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The results obtained earlier have been generalized to show that the path integral for the affine 
coherent state matrix element of a unitary evolution operator exp( - iTH) can be written 
as a well-defined Wiener integral, involving Wiener measure on the Lobachevsky half-plane, 
in the limit that the diffusion constant diverges. This approach works for a wide class of 
Hamiltonians, including, e.g., - d 2/dx2 + Vex) on L 2(R+), with V sufficiently singular 
atx = O. 

I. INTRODUCTION 

The observables that are the quantum kinematical oper­
ators are usually defined to have commutation relations 
analogous to the Poisson bracket structure of the associated 
classical kinematical variables. Examples are a single ca­
nonical pair and the Heisenberg commutation relation, or 
angular momentum variables and the Lie algebra of angular 
momentum operators. We shall say that p, q are classical 
affine variables if q > 0 (or p > 0), for example, with the oth­
er variable p (or q) being unrestricted. Since one variable is 
the generator of translations of the other, it follows that 
some conflict with the range restriction is possible, a situa­
tion that reflects itself in the quantum theory by the fact that 
the operators Q and P cannot both be observables (self-ad­
joint operators) satisfying the Heisenberg commutation re­
lation if Q>O (or P>O). An acceptable substitute for the 
nonobservable operator is the dilation operator 
D = !(QP + PQ), which can always be chosen self-adjoint 
along with the positive operator. The Lie-algebra relation 
[Q,D] = iQ with Q > 0 is just the quantum image of the Pois­
son-bracket relation {q,d} = q, q> 0, where d = qp. The 
generator D preserves the positivity of Q just as the classical 
counterpart d preserves the positivity of q. The indicated Lie 
algebra relation is that of the affine group, sometimes called 
the (ax + b)-group, which is the group of translations (b) 
and scale changes without reflection (a > 0) of the real line 
into itself, x - x' = ax + b. Thus we refer to Q (or P) and D 
as quantum affine kinematical variables, and in view of the 
simple relation between d, p, and q, we loosely refer to p, q 
with q > 0 (or p > 0) as classical affine kinematic variables as 
noted earlier. 

Focusing on the p > 0 case for the moment, we may ima­
gine a formal phase-space path integral quantization of such 
a system given by 

ff-J exp{i J [pq-H(p,q)] dt} If [dptdqrJ, (Ll) 

0) "Bevoegdverklaard Navorser" at the National Foundation for Scientific 
Research. Belgium. 

where all paths satisfy the condition p(t) > O. This expres­
sion is plagued by two problems. The first problem relates to 
what (1.1) could possibly represent since it cannot be the 
propagator expressed in the Q-representation for the simple 
reason that if [Q,P] = i and P> 0 then no Q-representation 
is possible. A satisfactory answer to the first problem was 
given earlier! in which ( 1.1) was formally interpreted as the 
propagator expressed in the affine coherent-state representa­
tion (which makes fundamental use of the operators P and D 
rather than P and Q; see Refs. 2, 3). The second problem 
with ( 1.1 ) pertains to the formal nature of the path integral. 
In Ref. 1 meaning was given to (1.1) as the limit of a fairly 
standard lattice-space regularization. This approach made 
little direct contact with paths defined for continuous time as 
in the classical theory, and besides, it was relatively heuris­
tic. On the other hand, in recent work4 pertaining to the 
usual canonical case (and also for spin kinematical vari­
abies), it was shown how the appropriate coherent-state rep­
resentation of the propagator can be defined as the limit of 
well-defined path integrals over pinned Brownian-motion 
measures as the diffusion constant diverges. The purpose of 
the present paper is to extend this alternative form of regu­
larization and its associated rigorous definition of a path­
integral representation to systems involving affine variables. 
To begin with, however, it is useful to give a brief description 
of the construction in Ref. 4 for the canonical case. 

For a given Hamiltonian H, we defined4 the path inte­
grals 

21Te v (,"-t')/2 J exp[ ~ J (pdq-qdp) 

- i J h(p,q)dt ] dp'W(p)dp'W(q) , (1.2) 

where dp'W (p) and dp'W (q) are Wiener measures associated 
to two independent Brownian processes (one in p, one in q) 
with diffusion constant v, and pinned at p',q' for t = t', at 
p" ,q" for t = t ". The function h in (1.2) is the antinormal 
ordered symbol2 of H. For finite v, (1.2) is a perfectly well­
defined path integral on phase space. It has been proved4 

that for a wide class of Hamiltonians, the limit for v- 00 of 
( 1.2) gives the coherent state matrix element 
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(p" ,q" lexp[ - iCt" - t ')H] ~J',q') . 

This procedure is not restricted to only the canonical 
kinematical variables. In Ref. 5 an outline is given of how the 
above construction can be extended to general semisimple 
Lie groups. One has then to use the corresponding general­
ized coherent states.6 One can define a metric on the group 
manifold associated to these coherent states,5 and use the 
corresponding Laplace-Beltrami operator to define a gener­
alized Wiener measure. Examples of interest outlined in Ref. 
3 are (i) the Weyl-Heisenberg group, (ii) the group SU(2), 
and (iii) the affine (ax + b)-group, corresponding to, re­
spectively, canonical, spin, and affine kinematic variables. 
The first two were extensively discussed in Ref. 4. Here we 
present a more detailed study of the affine variable case. In 
particular, we derive explicit conditions characterizing the 
class of Hamiltonians that can be treated by our methods, 
and we give several examples as well. 

This paper is organized as follows. In Sec. II we review 
the definition and some properties of the coherent states as­
sociated with the (ax + b)-group.2.3 We shall adopt nota­
tion related to that in Ref. 3, which is different from the 
notation in Refs. 1 and 2. We shall also indicate how to pass 
from one notation to the other. It is convenient to break the 
construction into two parts. In Sec. III we study the path 
integral for zero Hamiltonian. We introduce the Brownian 
process on the half plane, use it to construct the path inte­
gral, and show that in the limit of diverging diffusion con­
stant the path integral converges to the coherent state over­
lap function [as it should, since exp ( - itH) = 1 if H = 0] . 
In Sec. IV we discuss the path integral with a nonzero Ham­
iltonian, and we derive sufficient conditions on the Hamilto­
nian so that the limit for diverging diffusion constant leads to 
the appropriate coherent-state matrix element of the evolu­
tion operator. 

II. THE (ax+b)-GROUPAND THE AFFINE COHERENT 
STATES 

Let us review the definition of the (ax + b) -group and 
the associated coherent states, and give some of their proper­
ties. Most of this discussion is analogous to what happens for 
the Weyl-Heisenberg group and its associated coherent 
states, the more familiar canonical coherent states. Both the 
affine and the canonical coherent states are examples of the 
construction of coherent states associated with general Lie­
groups.6 

A. The (ax+b)-group 

The "(ax + b)-group" is the setM +: = lR~ XlR, where 
lR~ = (0,00 ), with the group law 

(a",b") (a',b') = (a"a',b" + a"b') . 

This group has two (faithful) inequivalent irreducible uni­
tary representations U + and U _. We shall consider their 
following realizations on L 2(lR+). For t/!EL 2(lR+), one de­
fines 

[U± (a,b)t,b] (x) =aI/2e±ibxt,b(ax). (2.1 ) 

We shall mainly use U +, except when specified otherwise. 
The subscript + will often be dropped. 
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Both representations U + and U _ are square integrable. 
This means7 that there exists an (unbounded) positive self­
adjoint operator Con L 2(lR+) such that 

"iIt,b I ,t,b2ED ( C 1/2), "iI¢I'¢2EL 2(lR+): 

f dj1(a,b) (¢I'U ± (a,b)t,bl)(U ± (a,b)t,b2'¢2) 

= (C 1/2t,b2'C 1/2t,bl) (¢h¢2) . (2.2) 

Here dj1(a,b) = (1I21T)a- 2 da db is the left-invariant mea­
sure on the (ax + b) -group. The operator C is given by 

(Ct,b) (x) = x-1t,b(x) . (2.3) 

In particular (2.2) implies that, for all t,bED( C 1/2), 11t,b11 = 1, 

f dj1(a,b)U± (a,b) It,b) (t,bIU± (a,b)* = c(t,b) 1 , (2.4) 

with 

c(t,b) = IC-1/2t,b12 = L" dx(llx)It,b(xW· (2.5) 

The closed spaces JIl" ± spanned by the sets 

{(U± (.,)t,b,¢); t,bED(C I/2 ), ¢EL2(lR+)} 

are mutually orthogonal subspaces of L 2(M+) 
: = L 2(M+;dj1). Together, JIl" + and JIl" _ span the whole 
space L 2 (M + ). This can easily be checked by explicit calcu­
lation. 

All this enables us to build orthonormal bases of 
L 2(M +), starting from orthonormal bases in L 2(lR+). Let 
{¢j: jEN}, {t,bj: jEN} be two orthonormal bases in L 2(lR+) 
such that t,bj ED ( C -1/2) for all j. Define elements f if of 
L 2 (M+) by 

(2.6) 

It is clear that for all i, j, fijEJll"E (€ = + or - ). On the 
other hand, both {f if; i,jEN} and {f;;; i,jEN} are ortho­
normal sets, as a consequence of (2.2). One easily checks 
that, for € = + or -, {fij; i,jEN} constitutes a basis for 
JIl"E' The set {fij; i,j3N, € = + or -} is therefore an 
orthonormal basis for L 2 (M + ). 

Let now B be a Hilbert-Schmidt operator on L 2(lR+) 
such that C -1/2B is trace class. Then 

B= IAjlt,b)(¢jl, 
j 

where {¢j; jEN}, {t,bj; jEN} are orthonormal bases in 
L 2(lR+), with t,bj ED(C-1/2) for all j, 2.jIAjI2< 00. Since 
C -1/2 B is trace class we can define 

[F(B)](a,b) = (l/vL)Tr[(U+(a,b) + U_(a,b»)C- 1/2B] 

= (l/vL) I Aj(¢j,U
E

(a,b)C-1/2t,b) . 
j,E 

(2.7) 

From the preceding paragraph it is clear that (2.7) can be 
considered as an expansion of F(B) with respect to an ortho­
normal base in L 2 (M + ). Since the sequence of coefficients is 
square summable, 2.j.E IAj 12 = 2 Tr(B *B), we immediately 
see that F(B)EL 2(M +), with 
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J d,u(a,b) 1 [F(B) ](a,b) 12 = J... L IAj 12 = Tr(B *B) . 
2 j.€ 

(2.8) 

The set of Hilbert-Schmidt operators B for which C - 1/2 B is 
trace class is dense in the space 72 of Hilbert-Schmidt opera­
tors. One can use this to extend the mapB-+F(B) to all of 72. 
This extension is a unitary map from 72 to L 2 (M + ). This is 
the (ax + b)-group analog of a well-known result for the 
Weyl-Heisenberg group. 8 

B. The affine coherent states 

A special role in our path integral results below will be 
played by extremal-weight vectors for the unitary represen­
tation under consideration (see Ref. 5). In our case these are 
the vectors I (normalized to 1) 

'I/Ip(x) =2pr(2f3)-1/2xP- 1I2e- x . (2.9a) 

In order for cp ==c('I/Ip) to be finite, one has to impose,8>!. 
One finds 

Cp = (,8 _ p-I . (2.9b) 

We shall use these minimal weight vectors '1/113 as "fidu­
cial vectors" 6 for the construction of the affine coherent 
states, 

la,b;l3) = U(a,b)'I/Ip. 

