,y, ... m,).

Note: Whenever we use the term “analyticity” when
speaking of a function for phase space, this means that
f(v) =f{(x,p)is analyticin the variable p + ix;iffisanalyticin
the variable p — ix, we say that fis antianalytic on phase
space. For a definition of these concepts without using an a
priori decomposition of the phase space, see Ref. 1.

We shall often need the set of functions which can be
written as a product of the Gaussian o, (2.4), with an analytic
function on E. We call these functions “modified holomor-
phic,” and denote their set by Z(F) or Z:

Z (E) = (¢$:E—C;¢p = f-w, with fanalyticon E }. (2.6)

Note that the pointwise product of two modified holomor-
phic functions is not modified holomorphic, having a factor
o too many.

The square integrable modified holomorphic functions
form a closed subspace of L %(E ) (see Refs. 1 and 9); we shall
denote this Hilbert space by .Z;:

£ E) = £¢ez(E);f ol (o)) < o). @7)

The measure on E used here is just the usual translationally
invariant measure on E, with normalization fixed by the
requirement

f dv o*(v) = f dv exp[ — s(v,)] =1,
ie., (2.8)
_ b a
dv= 2T d"xd" p.

For any function ¢ = f'w in Z one can, of course, decompose
the analytic function f'into its Taylor series, which gives

$ )= [E] g i1 B ™ RI0(), (2:9)

where the convergence is uniform on compact sets. One can
prove (see Ref. 9) that for g€ Z one has

¢Gfo<:>z|a¢,[m]|2[m!] < o0,
[m]

e L 5lbd) = f dv $(0) o)

= im) g im) [, {2.10)
[m)
where
[m!] = H (m,!).
i=1
Equation (2.10) implies that the set of functions u/,, ;,
1
Ui (V) = h "™()w(v), 2.11
(m1] v iml] (v)e(v) (2.11)

constitutes an orthonormal base in .% , and that the series
(2.9) converges not only uniformly on compact sets, but also
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in L ? as long as g% ,. We shall often rewrite (2.9) and (2.10)
in the following way.
Vée Z: we write a “modified Taylor expansion”

¢ )= [Z] Bim 1 (m (V) (2.12)
with uniform convergence on compact sets,
Vo e oY) = [Z Bim1 Yim1s (2.13)
m)
in particular
dv up, V)@ V) = (U 8) = bim)- (2.14)

The same construction can be made in the space E X E.
Most functions on E X E in this study will have the property
that they are modified holomorphic in one variable and modi-
fied antiholomorphic in the other one. We denote the set of
Sfunctions having this property by Z (E,) (or shorter Z,):

Z (E,) = {¢:E X E—~C;¢ (v,v') = fv0" w(v)eo(v’), with

f(v,v') analytic in ( p + ix,p’ — ix')}. (2.15)
Again we can restrict ourselves to the square integrable func-
tions in Z (E,):

LoE)=Z(E,)nL*E XE); (2.16)

again this is a closed subspace of L 2(E X E ), with orthonor-
mal basis

Uim,m,y ] (Ly0y) = Ui, 1(vy) u[m,](vz)- (2.17)
The analogs of (2.12) and (2.13) are now
Vee Z(E)SE)= 3 SimmBimm &) (218)

[m,],Em,]

with uniform convergence on compact sets,

VYL AEN S = 3 Simm,) Yimuma (2.19)

{m],[m,]

in particular

Bimimar = [ 46 U] 6),

where we have used the notation & = {v,,1,) (in general, the
Greek letters £,6 will denote elements of E X E ).

Both the spaces . ((E } and .£ ((E,) have “reproducing
vectors” (this is a common feature for Hilbert spaces of ana-
lytic functions'?):

Vac E, V{=(a,a,)c E XE,

e L E), ateL  E,),
such that

VgeZ |E )(wp) = ¢ (a),

(2.20)

(2.21)
Vé¢eL |E ) (wbd) = ¢ ().
These w®,w* are given explicitly by

0°(v) = €% p(v — a)

= [z] U 1(@) Uppm (V) (2.22)
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W (€)= 0"{byb) = 0"b)) (b
= E Ui (6) Uiy ](§)

&I
The series in (2.22) and {2.23) converge uniformly on com-
pact sets, but alsoin L *(E ) (separately in g and v), respective-
ly, L YE X E )(separatelyin ¢ and £ ). Note that the reproduc-
ing properties (2.21), (2.14), and (2.20) can be proved for
much more general classes of ¢ than only .%, (see below).
The integral kernel {a,bjv}

For any three points a,b,v,€ E we define the function
{a,b |v} as follows (see Ref. 1):

{a,b |U] = 2" ei[a(a,b)+20(b,u) + 20(v,a)] a)(21) —a— b)

(2.23)

=27 exP[i(iPaxb —4ppyxs + poX,
—PuXp +pvxa _Paxu)

x, + X, \? e +Pb Y
- (-2 - - 252
=2"exp[(p, — ix,} (Pa +iXs) — § (Py — ix,)
X(Pa + ix,)+ (Py —ix,) (p, +ix,)]
X (@b o (2v). (2.24)

From the last expression in (2.24} it is obvious that {a,b [v} is
modified holomorphic in a, modified antiholomorphic in b,
ie.,

Ve E:f--v}e Z,. (2.25)

Moreover, one can easily check (see Refs. 1 and 8) that
{a,b |v} has the following properties:

[{a,b |v}|<2",

J.dv[a,b v} {e,d v} = 0%c)0? (b). (2.26)

This function {a,b |v} will be used to define two integral
transforms

) €)= f dv ()£ (v}, (2.27a)

(Hp)v)=| dt$(&) (£v}. (2.27b)

It is our purpose here to investigate some of the properties of
these integral transforms and their extensions.

3. BILINEAR EXPANSION OF /a,b/v/—THE FUNCTIONS
P

A. Bilinear expansion of {a,b/v/}

As elements of Z (E,), the functions {-]v} can be devel-
oped in a series with respect to the ., | [see (2.13)]:

{ablv} = {{|v} = [k;” Uies 116 W 1) (3.1)

The hy;, | are defined, up to a factor \/ [k!] [I!], as deriva-
tives of the function {{ |v} (@,()) " 'iné=0:
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Byes (v) + 27 JTEIT[IT] 20K+ 10022

[dlkl d\n

BT i {a,b v}ola) " w(b)" . (32)

a=b=0

Because of the explicit form (2.24) of {{ |v} it is obvious that
every Ay, , is a polynomial in v multiplied by the Gaussian
{2v) = exp[ — (x,% + p,?)]. This automatically implies
thatallthe 4, , | are elements of *’(E ), the Schwartz space of
C = function which decrease faster than any negative power
of (x,p).

B. Orthonormality of the /1, ,,
On the other hand, we have {see (2.26)]

dv {a,b|v} {cd|v} =w%cl?(b).

Multiplying both sides with w(a) ™' w(b )", and computing
derivatives with respect to p,,p,, we obtain (it is obvious
from the explicit form of {2,b |v] that these derivatives can be
commuted with the integral in the left hand side)

dv hies 1) {ed v} = uy lc) uy (d). (3.3)

Repeating the same operations in the variables ¢ and d, we
obtain

dv hy (V) Ay v) = Sieriky Sunur (3.4)
implying that the A, , , form an orthonormal set in L %(E).

