
Boosting Based on a Smooth Margin�

Cynthia Rudin1, Robert E. Schapire2, and Ingrid Daubechies1

1 Princeton University, Program in Applied and Computational Mathematics
Fine Hall, Washington Road, Princeton, NJ 08544-1000

{crudin,ingrid}@math.princeton.edu
2 Princeton University, Department of Computer Science

35 Olden St., Princeton, NJ 08544
schapire@cs.princeton.edu

Abstract. We study two boosting algorithms, Coordinate Ascent Boost-
ing and Approximate Coordinate Ascent Boosting, which are explicitly
designed to produce maximum margins. To derive these algorithms, we
introduce a smooth approximation of the margin that one can maximize
in order to produce a maximum margin classifier. Our first algorithm
is simply coordinate ascent on this function, involving a line search at
each step. We then make a simple approximation of this line search to
reveal our second algorithm. These algorithms are proven to asymptot-
ically achieve maximum margins, and we provide two convergence rate
calculations. The second calculation yields a faster rate of convergence
than the first, although the first gives a more explicit (still fast) rate.
These algorithms are very similar to AdaBoost in that they are based on
coordinate ascent, easy to implement, and empirically tend to converge
faster than other boosting algorithms. Finally, we attempt to understand
AdaBoost in terms of our smooth margin, focusing on cases where Ad-
aBoost exhibits cyclic behavior.

1 Introduction

Boosting is currently a popular and successful technique for classification. The
first practical boosting algorithm was AdaBoost, developed by Freund and Scha-
pire [4]. The goal of boosting is to construct a “strong” classifier using only a
training set and a “weak” learning algorithm. A weak learning algorithm pro-
duces “weak” classifiers, which are only required to classify somewhat better
than a random guess. For an introduction, see the review paper of Schapire [13].

In practice, AdaBoost often tends not to overfit (only slightly in the limit [5]),
and performs remarkably well on test data. The leading explanation for Ad-
aBoost’s ability to generalize is the margin theory. According to this theory, the
margin can be viewed as a confidence measure of a classifier’s predictive abil-
ity. This theory is based on (loose) generalization bounds, e.g., the bounds of
Schapire et al. [14] and Koltchinskii and Panchenko [6]. Although the empirical
� This research was partially supported by NSF Grants IIS-0325500, DMS-9810783,

and ANI-0085984.

J. Shawe-Taylor and Y. Singer (Eds.): COLT 2004, LNAI 3120, pp. 502–517, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Boosting Based on a Smooth Margin 503

success of a boosting algorithm depends on many factors (e.g., the type of data
and how noisy it is, the capacity of the weak learning algorithm, the number of
boosting iterations before stopping, other means of regularization, entire margin
distribution), the margin theory does provide a reasonable qualitative explana-
tion (though not a complete explanation) of AdaBoost’s success, both empiri-
cally and theoretically. However, AdaBoost has not been shown to achieve the
largest possible margin. In fact, the opposite has been recently proved, namely
that AdaBoost may converge to a solution with margin significantly below the
maximum value [11]. This was proved for specific cases where AdaBoost exhibits
cyclic behavior; such behavior is common when there are very few “support vec-
tors”.

Since AdaBoost’s performance is not well understood, a number of other
boosting algorithms have emerged that directly aim to maximize the margin.
Many of these algorithms are not as easy to implement as AdaBoost, or re-
quire a significant amount of calculation at each step, e.g., the solution of a
linear program (LP-AdaBoost [5]), an optimization over a non-convex function
(DOOM [7]) or a huge number of very small steps (ε-boosting, where conver-
gence to a maximum margin solution has not been proven, even as the step
size vanishes [10]). These extra calculations may slow down the convergence
rate dramatically. Thus, we compare our new algorithms with arc-gv [2] and
AdaBoost∗ [9]; these algorithms are as simple to program as AdaBoost and have
convergence guarantees with respect to the margin. Our new algorithms are more
aggressive than both arc-gv and AdaBoost∗, providing an explanation for their
empirically faster convergence rate.