From (2.4) one now immediately has the affine coherent 
state resolution of the identity 

Cp I J d,u(a,b) la,b;l3) (a,b;l31 = 1 . (2.10) 

The "overlap function" of different coherent states 
(same value of,8) is given by 

(a" ,b ";I3la',b ';13) 

= [a" + a' + i(b" - b ') ] -213 

2~a"a' 

= [ 1 + cosh d(!",b ";a',b ') r 
X exp - 2f3i tan-I , ( btl - b') 

a" +a' 
(2.11 ) 

where d denotes the metric distance9 on the Lobachevsky 
half-plane M + 

d(a",b ";a',b') 

= cosh -I 1 + ....:.----=-......:...-=---......:.-[
(a" - a')2 + (b " - b ')2] . 

2a"a' 
(2.12) 

For every f3 >! one can define the following map on 
L 2 (lR+): 

(Up¢J )(a,b) = Cp- 1/2(a,b;l3I¢J) 

= Cp- 1I22P [r(2,8)] -1/2ap 

X 100 

dx xP- 1I2e- (a + ib)X¢J(X) . (2.13) 

It is clear from (2.10) that Up is an isometry from L 2 (lR + ) 
toL 2(M +). These maps Up are the analogs of the Bargmann 
transform for the Weyl-Heisenberg case.lO The image 
Yr'p == UpL 2(lR+) consists of exactly those elements f of 
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L 2 (M +) that can be written as 

f(a,b) = ap¢J(a + ib) , 

where ¢J(z) is an entire analytic function on the half-plane 
Rez>O. 

The Hilbert space Yr'p is a reproducing kernel Hilbert 
space,!1 with reproducing kernel cp-'(a",b ";I3la',b';I3). In 
other words, for I in Yr'P' 

I(a,b) =cp- I J d,u(a',b')(a,b;l3la',b';I3)f(a',b'). 

This means in particular that the orthogonal projection op­
erator Pp mappingL 2(M +) ontoYr'p is an integral operator 
with integral kernel 

Pp(a",b";a',b') =cp-'(a",b";I3la',b';I3). (2.14) 

C. Correspondence with the pq-notation 

We mentioned in the Introduction that our notation 
would not coincide with that in Ref. 1. To conclude this 
section we give the correspondence between our present no­
tation and the pq-notation in Ref. 1. 

For fixed,8, define p = ,8a-I, q = - b. We shall also 
rescale the measure; dji(p,q) is the image of cp- 'd,u(a,b), 
i.e., 

d - ( ) - , ,8 -I dp dq 1 - l/2f3 d d 
p p,q =cp ~= 21T P q. 

With this change of notation, (2.13) becomes, for instance, 

(Up'l/l)(p,q) = (2f3)p [r(2f3)] -1/2p-P 

X 100 

dkkpe-k(pr'-iq)'I/I(k). (2.15 ) 

This corresponds exactly with Eq. (24) in Ref. 1. 
Using this correspondence every result we shall obtain 

here can be translated into the pq-notation used in Ref. 1, 
and vice versa. At the end of Sec. IV D we shall state our 
main result inpq-notation as well as in the ab-notation which 
will be used throughout this paper. 

III. THE PATH INTEGRAL FOR ZERO HAMILTONIAN 

In the ab-notation, with the correspondence rules of 
Sec. II C, (1.1) becomes 

.AI-I J exp [ - i,8 J a-I db - J h(a,b) dt] 1} da~~bc , 

(3.1) 

where A > 0 throughout the integration domain. We shall 
give a sense to this expression by a regularization that leads 
to a Wiener measure, on the Lobachevsky half-plane, for 
diffusion constant v. In the end we take the limit V-+ 00. For 
related ideas (regularization by extra factors that formally 
disappear in the limit as a diffusion constant diverges), see 
Ref. 12. 

In this section we restrict ourselves to the case h = O. 
The general case h =1= 0 will be handled in the next section. 

Let us first define the Wiener measure on the Loba­
chevsky half-plane. The Laplace-Beltrami operator is given 
by 

(3.2) 
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(in the pq-notation, fl. = ap p2 ap + f3 2p-2 a ~). This is a 
symmetric operator in L 2(M +), essentially self-adjoint on 
CO' (M + ), the COO-functions on M + with compact support 
away from a = ° (this essential self-adjointness is most easi­
ly checked in the pq-notation). 

The heat kernel for this Laplace-Beltrami operator is 
given by9 

K t (a" ,b ";a' ,b ') = [exp(tfl.)] (a" ,b ";a',b ') 

e-tl4 (00 xe-x2/4t 
= JD ~, 

2fi1it 3/2 D ~cosh x - cosh 8 
(3.3 ) 

where 8 = d(a",b ";a'b') is the metric distance (2.12). We 
define the affine (pinned) Wiener measure with diffusion 
constant v, denoted dllv,ifa",b";a',b" as the measure on path 
space, pinned at a' ,b ' for t = 0, at a" ,b " for t = T, such that 

fd v,T K ("b" 'b') IlW;a",b";a',b' = vT a, ;a, . (3.4 ) 

Requiring (3,4) for all (a",b "), (a',b ')EM+, and all T>O 
defines dll"w unambiguously. We shall drop the super- and 
subscripts T, a", b " , a', and b ' in the sequel. 

We use this measure to regularize (3.1) in the following 
way. We define 

ge (a" ,b ";a',b ';T) 

= cpevTP f exp( - if3 f a-I db ) dll"w(a,b) . (3.5) 

The expression Sa - I db should be considered as a stochastic 
integral, to be calculated using the Stratonovich (midpoint 
rule) procedure. Formally (3.5) can be written as 

ge (a" ,b ";a',b ';T) 

=fff exp[ -if3fa-Ibdt- ~fa-2(a2+b2)dt] 

rr daj dbt 
X --2-' 

t at 

where the factors cp and eVTBhave been absorbed in the (infi­
nite) normalization constant ff. This formal expression 
shows how (3.5) can indeed be viewed as a regularization of 
(3.1) (for the case h = 0). In the final step of our regulariza­
tion procedure we take the limit for v-- 00; in this limit the 
regularizing factor in the above formal expression vanishes. 

It is our aim in this section to prove that 

lim ge(a",b";a',b';T) = (a",b";I3la',b';I3). (3.6) 
v_ 00 
This is exactly what the general expression (3.1) or (1.1) 
should lead to l in the case h = 0. 

We start by studying ge for finite v. 
Lemma 3.1: cp- I ge is the integral kernel of a semi­

group on L 2(M +): 

ge(a",b";a',b';T) =cp[exp( -vTA)](a",b";a',b'). 
(3.7) 

The operator A is given by 

A = -f3-a2[a; + (ab +if3/a)2] (3.8a) 
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In particular, A is a positive self-adjoint operator, with do­
main D( -fl.). 

Proof: It is clear that the ci 1 ge satisfy a semigroup 
property, i.e., 

f dll(a,b) ge (a" ,b ";a,b;t2) ge (a,b;a',b ';t l ) 

= cp ge (a" ,b ";a',b ';t l + t2) . 

On the other hand, we have 

ICi 1ge (a,b;a',b ';t) I <evtPKvt (a,b,a',b') . 

This already implies that ci 1 ge is the integral kernel of a 
semigroup of operators, i.e., Eq. (3.7), with 

A>-f3+!. (3.9) 

Here we have used that - fl.>! on the Lobachevsky half­
plane. Following the standard procedure, and using the mid­
point rule for the stochasticintegral Sa - 1 db, one obtains the 
following differential equation for ge: 
at ge (a,b;a',b ';t) 

= { - f3 - a2[ a; + (ab + if3 /a)2]}ge (a,b;a',b ';t) . 

This implies that the infinitesimal generator A is given by 
(3.8). We have 

A = - fl. - f3 + f3 2 - 2if3aab • 

Since, for all ifJED ( - fl.), and for all E > 0, 

Ilaab ¢11 2 = - (¢,a2a~¢)«¢,( -fl.)¢) 

<Ell - fl.¢11 2 + (1/4E) 11¢11 2 
, 

we see that A - ( - fl.) is ( - fl.) -bounded with infinitesi­
mally small bound. Hence A is self-adjoint, with domain 
D( - fl.). Finally it follows from (3.8b) that A is positive. 

Note: It follows from the proof that every core for - fl. 
is a core for A. In particular, A is essentially self-adjoint on 
CO' (M + ), the set of COO-functions on M + with compact 
support away from a = 0. 

We shall see below that we can do much better than 
Lemma 3.1. We shall see that A has an isolated eigenvalue at 
0. Ifwe denote by Po the projection onto the eigenspace of A 
for the eigenvalue 0, we then see that 

This will then lead to statement (3.6). 
To carry out this program, we have to determine the 

spectrum of A and the corresponding eigenspaces. We shall 
reduce this to a spectral problem on L 2 (lR+) rather than on 
L 2(M+). 

We first introduce the infinitesimal generators of 
U ± (a,b). Both V ± (b) = U ± (l,b) and W(a) = U(e"',O) 
are strongly continuous unitary one-parameter groups. 
Their generators are, respectively, Q and D, i.e., 

V ± (b) = e±ibQ , W(a) = ei",D, 

where Q and D are defined by 

(Q¢)(x) =x¢(x) , 

(D¢)(x) = - ix¢'(x) - (i/2)¢(x) . 

One easily checks that these are indeed self-adjoint operators 
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onL 2(R +). The set CO' (R+) of all C "'-functions with com­
pact support away from 0 is a core for both D and Q. Then 
U ± (a,b) can be written in terms of Q, D as follows: 

U ± (a,b) = e ± ibQei(logalD 

= ei(logalDe ± (ib/alQ • (3.10) 

Note that C = Q - I. With the help of all this we prove the 
following lemma. 

Lemma 3.2: On L 2(R+) we define the operators 
D 2 + Q 2 += 2{3Q + (fJ - !)2, with domain CO' (R+). These 
are symmetric operators; we denote their closures by H ± . 

Then 

( 1) H ± are self-adjoint, 

(2) V"p,tjJeCO' (R+), (U± (',)C- 1/2"p,tjJ)eD(A), 

and 

A (U± (a,b)C- 1/2"p,tjJ) = (U± (a,b)C- 1/2H± "p,tjJ). 

(3.11 ) 

Proof To prove the first statement it is convenient to 
I 

We have 

make a unitary transformation fromL 2(R+) toL 2(R). We 
define, for"peL 2(R+), 

(U"p)(s) = e'/2"p(e') . (3.12) 

Accordingly UC 0' (R +) = CO' (R), the set of C '" -functions 
with compact support. On the other hand, 

U [D 2 + Q 2 + 2fJQ + (fJ _ !) 2] U - I 

= _ ~ + e2s + 2{3e' + (fJ _ .!.)2 . 
ds2 2 

(3.13) 

Since the potential V ± (s) = 2es + 2{3e' + (fJ - !)2 is the 
sum of a bounded potential and a positive smooth potential, 
the operators (3.13) are essentially self-adjoint on Co(R) 
by Theorem X.29 in Ref. 13. This proves the first statement. 