C. Completeness of the /1,

From (3.3) we see that the coefficients with respect to
the orthonormalset 4, , , of the orthogonal projection of any
{£ |} (€ fixed) onto the closed linear span of the A, , ; are
exactly the u;; ({ ); comparing this with (3.1) we conclude
that for any ¢ the function {{ |-} is an element of the closed
span of the A, ; }; (3.1) can now be considered to be the com-
position in L ? of {{ |-} with respect to the orthonormal set
h k.. - From this it is now easy to see that the closed span of
the hy,,  is all of L %(E). Indeed, let ¢ be orthogonal to all

Ris )

VIkLI]: (¢?h[k,l )) =0.
Then

Va,b: (Y, fab|-})=0

=Ve: jdv ) €7 w(2v) = 0

=v)w(2v)=0 ae. ¢ =0
[w is bounded, and the Fourier transform is unitary on
L ¥E)]. Hence the A, , , constitute an orthornormal base for
LYE).

Note: The properties in Secs. 3B and 3C were already
stated in Ref. 1, in more generality (valid also for the coeffi-
cient functions of other bilinear expansions of {a,b |v}), with-
out proof. It is possible to prove them (see Ref. 8) using Go-
dement’s theorem on irreducible square integrable
representations of unimodular locally compact groups. In
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the special case of the 4, , |, however, one can also prove
them with very simple arguments, as shown here.

D. Unitarity of the integral transform /

It is now easy to show that the integral transform /, as
defined by (2.27), defines a unitary operator from L *(E ) onto
ZLolEy).

Proposition 3.1: The integral transform I:

16) = | vl v} £t (3.5)

with {{ |v} = {a,b |v]} as defined by (2.24), defines a unitary
operator from L %(E ) to .% ((E,); in particular

Thi = uy, (3.6)

Proof: We start by defining a linear operator on the span
of the &, , , by putting

Uh[k,l 1 = u“’k IE

Sincethe Ay, ), 4, constitute orthonormal basesin L (E ),
2 o(E,), respectively, this U can be extended to a unitary
operator from L (E ) onto .£ o(E,). In particular,

U({b,al-})=U( Y U ba)h, 1)

(K101
- Ikz]l:l]
where we have used (2.23). Take now any ¢ in L (E ). Then
Uge.? |\E,), and its value at any point is given by the repro-
ducing property (2.21),

(Up)¢) = (@, Up) = (U*ep)
=({S|}.p)

= | v (Sle)
[for £ = (a,b), we denote (b,a) by £ ).

— b
Uy lab)uye, = "),

Hence (U¢ )(§') = (I¢ )& ), which proves the proposition.ll

Remarks:

1. A different proof of the unitarity of I between L *(E)
and .Z (E,) was given in Sec. 4E in Ref. 1 (the argument
given there is not completely rigorous, but it can easily be
transformed into a rigorous one).

2. The integral in {3.5) converges absolutely for any
fe L(E),since {{ |-}isinL E )foreachfixed. Thesituation
is different if one tries to apply I to .% o(E>): since {-|v} is not
square integrable on E X E, the integral transform {2.27b)
cannot be defined on all of .¥ ((E,). One has, however,

di (&1} up &) = hpyu (&) (3-7)

where the integral converges absolutely because u,,, | is ab-
solutely integrable. So

Ihyyy = by (3.8)

which leads one to believe that £is the inverse of I. Indeed, if
one tries to circumvent the problem of possible divergence of
the integral by taking limiting procedures, one finds (as in
Ref. 9a), e.g.,

243 J. Math. Phys., Vol. 24, No. 2, February 1983

VpeL |Ey): I "'p=L"— gi_{rli(l’k?’)
=L?—liml (wla)p), (3.9)
a—0

where

1, |5I<R

1) = {7 IRE there e = o+ 1o

and |a|? = s(a,a)].

The same is true for any other reasonable limiting procedure.

E. Other properties of the /7,
One can show (see Refs. 1 and 8) that
[ )<, (3.10)
Explicit calculation of the A, , | yields (see Refs. 7 or 6)
2 ) min{[k LI/ ]}
h[k,l ](x,p)=2"e"‘ —P E [(_2)—ISI k[ + 1102

[s]=0

J LN

[ = s)] [(k — 5]

(p+ z‘x)“-“(p—ix)“"”].

(3.11)

One can check (by direct calculation) that these 4, , | are the

eigenfunctions of a dilated harmonic-oscillator-type opera-

tor on phase space E:

(—4ds +4,) + x>+ ey = (k| + |1 + mhy, .
(3.12)

Asaconsequence of this, the 4, , ; are linear combinations of
products of Hermite functions:

Ay xp) = > @iy irs iHirs p) (3.13)
[rlls)
[rl + s = |k | + 1]
with
H[r,s](x’p) = Z”H[rz(m)H[s](‘/zp)» (3.14)
2 Ia[k,ll,[r,x]lz =1 (3.15)

[r].[s)
and where H|, | is the [7]th order Hermite function.

There exists also a relationship between the 4, , , and
the Laguerre polynomials (see Ref. 7). Forn = 1, k =/ one
has for instance

hcxp) = 2(— 1) e ="+ L, (2x* 4 2p?), (3.16)

where L, is the Laguerre polynomial of order k.
One can also prove the following recurrence relation for
the h[k,l ]Z

(k{41 A, =4 1k] 2 ki(pj — x50

+ \/,—1—1 2 L{p; +ix)hp_ s
J

~ ST S a1 5y i
7

(3.17)
where [§; ] is the multi-index (5;),, = &,

jm*
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4. THE INTEGRAL TRANSFORM / AS A CONTINUOUS
MAP BETWEEN SUITABLE FAMILIES OF BANACH
SPACES AND HILBERT SPACES

As was already mentioned in the Introduction, there
exists a link between our integral transform 7 and the Barg-
mann integral transform as defined in Ref. 9. Since we shall
use this link to derive some of our results, we shall first show
here what exactly is the connection between the two integral
transforms. For zeC", geR", the Bargmann integral kernel
A (z,9) is given by®

A(zg)=7""*expl — 42 + ¢°) + V2 zq]. (4.1)

Identifying z with (1/v2) (x — ip) (which makes of the multi-
plication by z—on a suitable Hilbert space of analytic func-
tions—a representation of the harmonic oscillator creation
operator: see Ref. 9a), we can rewrite (4.1) as

2 .
A (x’p;q).e — 1/4{x? + pY) =7 n/4 e11/2)xp e~ Pio— (1/2)ix — q)z.

(4.2)
Comparing this with (2.24) we see that
X, + Xy Dp —Dq
a,b|v} =2"1""? 4 (——-, ; ZxU)
(@b v} el
Da +pb Xy — Xp
A( , ) U)
vz v o F
e—tl/4)tx§+x%+p§+pi) (4.3)
or
[a’b !U} = 2" ’}l/ZA (cab;‘/zxu) A (dab ’ﬁpv )a’(cab )'w(dab )’
with
1
Cap = W{xa +‘xb’pb _pa)! (44)

1
dy = 'E(Pa + PoXa — Xp)-

Actually, (4.3) implies that we can consider the integral
transform 7 as a 2n-dimensional Bargmann transform. The
explicit Gaussian factors w(c,,), »(d,,)just compensate for
the difference in definition between our Hilbert space
% o(E,) and the Bargmann Hilbert space [we absorb the
Gaussian in the functions in .Z ((E,), whereas in Ref. 9 it is
always displayed as a weight function in the definition of the
inner product]. The constant factors 2”72 account for the
difference in normalization in the measure, and for the dila-
tioninx,,p, . Moreover, one can easily check that analyticity
in ¢, ,d,, is equivalent to analyticity in @, antianalyticity in
b. So, from a mathematical point of view, I can be assimilat-
ed with a 2n-dimensional Bargmann transform. Physically
however, the two integral transforms have a different mean-
ing: I gives a correspondence between classical and quantum
aspects, while the Bargmann transform gives the unitary
transformation between two different but equivalent realiza-
tions (for a short discussion, see Sec. 6 in Ref. 1).