In terms of theoretical rate guarantees, our new algorithms converge to a
maximum margin solution with a polynomial convergence rate. Namely, within
poly(1/ε) iterations, they produce a classifier whose margin is within ε of the
maximum possible margin. Arc-gv is proven to converge to a maximum margin
solution asymptotically [2,8], but we are not aware of any proven convergence
rate. AdaBoost∗ [9] converges to a solution within ε of the maximum margin in
2(log2 m)/ε2 steps (where the user specifies a fixed value of ε); there is a tradeoff
between user-determined accuracy and convergence rate for this algorithm. In
practice, AdaBoost∗ converges very slowly since it is not aggressive; it takes
small steps (though it has the nice convergence rate guarantee stated above). In
fact, if the weak learner always finds a weak classifier with a large edge (i.e., if
the weak learning algorithm performs well on the weighted training data), the
convergence of AdaBoost∗ can be especially slow.

The two new boosting algorithms we introduce (which are presented in [12]
without analysis) are based on coordinate ascent. For AdaBoost, the fact that it
is a minimization algorithm based on coordinate descent does not imply conver-
gence to a maximum margin solution. For our new algorithms, we can directly
use the fact that they are coordinate ascent algorithms to help show convergence
to a maximum margin solution, since they make progress towards increasing a
differentiable approximation of the margin (a “smooth margin function”) at ev-
ery iteration.

504 C. Rudin, R.E. Schapire, and I. Daubechies

To summarize, the advantages of our new algorithms, Coordinate Ascent
Boosting and Approximate Coordinate Ascent Boosting are as follows:

– They empirically tend to converge faster than both arc-gv and AdaBoost∗.
– They provably converge to a maximum margin solution asymptotically. This

convergence is robust, in that we do not require the weak learning algorithm
to produce the best possible classifier at every iteration; only a sufficiently
good classifier is required.

– They have convergence rate guarantees that are polynomial in 1/ε.
– They are as easy to implement as AdaBoost, arc-gv, and AdaBoost∗.
– These algorithms have theoretical and intuitive justification: they make pro-

gress with respect to a smooth version of the margin, and operate via coor-
dinate ascent.

Finally, we use our smooth margin function to analyze AdaBoost. Since Ad-
aBoost’s good generalization properties are not completely explained by the
margin theory, and still remain somewhat mysterious, we study properties of
AdaBoost via our smooth margin function, focusing on cases where cyclic behav-
ior occurs.“Cyclic behavior for AdaBoost” means the weak learning algorithm
repeatedly chooses the same sequence of weak classifiers, and the weight vectors
repeat with a given period. This has been proven to occur in special cases, and
occurs often in low dimensions (i.e., when there are few “support vectors”) [11].

Our results concerning AdaBoost and our smooth margin are as follows: first,
the value of the smooth margin increases if and only if AdaBoost takes a large
enough step. Second, the value of the smooth margin must decrease for at least
one iteration of a cycle unless all edge values are identical. Third, if all edges in
a cycle are identical, then support vectors are misclassified by the same number
of weak classifiers during the cycle.

Here is the outline: in Section 2, we introduce our notation and the AdaBoost
algorithm. In Section 3, we describe the smooth margin function that our algo-
rithms are based on. In Section 4, we describe Coordinate Ascent Boosting (Al-
gorithm 1) and Approximate Coordinate Ascent Boosting (Algorithm 2), and in
Section 5, the convergence of these algorithms is discussed. Experimental trials
on artificial data are presented in Section 6 to illustrate the comparison with
other algorithms. In Section 7, we show connections between AdaBoost and our
smooth margin function.