It is easy to check that for "p,tjJeC a (R+) the functions 
fJ.",(a,b) = (U± (a,b)C- 1/2!/1,tjJ) are well-defined C"'­
functions in a,b. Their support is contained in a set of the 
form [C I ,C2 ] XR, with CI > 0; they decrease more rapidly in b 
than any inverse polynomial, and this uniformly in a. This is 
sufficient to ensure that f J.",eD( - Il) = D(A), and also to 
justify the calculations below. 

(AfJ.",)(a,b) =a2« -iaa +ab -ifJ/a)( -iaa -ab +ifJ/a)U± (a,b)QI/2!/1"tjJ) 

=a2« -iaa +ab -ifJ/a)U± (a,b)(lIa)(D +iQ+ifJ)QII2!/1,tjJ) 

=a2(U± (a,b)[a- 2(D±iQ-ifJ)(D +iQ+ifJ) +ia-2(D +iQ+ifJ)]QI/2"p,tjJ) 

= (U± (a,b)(D±iQ-ifJ+i)(D +iQ+ifJ)QI/2"p,tjJ) 

= (U ± (a,b)Q 1/2(D ± iQ - ifJ + i/2)(D + iQ + ifJ - i/2)!/I,tjJ) 

= (U± (a,b)QI/2[D 2 + Q 2+2fJQ+ (fJ-!)2]!/I,tjJ), 

where we have repeatedly used that [D,Qa] = - iaQa. 
Hence (3.11) follows. As a consequence of (3.11) the sub­
spaces K ± are invariant subspaces for A. Moreover the 
spectrum of A Iy ± is exactly the spectrum of H ± . 0 

Lemma 3.3: Let A ± be the restrictions of A to K ± ' 

with domains D( -Il) nK ± . Then £T(A ± ) = £T(H ± ). 

Proof Let P if be the family of spectral projection oper­
ators associated with H ± . 

Let "pj be an orthonormal base in L 2 (R + ), with 
!/IjeD(H 2±). This ensures that !/IjeD(C- 1/2 ) and H±!/Ij 
eD(C -112). Define now Pif on K ± by 

Pif (? Cjk (U ± (',)C -1/2"pj,,,pk») 
j,k 

(3.14 ) 

Using (2.2) one finds IPifl<1 and (Pif)* = Pd'. On the 
other hand clearly (p,;t )2 = P if, Pi = Iy , and p,;t P if ",,, ± ""I 2 

= P 5. no,' This implies that the family {p if ; n. Borel set in 
R} is the set of spectral projection operators for some self­
adjoint operator on K ± . It follows from (3.11) that this 
self-adjoint operator is exactly A ± . Since it is clear from 
(3.14) thatthe two projection-valued measuresP ± and P ± 

have the same support, £T(A ± ) = £T(H ± ) follows immedi­
ately. 0 
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Remark: Suppose that A. is an isolated eigenvalue of H + 
(we shall see below thatH _ has only continuous spectrum) 
with eigenvector tjJ}. (we assume the multiplicity of A. to be 
1). Then A. is an isolated eigenvalue of A +. It follows from 
the proof of Lemma 3.3 that the associated eigenspace E}. of 
A + is given by 

E}. = {(U(-,)C -1I2tjJ;..tjJ); tjJeL 2(R+)}, (3.15) 

E}. is an infinite-dimensional closed subspace of K +' and 
every eigenvalue of A + is infinitely degenerate. This is com­
pletely analogous to what happens in the Weyl-Heisenberg 
case.4 In order to find the spectrum of A and the associated 
eigenspaces we have thus only to determine the spectrum 
and eigenspaces for H ± . This turns out to be very easy, 
because H ± are related to the exactly solvable Morse Schro­
dinger operator. 14 

Lemma 3.4: (1) H _ has only the continuous spectrum 

£T(H_) = [(fJ-D 2,oo), (3.16) 

and (2) H + has the same continuous spectrum, and If! + 11 
eigenvalues lying below it: 

£T(H+) = {(fJ - p2 - (fJ - n - p2; n = 0,1, ... ,~ - iJ) 

U[(fJ-!)2,oo). (3.17) 

Note: Here we have used the notation Lx J for the largest 
integer strictly smaller than x: 
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Ixl = max{nEN; n <x}. 

Proof: Again it will be convenient to consider 
UH ± U - I rather than H ± itself, with U as defined by 
(3.12). We have [see (3.13)] 

d 2 

UH ± U -I = + V () - ds'2 ± S , 

with V ± (s) = e2s += 2/3e' + (/3 _ !)2 . 

Since /3 > 0, V _ (s) is a continuous, monotonously in­
creasing function of s, tending to (/3 - p2 for s- - 00 

and to 00 for s - 00 . It is clear therefore that 
u(H_) C [(/3 - p2,(0). On the other hand wave functions 
with support in [ - 2L, - L ], with L very large, will "see" 
only the constant part (/3 - p2 of the potential V _. This 
means that the spectrum of H _ will at least contain 

Hence (3.16). 
The operator - d 2/ ds'2 + v + (s) is really the Morse op­

erator. 14 Putting several constants equal to 1, one finds in 
Ref. 14 that the operator 

-!!..:... + D(e- 2y - e- Y ) on L 2(R) 
dy2 

has discrete spectrum 

{- [v'D - (n + 1»)2; nEN, n <V'D -!}. 

(3.18 ) 

Its continuous spectrum is [0, 00 ). Putting s = - y + log /3, 
D = /3 2, one finds that - d 2/ds2 + V + (s) - (/3 - !)2 re­
duces to (3.18). Hence 

u(H+) =0-( - :s: + V+(S») 

= {(/3 - !)2 - (/3 -! - n)2; nEN, n </3 - n 
u [(/3 - !)2,00) . 0 

Remark: Reference 14 also gives explicit formulas for 
the eigenvectors of - d 2/dy2 + D(e- 2y - e-Y ). We shall 
only need the ground state. This is given by 

rPo( y) = [r(2v'D - 1)] -1/2(2v'De- Y ),[D -1I2e -,[De-
Y

• 

Substituting y = - s - log /3, and making the inverse 
transformation U - I, we find the ground state rPo of H +: 

rPo(x) = [r(2/3 - 1)] - 1/22.8 - 1I2X.8 - lex. (3.19) 

If we bring together the results of Lemmas 3.2,3.3, and 3.4 
we see indeed that A ;;..0 and that 0 is an isolated eigenvalue of 
A. The associated eigenspace Eo is given by [see (3.15)] 

Eo={<U(·,)C- 1/2rPo, rP); rPEL2(R+)}. 

Here rPo is the ground state of H +, as defined by (3.19) . Note 
that 

(C -1/2rPO )(X) = [r(2/3 - 1)] - 1/22.8- 1I2X.8 - 1I2e - x 

= ~/3 - ! [r(2/3)] -1/22.8x.8 - 1I2e - x 

= c;; 1I2tP.8 (x) , 

with cp , tPp as defined by (2.9). 
Hence, with the notations of Sec. II B, 
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(3.20) 

Eo ={<a,b;[3lrP); rPEL2(R+)} 

= U.8L 2(R+) =~.8 . 

This implies that the spectral projection operator P 0+ of A 
associated with the eigenvalue 0 is exactly P.8' Since A;;..O, 
and since the eigenvalue 0 of A is isolated, we have therefore 

s-lim exp( - vTA) = P.8 (T>O). 
v-oo 

This implies at least in a distributional sense, convergence of 
the corresponding integral kernels. In other words, and tak­
ing into account (2.14) and (3.7), 

9~(a",b";a',b';T) - <a",b";[3la',b';[3) (T>O). 

This is exactly what we set out to prove [see (3.6)]. 
We can do better, however, than only distributional 

convergence. In order to prove pointwise convergence of the 
9~, we first derive a formula relating the integral kernel of 
exp( - vAT) with H ± . This is done in the following two 
lemmas. 

Lemma 3.5: For t>O, the operators C- 1/2 

X exp [ - tH ± ] C -112 are trace class. 
Lemma 3.6: 

[exp( - At) ](a" ,b ";a',b ') 

L Tr[ U€ (a",b") -IU€ (a',b ')C -1/2 
E= +.-

(3.21 ) 

Proof of Lemma 3.6: We shall first derive (3.21), al­
ready assuming that C - 112 exp [ - tH ± ] C - 112 are trace 
class. 

Let {tPj; jEN} be an orthonormal base of L 2 (R +) such 
that tPjED(C + 1/2) nD( C -1/2) for all j. Define, as in (2.6), 

f if (a,b) = <U ± (a,b)C -1/2tPiOtPj ) . 

The f if constitute an orthonormal base of L 2 (M + ). Hence, 
at least in a distributional sense, 

[exp( - At) ](a" ,b ";a',b ') 

= L Lfij(a",b")(fij, e-A'fl/) fl/(a',b'). 
i.j.€ k,l.€' 

(3.22) 
It is clear from the proof of Lemma 3.3 that 

(e-A'fl/)(a,b) = (U€,(a,b)C- 1/2e- HE"tPkotP/)' (3.23) 

Note that C - 1/2e - HE"tPk is well defined. since tPk ED( C 1/2). 
hence tPk=C- 1/2rPk for some rPko and since 
C- 1

/2 exp ( -H€,t)C- 1/2 is a bounded (even trace-class) 
operator. From (3.23). (2.2). and the orthogonality of ~ + 

and ~ _ we obtain 

(f € -A'f€') _ '" '" ( -H.'.I, .1,) ij.e kl - u€,€,ujI e 'f'k.'f'i' 

Substituting this into (3.22) leads to 

[exp( -At)](a".b";a'.b') 

= L (U€(a",b")C- 1/2 tPi •tP) 
E,i.j,k 

X (tPj.U€ (a'.b')C -1/2tPk ) (e - H"tPk .tP;) 

= L Tr[ U€ (a",b") -IU€ (a',b ')C - 1/2e -H"C -1/2] . 
€ 
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Since the final result of this calculation is clearly a con­
tinuous function in (a",b "), (a',b '), we may conclude 
(3.21) pointwise, even though a priori (3.22) was true only 
in a distributional sense. 0 

We now tum to the proof of Lemma 3.5. In the 
course of the proof we shall not only prove that 
C -1/2 exp( - tH ± )C -1/2 are trace class, but also calcu­
late an estimate of the trace. The method used in this estima­
tion will be useful again in the next section, as well as the 
estimate itself. 

