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ABSTRACT. This article is essentially tutorial in nature. We show how any discrete wavelet transform or 

two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering 
steps, which we call lifting steps but that are also known as ladder structures. This decomposition 
corresponds to a factorization of  the polyphase matrix of the wavelet or subband filters into elementary 
matrices. That such a factorization is possible is well-known to algebraists (and expressed by the 
formula SL(n; R[Z, z-I])  = E(n; R[z, z-l])); it is also used in linear systems theory in the electrical 
engineering community. We present here a self-contained derivation, building the decomposition from 
basic principles such as the Euclidean algorithm, with a focus on applying it to wavelet filtering. This 
factorization provides an alternative for the lattice factorization, with the advantage that it can also 
be used in the biorthogonal, i.e., non-unitary case. Like the lattice factorization, the decomposition 
presented here asymptotically reduces the computational complexity of the transform by a factor two. It 
has other applications, such as the possibility of defining a wavelet-like transform that maps integers to 
integers. 

1. Introduct ion 

Over the last decade several constructions of compactly supported wavelets originated both 
from mathematical analysis and the signal processing community. The roots of critically sampled 
wavelet transforms are actually older than the word "wavelet" and go back to the context of sub- 
band filters, or more precisely quadrature mirror filters [35, 36, 42, 50, 51, 52, 53, 55, 57, 59]. In 
mathematical analysis, wavelets were defined as translates and dilates of one fixed function and were 
used to both analyze and represent general functions [13, 18, 21, 22, 34]. In the mid-eighties the 
introduction of multiresolution analysis and the fast wavelet transform by Mallat and Meyer pro- 
vided the connection between subband filters and wavelets [30, 31, 34]; this led to new constructions, 
such as the smooth orthogonal and compactly supported wavelets [ 16]. Later many generalizations 
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to the biorthogonal or semiorthogonal (pre-wavelet) case were introduced. Biorthogonality allows 
the construction of symmetric wavelets and thus linear phase filters. Examples are the construc- 
tion of  semiorthogonal spline wavelets [1, 8, I0, 11, 49], fully biorthogonal compactly supported 
wavelets [12, 56], and recursive filter banks [25]. 

Various techniques to construct wavelet bases, or to factor existing wavelet filters into basic 
building blocks are known. One of these is lifting. The original motivation for developing lifting was 
to build second generation wavelets, i.e., wavelets adapted to situations that do not allow translation 
and dilation like non-Euclidean spaces. First generation wavelets are all translates and dilates of  
one or a few basic shapes; the Fourier transform is then the crucial tool for wavelet construction. A 
construction using lifting, on the contrary, is entirely spatial and therefore ideally suited for building 
second generation wavelets when Fourier techniques are no longer available. When restricted to the 
translation and dilation invariant case, or the "first generation," lifting comes down to well-known 
ladder type structures and certain factoring algorithms. In the next few paragraphs, we explain lifting 
and show how it provides a spatial construction and allows for second generation wavelets; later we 
focus on the first generation case and the connections with factoring schemes. 

The basic idea of wavelet transforms is to exploit the correlation structure present in most real 
life signals to build a sparse approximation. The correlation structure is typically local in space 
(time) and frequency; neighboring samples and frequencies are more correlated than ones that are 
far apart. Traditional wavelet constructions use the Fourier transform to build the space-frequency 
localization. However, as the following simple example shows, this can also be done in the spatial 
domain. 

Consider a signal x = (Xk)k~Z with Xk ~ R. Let us split it in two disjoint sets which are called 
the polyphase components: the even indexed samples Xe = (X2k)k~Z, or "evens" for short, and the 
odd indexed samples xo = (X2k+l)k~Z, or "odds." Typically these two sets are closely correlated. 
Thus it is only natural that given one set, e.g., the even, one can build a good predictor P for the 
other set. Of  course the predictor need not be exact, so we need to record the difference or detail d: 

d = x e - P ( x o )  �9 

Given the detail d and the odd, we can immediately recover the even as 

Xe = P (x,,) + d .  

I f  P is a good predictor, then d approximately will be a sparse set; in other words, we expect the first 
order entropy to be smaller for d than for xo. Let us look at a simple example. An easy predictor for 
an odd sample x2k+l is simply the average of its two even neighbors; the detail coefficient then is 

dk = x2k+l - (x2k + x 2 k + l ) / 2 .  

From this we see that if the original signal is locally linear, the detail coefficient is zero. The operation 
of computing a prediction and recording the detail we will call a lifting step. The idea of  retaining 
d rather than Xo is well known and forms the basis of so-called DPCM methods [26, 27]. This idea 
connects naturally with wavelets as follows. The prediction steps can take care of  some of the spatial 
correlation, but for wavelets we also want to get some separation in the frequency domain. Right now 
we have a transform from (Xe, xo) to (xe, d). The frequency separation is poor since xe is obtained 
by simply subsampling so that serious aliasing occurs. In particular, the running average of the Xe 
is not the same as that of  the original samples x. To correct this, we propose a second lifting step, 
which replaces the evens with smoothed values s with the use of an update operator U applied to the 
details: 

s = Xe + U(d) . 

Again this step is trivially invertible: given (s, d) we can recover Xe as 

x , = s - U ( d ) ,  
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and then Xo can be recovered as explained earlier. This illustrates one of the built-in features of 

lifting: no matter how P and U are chosen, the scheme is always invertible and thus leads to 
critically sampled perfect reconstruction filter banks. The block diagram of the two lifting steps is 

given in Figure 1. 
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FIGURE 1. Block diagram of predict and update lifting steps. 

Coming back to our simple example, it is easy to see that an update operator that restores the 
correct running average, and therefore reduces aliasing, is given by 

Sk -~ X2k q- (dk-I + d r ) / 4 .  