The remarks above will enable us to translate various
results obtained by Bargmann in Ref. 9b to the present set-
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ting. An example of this is the following (we keep the same
notations as in Ref. 9, even though the functions considered
here are in fact modified holomorphic instead of
holomorphic):

Define

Voe Z(E)|p|, = Sl;pl(l + 1§ 1PP e,
€= [pe Z(E,), VpeR;|p|, <},
€' = {pe Z(Ey);

The spaces €, €' can be equipped with very natural locally
convex topologies by means of the norms ||, and one has
then the following result.

I defines an isomorphism between .¥(E } and €, with

JpeR such that |@|, < .

Y fePEMIE) = f dof£ o} 1ol

by duality, / defines also an isomorphism between *'(E ) and
&, with

VTeS(ENITIE)= TS|}

The results in Ref.9b also concern two families of Banach
spaces interpolating between .# and %', € and &', respec-
tively, and between which the integral transform 7 or its in-
verse are continuous. We give a survey of these results, trans-
lated to our present setting, in Sec. 4A.

The chains of Banach spaces presented in Sec. 4A dis-
play, however, several inconveniences. As already men-
tioned in Ref. 9b the & spaces are not separable, and the
little space € is not dense in any €#. Moreover, in relation to
the present setting, it turns out that though one can always
choose suitably matched spaces in the two ladders to make
either 7 or its inverse continuous, it is impossible to choose
them in such a way that I is an isomorphism. None of these
problems arises when one uses a suitable interpolating chain
of Hilbert spaces instead of Banach spaces (see Sec. 4B). The
resulting bounds on I are much more precise between these
Hilbert spaces, and therefore more useful for applications to
quantization than the results of Sec. 4A.

Generalizing the construction of the Hilbert spaces in
Sec. 4B, one can obtain even larger families containing
spaces smaller than % (or €) or larger than .#'(€’), on which
the integral transform / can still be defined and has continu-
ity properties. The results in Secs. 4B and 4C can be consid-
ered as extensions of the bounds in Ref. 9b (Sec. 4B uses some
estimates made in Ref. 9b). Other results on the Bargmann
transform can, of course, easily be translated to the present
context and be useful in a Weyl quantization setting (see, e.g.,
Ref. 1, where a characterization of the images under the
Bargmann transform of the Gel’fand-Shilov spaces Sand .S *
are given; in a sense this can be considered as complementary
to our results in Sec. 4C).

A. The Banach spaces .** & and related results on the
integral transform /

For any C * function f on E, we define (this norm is the
same as in Ref. 9b, up to a dilation:
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7R =1£(<5 ) Emman)

|f|i — max sup |2—(I"I.I + |m,|)/2
{m,],imy] %P
|my} + jm,]<k
(1 4 2% 4 2p?)k —Imi = 1mall/2 (g Iml glml £) (x p)].

(4.5)
The Banach space .¥ “ is then defined as
L= {(fE-Cfis CY|flf<»]. (4.6)
On the other hand, we define, ¥peR, the following subspaces
€* of Z (E,):
& = (e Z(Eklp |, =supl(l + £ IY @l6)] < o}
(4.7)
The following theorem was proved in Ref. 9b.

Theorem 4.1:
1. Vfe.*, the function

16) = [ alg 1o} o
is well defined and an element of Z (E,). Moreover,
IfeG*
and
Hf i <bic| f s (4.8)
with
1, k<2
e *k* k>3
2. V@, with i > 2n, the function
Tpw) =5 dv(§ o}e £)
is well defined on E. Moreover,
VkeN,
with
k<p — 2n:lpes*

3e

bk — 7 2"/2(16n)" /2[ (49)

and

g [5<b i, @k, (4.10)

with

o k p—k
bk’”=2 *k@)k/zr(—z——km-}—l)f(—?——m)

xr("—;-l—‘)‘lLdv e (L + |o]?)". (4.11)

3fe U SralIf=f,

k>2n + 1

(4.12)

pe U E=llp = .

u>2n
Note: This theorem was used in Ref. 6 to derive some
restrictions in the class of distributions corresponding to
bounded operators.
It is obvious from the definition (4.6) of the .#* spaces
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that #(E) = n ¥, and that the locally convex topology
keN

on & defined by the ||||3 -norms coincides with the usual
Schwartz topology. Defining, on the other hand,

€ = {@e Z(E)Vp:lp |, <o}, (4.13)
and equipping this space with the locally convex topology
induced by the norms ||||5 , we have immediately the follow-
ing corollary to Theorem 4.1.

Corollary 4.2: The integral transform 7, restricted to .7,
defines an isomorphism from .% onto €, with inverse I (re-
stricted to €).

In Ref. 9b it was shown that €, the dual of &, can be
identified with U, €” in the following way:

VLieG: g, ()= L{o*)=>g,ev G,
PR
(4.14)
Ve U @P:Lq,w):fd; ST 1oL, €,
peR

with

qu, = ¢)’ LgL = L
The topology on €’ corresponds with the natural topology
on U, €” induced by the norms ||,. In what follows, we
shall always identify €’ with U,z € and implicitly use (4.14).

Since I is an isomorphism between . and G, it is ob-
vious that by duality 7 also defines an isomorphism between
S and €':

VTe?" :we define (IT )@ )= T(Ip), YeeC. (4.15)

By means of the identification €' = U, €”, we define the
function IT'({ ) as

IT()= IT(*) = T(lo*)=T({{|}).
One can easily check that for fe %, this new definition of If
coincides with the old If defined as an integral transform.
We have now immediately _

Theorem 4.3: VTe ., the function IT (§) = T{{£ |-})
is a well-defined function on £ X E, with /7€@’. This map
I.¥' @' is an isomorphism extending the isomorphism in
Corollary 4.2.

Remarks: 1. The inverse map of I:.#'—E’, with I de-
fined as in (4.15), can again be constructed by combining 7
and a limiting procedure. For instance,

VoeG'l ~'p =+ = lim I{@r) (4.16)

2. One can enter in some detail into a discussion of I as
an isomorphism between .’ and &', and compute explicit
bounds on |IT'|, for Tin (#*)', using the bounds in
Theorem 4.1 (see Refs. 9b or 8).

So finally I defines an isomorphism between .# and €
and between .’ and §'. Moreover, we have two sets of inter-
polating spaces: the #*(.#*)’ between .# and .%” and the G®
between € and &', and we have at hand continuity state-
ments and bounds for I between elements of these two inter-
polating chains, giving more detailed information on the ac-
tion of 1. Except for the two ends of the chain we have,
however, no bicontinuity of I, considered as a map from
S*[ or (£*)] to a suitably chosen &. This problem will
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not occur with the chains of Hilbert spaces in the next sub-
section.