Proof of Lemma 3.5: Again it is convenient to use the 
unitary transfonn (3.12). We have 

UC- 1I2U- 1 = (21T)- 1I2e'12, 

UH ± U -I = _ d: + V ± (s) , 
ds 

with V ± (s) = e2s + 2/3e' + (/3 _ p2. 
We thus have to study 

e'12 exp [ - T( - !:J. + V ± )] e'12 

on L 2(R). By the Feynman-Kac fonnula 
exp [ - t( - !:J. + V ± )] and therefore also 
e'12 [ - T( - !:J. + V ± )] e'12 has a positive integral kernel. 
It is therefore trace class if and only if this integrable kernel is 
integrable, i.e., if 

J~ 00 ds e'12{exp[ - T( -!:J. + V ± ) ]}(S,s)e'/2 < 00 • 

(3.24) 

By the Feynman-Kac fonnula we have (see, e.g., Refs. 13 
and 15) 

{exp[ - T( -!:J. + V ± ) ]}(s,s) 

= J dpW,T;S,s exp { - iT dt V ± [w(t)]} . (3.25) 

Here dpW.T;S"s, is the familiar pinned Wiener measure. We 
have denoted it by p in order to distinguish it from our Wie­
ner measure df.L"w on the Lobachevsky half-plane. The mea­
sure dpW,T;S"s, is pinned at Sl for t = 0, at S2 for t = T. It is a 
Gaussian measure with normalized connected con variance 
(t1<t2 ) 

(W(tI)W(t2»C= (W(tI)W(t2» - (W(tI»(W(t2» 

= 2t I (1 - t21T) . 

Substituting (3.25) into (3.24) gives 

J~ 00 ds eS J dpW,T;s,s exp { - iT dt V ± [w(t)]} 

<J~ 00 ds e' J dpW,T;S,s T -I iT dt 

X exp{ - TV ± [w(t)]} (by Jensen's inequality) 

= J~oo dse
s J dpW,T;O,O T-

I 
iT dt 

X exp{ - TV ± [w(t) + s]} 

= J dpW,T;O,O T- I iT dt J:oo dse' 
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X exp{ - TV ± [w(t) + s]} 

= J dp . T -I iT dt Joo ds e' - ",(I) W,T;O,O 
o - 00 

X exp[ - TV ± (s)] 

[translates s -s + w (t) for every t]. (3.26) 

(This technique, using first Jensen's inequality and then, 
after pennuting the integrals over t and s, shifting s by w (t), 
was used by Lieb l6 to derive bounds on the number of bound 
states for -!:J. + V; see also the discussion of the Lieb in­
equality in Ref. 15.) 

One easily calculates 

J
dP e-",(I) =_I_ et(T-t)IT W,T;O,O , 

.j1iT 
(3,27) 

and 

T- I iT dtet(T-t)IT = il dreTr(l-r)<eTI4. (3.28 ) 

On the other hand, 

J: 00 ds e' exp[ - TV ± (s)] 

= i oo 
dx exp{ - T [X2 + 2/3x + 0 -+ y]} 

< ~ exp[ (/3 - ! )T ] . (3.29) 

Putting together (3.26), (3.27), (3.28), and (3.29) shows 
that condition (3.24) is fulfilled. This means that 
C- 1

/2 exp ( -H± T)C- 1/2 is trace class, and 

Tr[C- I/2 exp ( -H± T)C- 1/2] <(1IT)eliT . (3.30) 
o 

With the help of Lemmas 3,5 and 3.6, and of estimate (3.30), 
we can prove (3.6) pointwise. 

Proposition 3.7: Let 9~ be defined by (3.5). Then, for 
all T> 0, and for all (a" ,b "), (a',b ')EM +, 

lim ge (a",b ";a',b ';T) = (a",b ";{3la',b';{3) . 

Proof By the definition of the affine coherent states in 
Sec. II B, and by (3.20), we have 

(a" ,b "; /3la',b'; /3) 
= (tPP IU+ (a",b ")-1 U+(a',b')tPp) 

= cp (C -1/2</>01U + (a" ,b ") -I U + (a',b ')C -1/2</>0) 

= cp Tr[ U + (a",b") -I U + (a',b ')C -1/2 PoC -1/2] , 

(3.31) 

where Po = 1</>0) (</>01 is the zero-eigenvalue spectral projec­
tion operator of H +. 

Comparing (3.31) with Lemma 3.6, we find 

ICp-
1 [9~(a",b";a',b';T) - (a",b";{3la',b';{3)]1 

< ITr[ U _ (a",b ") -IU _ (a',b ')C -1/2e - vH_'C -1/2] I 

+ ITr[U+(a",b ,,)-IU+(a',b') 

XC- 1/2(e- vH
+

T -Po)C- 1/2 ]1 
<ITr[ C -1/2e - vHJC -1/2] I 

+ ITr[C- 1/2(e- vH
+

T -PO)C- 1/2]1· (3.32) 
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The estimate (3.30) is not sufficient to conclude that this 
converges to 0 for V--+ 00. We can improve this estimate in 
the following way. For all AE[0,1], 

e - H_'.;;;t!l-A' lie - H_(I -A)' II 
.;;;e- H_A'e-(I-A)({3-I/2)" . 

Hence, for all AE [ 0, 1 ] , 

Tr[ C -1/2e - H_'C -1/2] 

';;;e - (\ -A)({3 - 112)', Tr[ C -1/2e - AH_'C -1/2] 

/' _ ({3-112)', exp{[ ({3 - 1/2)2 + {3 ]At} 
~e . 

Ut 
If t> [{3 2 + 1/4] - I, we can choose A = [t ({3 2 + 1/4)] - I 
.;;; 1, and we find 

Tr[ C -1/2e - H_'C -1/2].;;; ({32 + Del - ({3- 112)" . 

If t.;;; [{3 2 + l] - I, we take A = 1, and we find 

Tr[C -1/2e -H_,C -1/2] ';;;(elt) e- ({3-112)". 

(3.33 ) 

(3.34 ) 

Combining (3.33) and (3.34) we find that there exists a 
constant ¢ such that, for all t> 0, 

Tr[C -1/2e -H_,C -1/2] .;;;¢(l + t -I)e- ({3-112)". 

(3.35) 

The same can be done for e - H +' - Po. There, the basic in­
equality is 

e- H+' _ Po';;; (e- H+A' - PoHle- H+(\ -A)' - Poll 
.;;;e-H+A'·exp[ - (l-A)B(/3)t] , 

with 

{

({3 - p2, if {3 < ~ , 
B({3) = 2({3 - 1), if {3> ~. (3.36) 

This distinction is due to the fact that H + has more than one 
bound state if {3 > ~. In this case 2 ({3 - 1) is the energy dif­
ference between the ground state and the first excited state. 
The estimate for H +, corresponding to the inequality (3.35) 
for H _, is then 

( 3.37) 

Substituting the estimates (3.37) and (3.35) into (3.32) 
leads to 

1ge(a",b";a',b';T) - (a",b";{3la',b';{3)1 

.;;;¢[1- (vT)-I]exp[ -B({3)vT] , (3.38) 

where ¢ denotes a constant [not the same as in (3.37) or 
(3.35)] which depends on {3, but not on v or T. It is clear 
that (3.38) --+0 for V--+ 00. This concludes our proof. 

For zero Hamiltonian, we have thus achieved our aim. 
We have given a sense to the formal expression (3.1) by 
regularizing it by means of a Wiener measure with diffusion 
constant v, and we have proved that we obtain the expected 
result for v --+ 00 • 
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IV. THE PATH INTEGRAL FOR NONZERO 
HAMILTONIAN 

For nonzero Hamiltonians our strategy will essentially 
be the same as for the zero-Hamiltonian case. We regularize 
(3.1) by means of a Wiener measure with diffusion constant 
v, i.e., we define 

9~ (a" ,b ";a',b ';T) = c{3evT{3 J exp [ - i{3 J a-I db 

- i f h(a,b)dt ] dp,"w(a,b). (4.1) 

Again the stochastic integral Sa-I db should be understood 
in the Stratonovich sense. We shall show that in the limit for 
v tending to 00, 9 ~ tends to the affine coherent state matrix 
element (a" ,b ";{3lexp( - iTH) la',b ';{3), where 

H=ci l f dp,(a,b)la,b;{3)h(a,b)(a,b;{3l· (4.2) 

Our proof of this statement will run along the same lines 
as for the Weyl-Heisenberg case, in Ref. 2. We shall there­
fore not repeat the whole argument. We shall prove some 
basic estimates and show how, given these estimates, the 
proofs in Ref. 4 carry over to the affine path integrals studied 
here. 

The proof, in Ref. 4 of the convergence, for V--+ 00, of the 
v-dependent path integral 9 ~ proceeded in essentially three 
steps. First it was shown that 9 ~ was the integral kernel of a 
contraction semigroup. Then strong convergence, as V--+ 00, 

of these contraction operators was proved; this led to conver­
gence of the 9~ in a distributional sense. Finally, pointwise 
convergence of the 9~ was proved. For these three steps, 
different conditions of a technical nature were imposed on 
the function h. 

We shall distinguish these same three steps here. We 
start however with a subsection listing different conditions 
on h and estimates following from these conditions. These 
estimates will be needed in the following three subsections, 
outlining the proof of our main result. 

A. Conditions on the function h and various estimates 

The first estimate will ensure that 9 ~ is a well-defined 
expression, i.e., that 

exp { - i iT dt h [a(t),b(t)] } 

is integrable with respect to dp, "w. For this it is sufficient that 

J dp,"w iT dt Ih [a(t),b(t)] 1< 00 . (4.3a) 

This can be rewritten as 

iT dt f dp,(a,b)KT_, (a",b ";a,b) 

X Ih(a,b)IK,(a,b;a',b ') < 00, 

with K, as defined by (3.3). 

(4.3b) 

The following lemma gives a sufficient condition on h 
for (4.3) to hold. 

Lemma 4.1: Define 
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_ [1+a
2
+b

2
] D(a,b): = d(a,b;l,O) = cosh I 2a (4.4) 

[see (2.12)]. If, for all a> 0, 

ka (h) = I djL(a,b) Ih(a,b) 12 exp[ - aD(a,b)2] < 00 , 

(4.5) 

then, for all (a',b '), (a" ,b ")EM +, and all T> 0, 

iT dt I djL(a,b)KT_, (a",b ";a,b) Ih(a,b) IK, (a,b;a'b') 

<;¢ [k(l6n-' (h)] 1/2 

X exp{1I16T [D(a',b ')2 + D(a" ,b ,,)2]} . (4.6) 

Note: We shall, throughout this section, denote all con­
stants by ¢ without further identification. A constant ¢ may 
depend on {3. Occasionally as in (4.6) the constant ¢ may 
also depend on T. In all the cases where the T dependence is 
important, however, we shall explicitly keep track of it. 

Proof' By (3.3) we have 

iT dtKT_,(a",b";a,b)K,(a,b;a',b') 

roo -X'IBT 
<;¢ J~ dx --;:::::=:;::x=e==:::=;;-;-

~' ~cosh x - cosh 8' 
roo - JlIBT 

X J~ dy ye I(x,y) , 
~" ~coshy - cosh 8" 

where 8' = d(a,b;a',b '), 8" = d(a,b;a",b "), and with 
I(x,y) given by 

I(x,y) = iT dt[t(T_t)]-3/2 e -X'IBt e - JlIB(T-,) 

[ 
T] -3/2 {T12 

<; 2 e- JlIBT Jo dt t -3/2 e-x'IB, 

[ 
T] -3/2 (T12 + 2 e-x'IBT Jo dt t -3/2 e- JlIB' 

<;¢T -3/2(X- 1 + y-I) i
OO 

ds S-3/2 e - IIBs 

<;¢T-3/2(X- 1 + y-I) . 