This can be verified graphically by looking at Figure 2. 
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FIGURE 2. Geometric interpretation for piecewise linear predict 
and update lifting steps. The original signal is drawn in bold. The wavelet coefficient dk is computed as the difference 
of an odd sample and the average of the two neighboring evens. This corresponds to a loss dk/2 in area drawn in grey. 
To preserve the running average this area has to be redistributed to the even locations resulting in a coarser piecewise 
linear signal sk drawn in thin line. Because the coarse scale is twice the fine scale and two even locations are affected, 
dk/4, i.e, one quarter of the wavelet coefficient, has to be added to the even samples to obtain the sk. Then the thin and 
bold lines cover the same area. (For simplicity we assumed that the wavelet coefficients dk-I and dk+t are zero.) 

This simple example, when put in the wavelet framework, turns out to correspond to the 
biorthogonal (2,2) wavelet transform of [12], which was originally constructed using Fourier argu- 
ments. By the construction above, which did not use the Fourier transform but instead reasoned using 
only spatial arguments, one can easily work in a more general setting. Imagine for a moment that 
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the samples were irregularly spaced. Using the same spatial arguments as above, we could then see 
that a good predictor is of the form fl x2k + (1 - /~ )  x2k+l where the/~ varies spatially and depends 
on the irregularity of the grid. Similarly spatially varying update coefficients can be computed [46]. 
This thus immediately allows for a (2,2) type transform for irregular samples. These spatial lifting 
steps can also be used in higher dimensions (see [45]) and lead, e.g., to wavelets on a sphere [40] or 
more complex manifolds. 

Note that the idea of using spatial wavelet constructions for building second generation wavelets 
has been proposed by several researchers: 

�9 The lifting scheme is inspired by the work of Donoho [19] and Lounsbery et al. [29]. 
Donoho [ 19] shows how to build wavelets from interpolating scaling functions, while Louns- 
bery et al. built a multiresolution analysis of surfaces using a technique that is algebraically 
the same as lifting. 

�9 Dahmen and collaborators, independently of lifting, worked on stable completions of mul- 
tiscale transforms, a setting similar to second generation wavelets [7, 15]. Again indepen- 
dently, both of Dahmen and of lifting, Harten developed a general multiresolution approx- 
imation framework based on spatial prediction [23]. 

�9 In [14], Dahmen and Micchelli propose a construction of compactly supported wavelets 
that generates complementary spaces in a multiresolution analysis of univariate irregular 
knot splines. 

The construction of the (2,2) example via lifting is one example of a 2-step lifting construction 
for an entire family of Deslauriers-Dubuc biorthogonal interpolating wavelets. 1 Lifting thus provides 
a framework that allows the construction of certain biorthogonal wavelets which can be generalized 
to the second generation setting. A natural question now is how much of the first generation wavelet 
families can be built with the lifting framework. It turns out that every FIR wavelet or filter bank 
can be decomposed into lifting steps. This can be seen by writing the transform in the polyphase 
form. Statements concerning perfect reconstruction or lifting can then be made using matrices 
with polynomial or Laurent polynomial entries. A lifting step then becomes a so-called elementary 
matrix; that is, a triangular matrix (lower or upper) with all diagonal entries equal to one. It is a 
well-known result in matrix algebra that any matrix with polynomial entries and determinant one 
can be factored into such elementary matrices. For those familiar with the common notation in this 
field, this is written as SL(n; R[z, z - l ] )  = E(n; R[z, z-l]) .  The proof relies on the 2000-year-old 
Euclidean algorithm. In the filter bank literature subband transforms built using elementary matrices 
are known as ladder structures and were introduced in [5]. Later several constructions concerning 
factoring into ladder steps were given [28, 32, 33, 41, 48]. Vetterli and Herley [56] also use the 
Euclidean algorithm and the connection to diophantine equations to find all high pass filters that, 
together with a given low-pass filter, make a finite filter wavelet transform. Van Dyck et al. use 
ladder structures to design a wavelet video coder [20]. 

In this article we give a self-contained constructive proof of the standard factorization result 
and apply it to several popular wavelets. We consider the Laurent polynomial setting as opposed 
to the standard polynomial setting because it is more general, allows for symmetry, and also poses 
some interesting questions concerning non-uniqueness. 

This article is organized as follows. In Section 2 we review some facts about filters and Laurent 
polynomials. Section 3 gives the basics behind wavelet transforms and the polyphase representation, 
while Section 4 discusses the lifting scheme. We review theEuclidean algorithm in Section 5 before 
moving to the main factoring result in Section 6. Section 7 gives several examples. In Section 8 we 

lThis family was derived independently, but without the use of lifting, by several people: Reissell [38], Tian 
and Wells [47l, and Strang [43]. The derivation using lifting can be found in [44]. 
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show how lifting can reduce the computational complexity of the wavelet transform by a factor two. 
Finally, Section 9 contains comments. 

2. Filters and Laurent Polynomials 

A filter h is a linear time invariant operator and is completely determined by its impulse 
response: {hk ~ R I k ~ Z}. The filter h is a Finite Impulse Response (FIR) filter in case only a 
finite number of  filter coefficients hk are non-zero. We then let kb (respectively, ke) be the smallest 
(respectively largest) integer number k for which hk is non-zero. The z-transform of  a FIR filter h 
is a Laurent polynomial h(z) given by 

ke 

h(z) = E hk Z -k . 

k=kb 

In this article, we consider only FIR filters. We often use the symbol h to denote both the filter and 
the associated Laurent polynomial h(z).  The degree of a Laurent polynomial h is defined as 

Ihl = k~ - kb . 

So the length of  the filter is the degree of the associated polynomial plus one. Note that the polynomial 
z p seen as a Laurent polynomial has degree zero, while as a regular polynomial it would have degree 
p. In order to make consistent statements, we set the degree of the zero polynomial to - o o .  

The set of  all Laurent polynomials with real coefficients has a commutative ring structure. 
The sum or difference of two Laurent polynomials is again a Laurent polynomial. The product of 
a Laurent polynomial of  degree l and a Laurent polynomial of  degree l' is a Laurent polynomial of 
degree l + l'. This ring is usually denoted as R[z, z - l ] .  