B. The Hilbert spaces .¥ », W*, and related results
concerning /

The Hilbert spaces & #, W* we define below constitute
again two chains interpolating € with €', . with .’ respec-
tively. Actually the ## spaces were already introduced in
Ref. 9b as a tool for studying €'; they are weighted L * spaces
of modified holomorphic functions. Their inverse images
under the Bargmann integral transform were not displayed
in Ref. 9b; we call these spaces WP spaces; essentially they
are the Hilbert spaces associated to the N-representation of
SE), '(E) with respect to the harmonic oscillator-type
operator x* + p* — 1A, — 14, (see, e.g., Ref. 14).

The 7 * spaces
The ## spaces are defined as ( pcR)

77 =|pezEHlp I} = [ e+ PPIP I <0,

(4.17)
with associated inner product:

(@), = f de(L+ 16 PP o) ¥E).

The %7 spaces are Hilbert spaces [.¥ © = .£((E,)]; one can
check (see Appendix A or Ref. 9b) that the u, , | are ortho-
gonal elements of the 7 :

(#pht pYikae1)p =811k 5[11[1'17'(P§|k | +171)
with

(4.18)

(4.19)

psm)=T(m +2n)“1J- dx x™ 2 le = X1 + xp.
0

Moreover, for any ¢ * with series expansion (2.18) one
has

¢ “; = [k%” |¢[k,1 ]IZT(P;IH +|1|) (4.20)
and
bu =fd§ Uir €) B(C). @.21)

Equations {4.19) and (4.20) imply that the
m(p;lk | +111)""?uy, | constitute an orthonormal base of
F e

The following estimates for 7{ p;m) were computed in
Ref. 9b:

¢, <t{p;m)(m + 2n) ~F<cy, (4.22)
with

p —1
o=(1+£)

n

. p>0,

G= (e L)

n
o (1 3 L)—2n+pe - (4.23)
P

2n p<0.
¢, =e*

246 J. Math. Phys., Vol. 24, No. 2, February 1983

The Wr-spaces
We put ¥ fe.7(E ),YpeR:
(L) = (Sl +p° — 34, — 344, +n)7f).  (4.24)

Note: Actually, the operator x> + p* — 14, — 14, has
spectrum Nn[n, o], which implies we could drop the extra
term 7 in (4.24): the resulting topology on W would be exact-
ly the same. We nevertheless introduce the extra term n in
order to obtain the sharpest possible estimates on the inte-
gral transform I: to obtain these estimates, we shall use
(4.22), where this extra n is already present.

We define then W as the closure of #'(E ) with respect
to the norm ||||7; equipped with this norm, #* is a Hilbert
space.

The renormalized Hermite functions
(7| + |s| + 2n)~#72H,,  [see (3.14)] constitute an orthonor-
mal base in W7; one has

VTeS'(E):TeWrs > |TH, )(|rl + Is| +2nf <
o (4.25)

and

TeW*=|(|T |, = MZM |T(H s )27 + |s] + 2nY

(see, e.g., Sec. V.5 in Ref. 13).

Because of (3.13) and (3.15), we can rewrite (4.25) in
terms of the A, , |:

VTe.s'(E)define Ty, = T( huuy) = Tlhus)-
. (4.26)

Then

VIeWr(|IT: = 3 [T lXk|+ 1] +2np. (4.27)
Tk1021
The integral transform | as a map from WrF onto 5°
From the definitions of W*,% ° one can check that

n wWe=S(E) v Wr=S"E),
peR peR

nFr= u F*r=¢.
peR peR

The extended definition (4.15) of the integral transform I can
therefore be applied to all W#; for any Te W, the resulting
IT will be in & and have series expansion

ITC)= 3 UT)pniimni6)

{miin]
with

(T Y =fd§ o ) IT(E)  Luse (4:21)]

= IT (U, [use(4.14)]
= T(h{nm; [use(4.15)and Proposition 3.1]
= T[m,n 1" (428)

Using the definitions of the norms ||| ,and ||{|;, and the esti-
mates (4.22) we see now that

TeWPSITeF?

and

(4.29)
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T P<MT |7 <cgUIT 5
Hence the following theorem.

Theorem 4.4: The map I: IT({ )= T({{|}) defines an
isomorphism from W* onto .7, and this peR. Estimates on
the norms of this isomorphism and its inverse are given by

I o5 <52 M Ml o <5~ 1% (4.31)

where C and C are defined by (4.23).

Remarks: As we announced before, the restriction of /
to a " is a bijection onto .# #, which means we have no
qualitative loss of information when mapping to and fro {this
was not the case for the #%,E7). Due to the fact that the
product of the estimates on the norms in (4.31) is larger than
1, we have, however, still a “quantitative” loss of informa-
tion, which gets worse for large |p|.

Up to now, we have considered the spaces .¥*G* and
later %7, W?, in order to obtain some fine structure in the
study of I as an isomorphism from .%’ to &'; it turns out that
the Hilbert spaces 7 #, W* are better suited to this end than
the Banach spaces .#%,&”. Our ultimate aim is to use these
results to derive properties of the Weyl quantization proce-
dure, using the fact, mentioned in the Introduction, that the
integral transform 7 constitutes the link between a classical
function and the coherent state matrix elements of its quan-
tal counterpart. Theorems 4.1 and 4.4 can then be used to
translate restrictions on a tempered distribution to growth
restrictions on the coherent state matrix elements of the cor-
responding operator. A first application of Theorem 4.1 was
given in Ref. 6, where it was also noted that stronger results
could be obtained by means of Theorem 4.4. Other applica-
tions shall be given in Ref. 15.

(4.30)

C. The Hilbert spaces .#¥ S, W

We shall here generalize the structures of both 7, W?
to obtain Hilbert spaces larger than ¥, and which can still
be handled by I.

The Hilbert spaces ¢

F P was constructed as a weighted L ? space of Z (E,)
functions, with the special weight (1 + | |?)#. To generalize
this construction, we consider now more general weights.

Let G be a function from R* to R*. We define

FO= (e Z(EN|6 I3 =fd§ BENPGE )< ) (4.32)

and we equip this space with the norm || ||;. Since one has to
be careful with Hilbert spaces of analytic functions, we shall
first investigate the conditions to impose on G to ensure that
& ¢ is an infinitely dimensional Hilbert space (see also Ref.
16).

Proposition 4.5:

1. If VreR " :ess infG (x) > O,ess supG (x) < o0,  (4.33)
x<r xr

then . € is complete.

2. Define

1 oo
/1"'7!=——-——j dx x™+t = le—*G (x). 4.34
I'im+2n) Jo ) ( )
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A necessary and sufficient condition for . © to be infi-
nitely dimensional is

VmA S < . (4.35)
If this condition is satisfied, then
VIkL [ up, 165"0

and

Vo= s €F %ol =

[k10{] [&T17]

|Btha 11°A iy 11
(4.36)

The following three conditions involve not only G, but also
1/G:

3.If

Vm:A 'ln/G< o, then V¢€‘76:¢(k,l 1= ag U 16)8(8)
(4.37)

[i.e., (2.20) holds for all ¢ in F ).