On the other hand 

lOO d e- ax
' 

o x ~coshx _ cosh 8 
1 roo e-a(u+O)' 

<; Jo du-------
~sinh 8 0 .JU 

-aO' 
<;¢a- I/4 _e __ 

~sinh 8 

loo d xe- ax
' 

o x ~coshx _ cosh 8 
roo (u + 8)e- a (u+O)' 

= 1 du~~=;~~===;;=~~~~== 
o ~cosh 8(cosh u - 1) + sinh 8 sinh u 
- ao' i oo - ao'8 

<; e du u + e ¢a-I/4 

~cosh 8 0 ~cosh u - 1 ~sinh 8 
<; (1 + a- I/4 8 1/2)e - ao' <;¢(1 + a- I/2)e - a~'12 . 
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Hence 

iT dt K T_, (a",b ";a,b)Kt (a,b;a',b') 

<;¢T-5/4(1 + T- I/2) [ 1 + 1 ] 
~sinh 8' ~sinh 8" 

_ (0" + 0-')/16T Xe . (4.7) 

This implies 

iT dt I djL(a,b)KT_t(a",b";a,b)lh(a,b)IK,(a,b;a',b') 

<;¢T-5/4(1 + T- I/2) 

X ([I djL(a,b) Ih(a,bWe - d(a,b;a',b')'IBT f/2 

X [IdjL(a,b) e-d(a,b;a-,b-)'IBT ]1I2} 
sinh [d(a,b;a",b ")] 

+ idem with roles of a' ,b ' and a" ,b " reversed. 

Since 

D(a,b) <;d(a,b;a'b ') + D(a',b') 

hence 

_ d(a,b;a',b ')2;;;. _ ¥J(a,b)2 + D(a',b ')2, 

the first factor is finite by (4.5). We only need to prove still 
that, for all a > 0, 

I

djL(a,b) e-ad(a,b;a',b')' < 00 , 

sinh [d(a,b;a',b ')] 

in order to conclude (4.6). Since both the measure djL(a,b) 
and the metric distance d are (left) invariant, it suffices to 
prove, for all a > 0, 

I

e - aD(a,b)' 
djL(a,b) < 00 • 

sinhD(a,b) 
(4.8) 

A careful analysis of the singularities of the integrand in 
(4.8), using the definition (4.4) of D(a,b), shows that this 
integral is indeed finite. 

Remark: We shall also need the following similar esti­
mate. From (4.7) we obtain 

iT dt I djL(a,b)KT_, (a",b ";a,b) Ih(a,b) IK, (a.b;a',b') 

<;¢T-5/40 + T- I/2) (I djL(a,b) Ih(a,b) 12 

X exp{ l~T [d(a,b;a',b ')2 + d(a,b;a" ,b ")2] }) 112 

X {I djL(a,b) [sinhD(a,b)]-1 

[ 
1 ]}1I2 X exp - 16TD(a,b)2 . 

(4.9) 

Using the triangle inequality for the metric d one finds that 

d(a,b;a',b ')2 + d(a,b;a" ,b ")2 

;;;.! D(a,b)2 +! D(a',b ')2 _ D(a",b,,)2. 

Inserting this into (4.9) we find 
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iT dt J dfL(a,b)KT_t(a",b ";a,b)lh(a,b)IKt(a,b;a',b') 

<>:;¢ exp[ (1/8T)D(a" ,b ")2 
- (1/40T)D(a',b')2] [k(80n-' (h) r /2 . (4.10) 

We shall impose conditions on the function h other than 
only (4.3). To formulate them, we first need the following 
definitions. 

For (a',b')EM +, and t > 0, we define the following func­
tions onM+: 

¢a',b';t(a,b) = [exp( -tA)](a,b;a',b') , 

¢a'.b';oo (a,b) = cp-l(a,b;[J la',b ';[J) 

= Pp (a,b;a',b ') . 

It is clear that 

¢a',b';t(a,b) = ¢a,b;t(a',b ') , 

¢a',b';oo (a,b) =¢a,b;oo (a',b'). 

( 4.11) 

( 4.12) 

Some of the calculations in Sec. III can be viewed as esti­
mates on the L 2_ and L 00 -norms of these vectors and their 
difference. We have 

II¢a',b';oo II = Cp-
1/2 [by (2.10)], 

II¢a',b';t - ¢a',b';oo 112 

= J dfL(a,b) I [exp( - tA) - Pp] (a,b;a',b 'W 

= [exp( -2tA) -Pp] (a',b';a',b') 

= Tr{C-1/2[(e-2tH+ -Po) +e-2tH_]C-1/2} 

(4.13 ) 

[by Lemma 3.6 and (3.31)] 

<>:;¢(1_t- l )e- 2B(P)t [by (3.35), (3.37)], 

where 

R(P) = {(P - 1/2)2, if p<>:;~, 
2 (P - 1), if P> ~ . 

Hence 

lI¢a',b';t - ¢a',b';oo 11<>:;¢(1 - t -1/2)e- B(P)t, 

II¢a',b';tll<>:;cp-
1I2 + ¢(1 + t -1/2)e- B

(fJ)t. 

(4.14 ) 

(4.15 ) 

( 4.16) 

On the other hand, the estimate (3.38) can be rewritten as 

IW',b';t - ¢a',b';oo 1100 = sup I (¢a',b';t - ¢a',b ';00 )(a,b) I 
a.beM+ 

<>:;¢(1 + t -I)exp[ - R(P)t]. 

( 4.17) 

In the following three sections we shall consider the 
multiplication operator h on L 2(M +) defined by 

(hi )(a,b) = h (a,b) I(a,b) . 

We shall restrict ourselves to real functions h. Then the mul­
tiplication operator is self-adjoint, with domain 

In the remainder of this subsection we shall determine 
sufficient conditions on h ensuring that ¢a',b';oo and ¢a',b';t 
are elements of D(h), i.e., 
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J dfL(a,b)lh(a,b)1
2

1¢a',b';00 (a,b)1
2< 00 , 

J dfL(a,b)lh(a,b)1
2
1¢a',b';t(a,b)1

2< 00. 

(4.18 ) 

( 4.19) 

We shall also estimate IIh(¢a',b';t - ¢a',b';oo ) II. We start with 
( 4.18), the easiest one. 

Lemma 4.2: If 

J
dfL(a,b)lh(a,b)1 2 [ ~ 2]2

P
<00, (4.20) 

1 +a +b 

then (4.18) is satisfied, and 

[ 
1 + a'2 + b ,2 ]P 

IIh¢.',b,JI<>:;¢ 20' . (4.21) 

Proof: By (2.11), we find 

Ilh¢.',b,JI 2 = J dfL(a,b) Ih(a,b Wcp- 21 (a,b;[J la',b ';[J W 

=Cp-2 J dfL(a,b)lh(a,b)1 2 

X [1 + cosh ~(a,b;a',b ')] - 2P 

<>:;¢JdfL (a,b)lh(a,b)1 2 [ 1 +coshD(a,b) ]-2fJ 
1 + cosh D(a',b ') 

[use D(a,b) <>:;d(a,b;a',b ') + D(a',b ')] 

<>:;¢ ( 1 + a::- b ,2 Yp J dfL(a,b) Ih(a,b) 12 

[ 
20 ]2P 

X <00. 
1 + a2 + b 2 

o 

The other two estimates involve some additional calculation. 
We start by estimating weighted L P-norms of ¢a'.b';t. 

Lemma 4.3: For A> 1, fL > 0, one has 

1).,1' (t) = f dfL(a,b) I [exp( -tA)](a,b;I,O)I). 

X [ 1 + a:a + b 2 r 
(4.22) 

with 

E(A fL) = A (p _~) + max [(1 - ,1,)2 + (fL + 1/2)2 
, 4 4 A-I' 

M0+ 1 ~A)+ 4(A~ 1)]' 

where, for all aER, M(a) = max(a,a2
). 

Proof: We first estimate I [exp ( - tA) ] (a,b; 1,0) I, using 
the same technique as in the proof of Lemma 3.5. By Lemma 
3.6 

[exp( - tA) ](a,b;I,O) 

= [exp( - tA) ] (1,O;a,b) 

= LTr[ UE(a,b)C-1/2e-H.rC-1/2] . 
E 

Using again the unitary transform (3.12) we can rewrite this 
as (using the Feynman-Kac formula) 
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[exp( - TA) J( 1,0;0,b) where 

= r f'" ds ei€be' _1_ e' + (112 Jln a 

" - 00 21T 
00 = iT dt elw(ll > 01 = piT dt eW(t) , 

X exp[ - T( - :s: + V€ )](S+ Ina,s) 
02=p

2T, 

Hence 

= ¢ ~ J"" ds eiEbe
' eS + (1I2J1na J dfl . k r W, T;O,ln a 

E - 00 

[exp( - TA)}( 1,0;0,b) 

= ¢ ra e(/3 -1/41Tf dr> . 0 - 112 eiba,/<IQ yu rW,T;O,Jna 0 
x exp { - iT dt v. [s + w(t)] } 

= ~ i"" dx eiEbx..[a, f dpW.T;O,lna 

xe-bZ/4aoe-az+a1lao. (4.24) 

X exp{ - iT dt VE[w(t) +lnX]} 

= ¢ f: 00 dx e
ib

:< Fa f dpW,T;O,lna 

X exp{ - iT dt vE(X) [wet) + Inlx! J } , 

where €(x) = xllxl for x=r60. Since 

VE(X) [w(t) + InJxl J 

(4.23) 

From the Cauchy-Schwarz inequality 

af =,82Tz[iT ~ ew(t) r <JJ2T2 iT d; e2w
(t) , 

hence - 02 + oi /00 <0. Hence 

I (exp(-TA)] (o,b; 1,0) I 

<Ii 'iieCP - 1I4)TJdr> . [0 (W»)-1/2 )lU r W,T;O,ln a 0 

xexp[- b
2 

]. 
4ao(w) 

with 

ao(w) = iT dte2OJ
(t). 