Within a ring, exact division is not possible in general. However, for Laurent polynomials, 
division with remainder is possible. Take two Laurent polynomials a (z) and b(z) ~ 0 with la(z)[ >_ 
Ib(z)l. Then there always exists a Laurent polynomial q(z) (the quotient) with Iq(z)l = la(z)l - 
Ib(z)l, and a Laurent polynomial r(z)  (the remainder) with Ir(z)l < Ib(z)l so that 

a(z)  = b(z)  q(z)  + r ( z ) .  

We denote this as (C-language notation): 

q(z)  = a(z) / b(z) and r(z)  = a(z) %b(z )  . 

If  Ib(z)l = 0 which means b(z) is a monomial, then r(z)  = 0 and the division is exact. A Laurent 
polynomial is invertible if and only if it is a monomial.  This is the main difference with the ring 
of (regular) polynomials where constants are the only polynomials that can be inverted. Another 
difference is that the long division of Laurent polynomials is not necessarily unique. The following 
example illustrates this. 

E x a m p l e  1. Suppose we want to divide a(z)  = z - l  + 6 + z b y b ( z )  = 4 + 4 z .  This means we 
have to find a Laurent polynomial q (z) of  degree 1 so that r(z) given by 

r(z)  = a(z)  - b(z) q(z)  

is of  degree zero. This implies that b(z )q ( z )  has to match a(z) in two terms. If  we let those terms 
be the term in z -1 and the constant, then the answer is q(z)  = 1/4 (z -1 + 5). Indeed, 

r(z)  = (z -1 + 6 + z )  - ( 4 + 4 z ) ( 1 / 4 z  - l  + 5 / 4 )  = - 4 z .  
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FIGURE 3. Discrete wavelet transform (or subband transform): 
The forward transform consists of two analysis filters h" (low-pass) and g" (high-pass) followed by subsampling, while 
the inverse transform first upsamples and then uses two synthesis filters h (low-pass) and g (high-pass). 

The remainder thus is of  degree zero and we have completed the division. However, if we choose 
the two matching terms to be the ones in z and z - l ,  the answer is q(z) = 1/4 (z - l  + 1). Indeed, 

r(z) = (z -I + 6 + z ) -  (4+4z)(1/4z -I + 1/4) = 4 .  

Finally, if we choose to match the constant and the term in z, the solution is q(z) ----- I /4  (5 z -1 + 1) 
and the remainder is r(z) = -4  z -l. 

The fact that division is not unique will turn out to be particularly useful later. In general 
b(z) q(z) has to match a(z) in at least la(z) l - Ib(z)l + 1 terms, but we are free to choose these terms 
in the beginning, the end, or divided between the beginning and the end of  a(z). For each choice of  
terms a corresponding long division algorithm exists. 

In this article, we also work with 2 x 2 matrices of  Laurent polynomials, e.g., 

[ a(z) b(z) ] 
M(z)= c ( z )  d ( z )  " 

These matrices also form a ring, which is denoted by M(2; R[z, z - l ] ) .  I f  the determinant of  such 
a matrix is a monomial, then the matrix is invertible. The set of  invertible matrices is denoted 
GL(2; R[z, z - l ] ) .  A matrix from this set is unitary (sometimes also referred to as para-unitary) in 
case 

M(z) -1 = M(z-I) t . 

3. Wavelet Transforms 

Figure 3 shows the general block scheme of  a wavelet or subband transform. The forward 
transform uses two analysis filters h" (low-pass) and ~'(band pass) followed by subsarnpling, while the 
inverse transform first upsamples and then uses two synthesis filters h (low-pass) and g (high-pass). 
For details on wavelet and subband transforms we refer to [43] and [57]. In this article we consider 
only the case where the four filters, h, g, h, and ~', of  the wavelet transform are H R  filters. The 
conditions for perfect reconstruction are given by 

h(z)'h(z-1) + g(z) ~(z -1) = 2 
h(z)'h(-z -1) + g(z)'ff(-z -1) = O. 

We define the modulation matrix M (z) as 

[ h(z) h(-z)  ] 
M ( z ) =  g(z) g(-z)  " 

We similarly define the dual modulation matrix 2~t (z). The perfect reconstruction condition can now 
be written as 

~l(z-l) t M(z) = 2 I, (3.1) 
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where I is the 2 x 2 identity matrix. If all filters are FIR, then the matrices M(z) and ~r(z) belong 
to GL(2; R[z, z - l ] ) .  

A special case are orthogonal wavelet transforms in which case h = h and g = ~'. The 
modulation matrix M(z) = M(z) is then V'2 times a unitary matrix. 

The polyphase representation is a particularly convenient tool to express the special structure 
of  the modulation matrix [3]. The polyphase representation of a filter h is given by 

h(z) = he(Z 2) q- z - l  ho(Z 2) , 

where he contains the even coefficients, and ho contains the odd coefficients: 

he(Z) = ~-~ h2kZ -k and ho(z) = ~"~h2k+l  Z -k ,  

k k 

or 
he(z2) _ h(z) + h ( - z )  and ho(z 2) = h(z) - h ( - z )  

2 2z - l  

We assemble the polyphase matrix as 

[ he(z) ge(z) ] 
e ( z ) =  ho(z) go(Z) ' 

so that [lz 1 P(z2) t = 1 / 2 M ( z )  1 - z  " 

We define P(z)  similarly. The wavelet transform now is represented schematically in Figure 4. The 

, LP 

�9 a ( z - 1 )  ~ e(z) 
. �9 B P  

FIGURE 4. Polyphase representation of wavelet transform. First subsample into even and odd, then apply the dual 

polyphase matrix. For the inverse transform, first apply the polyphase matrix and then join even and odd. 

perfect reconstruction property is given by 

P(z) J~(z- l )  t = I .  (3.2) 

Again we want P(z) and P(z)  to contain only Laurent polynomials. Equation (3.2) then implies 
that det P(z) and its inverse are both Laurent polynomials; this is possible only in case det P(z) is a 
monomial in z: det P(z) = Czl; P(z) and P(z) belong then to GL(2; R[z, z - l ] ) .  Without loss of  
generality we assume that det P (z) = 1, i.e., P (z) is in SL(2; R[z, z -  1 ]). Indeed, if the determinant 
is not one, we can always divide ge(Z) and go(Z) by the determinant. This means that for a given 
filter h, we can always scale and shift the filter g so that the determinant of the polyphase matrix is 
one. 