4. If

lim A ¥%mA ¢ )~ =0, (4.38)
then

VoeFCp(5)= | d& o (&)p(£) (4.39)

[i.e., the reconstruction property (2.21) still holds for % €].
5.If
3K ;,,K % >0 such that Vm:K ;<A %A VKK Y,
(4.40)
then % '/ can be identified with the dual, (¥ ¢Y, of ¥ ¢, by
means of the map

FVO(FY,

YL, withL,(@) = fd; WEVP () (4.41)
= ¥ Dby (4.42)
[&111]
Proof:
1. Using

BE) =) Moie)[ N
€' —¢gi<r
and (4.33) one can check that
VR:3K; such that V§, |5 [KR:{é (§)|<Kgr l¢ || -
(4.43)

Hence, convergence with respect to || ||; automatically
entails uniform convergence on compact sets. Therefore,
any Cauchy sequence in % © has a limit in .% ©, and % Cis
complete.

2. Proposition Alin Appendix A proves that V¢eZ (E,):
Jaeewreict= 3 buPafin e
14l
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where these expressions can be finite or infinite. If 4 € < «
for all m, then (4.44) shows that all the u, , €% ° (4.36) is
proved in Appendix A. If 1 ¢ = o, then Ym'>m:A % = «
[use (4.33)]. Hence, Vg7 ©: ¢, ,, =0if |k| + |/ |>m and
% is finite-dimensional.
(# ¢ Cspan {ug, 1k | + 1] <m}).

3. IfVYmA %« o, then

VKL o—vchz( ;L),

(k)Y up, & EXE e

{4.37) is then a consequence of Proposition A2 in Appendix
A.

4. Equation (4.38) implies
Vé’:wgeé‘_'/GC (54‘6 )r

2, wer 161
use 2 lup SN =e )
[K101} m!

k| + 1] =m

apply Proposition A2.

5. See Proposition 4.3 in Ref. 16.

Note that once (4.40) is satisfied, (4.39) holds
automatically;

(4.40)=(F O) =.F /6.
Because of (4.43), 36%c.¥ /¢ such that

VgeF | FL)18L) =9 (€).

In particular

as ‘55@')“[1:,1 1(§) = U1 ](§ )3‘55 = w?. |

Examples:

1. Take G (x) = (1 + x)*. This weight satisfies all the
conditions in Proposition 4.5; the corresponding & € spaces
are of course exactly the 7 # of Sec. 4B.

2. Another possibility is G (x) = e¢#*, with |8 | < 1. This
choice for G satisfies (4.33), (4.35}, and (4.38); one has
AS =(1—=pB)" ™ 2", from which one clearly sees that the
duality condition (4.40) is not satisfied.

3. G (x) = e®"*. This corresponds to a simple exponen-
tial weight for & ©:

umm=ﬁ¢w@Wﬂm-

This choice also satisfies all the conditions in Proposition 4.5
(see below).

4. A rather general class of interesting weight functions
is given by taking G = F77,
with

Fiix=)1+ x)Pe™peR,reR\ {0},4€(0,1). (4.45)

For all the values of the parameters indicated above, F 7"
satisfies (4.33), (4.35), and (4.38).

A detailed analysis of the asymptotic behavior of A ©%’
yields (see Appendix B)

qu(l —l,l _
n n+1

), n=12,..,

248 J. Math. Phys., Vol. 24, No. 2, February 1983

AL~ constX mPexp [rm® + A m* 1 4 ...

+4, ,m" "]+ 0(m?), (4.46)
with
a = max(q — Lig + nlg — 1)).
For ¢g<} this specializes to
AP < constXmPe™ [1 + O (m*)], (4.47)

which implies the duality condition (4.40) is satisfied for g<§;
for g> 4 it is not.
The Hilbert spaces W°.

The % ¢ spaces were constructed on the same principle
as the .# # spaces, with more general weight functions. We
shall likewise generalize the construction of the W# spaces.
Let ¢ (m) be any sequence of strictly positive real numbers.
We define

7167 = 5 -Hia)P ] + 15 + )

= 5 (Sl )P (k| + 11|+ n).

(K711

The set of all functions fin % for which || £, is finite we call
43 W* is then the completion of ., with respect to || ||,,.

We can, of course, as in (4.24), consider W ¢ as the natu-
ral domain of ¢ (x* + p* — 14, — 14,)"%, and put || f||5

=l x> +p* — 44, —34,) .

Examples:

1. Taking 4,(/) = (! + ny’, one has ¥, = .7 (it is only
for ¢ increasing faster than polynomials that *, may be-

(4.48)

come a proper subset of .%’), and W= we.

2. The H (a, A ), H (@, A ) spaces, introduced in Ref. 17,
are a special case of a W -structure. For the detailed defini-
tion we refer to Ref. 17; a survey is given in Appendix C {our
definitions are slightly adjusted to deal with the dilation in
x*4p?— 14, — 14, with respect to a normal harmonic os-
cillator). Essentially the H (a, A ) form a scale of spaces of test
functions “of type S ** and their duals H (&, 4 ) a scale of Hil-
bert spaces of distributions or generalized functions of type
S.'® They are defined (see Appendix C) as W* spaces with:

for H(a, A):

blk+n) =7, e d)= 3 —2mk)

, 4.49
m=0 A *am) @5

for H(a, A ):

¢k +n)=7ila, 4),
where the a(m;k ) are numbers satisfying

y—m Lk + 204 m) 'k +n+m) (4.50)
I'(k+2n) 'k +n)

[for the exact definition of a(m;k }, see Appendix C]. For all
{a, A)witha <1, A arbitrary,ora = 1,4 >v2,H (a, 4 }isan
infinitely dimensional Hilbert space, with orthonormal basis
Yik)+ il Ay, H@, A ) is its dual: for any fe H (@, 4 ),
the action of TeH (@, A ) on fis simply the natural extension
of the action of elements of ' on H (@, A ):

T(f)= Z T(h[k.l ])(h[k,l 1’f)~

(k1071

<a(m;k )<

(4.51)
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In Ref. 17 it was shown that ¥{a, A }satisfying the restriction
above, 3C(a, A ) such that Ve H(a, A ):

|£xo|<Clas A f o T 50,

X exp[ - m j;(x}/“ +p}"’] . (4.52)
In the extreme case @ = }, A>V2 this becomes
n ) X+ p2
epl<CbANNian 0o exp| - 222,
(4.53)

i.e., f has a Gaussian-like behavior at infinity.
Another property proved in Ref. 17 is the following.

Vae(},1),Vfe H(a, A):

fis the restriction to the reals of an entire analytic function of
order p<(1 —a)™".

The integral transform | as a map from W*to & ©
and vice versa

Looking back at the arguments leading to the formula-
tion of Theorem 4.4, we see that the estimates (4.22) played a
crucial role in the proof of the bijectivity of 7 between W*
and Z *. In the case of a general W¢-% € pair, we shall use
again such estimates.