= xV"'(t) _ 2,8£(x) Ixjew(t) + (,8 _ !)2 

= x 2e2<vU) _ 2/3xe"'(t) + (,8 _ !)2 , 
Since A > 1, we find (useeitherJensen'sor Young'sinequali­
ty) 

[f df1 . [a (W)]-ll2 e -b Z
/4aOCW l]A r W. T;O,ln 11 0 

we have 

[exp( - TA)J(l,O;o,b) 
<¢ T - (A - 1)12 exp[ _ A 4-;.,1 (In 0)2] 

= ¢.J(1 e(/3-1/4)Tf dr> 
rW,T;O,lna 

xfdf1 . (a (w)] -AI2 e -Ab
Z
/4aoCw). 

rW,T;O,lna 0 

1 Hence [see (4.22)], 

X (1 + all-' + b 2;t)exp [ - A-IOn 0)2J f df1 . [a (w)] -A/2 e - Ab'/4ao(wl 4 T r W,T;O,ln a 0 

<¢ e-<T(P- J!4JT - (X - 1)12 1'" do f d'P OAI2 - 2-1' W,T;O,lna 
o 

xexp [ - '\-;, 1 (In 0)2]{ (1 + a2;t) [aO(w) ] (1 -A)12 + [aO(w)]P + (\ - A)/2} , 

Let us estimate 

Jti,T(X) == f dpW,T;O,x (iT dt e2VJ
(t) r· 

If either 8<0 or 8 > 1 we can apply Jensen's inequality and obtain 

J (X)<fd'P . T t3 - l lT dte2tiw
(tJ ti,T W,T;O,x 

o 
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(4.2S) 

(4.26) 
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If 0<8<1, then, by Young's inequality, 

J.5,T(X)<[I dpW,T;O,x iT dte2W
(t) r[I dpW,T;O.x r -.5 <¢ T.5-112e.5T e.5x. 

Combining (4.26) with (4.27) we obtain, with M(8) = max(8,82) , 

J.5,T(X)<¢ T.5-112 e.5x ~(.5)T. 

Substituting this into (4.25) we find 

(4.27) 

I (T) <¢ f!'T({3- 114) T -A + 112 JOO dx exp [ _ A-I x 2 +~] [eT(I -,1)'/4 e -I-'X( 1 + e2f'X) + Tl-'e™(1-' + (I -,1)/2)] 
,1,1-' _ 00 4T 2 

<¢ TI-Af!'T({3-1/4) 1 [exp{T[ (l-A)2 + (f-l + 1!2)2]} 
~-1 4 A-I 

+ Tl-'exp{T[MG + 1 ;A) + 4(A ~ 1)]}]' 
It is easy to see that this leads to (4.22). 

With the help of Lemma 4.3 we can now estimate 

Ilh(tPa',b';t -tPa'.b';oo)II, 

Lemma 4.4: Let h be a function satisfying 

Cl-'r(h)=Idf-l(a,b)lh(a,b)12+r[ ~ 2]1-' <00, 
, l+a+b 

for positive parametes r,f-l satisfying the following conditions: 

f-l <r(f3 -~) + 2f3, 

sup [2( 1 _ a)B(f3) _ _ r_ E(a 2(1T + 2) , 2f-l )] >0, 
aE(m,l) r+ 2 r r 

where 

m = r max(l, 1 + 2f-llr) . 
2(1T+2) f3 

Here 

E(A,r)=A(f3_1.)+max[(1-A)2 + (r+1!2)2, M( + l-A)+ 1 ] 
4 4 A-I r -2- 4(A - 1) , 

with M(8) = max(8,82
), and B(f3) = (f3 - !)2 if f3<~, B({3) = 2(f3 - 1) if f3>~. 

Then there exist constants ¢ I' ¢2 > 0 such that 

(
1 +a'2+b'2)I-'/(r+2) 

Ilh("', '. -"', '. )II<¢ [1+t- l +r/[2(r+2)I]e-¢,t . 
'l'a ,b ,t 'l'a ,b ,00 I 2a' 

Proof' 

< [CI-',r(h)]21(r+2) s~r I [tPa',b';t -tPa',b';oo ](a,b)1 2(1-a) 

o 

(4.28) 

(4.29a) 

(4.29b) 

(4.30) 

{ I }
rl(r+ 2) 

X df-l (a,b) I [tPa',b';t - tPa',b ';00 ] (a,b) 12a(r+ 2)lr[ cosh D(a',b ')cosh d(a,b;a',b ') ] 21-'Ir 

(
1+ '2+b'2)21-'/(r+2) < ¢ [1 + t - 2(1 - a)] e - 2(1 - a)B({3)t _-,--a_-,--_ 

2a' 

X {I df-l(a,b) [ltPl,O;t (a,b) 12a(r+ 2)lr + ItPI,O;oo (a,b) 12a(r+ 2)lr] ( 1 + : + b 2 YI-'/T/(r+ 2) 

[use (4.17) and the left invariance of the measure df-l ]. This holds for all aE [0,1 ]. If we choose a such that a > m, with m as 
defined above, then 2af3(r + 2)/r - 2f-llr> 1, hence 
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f dILI¢l,o;oo (a,b)1 2a(r+2)/r( 1 +a~+b2rl'lr 

- f ( 20 )2ap(r+2)/r-21'Ir 
-¢ dIL 2 2 <00. 

1 +a +b 
On the other hand a> m also implies 2a(r + 2)/r> 1. Us­
ing Lemma 4.3 leads then to 

11h(¢a',b';t - ¢a',b';oo )11 

<¢[ 1 + t - (I-a)] [1 + t r/[2(r+2») -a] 

(
1 + a,2 + b,2 )21'/(r+ 2) X e - 2( 1- a)B(p)t 

20' 

X [ 1 + f 2a(r + 2)/r,21'Ir ] rl(r + 2) 

(
1 + a'2 + b'2 )21'/(r+2) <¢[l +t -1+r/[2(r+2»)] 

2a' 

xexp [ - (1 - a)B({3)t + r tE 
2(r + 2) 

x (2a(rr+ 2) , ~)] . 

This holds for all aE(m,l]. It is clear from this that (4.30) 
follows if the conditions (4.29) are satisfied. • 

Remark: The conditions (4.29) are sufficient condi­
tions on the pair (r,IL), given{3, ensuring that (4.30) holds. 
The conditions (4.29) are however rather complicated, and 
may not be easy to check. It is possible, of course, to only 
consider one value for a, instead of the whole interval (m, 1). 
This considerably simplifies the condition on r,p., but may be 
too restrictive. One possibility of choosing such a fixed value 
for a is, e.g., a = r/(r + 2). It is then sufficient that 

IL <r({3 -!) , 
4B({3) 

r< , 
E(2,2{3 - 1) 

to ensure that the conditions ( 4.29) are satisfied. This allows 
only a finite range for the parameter r, however, and is thus 
very restrictive. It turns out that it is easier to proceed in the 
inverse direction, i.e., to start from the pair (r,IL) and to 
determine for which values of {3 the conditions (4.29) are 
satisfied. One finds that the following conditions imply 
(4.29): 

{3>r(1 + 2IL/r)/2(r + 2)] , 

{3> ~, (4.31a) 

p> 1 [4-~a+-r-E(2a r+2, 2IL)] , 
2(2 - 3a) r + 2 r r 

for some a satisfying 

r d _r..:.-(1_+.:....-!2IL--,/_r",-) ----<a<jan a< 
2(r + 2) 2{3(r + 2) 

(4.31b) 

Here E is defined by 

E(A,y) = E(A,y) - A({3 - !) 

[ 
(1-A)2 (y+ 1/2)2 

= max + , 
4 A-I 

(
I-A) 1] 

M y+-2- + 4(A-l) , (4.31c) 

withM(x) = max(x,x2). 
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Note that the second condition on a in (4.31 b) is an 
implicit condition, since it contains {3 again, and {3 is bound­
ed below by a function depending on a. In the explicit exam­
ples below (see Remark 2 at the end of Sec. IV) we shall first 
disregard this extra condition on a, compute a lower bound 
on {3, and then verify that the condition is satisfied. 

Our last estimate involves IIh¢a',b ';t II. From Lemma 4.2 
and 4.4 one immediately has 

( 
1 + ,2 + b ,2 )21'1r Ih¢, '. 1< ¢ [1 + t - 1 + r/2(r+ 2)] _,--a---,-__ 

a,b ,t 20' 

(4.32) 

if h satisfies (4.28), where IL, r, {3 fulfill either the conditions 
(4.29) or the conditions (4.31). 

All in all we have three different technical conditions on 
h. The first one, (4.5), ensures that ;?JJ~ is well defined. The 
second one, (4.20), ensures that ¢a'.b';oo ED(h) for all 
(a',b ')EM+. The third one, (4.28), ensures that 
¢a',b';tED(h) for all (a',b ')EM+, and all t>O. Note that 
(4.28) -+ (4.20) -+ (4.5). 

In what follows we shall always assume that (4.28) is 
satisfied. 

B. The path as Integral kernel of a contraction 
semlgroup 

Since h satisfied condition (4.28), hence condition 
(4.5), we know by Lemma 4.1 that ;?JJ~ is well-defined. 
Copying the argument in Ref. 4 the following proposition 
can be proved. 

Proposition 4.5: Let h be a real function satisfying condi­
tion (4.28). Then there exists a strongly continuous semi­
group of contractions E( v,h;t) on L 2(M +;dIL) such that 

[E( v,h;t) ](a" ,b ";a',b') = Cp- 1 ;?JJ~ (a" ,b ";a',b ';t) . 

(4.33 ) 

These contraction operators are related to exp( - vAn by 
the integral equation 

(f2,E(v,h;T)fl) = (f2,e- VATfl) -i iT dt 

X(/z,E(v,h;T-t)he-VATfl)' (4.34) 

This integral equation holds if fl' /zEC 0 (M +) or if flED 
and f2EC 0 (M + ) U D. Here D is the finite linear span of the 
vectors ¢a,b;oo defined by (4.12). 

Proof: This proposition is completely analogous to prop­
osition 2.1 in Ref. 24, and the proof runs along exactly the 
same lines. We shall therefore only outline the main argu­
ments, and fill in the technical details only where the present 
situation is different from that in Ref. 24. 

Equation (4.33) is proved in three steps: for 
hEC 0 (M + ), for hEL 00 (M + ), and finally for all h satisfying 
(4.28). 

For hEC 0 (M +) one uses the Trotter product formula 
to show that 
;?JJ~ (a" ,b ",a',b ';T) 

= cp{exp[ - (vA + ih)T]}(a",b ";a',b') . (4.35) 

Since h is bounded, the operator vA + ih is well defined, and 
generates a semigroup. Since A >0, and h is a real function, 
this is a semigroup of contractions. 
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Using the dominated convergence theorem for gP~, and 
strong resolvent convergence for exp [ - (vA + ih) T], one 
can extend (4.35) to all bounded functions h. 

In a next step one uses again dominated convergence 
arguments to show that, for all functions h satisfying (4.5), 
there exists a strongly continuous semigroup of 
contractions E( v, h; t) satisfying (4.33). These operators 
are constructed as s-limn _ 00 exp [ - (vA + ihn)t ], where 
hn(a,b) =h(a,b) if Ih(a,b)l<n, hn(a,b) =nsgnh(a,b) 
otherwise. (See Ref. 4; the arguments given there carryover 
without problems.) 