The problem of finding an FIR wavelet transform thus amounts to finding a matrix P(z) with 
determinant one. Once we have such a matrix, P(z)  and the four filters for the wavelet transform 
follow immediately. From (3.2) and Cramer 's  rule it follows that 

he(Z) = go(z-l) ,  hod(Z) = -ge(Z- l ) ,  ge(Z) = -ho(z - l ) ,  go(z) = he ( z - l ) .  
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This implies 
~(z) = z - l  h ( - z  -1) and h'(z) = - z  -1 g ( - z  - l )  �9 

The most trivial example of a polyphase matrix is P(z) = I. This results in h(z) = "h(z) = 1 
and g(z) = g'(z) = z - l .  The wavelet transform then does nothing else but subsampling even and 
odd samples. This transform is called the polyphase transform, but in the context of  lifting it is often 
referred to as the Lazy wavelet transform [44]. (The reason is that the notion of the Lazy wavelet 
can also be used in the second generation setting.) 

4. The Lifting Scheme 

The lifting scheme [44, 45] is an easy relationship between perfect reconstruction filter pairs 
(h, g) that have the same low-pass or high-pass filter. One can then start from the Lazy wavelet and 
use lifting to gradually build one's way up to a multiresolution analysis with particular properties. 

Definition 1. 
A filter pair (h, g) is complementary in case the corresponding polyphase matrix P(z) has 

determinant 1. 

If (h, g) is complementary, so is (h', ~ .  This allows us to state the lifting scheme. 

Theorem 1. (Lift ing) 
Let (h, g) be complementary. Then any other finite filter gnew complementary to h is of the 

form: 
gneW(Z) = g(z) + h(z)S(Z 2) , 

where s(z) is a Laurent polynomial. Conversely any filter of this form is complementary to h. 

P r o o f .  The polyphase components of h (z)s(z  2) are he (z)s (z) for even and ho (z)s(z)  for odd. 
After lifting, the new polyphase matrix is thus given by 

pnew(z) = P(Z) 0 1 " 

This operation does not change the determinant of the polyphase matrix. [ ]  

Figure 5 shows the schematic representation of lifting. Theorem 1 can also be written relat- 
ing the low-pass filters h and h'. In this formulation, it is exactly the Vetterli-Herley lemma [56, 
Proposition 4.7]. The dual polyphase matrix is given by: 

i~neW(z)----- P(Z) - s  (Z -1) 1 " 

We see that lifting creates a new h" filter given by 

h 'neW(z)  ~--- h ' ( z )  - g ' ( z )  s ( z - 2 )  . 

Theorem 2. (Dual  lifting). 
Let (h, g) be complementary. Then any other finite filter h new complementary to g is of the 

form: 
hneW(z) = h(z) + g(z) t(z 2) , 

where t(z) is a Laurent polynomial. Conversely any filter of this form is complementary to g. 
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, ~  , LP 
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FIGURE 5. The lifting scheme: First a classical subband filter scheme and then lifting the low-pass subband with 
the help of the high-pass subband. 

, ~  , LP 

, BP 
FIGURE 6. The dual lifting scheme: First a classical subband filter scheme and later lifting the high-pass subband 

with the help of the low-pass subband. 

After dual lifting, the new polyphase matrix is given by 

pnew(z) = P(Z) t(z) 1 " 

Dual lifting creates a new ff given by 

~'~W(z) = ~'(z) - h'(z) t(z-Z). 

Figure 6 shows the schematic representation of  dual lifting. In [44] lifting and dual lifting are used 
to build wavelet transforms starting from the Lazy wavelet. There a whole family of  wavelets is 
constructed from the Lazy followed by one dual lifting and one primal lifting step. All the filters h 
constructed this way are half band and the corresponding scaling functions are interpolating. Because 
of  the many advantages of lifting, it is natural to try to build other wavelets as well, perhaps using 
multiple lifting steps. In the next section we will show that any wavelet transform with finite filters 
can be obtained starting from the Lazy followed by a finite number of alternating lifting and dual 
lifting steps. In order to prove this, we first need to study the Euclidean algorithm in closer detail. 

5 .  T h e  E u c l i d e a n  A l g o r i t h m  

The Euclidean algorithm was originally developed to find the greatest common divisor of  two 
natural numbers, but it can be extended to find the greatest common divisor of two polynomials, 
see, e.g., [4]. Here we need it to find common factors of  Laurent polynomials. The main difference 
with the polynomial case is again that the solution is not unique. Indeed the gcd of  two Laurent 
polynomials is defined only up to a factor z p. (This is similar to saying that the gcd of  two polynomials 
is defined only up to a constant.) Two Laurent polynomials are relatively prime in case their gcd has 
degree zero. Note that they can share roots at zero and infinity. 

Theorem 3. (Euclidean Algor i thm f o r  Lauren t  Polynomials). 
Take two Laurent polynomials a(z) and b(z) 5k 0 with la(z)l > Ib(z){. Let ao(z) = a(z) and 
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bo(z) = b(z) and iterate the following steps starting from i = 0 

ai+l(Z) = bi(z) (5.1) 

bi+l(Z) -~ a i (z )%bi(z) .  (5.2) 

Then an(Z) = gcd(a(z), b(z)) where n is the smallest number for  which bn(Z) = O. 

Given that Ibi+ 1 (z) l < Ibi (z)l, there is an m so that Ibm (z) l = 0. The algorithm then finishes for 
n = m + 1. The number of  steps thus is bounded by n < I b(z)l + 1. If  we let qi+l (z) = ai (z) / bi (z), 
we have that 

0 = 1 -qi(z)  b(z) " 
i=n 

Consequently 

a(z) 
b(z) ] ~-I[  qil z) 1 

i----I 0 ] ' 

and thus an (z) divides both a(z) and b(z). If an(z) is a monomial, then a(z) and b(z) are relatively 
prime. 