Theorem 4.5: Let # €, W* be two Hilbert spaces as
defined above [with G satisfying (4.33), (4.35)]:

(DIf 3 K,>0suchthat VmeNK,g(m +n)>A S, (4.54)

then I can be considered as a bounded linear map from
W*to F ©, with

VTe WIT()= 2'{ T(huwy) 4y &) (4.55)
(k101
where the series converges uniformly on compact sets.
Moreover,
VTe W*|IT |, < K{?|T||,. (4.56)

2)If3 K, > Osuch that Yme N:K,é (m +n) < 1 §,(4.57)
then 7 can be extended to a bounded linear map from % © to
W* with

V¢= 2 ¢[k,]u[k',]€ycj¢
£3103]
=W?— lim Y (4.58)
M k][
k| + |2 <m

¢[k.’ lh[l.k I

One has

1@, <K3 '@ lo-
(3)If 3 X,,K, > Osuch that
Vm:Kd(m+n <AS < Kyb(m + n), 4.59)
then I as defined by 4.55) is an isomorphism from W * onto
6, with inverse 7 [as defined by (4.58)]

Proof: II are already defined on the finite linear combi-
nations of the A, ; 1,4, , respectively. The bounds (4.54),
(4.57) ensure that I,I can be extended as indicated. Formula
(4.55) is a consequence of the fact that || || convergence
implies uniform and absolute convergence on compact
sets. n
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Note: Of course, one can always define % © first, and
then take ¢ (m + n) = A &; for this particular W* space, the
theorem becomes trivial. A W* space defined in this way
would, however, be rather useless because of its too intrinsic
definition: we are more interested in the situation where % ¢
and W* are defined separately, but where nevertheless a link
can be established via I or 1. This was the case for the #* and
the W” spaces: the WP spaces made sense as ladder spaces in
the N-representation of .#’(E ), and the #* spaces were po-
lynomially weighted L * spaces of modified holomorphic
functions. Results such as Theorem 4.4 (or Theorem 4.5 with
explicit % ¢ —W? pairs) can then be used to characterize the
behavior of the coherent state matrix elements of an operator
by means of the properties of the corresponding classical
function (or distribution) or vice versa.

An example of corresponding W*—.% © pairs different
from the W7~ # pairs in Sec. 4B is given in the following
subsection.

The action of the integral transform / on Hilbert spaces of
distributions of type S

We shall study in this subsection the action of 7 on the
HilbertspacesH (a, 4 ), H (@, A )defined above. Inordertobe
able to apply Theorem 4.5, we have to find suitable weight
functions ;G, 4 G, such that

KA <y a, 4) < KA,

K325 < Vala, 4) < K{A 7o
for some K | K 5,K{,K} > 0.

Using the bounds (4.50) we can easily construct the
;Ga4 functions. Indeed we have
i 2= Fm+2n+1)
o A¥r*al) I'(m+2n)

& 1
< Igo AXr¥al)

{4.60)

<¥nla 4)

I'm+n+1)
Lm+n

Since it is clear from (4.34) that for
A x x!
Ggplx) = T —
.8(X) jZ’oI”(B,)B”
the corresponding 4 & are given by
1 8o i 1 I'im+42n+))
" /SoBUr?%2j) I'(m+2n)
we immediately have
Agem Y, A) < A e, (4.61)
To find candidates for the functions ,G, ,, we have to do a
little more work. We shall study the asymptotic behavior of
the A %22, then invert (4.61) and try to find suitable ,.F;,, -

&p_ p as defined above is typically an entire function of
finite order. Computing its order and type we find'®

o mlinn 1
PEB)= I e~ 28
1
j— hm FZ 2n —1/26n=23—l/5'
NBB)= pE) o [T BB
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So 65_ p is an entire function of growth < (1/28, 2B ~ /).
Since the positive real axis is the direction of fastest growth
for G 5, this implies that

V7 < fBB), V7' > fBB), IK'K" >0
such that

Vx e R*:K'F 7(x) < Gy plx) < K"F28 "7 (x)
[we define F*"(x) = F&"(x) = exp(rx?)]
and hence

KAE™ " Qalm <K AE™,

Using now the estimates (4.46), inverting (4.61), these
inequalities imply that

Ya > LV7, > rla,4) =24 72 VY7, < 7(a,V24)

=2(V24)" Y% 3K, K, > 0

such that

K, A5

Qa) 'y
m .

<A la, A)<KAF (4.62)
Since this inequality has exactly the right form of (4.60), we
are now in a position to apply Theorem 4.5; we get the fol-
lowing results.

Theorem 4.6: For any ¢ € (0,1),7 € R, we define
F%(x)=e™(x eR,); for any (3,B) with § > Jor B =1,
B > V2, we define

A~ o x'l
Ggplx) = _
aal¥) ,;o r*Bn)B*

Take any [a, 4) witha > Jora=1,4 > V2. Then

(1) The integral transform I defines a continuous linear map
from the Hilbert space H (a, A ) of functions of type S to the

weighted L ? space of holomorphic functions # Gava, we
have

VfeHla, A): If(E) = f dv (£ v} (0

and

R, = f dE I (E)CunallE D) < I F s (463)

(2) The integral transform I defines a continuous linear map
from .7 % to

Hio, A}V € 78 o) = [ dg (Eo}g )
and

106 120 < f ALl G LIEP =015, .  (464)

For the next two results, we restrict ourselves to the case
a> 4.

(3) V7, > 1@, A) = 2A~"/?, the integral transform I ex-
tends to a continuous linear map from the Hilbert space
H (a, 4)of distributions of type S to the weighted L ?space of
holomorphic functions FF* "~ ™

VTe H((’I’,A_)'JT(Q‘) = [k%” T Ay Y ()= T({EH)

(4.65)

and
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3K such that ||[IT {|200-. -, = Jdg [IT (£)|%e— 61"

<K|T|%s

(4) V7, <rla,v24) = 2(v2A)~ V% I extends to a con-
tinuous linear map from Z 7> """ to H (a,4 :

dg (E16(5)

VoeF ™ " "Ip = H(@ ) — lim
R~ I¢1<R
(4.66)

and
3K’ > 0such that K '||I¢ ||2 5

< [dE18€1e 7 = 6 P .

For a =1, 4> V2 we have
(5)V¥y>(42/2 —1)7, the integral transform 7 extends
to a continuous linear map from H (1, 4 ) to the weighted L *

G
space & = ~*, where

G,(x)=¢e* (a<])

Wehave VIe H(}, A)IT (&)= T({{]-}) and

Tl = [ dgirieype e

<U+y) "V K YT IT 5
with

i m! m
K, .2 m§=:o T oami™ (z +2)™ (4.67)
Proof: (1)-{4) were essentially proven above. Since
Via,A):{¢|-}e H (a, A), we can always write IT (£ ) as
T({£ |-}). For (5) we use the estimate

Yo 5 A +p)" "7 'K, 4,(y7") (see Appendix C). Since
Age=(1—a) ") (4.67) follows. B

Remarks: As we already mentioned previously, our
motivation for this detailed study of the integral transforms
L1 is their relation with the Weyl quantization procedure
[see (1.1) and (1.6)]. Possible applications of Theorem 4.6 in
this quantization context are, e.g., the following.

I. In Ref. 17 it was shown that for a > 1, the functions in
H (a, A )are the restrictions to the real line of entire functions
oforder(l — a)~'.Onthese H (a, A ) onecan therefore define
the complex 6 functions 8, , ;, +—{v + iw) as continuous lin-
ear forms, i.e., as elements of H (a,4 ) (see Ref. 17). By means
of the integral transform /, and applying Theorem 4.6, one
can therefore quantize these § functions with complex argu-
ment. The same can be done for the real exponentials e * %7,
the quantal operators corresponding to both these functions
are actually complex translation operators, and can there-
fore be useful in the study of certain resonance problems.
Complex dilations also can be obtained as quantizations of
Hai, A )-objects (at least for the dilation parameter in some
strip of the complex plane).