To prove (4.31), we use the fact that the integral kernel 
of E( v, h; t) is given by a path integral, i.e., (4.33). We have, 
for all (a', b '), (a", b " ) EM + for all T> 0 (see Ref. 4), 

gPh (a" b "'a' b "T) v , " , T 

= gP~(a",b";a',b';T) -iC(3-1 i dt f d,u(a,b) 

X gP~ (a",b ";a,b;T - t)h(a,b) gP~ (a,b;a',b ';t) . 
(4.36) 

Take now II> 12EC(;,(M+). We multiply (4.35) by 

h(a",b") II(a',b') and integrate over d,u(a',b') 
xd,u(a" ,b "). Using the upper bound (valid for all h [this 
follows from (4.1) ] ) 

IgP~ (a",b ";a',b ';t) I <cf3 evlf3 KVI (a",b ";a',b '), (4.37) 

and the estimate (4.6), one sees that the resulting integral 
converges absolutely. This allows us to change the order of 
the integrations, and leads to (4.34), for all/l,J2EC (;' (M + ). 

We can extend this to the case where/lEiJ. To do this, 
we use (4.10). Take/lEiJJ2EC (;' (M +). Again we multiply 
(4.36) by 12(a" ,b ") II (a',b ') and integrate over d,u(a',b ') 
X d,u (a" ,b " ). Since the resulting integral is absolutely con­
vergent by (4.37) and (4.10), we may again reverse the or­
der of the integrations. We thus obtain 

([2,E( v,h;T)I,) 

= ([2,e- VA 'iI) -iCf3-2 iT dt f d,u(a",b")/2(a",b") 

X f d,u(a,b)gP~(a",b ";a,b;T- t)h(a,b) 

X f d,u(a',b ') gP~ (a,b;a',b ';t)/1 (a',b '). 

We know however that 

(4.38) 

hence e - vA'!1 = II for all t. This means in particular that 
e - vA'!IEiJ(h) for all t, so that we may rewrite (4.38) in the 
form (4.34). 

Once (4.34) is obtained for/lEiJ,J2EC (;' (M +), one uses 
a straightforward approximation argument, using again that 
e - vA'!1 =1" together with the fact that C (;' (M +) is dense, 
to conclude (4.34) for/lJ2EiJ. 

Remark: By exactly the same arguments one can also 
prove that for all I, J2EC (;' (M +) 

(/2,E(v,h;T)(1-P(3)/,) 

= (/2,e- vAT(1-P(3)/I) 

+ i iT dt ([2,E( v,h;T - t)he - vAI(1 - Pf3 )/,) . 

(4.39) 

C. Operator convergence of E(v,h;7) for v-+ 00 

The proof of the strong operator convergence of 
E( v,h;T) hinges on Eg. (4.34). Again the proof in Ref. 4 can 
essentially be taken over, without major problems. The only 
difference is that we have to be a little more careful, because 
the operator A had a purely discrete spectrum in the Weyl­
Heisenberg case, and we could therefore conveniently use an 
orthonormal basis consisting of eigenvectors of A. This is not 
possible here. We shall therefore, in our proof of Proposition 
4.6 below (the analog of Proposition 2.2 in Ref. 4) payatten­
tion only to those technical details where our argument 
differs from that in Ref. 4. 

Proposition 4. 6: Let h be a real function on M + satisfying 
(4.28). Define the operator Pf3hP(3 on the domain {(; 
P pfEiJ(h)}. Clearly D, the finite linear span of the ¢a,b;oo , 
satisfies DCD(Pf3 hPf3 ). If P(3hP(3 is essentially self-adjoint 
on D Ell ?r~, then, for all T> 0, 

s-limE(v,h;T) = P(3 exp[ - iP(3hPf3T]P(3 . ( 4.40) 
v- 00 

Proof To prove (4.40), the operator E(v,h;T) is split 
into three parts, 

E(v,h;T) =E(v,h;T)(l-P(3) +P(3E(v,h;T)P(3 

+ (l-Pf3)E(v,h;T)Pf3. 

The treatment of the last two terms is completely analogous 
to the proof of Proposition 2.2 in Ref. 4. We shall therefore 
restrict ourselves here to a discussion of the first term and an 

N estimate related to it. 
J; = L cj¢aA,oo &7t"f3 ' F (439) b' i" Ill" f j~1 rom . weo tam,lora )1' 2EC(;,(M+), 

__________________________________________ -J
1 

T 

1(f;,E(v,h;T)(I-Pf3)/I)I<IV211'lle-VAT(I-Pf3)II'11/111 + 11/211·i dtllhe-vAI(l-Pf3)/III· 

We have lie - vAT(l - P(3) II <e - vTB(f3), with B(P) as defined by (4.14), and 

Ilhe - vAI(l - Pf3 )/111 2 = Ilh(e - vAl - P(3 )/1112<f d,u(a',b ') f d,u (a" ,b ") VI «a',b ') I VI (a" ,b ") I 

X [f d,u(a,b) Ih(a,bWI (¢a',b';vl - ¢a',b';oo )(a,bW] 1/2 

X [f d,u(a,b) Ih(a,b) 121¢a",b";vl - ¢a",b";oo (a,bW] 1/2 

< ¢[ 1 + (vt) -, + r/[2(r+2)Jj2e- 2kvl [f d,u(a,b) 1/1(a,b) I [ 1 + ~a+ b 2 rr ' 
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by Lemma 4.4. Substituting this into (4.41) leads to 

IIE(v,h;T)(1-Pp )/111 

<e - vTB(.Bl IlflII + ~ I kl' [ 1 + a:a + b z rill 
X 1"0 dt [1 + t -I +rIZ(r+Z)]e- kl • ( 4.42) 

This holds for all/IEC 0' (M +). Since CO' is a dense subspace 
of L z(M +;d f.l) and since the operators E( v,h;T) are con­
tractions, this implies, for all T> 0, 

s-lim E( v,h;T) (1 - Pp) = 0 . 
v-oo 

From (4.42) we can clearly also conclude that 

!~~ IT dt I (/z,E(v,h;T - t) (l - Pp )/1) I = 0, 

for all/I JzEC 0' (M +), and hence (by the same density argu­
ments as above) for all/l,JzEL 2(M +;df.l). This estimate is 
needed in the discussion of PpE(v,h;T)Pp (see Ref. 4). 

As already mentioned above, the remainder of the proof 
is a transcription of the proof of Proposition 2.2 in Ref. 4. 

D 
Our ultimate goal is to link .9'~, at least in the limit for 

v ..... 00, to the unitary group exp( - iTH) generated by a 
HamiltonianH onL 2(lR+). This isin fact achieved by Prop­
osition 4.6. To see this, write the integral kernel of PphPp, I 

D. Pointwise convergence of 9~ for v .... 00 

(PphPp) (a",b ";a',b') 

=cp-
z J df.l(a,b) 

<a",b ";[3la,b;{J )h(a,b)(a,b;[3la',b ';(J) . 

One easily checks from (2.13) that this is exactly the integral 
kernel of UpHU~, with 

H = cp-
I J df.l(a,b) la,b;{J )h(a,b) (a,b;l31 . 

ThusPphPp = UpHUl The condition thatPphPp be essen­
tially self-adjoint on D ffi :Jr p is exactly equivalent to the con­
dition that H be essentially self-adjoint on Dc> the finite lin­
ear span of the (affine) coherent states la,b;{J). 

The conclusion (4.40) can now be rewritten in terms of 
H. One finds (see also Ref. 4) 

[Pp exp( - iPphPp T)Pp ] (a" ,b ";a',b ') 

=cp-l(a"b";{Jlexp( -iHT)la',b';{J). 

The strong convergence (4.40) implies, in particular, con­
vergence of the corresponding integral kernels, in a distribu­
tional sense (i.e., when evaluated on test functions). We 
have therefore, at least in a distributional sense, 

lim .9'~ (a" ,b ";a',b ';T) = (a" ,b ";{J Ie - iHTla'b ';[3) . 

(4.43 ) 

This result will be sharpened to pointwise convergence in the 
next subsection. 

To prove (4.43) for all points (a" ,b "), (a',b ')EM +, rather than ina distributional sense, we again use an integral equation 
relating .9' ~ and .9'~, obtained by combining (4.36) with the complex conjugate version of (4.36) for - h. 

9~ (a" ,b ";a',b ';T) = .9'~ (a" ,b ";a',b ';T) - i cp- I IT dt J df.l (a,b).9'~ (a" ,b ";a,b;T - t)h(a,b).9'~ (a,b;a',b ';t) 

- Cp- 2IT dtz f' dt l J df.l (al,b l ) J df.l(az,bz) 9~ (a" ,b ";a2,bz;T - tz)h(az,bz) 

X .9' ~ (az,bz;a Ibl;tZ - tl)h (a l,bl).9'~ (al,bl;a',b ';t I) . 

Rewriting this in terms of rp a,b;1 and rp a,b; 00 , and combining it with an analogous integral equation for the coherent state matrix 
elements of exp ( - iTH) leads to (see Ref. 4) 

Cp- I [ .9'~ (a",b ";a',b ';T) - (a" ,b ";13 Ie - iTH la',b ';13) ] 

= (tPa",b";vT - rpa",b";oo )(a',b ') 

- i IT dt (rpa",b";v(T-Iph(rpa',b';VI - rpa',b';oo) - i IT dt (rpa",b";v(T-t) - rpa",b";oo ,hrpa',b';oo) 

-IT dtz f' dtl (hrpa",b ";v(T- I,) ,E( v,h;tz - tl)h [rpa',b ';VI, - rpa',b ';00 ]) 

( (" - Jo dtz Jo dtl(h [tPa",b";v(T-I,) -rpa",b";oo ],E(v,h;tz-tl)hrpa',b';oo) 

( 4.44) 
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Denote the six terms in the right-hand side of (4.45) by 
al , ... ,a6 • We show that aj -+ v- "" 0 for j = 1, ... ,6. 

The estimates (4.15) and (4.30) can be rewritten as 

Ill,6a.b;t -l,6a,b;"" 11.if(t) , 
IIh (l,6a,b;t -l,6a,b;"" ) II <g(a,b;t) , 

where the functionsf(·) and g(a,b;') [(a,b) fixed] are 
monotonically decreasing in t, and integrable, 

i"" dtf(t) < 00 , 

i"" dt g(a,b;t) < 00 • 

On the other hand, (4.13) and Lemma 4.2 tell us that 

IIl,6a,b;"" II = Cp- 112 [for all (a,b)] , 

and [(a',b'), (a",b") fixed] 

Ilhl,6a',b ';"" II <¢, Ilhl,6a',b';"" II <¢ . 

We now discuss the terms a l , ... ,a6 one by one. 
Using (3.38) we have immediately 

v- "" 

The next four terms can be estimated in terms off, g, 

a2 <¢ iT dt [1 + f(v( T - t) )]g(a',b ';vt) 

1 i"" <¢- dt g(a',b ';t) 
v 0 

+ ¢f( v;) ~ i"" dt g(a',b ';t) 

+¢g(a',b';v;) ~ i"" dtf(t) 

«J...)¢ -+ 0, 
v v_ 00 

a3<¢(Tdtf(v(T-t)«J...)¢ -+ 0, Jo v v_ 00 

a4 <¢ iT dt2 1" dtl [1 + g(a",b ";v(T - t2»)]g(a',b ';vtl ) 

<¢ iT dtlg(a',b';vtl)'(T- tl ) 

x~¢[i"" dt~(a",b";t2)]'[i"" dtlg(a',b';tl )] 

<¢(~~)+¢TJ... ("" dtlg(a',b';tl ) -+ 0, 
v- v Jo V-oo 

( (" as<Jo dt2 Jo dt l g(a",b";v(T-t2») 

<TJ... ("" dtg(a",b";t) -+ O. 
v Jo v __ 00 

Finally, a6 -+ 0 follows from Proposition 4.5 and the domi-

nated convergence theorem. This completes the proof of our 
main result. 