E x a m p l e  2. Let a(z) = ao(z) = z - l  + 6 + z and b(z) = bo(z) = 4 + 4z. Then the first division 
gives us (see the example in Section 2): 

al(z)  = 4 + 4 z  

bl(z) = 4 

ql(z) = 1/4z  - 1 + 1 / 4 .  

The next step yields 

a2(z) = 4 

b2(z) ---- 0 

q2(z) = 1 + z �9 

Thus, a(z) and b(z) are relatively prime and 

[ z - l + 6 + z  ] I 1 / 4 z - t + l / 4 4 + 4 z  = I 

The number of  steps here is n = 2 = Ib(z)l + 1. 

llE1 z 
0 1 

6. The Factoring Algorithm 

In this section, we explain how any pair of complementary filters (h, g) can be factored into 
lifting steps. First, note that he(z) and ho(z) have to be relatively prime because any common factor 
would also divide det P(z) and we already know that det P(z) is 1. We can thus run the Euclidean 
algorithm starting from he(z) and ho(z) and the gcd will be a monomial. Given the non-uniqueness 
of  the division we can always choose the quotients so that the gcd is a constant. Let  this constant be 
K. We thus have that 

[he(z) ho(z)] = i--lffI[qi(Z) l l  0][ K0 ]" 
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Note that in case Iho(z)l > Ihe(z)l, the first quotient ql(z) is zero. We can always assume that n is 
even. Indeed if n is odd, we can multiply the h (z) filter with z and g (z) with z - l .  This doesn't change 
the determinant of the polyphase matrix. It flips (up to a monomial) the polyphase components of 
h and thus makes n even again. Given a filter h we can always find a complementary filter gO by 
letting 

P ~  he(z) geO(z) l / K ]  ho(z) goO(z) ] = f i l q i l  z) 101[ K 
i = 1  0 " 

Here the final diagonal matrix follows from the fact that the determinant of a polyphase matrix is 
one and n is even. Let us slightly rewrite the last equation. First observe that 

1]=[1 q, z ]io 1] [o ,1[ 1 o] 
1 0 0 1 0 = 1 0 q i ( z )  1 " 

(6.1) 

Using the first equation of (6.1) in case i is odd and the second in case i is even yields: 

.,211 ojE  0] 
P~ = H 0 1 q2i(z) 1 0 1/K " (6.2) 

i = 1  

Finally, the original filter g can be recovered by applying Theorem 1. 
Now we know that the filter g can always be obtained from gO with one lifting or: 

I s(z) ] (6.3) P(z) = P~ 0 1 

Combining all these observations we now have shown the following theorem: 

Theorem 4. 
Given a complementary filter pair (h, g), then there always exist Laurent polynomials si (z) 

and ti (z) for 1 < i < m and a non-zero constant K so that 

P(z) = 0 1 ti(z) 1 0 1/K " 
i=l 

The proof follows from combining (6.2) and (6.3), setting m = n/2 + 1, tin(z) = 0, and 
sin(z) = K2s(z). In other words, every finite filter wavelet transform can be obtained by starting 
with the Lazy wavelet followed by m lifting and dual lifting steps followed with a scaling. 

The dual polyphase matrix is given by 

fie ~ ,/,z,,][1,, 0] P(z) = - s i ( z - l )  1 0 1 0 K " 
i = I  

From this we see that in the orthogonal case (P(z) = P(z)) we immediately have two different 
factorizations. 

Figures 7 and 8 represent the different steps of the forward and inverse transform schematically. 

7. Examples 

We start with a few easy examples. We denote filters either by their canonical names (e.g., 
Haar), by (N, 2~) where N (resp. N) is the number of vanishing moments of ~" (resp. g), or by 
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BP 

FIGURE 7. The forward wavelet transform using lifting: First the Lazy wavelet, then alternating lifting and dual 
lifting steps, and finally a scaling. 

BP 

FIGURE 8. The inverse wavelet transform using lifting: First a scaling, then alternating dual lifting and lifting 

steps, and finally the inverse Lazy transform. The inverse transform can immediately be derived from the forward by 

running the scheme backwards. 

(la - ls) where la is the length of  analysis filter h and ls is the length of  the synthesis filter h. We 
start with a sequence x = {xt I l E Z} and denote the result of applying the low-pass filter h (resp. 
high-pass filter g) and downsampling as a sequence s = {st I l E Z} (resp. d). The intermediate 
values computed during lifting we denote with sequences s (i) and d (i). All transforms are instances 
of  Figure 7. 

7.1 H a a r  W a v e l e t s  

In the case of  (unnormalized) Haar wavelets, we have that h ( z )  = 1 + z - l ,  g(z) = - 1 / 2  + 
1/2z - t ,  h'(z) = 1/2 + 1 / 2 z - ' ,  and ~'(z) = - 1  + lz - l .  Using the Euclidean algorithm we can thus 
write the polyphase matrix as: 

P ( z )  = 1 1/2 = 1 1 0 1 " 

Thus, on the analysis size we have: 

o] 
P ( z )  - l  = P ( 1 / z ) =  0 1 - 1  1 " 

This corresponds to the following implementation of the forward transform: 

o) 

d} 
dt 

sl  

while the inverse transform is given by: 

s~ ~ 

X21+ I 

= X21 

X2l 

= X2/+l 

= d : ~  ~ 

= s~ ~  

= st - 1~2dr 

= dt + s~ ~ 

= d~ ~ 

= S~ O) . 
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7.2 Givens  Rota t ions  

Consider the case where the polyphase matrix is a Givens rotation (or -~ zr/2). We then get 

[ c o s o t - s i n c ~  I [ 1 0 ] [  1 - s i n ~ c o s o t  ] [  cos~ 0 ] 
sinot cosot = sin ~/cos ~ 1 0 1 0 1/cos ~ " 

We can also do it without scaling with three lifting steps as (here assuming ~ # O) 

sin oe cos ~ = 0 sin ~ 1 0 " 

This corresponds to the well-known fact in geometry that a rotation can always be written as three 
shears. 