2. Using the I results, the statements in Theorem 4.6
enable one to dequantize certain families of operators with
coherent state matrix elements with fast growth (up to Gaus-
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sian-like growth) in the coherent state labels, and to derive
properties of the corresponding classical functions.

5. THE INTEGRAL TRANSFORM / ACTING ON
FUNCTIONS FACTORIZING INTO A PRODUCT OF A
FUNCTION DEPENDING ON x WITH A FUNCTION
DEPENDING ON p

Whereas for ““dequantization procedures” it may be
useful to know how to treat an operator in which the x and p
parts cannot be disentangled, for quantization purposes one
is mostly interested in functions depending only on x or on p
or linear combinations of such functions. We shall therefore
indicate here how the additional information that a given
function is factorizable, f(x,p) = fi{x)-£3( p) or, depending
only onx oronp, f(x,p) = fi(x), f(x,p) = fo p), canbe used to
sharpen the results derived in the preceding section. To
achieve this, we shall use the decomposition (4.3) of the inte-
gral kernel {a,b |v}:

{a,b v} = Kplcax,)Kp(dapipo ) (5.1)
where
Kslew) = Kglleyead y)
— 2724 (e e ple” VI (5
(yeR",ceR*" = R" ® R"), with 4 given by (4.1), and where

1
Cap = Vz—(xa +xb’Pb _pa)’

1
dab = E(pa +pb9xa — Xp ) . (5'3)

One immediately sees from (5.1) that the integral transform
I, when applied to a factorizable function

fix,p) = fi( x) £o( p), splits into two pieces:
If(a,b) = Iy filca M p foldas ), (5.4)
with Vg function on R”, Vd = (d,, d,)eR*":

(5 g)d,, dy) = (2m) =" J; d’yKg(d; y)gly).  (5.5)

It is not difficult to check that the integral transform 7, with
kernel K, has exactly the same properties as the integral
transform /, except that all the dimensions have to be halved.
Since the exact value of the dimension 7 plays no role what-
ever in the results derived up until now, we see that all the
results for 7 hold also for I, provided we replace each # by
n/2.

We give below a list of bounds on 7 ( f}-/3) which can be
obtained in this way. For all the cases where the images
I 11, I £, cannot be defined directly (i.e., f;, ,€ L © + L?),
we define I as a continuous extension of the integral trans-
form with kernel K, (just as we did for 7).

In the case where f, = 1, i.e., where the function f de-
pends only on x (the case f; = 1 is completely similar), one of
the factors in (5.4) can be calculated explicitly:

I(£i1) (ap) = 15 fi)lCas)
(xa _‘xb)2
ol e
i(pa +pb)'(xa _‘xb)]
n .

+ (5.6)
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We also give some bounds for this special case.
Examples:
1. Define .#* = { g: R">C; g is C* and

2)(k — |m|)/2

| gli = max sup|2~"*(1 + 2| y|
|m|<k

Vimlg(y)l< oo} .
Take f,.7%, f,€.7%. Then

| T(fif)ab)|<by by, | filk, | folk,
X(l + |xq +xb|2 + |p. _bez)_k'n

2
X, —x 24 p, +p, [P\~ 472
X(1+ | 5| lp Pb|) ,

2

with

- 3e 1 if k<2,

b =_2n/48 k/2[

k= 2B e i ks,

2. Define W” as the closure of F(R*) with respect to
Il I3, with (]| g ||j,)i= (g(H +n/2fgland H=y" — 14,.
Take fieW?, f,eW?:. Then

f f dadb |I(f,f,)a, b))
X (l LR —p,,|2)p.

2
X, — %, >+ |pa + 2o *V
X(1+|a s+ P Pbl)
2
<& & (LA LAl
with
p+n
. e""(1+ ﬁ) ., p>0

o= n
e ?, p<0.

3. Takeflef~k' Then
I(f-1)@, b)|<bye ™"/
X, +x, |2+ [pa — 2|7\ 472
X |f1|i(1+ o + % ! lp p,,l) |
4, Take T1€Y'(R"), Wlth Vgef(R)n: lTl( g)| <KTl | gl.;’(.
Then V‘u, >k + n:
(T, 1)@, b)|<2,b, , Ky e /4=

2 _ 2\ur2
x(1+ |xa +xbl :lpa pbl) ,

with
=p

¢ “2expl —Hp— 1)1,

®

1

~

7
= 7~ "(§r2r (k% + 1)r (" =

Xf dye~ (1 + ).
-
5. Take f,cW*; let g be any function in L *(R"). Then
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up in all results, thereby weakening some of them (e.g., the
result of the trace-class properties of Q f,0 f;: see Ref. 15).

2 (pa +pb) 2
4
V2

ffda db |I(f,1)a

Ixa +X |2+ lpa —P |2 ., s
x(14 Bt b b Bl o gizisy).  APPENDIXA
. . ) i We prove some results on ¥ © spaces.
By taking other combinations for £, f; one can easily derive Proposition A.1: Let Gbe a function R*—R™, such that

other bounds of this kind.
Vom: 46 — Fedxx™t—1le=*G (x)

6. CONCLUDING REMARKS m I'(m + 2n)
Using intensively the analyticity properties of the func- is finite. Then
tion {a, b |v} we have derived several families of bounds on

the action of 7 and [. These results will be used in Ref. 15 to Vé = 2 bk 1 14k 11€Z2
derive properties of the Weyl quantization procedure. Ex- tetn

amples of such results are fd§|¢(§)|2G(|§|2)<w© 2 |¢[k,1112/1ﬁq+|1| <.
31!

VieW>*¢< Qf is trace-class e e
- _._.[ see also Ref. 5, If one of these expressions is finite, they are equal.
VAe# (7). Q ~'AeW
~ Proof: From
Vi, LEW™ < Q f1Q f, trace-class,
£, f€ L{RY=Q £,0 /, Hilbert-Schmidt, db up &), 1) = By O
VTeW*: QT is a quadratic form, relatively form- one sees that (see Ref. 9b)
bounded with respect to a power of the harmonic oscillator
Hamiltonian QH. f d up &), 11(6)
VfeWr.geW ~*: the twisted product fog is defined, =t 2
and eW —%. = Stk By -

B (k| + 1| +2n)
The bounds derived here can also be used to show that all the

operations in, e.g., Ref. 11 were well defined.

Because of the link of our integral transform I with the 2
Bargmann integral transform in Rgf. 9 any result on the J;; (<R 4 GUET) k& e, 16
Bargmann integral transform (such as, e.g., in Ref. 1) can be =8 B Asllk | + [T;R),
translated to give properties of , and hence of the Weyl
quantization procedure. Note also that analogous bounds
can be obtained if one starts not with the coherent state fam- Ag(m;R) = J' dye=y" =G (y) /, A0
ily {42 ¢}, but with any other overcomplete family depending m+ 2n)
analytically on its label, and having the reproducing proper- Then
ty (1.4); an example of such a family would be given by*°
{2%,,},where2{,, = Wi(aJu,, [W (a) are the Weyl opera- J- d¢ |9 (€ )1PG (1§ %)
tors; to obtain the usual coherent states one takes [m] = [0]].