2 Notation and Introduction to AdaBoost

The training set consists of examples with labels {(xi, yi)}i=1,...,m, where (xi, yi)
∈ X × {−1, 1}. The space X never appears explicitly in our calculations. Let
H = {h1, ..., hn} be the set of all possible weak classifiers that can be produced
by the weak learning algorithm, where hj : X → {1, −1}. We assume that if
hj appears in H, then −hj also appears in H (i.e., H is symmetric). Since our
classifiers are binary, and since we restrict our attention to their behavior on
a finite training set, we can assume that n is finite. We think of n as being

Boosting Based on a Smooth Margin 505

large, m � n, so a gradient descent calculation over an n dimensional space is
impractical; hence AdaBoost uses coordinate descent instead, where only one
weak classifier is chosen at each iteration.

We define an m×n matrix M where Mij = yihj(xi), i.e., Mij = +1 if training
example i is classified correctly by weak classifier hj , and −1 otherwise. We
assume that no column of M has all +1’s, that is, no weak classifier can classify
all the training examples correctly. (Otherwise the learning problem is trivial.)
Although M is too large to be explicitly constructed in practice, mathematically,
it acts as the only “input” to AdaBoost, containing all the necessary information
about the weak learner and training examples.

AdaBoost computes a set of coefficients over the weak classifiers. The (unnor-
malized) coefficient vector at iteration t is denoted λt. Since the algorithms we
describe all have positive increments, we take λ ∈ R

n
+. We define a seminorm by

|||λ||| := minλ′{‖λ′‖1 such that ∀ j : λj −λj̃ = λ′
j − λ′

j̃
} where j̃ is the index for

−hj , and define s(λ) :=
∑n

j=1 λj , noting s(λ) ≥ |||λ|||. For the (non-negative)
vectors λt generated by AdaBoost, we will denote st := s(λt). The final com-
bined classifier that AdaBoost outputs is fAda =

∑n
j=1(λtmax,j/|||λtmax

|||)hj .
The margin of training example i is defined to be yifAda(xi), or equivalently,
(Mλ)i/|||λ|||.

A boosting algorithm maintains a distribution, or set of weights, over the
training examples that is updated at each iteration, which is denoted dt ∈ ∆m,
and dT

t is its transpose. Here, ∆m denotes the simplex of m-dimensional vectors
with non-negative entries that sum to 1. At each iteration t, a weak classifier
hjt is selected by the weak learning algorithm. The probability of error of hjt

at
time t on the weighted training examples is d− :=

∑
{i:Mijt=−1} dt,i. Also, denote

d+ := 1−d−, and define I+ := {i : Mijt = +1} and I− := {i : Mijt = −1}. Note
that d+, d−, I+, and I− depend on t; the iteration number will be clear from the
context. The edge of weak classifier jt at time t is rt := (dT

t M)jt , which can be
written as rt = (dT

t M)jt =
∑

i∈I+
dt,i −∑i∈I− dt,i = d+ − d− = 1 − 2d−. Thus,

a smaller edge indicates a higher probability of error. Note that d+ = (1 + rt)/2
and d− = (1 − rt)/2. Also define γt := tanh−1 rt.

We wish our learning algorithms to have robust convergence, so we will not
require the weak learning algorithm to produce the weak classifier with the
largest possible edge value at each iteration. Rather, we only require a weak
classifier whose edge exceeds ρ, where ρ is the largest possible margin that can
be attained for M, i.e., we use the “non-optimal” case for our analysis. AdaBoost
in the “optimal case” means jt ∈ argmaxj(dT

t M)j , and AdaBoost in the “non-
optimal” case means jt ∈ {j : (dT

t M)j ≥ ρ}.

To achieve the best indication of a small probability of error (for margin-based
bounds), our goal is to find a λ̃ ∈ ∆n that maximizes the minimum margin over
training examples, mini (Mλ̃)i (or equivalently mini yifAda(xi)), i.e., we wish
to find a vector λ̃ ∈ argmaxλ̄∈∆n

mini(Mλ̄)i = argmaxλ∈R
n mini(Mλ)i/|||λ|||.