The lattice factorization of [51 ] allows the decomposition of any orthonormal filter pair into 
shifts and Givens rotations. It follows that any orthonormal filter can be written as lifting steps, by 
first writing the lattice factorization and then using the example above. This provides a different 
proof of Theorem 4 in the orthonormal case. 

7.3 Sca l ing  

These two examples show that the scaling from Theorem 4 can be replaced with four lifting 
steps: 

1 K - K  2 

o r  

, 0 
o , l l o  , ] 

Given that one can always merge one of the four lifting steps with the last lifting step from the 
factorization, only three extra steps are needed to avoid scaling. This is particularly important when 
building integer-to-integer wavelet transforms in which case scaling is not invertible [6]. 

7.4 In te rpo la t ing  Fi l ters  

In case the low-pass filter is half band, or h (z)+ h ( - z )  = 2, the corresponding scaling function 
is interpolating. Since he(z )  = 1, the factorization can be done in two steps: 

P ( z )  = ho(z)  1 + ho(Z) ge(Z) = ho(z)  1 0 1 " 

The filters constructed in [44] are of this type. This gives rise to a family of (N,/~) (N and/V even) 
symmetric biorthogonal wavelets built from the Deslauriers-Dubuc scaling functions ment~ned in 
the introduction. The degrees of the filters are I h o l z  N - 1 and [gel = N - 1. In case N < N, 

these are particularly easy as ge ('~) (Z) = - 1 / 2  h o (N) (Z - l ) .  (Beware: the normalization used here 
is different from the one in [44].) 

Next we look at some examples that had not been decomposed into lifting steps before. 

7.5 4-Tap O r t h o n o r m a l  F i l te r  with Two Vanishing Mo m en t s  (D4) 

Here the h and g filters are given by [16]: 

h( z )  = h o + h l z - l - ' [ - h 2 z - 2 q - h 3 z  -3  

g ( z )  = - h 3  Z 2 -b h2 Z 1 - -  h i  'k- ho Z -1 , 
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with 
1 + 4 3  

h0 = 4-"-~-' 

The polyphase matrix is 

3+43 3 -43  
hi = 4~/- ~ h 2 =  4 V ~ '  and h3 

p(z)  = ~(z)  = [ ho + h2 z- I  -h3  zl - hl ] 
hi + h 3 z  -1 h2z 1 +ho  ' 

and the factorization is given by: 

[, 1 0}[1 
P ( Z ) = P ( Z ) = 0 1 -~  "4- -~-3-3-~-----g2 Z- I 1 0 

1 - 4 " ~  

4vr2 

(7.1) 

.v/3+ 1 

I o 

0} 
~ , , ~ -  i . ( 7 . 2 )  

As we pointed out in Section 6 we have two options. Because the polyphase matrix is unitary, we 
can use (7.2) as a factorization for either P(z) or P(z). In the latter case, the analysis polyphase 
matrix is factored as: 

E ~176 ++ zlEa ~ P(llz)t= ~210 ~l__ z -1  1 0 1 -x,/3 1 " 

This corresponds to the following implementation for the forward transform: 

d•l) = X2l+l - ~r3X2/ 

$:1) ..~ X2' ..[_ ~/~/4d(tl) + (q r~_  2) /4dt~ '  1 

4 2, = 4"+#!', 

,, = ( , ~  + , ) i .~ ,~ '>  

<,, : ( ~ -  ,) i ~ >  '> 

The inverse transform follows from reversing the operations and flipping the signs: 

#' ,= (,~- 1)/,~,, 
4,> = 4 ' > - # ~ ,  
X21 = ,~1>--~/r3/4d~l'-  ( q ~ -  2)/4di(~> 1 

x2t+l = a~ I) + 4 3 x 2 t .  

The other option is to use (7.2) as a factorization for P(z). The analysis polyphase matrix then is 
factored as: 

}E it l P(Z) -1 ---- - ~ -  0 1 --z 1 0 1 q ~  

0 "~e3q-I 0 1 ---~-~ - -  ~"~--'=='~2Z--I 1 0 1 ' 
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and leads to the following implementation of the forward transform: 

S~ 1) = X2/ "{- ~4/3X21+1 

= x 2 / + l - q r 3 / 4 s ~ l ) - ( ~ / 3 - 2 ) / 4 S ~ l  

#2, = s~'>-~f~ 
st = (~ / ' 3 -1 ) /~ / r2s~  l) 

: 

Given that the inverse transform always follows immediately from the forward transform, from now 
on we only give the forward transform. 

One can also obtain an entirely different lifting factorization of D4 by shifting the filter pair 
corresponding to: 

h(z) = h o z + h l  q - h 2 z  -1 + h 3 z  -2 

g(z) = h3 z - h2 + hl z - l  i ho z -2 , 

with 
f f ( z ) = P ( z ) = [  hl+h3z-lhOz+h2 - h 2 - h ~  

as polyphase matrix. This leads to a different factorization: 

P(z) = 3 ~  
0 1 -~-~Z --I- 6-3.,/3 1 0 1 0 3--,/'~ ' 4 3.v,r~ 

and corresponds to the following implementation: 

d~ 1) 

s~ 1) 

d[ 2~ 

Sl 

dt 

= x2/+l -- 1/~r3X2/+2 

= x21 + ( 6 -  3~,/3)/4d; 1) + V~/4d:l_ )i 

= d/(1)- 1/3s~ 1) 

_- ( ,  

This second factorization can also be obtained as the result of seeking a factorization of the original 
polyphase matrix (7.1) where the final diagonal matrix has (non-constant) monomial entries. 

7.6 6-Tap Orthonormal Filter with Three Vanishing Moments (D6) 

Here we have 
3 

h(z) = Z hk Z -k , 
k= -2  

with [16] 

h-2 = 
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ho = 

h2 = 

The polyphase components are 

he(Z) = h - 2  z + ho + h2 z -1 

ho(Z) = h - l  z q- hl  q- h3 z -1 

lngrid Daubechies and Wire Sweldens 

ge(Z) = - h 3  Z -  hi  - h - 1 Z  -1  

go(z) = h2 z + ho + h - 2  z - 1 .  