Hence

with

This would give rise to another integral kernel {a, b [v},,, = gim dc | (&)*G (¢ 1P
=2"({2%,, .11 (V)2 ¢,, ) but essentially the same theorems T SII<k
could be derived (with some adjustments). Finally, it is im- — lim IR S, Y
portant to note that the integral transform I has the follow- R [k;l] e TP EITH T
ing invariance property with respect to the symplectic Four- SR
ier transform (see also Ref. 1). XAg(lk| + | ;R)
Define 2
=l!1m z |bix,11|°Acllk | + TR )
(Fe o) =2l [ o ooy, e
= Bk, 1 1°A Ty 4 -
then U;“:” e 112 [k |+ 1
F({a,b|-))v)={a, — b v} Proposition A.2: Let Z 4 1, 1 Dk, 1 %1k, 1 ; e an element of
and hence Z(E,).

LIffdf |up, (618 ()] < o, then
dé uy 6) )=y -

VT:I(F_,T)a, b)=IT(a,—b)

and this for 7 in any of the classes considered above (all the

spaces we have introduced are invariant under the Fourier 21 ( dE |wf th
transform). This leads to the property Q (F_.T) = QT-IT (IT M5 01t E)6 () < oo, then
is the parity operator) for the Weyl quantization procedure, dt of(E)8E)=¢(£).

but it also implies that the same Fourier invariance will turn
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Proof:
1. We have

as uy,\5)é(5)

= lim d¢ Uk 1 ](g) (&)

R Jig|<R

= lim
R0 (£"T11]

=;i1n S 1Ak + [I;R) =1 -

2. Analogously,

fdg S €)= lim

¢[k',1'15[k1[k'15[1][1']A1(|k| + Il |§R)

d¢ *(£)(C)

I&I<R

= lim 2 B, 11k, 8 Wik 18111
R—e (£][1)
k100

XA(|k|+I;R)
= lim 2 B 1 4k, 116 Aillk | + T |;R)

R—ow K1

=¢(5)-

APPENDIX B

We compute the asymptotic behavior of

AR = x x™ 2~ le= X1 4 xPe™ (Bl)

I'(m+ 2n) J;
for m— . To estimate the asymptotic behavior in m of the
integral

Tsp:q,m

I =f dxexp[ —x+ 7+ {m+2n— l)nx
0

+plnx+1)], (B2)
we shall use a stationary point method. The exponent
Xx)= —x+mx9+(m+2n—1)Inx+plnix + 1)

has a unique maximum in

xo =m(l + 7gm?~ "' + O (m?~')). One can use this to esti-
mate that

.. =7

rpam =Irpgm(l +0(m™Y), (B3)

where
I'r,p,q,m =L dx exp[ — x + 7x? + (m + 2n +p—1)Inx].
(B4)

We shall therefore restrict ourselves to this last integral. The
exponent in (B4),

Yx)= —x+mx'+m+2n+p—1jlnx, (B5)
has a unique maximum defined by the equation
x=—(m+2n+p—1)=71gx7. (B6)

The solution to this equation can be computed using pertur-
bation techniques:
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Z=m(l + rgm?~ )1 4+ O (m™~ 12~ 2) (B7)
One has then
Y"(x)= 1 (14O (mm~12-2), (B8)
m
Vji>2: Y®) =0(m'), (B9)

YFX)=(—m+(m+2n—4)lnm)+(p—4lnm
+ mrm?~ ! + O (m™=x02 1)
hence
—InI'(m+2n)+ Y(X)

=(p —§) Inm 4 7m? + O (m™=02~ 1), (B10)
Collecting all these results, we see now that
_r I - 1
Cm+2n) ™" mowy/m=T

Xexp[(p - %) Inm+m™m9 + O(mmnx(o,zq_ l))]

X (1 + O (m™ex(~ 17224~ 2)) B11)

[the higher derivatives contribute only a factor

(1 + O (m —7?)) because of the estimate (B9)—see Ref. 21].
If g<4, we can rewrite (B11) as [being a little more care-

ful in estimating X in (B7)]

AL~ constxmPe™ (1 + O (m™=x— /224~ 1)

m—s oo

(B12)

For ¢ > }, the estimate (B7) is too coarse. The next term in the
perturbation gives

X=m(l + rgm?~ "' + 7¢*m* ~ (1 + O (m™~ 13— )
yielding, for } <¢<3,

ALY < const xmpe™™ +WATERTN ] 4 O (m™xa— 13— 2))
(B13)
It is easy to see that for ge[1 + 1/n,1 — 1/(n + 1)], n extra

terms have to be introduced in the perturbation series for X,
and that finally

1 1
1 — —<g<l — —— (n3»2

L <1 o (n>2)

FeT

=A4,7 ~ constxmf

Xexp[rm? + Am* '+ A,m* " 4 ..

+An_lmnq—(n—l)]

X [1 + O(mmaXIq— l,g + nig — IH] ,
where 4, = }7%¢* [as in (B13)].

(B14)

APPENDIX C
We indicate here how the definitions of Ref. 17 have
been adjusted to fit the A, , .

Define on .#(E ) two sequences of operators by the fol-
lowing recursion:

M, =;(xj M, _ . x;+p; Mm—le

SRS BV

1 a8 M a _
4 dp, ap;

~H M o

7
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m=z(ix -—1x+§P; m—lpj
7

Sl Lot 2,
ox; ‘ox, o, 9p;
My=M,=1.
Both M, and ﬂ_,,, are positive; one can easily check that
VS ge Z\E):(f,M, §)=(f, M, g), where ~ denotes the
Fourier transform F, (see Sec. 6). The M,,, conserve the orth-
ogonality of the A, , | (see Ref. 17),

(i, Mon Bri 1)) = By By salms |k | + 1)
the a(m;k ) satisfy the following relations:
Vk: al0k)=1,

alm— Lk +1)

m>1=a(mk ) = k+22”

+ %a(m— Lk —1).

This last recursion relation implies
y-m Lk +2n+m) Lk+n+m
I'(k+ 2n) I'k+n)
The Hilbert space H (a, A ) is then defined as

Hia 4)= | RAEL 115,

<a(m;k )<

—;;F%Ewmﬂ<}
Since

1
”h[k,l 1”i,4 = 2

- am: !
,,.AZ"'rz(am)a(m’lkHl )

_ 1+y-—l)m
<1+ k| +1j+n—1 _(— m+1
(1+y) 2 47 am) I )
and this V y > 0, we see that if 3z > 0 such that

_ v (1 +2"m!
a A ( ) 2 zmr z(am)
converges, then A, , € H (@, A)V [k ],[!]. This conver-
gence is guaranteed for any 4 if @ >}, for 4 > (2(1 + z))*/? if
= J. Hence H (a, 4 ) is an infinitely dimensional Hilbert
space with orthonormal basis ||k, ;|la 4 Ak, if @ >4, or
a =}, A> V2. One can check that the topology on H (@, 4 )
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defined by the norm || ||,,, 4 is really stronger than the topol-
ogyon ¥ (E),and that H (@, A }isapropersubsetof 7 (E }(see
Ref. 17).

The norm || ||, 4 on H (@, A) can also be written as

I Al2. = Z (£ h[k,,])|2y,;,2+|,|(a,A),

(K701
with

vt d)= 3 F—;IL”;)’; )_.

The Hilbert space H (@, 4 ) is then defined as the dual of
H (a, A ) with respect to the normal action of ¥’ on % It can
be constructed as the closure of #'(E ) for the norm || ||z 4:

|]T||‘27,A—= E |T(h[k,11)|27|zk|+|1|(aw4)-
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