Theorem 4.6: Let h be a real function on M +. Suppose 
that (1) h satisfies condition (4.28), (2) the operator 
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H = Cp- I J dJ.l(a,b) la,b;/3 )h(a,b) (a,b;/31 (4.45 ) 

is essentially self-adjoint on Dc, the finite linear span of the 
affine coherent states. Then, for all (a',b '), (a" ,b ")EM + and 
for all T>O 

!~~ cpe
vTfJ J exp [ - if3 J a-Idb - i J h(a,b)dt ] 

XdJ.l"w (a,b) = (a" ,b ";/3 Ie - iTH la',b ';/3) . 

E. Remarks 

1. The main result in the pq-notation 

We define Ep =f3 -I app2 ap + f3p-2 a~. 

Let Kt be the associated heat kernel, in 
L 2(M +; [(1 - l/2{3)/21T ]dp dq), 

Kt (p" ,q"; p' ,q') == [ exp( tEp) ] (p" ,q" ;p' ,q') 

e - t 14Pf3 3/2 

2/2ii(f3 - pt 3/2 

l
"" xe - px'/4t 

X dx, 
fj ~cosh x - cosh.5 

where 

.5 = d(p",q";p',q') 

= COSh-l{ 1 + P";" [(p,-I - p"-1)2 + f32(q' _ q" )2]}. 

Define dfi,W;',qu;p',q' to be the associated Wiener process 
with diffusion constant v, pinned at p' ,q' for t = 0, at p" ,q" 

for t = T. In particular dfi,"w satisfies 

f d- v T K- (" " , ') J.lw;p',q';p',q' = vT P ,q ;p ,q , 

1 - l/2{3 fd d d- v,T,-! d-v,~ ." 21T P q J.l W;p ,q ;p,q J.l W,p,q,p ,q 

- dijV,T - r- W;pU,q" ;p',q' . 

Let h be a function on M + satisfying 

f dPdqlh(P,q)12+r[ 2P 2 ]1-' < 00, (4.46) 
1 + P (q + 1) 

for some J.l,r satisfying condition (4.29). 
Let Hbe the operator on L 2 (R+) defined by 

H = 1 - l/2{3 f dp dqlP,q;/3> h(p,q) <p,q;/3l, 
21T 

where, for t/JEL 2 (R+), 

(P,q;/3It/J) = (2{3)P[r(2{3)]-1/2p-P 

xi"" dkkPe-k(pr'-iq)t/J(k) 

[see (2.14)]. 
Define the path integral 

f!jJh (p" q" , , T) v ,;p ,q; 

= e
vTI2 f exp[i f pdq - i f h(p,q)dt ]dfi,W;.,q';p"q, 
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[ this differs by a factor C /3 from (4.1 ); this factor is absorbed 
in the measure in the pq-notation]. 

Translated into the pq-notation, the main theorem now 
reads ( 1) if h satisfies (4.45), and (2) if H is essentially self­
adjoint on Dc, the finite linear span of the Ip,q;/3), then, for 
all (p" ,q"), (pl,q')EM +, for all T> 0, 

lim 9Z (p" ,q" ;pl,q';T) 

= (p" ,q";/3 I exp ( - iTH) IP' ,q';/3 ). 

2. Examples 

(a) The simplest example is, of course, provided by 
bounded functions h(a,b), 

Ih(a,b)I<M. 

In this case the operator H defined by ( 4.45) is also bounded 
by M; H is thus clearly essentially self-adjoint on Dc. More­
over the condition (4.28) is satisfied for arbitrary r> 0 and 
for all,u > 1. Let us now determine from (4.29) or (4.31) the 
restrictions imposed on /3 by the condition,u > 1. Two possi­
bilities have to be distinguished: ! </3< ~ or /3>~. In the first 
case we have R(/3) = (/3-!)z in (4.29b), leading to the 
condition 

2(1-a)/3Z-2/3+!>_r_ i (2a r+2 ,2,u), (4.47) 
r+2 r r 

with i as defined by (4.31c). It turns out there is no set of 
values (a,r,,u) with r/2(r + 2) <a < 1, and,u > 1, such that 
( 4.4 7) is satisfied for /3E q, H. 

For /3> ~ we have to determine /3 satisfying the condi­
tions (4.31). One has then to choose (a,r,,u) so as to produce 
the smallest possible lower bound on /3 consistent with the 
other conditions. For,u > 1, r = !, and a = j one finds that 
(4.31a) reduces to /3 > 2.06, while all the other conditions 
are fulfilled also. 

This means that Theorem 4.6 allows us to conclude that, 
for bounded Hamiltonians H associated to bounded func­
tions h(a,b), 

!~~ c/3ev
T/3 f exp [ - i/3 f a-I db - i f h(a,b)dt ] 

xd,u'{y(a,b) = (a",b ";/3leiTH la',b ';/3), (4.48) 

for all /3 > 2.06. 
We believe that, for bounded functions h, (4.48) should 

hold for all/3>!, since it holds for h = const whenever /3>!. 
The 2.06-bound found here is probably an artifact of our 
method of proof, which uses Young's and Jensen's inequal­
ities several times (in the proof of Lemma 4.3). 

(b) We next tum to examples of the form 

d 2 

H= --+ Vex) 
dxz 

on L Z(R+). 
In order for this operator to be essentially self-adjoint on 

Dc, V must have a singularity at the origin. More precisely, 
H will be essentially self-adjoint on Dc (regardless of /3), 
e.g., for Vex) of the form 

Vex) = Clx- a, + Czxa" 
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where either a l > 2, CI > 0 or a l = 2, CI>~' and either 
0<az<2, Cz arbitrary, or a z > 2, Cz>O. In all these cases V 
has a strong singularity at x = 0; for x ..... 00, V may tend to 
00 , a constant, or - 00, depending on the values chosen for 
the different parameters. 

Let us now construct the corresponding functions 
h(a,b), and determine the values of /3 for which Theorem 
4.6 applies. The function ho(a,b) corresponding to - d Z

/ 

dxz is given by 

ho(a,b) = b z - (l/2/3)az 

[one easily checks that substitution of ho into (4.45) leads to 
- d Z / dxZ

]. Similarly, the function ha (a,b) associated with 
x - a is given by 

h ( b) = 2a r(2/3 - 1) a 
a a, a . 

r(2/3+a-1) 
Hence the function h(a,b) corresponding to the Hamilto­
nian - (d Z / dxz) + V, with Vas above, is given by 

h(a,b) = b Z __ 1_ aZ + C
I 

2
a
'r(2/3 - 1) aa, 

2/3 r(2/3 + a l - 1) 

+C
z 

2-
a
'r(2/3-1) a-a,. 

r(2/3-az -1) 

If Cz#O we have to impose the additional restriction 
2/3 - a z - lEI: - N. 

We shall restrict ourselves to one particular case now. 
We take Cz = 0, a l = 2, and CI>~' The Hamiltonian H is 
essentially self-adjoint, and 

h(a b) = b Z +J.. (~_J..)az. 
, /3 /3-! 2 

The pairs (r,,u) for which this function satisfies the condi­
tion (4.28) are restricted by the condition,u > 2 (r + 2). We 
have thus to find (r,a,,u) satisfying this condition as well as 
the conditions (4.31b); this then enables us, from (4.31a) to 
compute a/3o such that Theorem 4.6 applies, for this Hamil­
tonian, for all /3 > /30' For a = j,r = 1, and,u > 6, one finds 
that (4.31a) becomes /3> 27.33. It is easy to check that all 
the other conditions are satisfied as well. Hence Theorem 4.6 
applies toH = - dZ/dxz + Cx- z, C>a, if/3> 27.33. Again 
we believe that this is not optimal. The true lower bound /30 
on/3 for which (4.48) would hold, whenever /3 > /30' is prob­
ably much smaller than the here computed value 27.33, 
though possibly larger than !. 

3. A formula giving the function h from the operator H 

Formula (4.45) defines the operator H for a given func­
tion h. Ifwe define the function H(a,b) to be the diagonal 
coherent state matrix elements of H, 

H(a,b) = (a,b;/3IH la,b;/3), 

then (4.45) leads to 

H(a,b) =cii l f d,u~,';b') h(a',b l)l(a,b;/3lal,b ';/3)iZ 

= c- J f d,u(a',b ') hea' b ') 
/3 a'z ' 
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This formula can be inverted. Using results in Ref. 17 one 
finds 

h(a,b) = (TH) (a,b), ( 4.49) 

where the operator T, acting on the function H, is given by 

T- 1- , 00 [ a ] - )Jo (2{3 + n + 1)( 2{3 + n + 2) 
(4.50) 

with a = a2 (a ~ + a ~ ), the Laplace-Beltrami operator on 
the Lobachevsky plane. 

It turns out that this infinite product can be rewritten in 
terms of r -functions. One way to see this is to use the corre­
spondence (4.49) for a family of special cases. For H = x - a 

we know already that 

h( b) 
- 2ar(2{3-1) a 

a, - a. 
r(2{3+a-1) 

On the other hand, the corresponding function H(a,b) is 

2ar(2{3 - a) 
H(a,b) = (a,b;l3lx- a la,b;l3) = r(2{3) 

This implies that 

00 [ - a(a - 1) ] 
)Jo 1 + (2{3 + n + 1) (2{3 + n + 2) 

r(2{3)r(2{3-1) 

r(2{3 - a)r(2{3 + a - 1) 

By analytic continuation one finds that, for all t> 0, 

00 [ t2+114 ] 
)Jo 1 + (2{3 + n + 1) (2{3 + bn + 2) 

r(2{3)r(2{3 - 1) 

r(2{3 - it - !)r(2{3 + it - !) 
B(2{3,2{3 - 1) 

B(2{3 - it - !,2{3 + it - !) 
(4.51) 

Since the spectrum of - a = - a2 (a ~ + a ~ ) on the Loba­
chevsky plane is [1,00), (4.51) determines (4.50) complete­
ly. For particular values of {3, (4.51) and hence (4.50) can 
be further simplified. For {3 = 1, e.g., we find 

B(2,1) 1T 

B(~ - it, ~ + it) 

This can then be used to give an integral representation for T. 
We have, e.g., 

[d cos tx 1T 
X ----

o cosh x/2 - cosh t1T ' 
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hence 

00 [ -a] )Jo 1+ (n+3)(n+4) 

= ( _ a + 2) - I roo dt cos [t ~ - a + !] , 
Jo cosh t /2 

with 

cos[t~-a+! ] 

= f (- 1) n t In( _ a + J.. )n. 
n=O (2n)! 4 
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