In the factorization algorithm, the coefficients of  the remainders are calculated as: 

I f  we now let 

ro = h-1  - h3 * h - 2 /  h2 

rl = hi  - h2 * h o / h 2  

Sl = ho - h - 2  * r l / r o  - h2 * ro / r l  

t = - h 3 / h - 2  * s21 �9 

= 

f f  = 

! y ---- 

= 

= 

then the factorization is given by: 

[, o1[, P ( z )  = ot 1 0 

h 3 / h  I "~ -0 .4122865950 

h 2 / r l  ~ - 1.5651362796 

h - 2 / r o  ,~ 0.3523876576 

r l / s l  ~ 0.0284590896 

ro/s l  ,~ 0.4921518449 

- h 3 /  h_2 �9 s 2 .~ -0 .3896203900 

Sl -~ 1.9182029462, 

1 o ]  
1 y + y ' z  I 0 1 0 1 / (  " 

We leave the implementation of this filter as an exercise for the reader. 

7.7 (9-7) Fi l ter  

Here we consider the popular (9-7) filter pair. The analysis filter h" has 9 coefficients, while 
the synthesis filter h has 7 coefficients. Both high-pass filters g and ~ have 4 vanishing moments. 
We choose the filter with 7 coefficients to be the synthesis filter because it gives rises to a smoother 
scaling function than the 9 coefficient filter (see [17, p. 279, Table 8.3]. Note that the coefficients 
need to be multiplied with ~r For this example we run the factoring algorithm starting from the 
analysis filter: 

fie(Z) --~ h4 (z 2 q" z -2)  q- h2 (z -1- z -1)  q- h0 and fio(Z) = ha (z 2 -I- z - l )  -I- h i  (z -+- 1) . 

The coefficients of  the remainders are computed as: 

ro = h o -  2 h 4 h l / h 3  

r I = h 2 - h 4 - h 4 h l / h 3  

so = hi  - h 3  - h 3 r o / r l  

to = r o - 2 r l .  
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Then define 

Now 

= h 4 / h 3 ~ - l . 5 8 6 1 3 4 3 4 2  

fl = h3/rl ~ -0.05298011854 

y = r l / s o ~  0.8829110762 

3 = so/~  ~ 0.4435068522 

( = ~ = r 0 -  2rl ~ 1.149604398. 

[ 1 ot(l+z -1) ]I  1 0 ] [  1 y(l+z -1) ] [  1 0 ] [  ( 0 ] 
P ( z ) =  0 1 f l ( l+z )  1 0 1 a ( l + z )  1 0 1/( ' 

Note that here too many other factorizations exist; the one we chose is symmetric: every quotient 
is a multiple of (z + 1). This shows how we can take advantage of the non-uniqueness to maintain 
symmetry. The factorization leads to the following implementation: 

7.8 Cubic B-Splines 

S~ O) = X21 

d~O) = x21 + 1 

4 '  40,+ (#o, ,0, = Ol + Sl+l I 

s~2, = s~I,+8 (42) +at_l],(z)a 

Sl = ( s~ 2' 

dt = d~2)/( .  

We finish with an example that is used frequently in computer graphics: the (4,2) biorthogonal 
filter from [12]. The scaling function here is a cubic B-spline. This example can be obtained again 
by using the factoring algorithm. However, there is also a much more intuitive construction in the 
spatial domain [46]. The filters are given by 

h(z) = 3 / 4 + 1 / 2 ( z + z  - l ) + 1 / 8 ( z  2 + z  -2) 
g(z) = 5/4z - 1 - 5 / 3 2 ( 1 + z  - 2 ) - 3 / 8 ( z + z  - 3 ) - 3 / 3 2 ( z  2 + z  -a) ,  

and the factorization reads: 

P ( z ) = [  1 0 1 / 4 ( l + z - l ) l  ] [  (1+1 z) 0 ] [  1 1  0 -3/16(1+z-1)1 ] [  1/20012 " 

8. Computational Complexity 

In this section we take a closer look at the computational complexity of the wavelet transform 
computed using lifting. As a comparison base we use the standard algorithm, which corresponds 
to applying the polyphase matrix. This already takes advantage of the fact that the filters will be 
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subsampled and thus avoids computing samples that will be subsampled immediately. The unit we 
use is the cost, measured in number of multiplications and additions, of computing one sample pair 
(st, dr). The cost of applying a filter h is Ih[ + 1 multiplications and Ihl additions. The cost of the 
standard algorithm thus is 2(Ihl -I- Igl) -t- 2. If  the filter is symmetric and [hi is even, the cost is 
3 Ihl/2 + 1. 

Let us consider a general case not involving symmetry. Take Ihl = 2N, Igl = 2M, and 
assume M > N. The cost of the standard algorithm now is 4(N + M) + 2. Without loss of 
generality we can assume that Ihel = N,  Ihol = N - 1, Igel = M, and Igo} = M - 1. In 
general the Euclidean algorithm started from the (he, ho) pair now needs N steps with the de- 
gree of each quotient equal to one (Iqil ---- 1 for 1 < i < N). To get the (ge, go) pair, one 
extra lifting step (6.3) is needed with [sl = M - N. The total cost of the lifting algorithm is: 

scaling: 2 
N lifting steps: 4N 
final lifting step: 2(M - N + 1) 

total 2(N + M + 2) 

We have shown the following: 

T h e o r e m  5. 
Asymptotically, for  long filters, the cost of  the lifting algorithm for  computing the wavelet 

transform is one half of  the cost of  the standard algorithm. 

In the above reasoning we assumed that the Euclidean algorithm needs exactly N steps with 
each quotient of degree one. In a particular situation, the Euclidean algorithm might need fewer than 
N steps but with larger quotients. The interpolating filters form an extreme case; with two steps one 
can build arbitrarily long filters. However, in this case Theorem 5 holds as well; the cost for the 
standard algorithm is 3(N + .~) - 2 while the cost of the lifting algorithm is 3 /2 (N + .~'). 

Of course, in any particular case the numbers can differ slightly. Table 1.1 gives the cost S of 
the standard algorithm, the cost L of the lifting algorithm, and the relative speedup ( S / L  - 1) for 
the examples in the previous section. 

T A B L E  1.1 

Computational Cost of Lifting vs. the Standard Algorithm 

Wavelet Standard Lifting Speedup % 
Haar 3 3 0 
D4 14 9 56 
D6 22 14 57 

(9-7) 23 14 64 
(4,2) B-spline 17 10 70 

(N, /~)  Interpolating 3(N + N) - 2 3/2(N + N) ~ 100 
I h l = 2 N ,  I g l = 2 M  4 ( N + M ) + 2  2 ( N + M + 2 )  ,~100 

Note: Asymptotically the lifting algorithm is twice as fast as the standard algorithm. 

One has to be careful with this comparison. Even though it is widely used, the standard 
algorithm is not necessarily the best way to implement the wavelet transform. Lifting is only one 
idea in a whole tool bag of methods to improve the speed of a fast wavelet transform. Rioul and 
Duhamel [39] discuss several other schemes to improve the standard algorithm. In the case of long 
filters, they suggest an FFT-based scheme known as the Vetterli Algorithm [56]. In the case of short 
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filters, they suggest a "fast running FIR" algorithm [54]. How these ideas combine with the idea of 
using lifting and which combination will be optimal for a certain wavelet goes beyond the scope of 
this article and remains a topic of future research. 

9. Conclusion and Comments  

In this tutorial presentation, we have shown how every wavelet filter pair can be decom- 
posed into lifting steps. The decomposition amounts to writing arbitrary elements of the ring 
SL(2; R[z, z - l ] )  as products of elementary matrices, something that has been known to be pos- 
sible for a long time [2]. The following are a few comments on the decomposition and its usefulness. 
First of all, the decomposition of arbitrary wavelet transforms into lifting steps implies that we can 
gain, for all wavelet transforms, the traditional advantages of lifting implementations, i.e., 

1. Lifting leads to a speed-up when compared to the standard implementation. 

2. Lifting allows for an in-place implementation of the fast wavelet transform, a feature similar 
to the Fast Fourier Transform. This means the wavelet transform can be calculated without 
allocating auxiliary memory. 

3. All operations within one lifting step can be done entirely parallel while the only sequential 
part is the order of the lifting operations. 

4. Using lifting it is particularly easy to build non-linear wavelet transforms. A typical example 
are wavelet transforms that map integers to integers [6]. Such transforms are important for 
hardware implementation and for lossless image coding. 

5. Using lifting and integer-to-integer transforms, it is possible to combine biorthogonal 
wavelets with scalar quantization and still keep cubic quantization cells which are opti- 
mal like in the orthogonal case. In a multiple description setting, it has been shown that 
this generalization to biorthogonality allows for substantial improvements [58]. 

6. Lifting allows for adaptive wavelet transforms. This means one can start the analysis of a 
function from the coarsest levels and then build the finer levels by refining only in the areas 
of interest, see [40] for a practical example. 

The decomposition in this article also suggests the following comments and raises a few open 
questions: 

1. Factoring into lifting steps is a highly non-unique process. We do not know exactly how 
many essentially different factorizations are possible, how they differ, and what is a good 
strategy for picking the "best one"; this is an interesting topic for future research. 

2. The main result of this article also holds in case the filter coefficients are not necessarily 
real, but belong to any field such as the rationals, the complex numbers, or even a finite field. 
However, the Euclidean algorithm does not work when the filter coefficients themselves 
belong to a ring such as the integers or the dyadic numbers. It is thus not guaranteed that 
filters with binary coefficients can be factored into lifting steps with binary filter coefficients. 

3. In this article we never concerned ourselves with whether filters were causal, i.e., only 
have filter coefficients for k > 0. Given that all subband filters here are finite, causality 
can always be obtained by shifting the filters. Obviously, if both analysis and synthesis 
filters have to be causal, perfect reconstruction is only possible up to a shift. By executing 
the Euclidean algorithm over the ring of polynomials, as opposed to the ring of Laurent 
polynomials, it can be assured then that all lifting steps are causal as well. 

4. The long division used in the Euclidean algorithm guarantees that, except for at most one 
quotient of degree 0, all the quotients will be at least of degree 1 and the lifting filters thus 
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contain at least 2 coefficients. In some cases, e.g., hardware implementations, it might be 
useful to use only lifting filters with at most 2 coefficients. Then, in each lifting step, an 
even location will only get information from its two immediate odd neighbors or vice versa. 
Such lifting steps can be obtained by not using a full long division, but rather stopping 
the division as soon as the quotient has degree one. The algorithm still is guaranteed to 
terminate as the degree of the polyphase components will decrease by exactly 1 in each 
step. We are now guaranteed to be in the setting used to sketch the proof of Theorem 5. 

5. In the beginning of this article, we pointed out how lifting is related to the multiscale 
transforms and the associated stability analysis developed by Dahmen and co-workers. 
Although their setting looks more general than lifting since it allows for a non-identity 
operator K on the diagonal of the polyphase matrix, while lifting requires identities on 
the diagonal, this article shows that, in the first generation or time invariant setting, no 
generality is lost by restricting oneself to lifting. Indeed, any invertible polyphase matrix 
with a non-identity polynomial K(z)  on the diagonal can be obtained using lifting. Note 
that some of the advantages of lifting mentioned above rely fundamentally on the K = I 
and disappear when allowing a general K. 

6. This factorization generalizes to the M-band setting. It is known that an M x M polyphase 
matrix with elements in a Euclidean domain and with determinant one can be reduced to 
an identity matrix using elementary row and column operations, see [24, Theorem 7.10]. 
This reduction, also known as the Smith normal form, allows for lifting factorizations in 
the M-band case. In [48] the discussion of the decomposition into ladder steps (which is 
the analog, in different notation, of what we have called here the factorization into lifting 
steps) is carried out for the general M-band case; please check this article for details and 
applications. 

7. Finally, under certain conditions it is possible to construct ladder-like structures in higher 
dimensions using factoring of multivariate polynomials. For details, we refer to [37]. 
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