We call the minimum margin over training examples (i.e., mini(Mλ)i/|||λ|||)
the margin of classifier λ, denoted µ(λ). Any training example that achieves
this minimum margin is a support vector. Due to the von Neumann Min-Max

506 C. Rudin, R.E. Schapire, and I. Daubechies

Theorem, mind∈∆m maxj(dT M)j = maxλ̄∈∆n
mini(Mλ̄)i. We denote this value

by ρ.
Figure 1 shows pseudocode for AdaBoost. At each iteration, the distribution

dt is updated and renormalized (Step 3a), classifier jt with sufficiently large edge
is selected (Step 3b), and the weight of that classifier is updated (Step 3e).

1. Input: Matrix M, No. of iterations tmax

2. Initialize: λ1,j = 0 for j = 1, ..., n
3. Loop for t = 1, ..., tmax

a) dt,i = e−(Mλt)i/
∑m

i=1 e−(Mλt)i for i = 1, ..., m

b)
{ jt ∈ argmaxj(dT

t M)j “optimal” case
jt ∈ {j : (dT

t M)j > ρ} “non-optimal” case
c) rt = (dT

t M)jt

d) αt = 1
2 ln

(
1+rt
1−rt

)

e) λt+1 = λt + αtejt , where ejt is 1 in position jt and 0 elsewhere.
4. Output: λtmax/|||λtmax |||

Fig. 1. Pseudocode for the AdaBoost algorithm.

AdaBoost is known to be a coordinate descent algorithm for minimizing
F (λ) :=

∑m
i=1 e−(Mλ)i [1]. The proof (for the optimal case) is that the choice

of weak classifier jt is given by: jt ∈ argmaxj

[
−dF (λt + αej)/dα

∣
∣
∣
α=0

]
=

argmaxj(dT
t M)j , and the step size AdaBoost chooses at iteration t is αt,

where αt satisfies the equation for the line search along direction jt: 0 =
−dF (λt + αtejt)/dαt. Convergence in the non-separable case is fully under-
stood [3]. In the separable case (ρ > 0), the minimum value of F is 0 and occurs
as |||λ||| → ∞; this tells us nothing about the value of the margin, i.e., an al-
gorithm which simply minimizes F can achieve an arbitrarily bad margin. So it
must be the process of coordinate descent which awards AdaBoost its ability to
increase margins, not simply AdaBoost’s ability to minimize F .

3 The Smooth Margin Function G(λ)

We wish to consider a function that, unlike F , actually tells us about the value
of the margin. Our new function G is defined for λ ∈ R

n
+, s(λ) > 1 by:

G(λ) :=
− lnF (λ)

s(λ)
=

− ln
(∑m

i=1 e−(Mλ)i
)

∑
j λj

. (1)

One can think of G as a smooth approximation of the margin, since it depends
on the entire margin distribution when s(λ) is finite, and weights training exam-
ples with small margins much more highly than examples with larger margins.
The function G also bears a resemblance to the objective implicitly used for ε-
boosting [10]. Note that since s(λ) ≥ |||λ|||, we have G(λ) ≤ −(lnF (λ))/|||λ|||.
Lemma 1 (parts of which appear in [12]) shows that G has many nice properties.

Boosting Based on a Smooth Margin 507

Lemma 1.

1. G(λ) is a concave function (but not necessarily strictly concave) in each
“shell” where s(λ) is fixed. In addition, G(λ) becomes concave when s(λ)
becomes large.

2. G(λ) becomes concave when |||λ||| becomes large.
3. As |||λ||| → ∞, −(lnF (λ))/|||λ||| → µ(λ).
4. The value of G(λ) increases radially, i.e., dG(λ(1 + a))/da

∣
∣
∣
a=0

> 0

It follows from 3 and 4 that the maximum value of G is the maximum value
of the margin, since for each λ, we may construct a λ′ such that G(λ′) =
− lnF (λ)/|||λ|||. We omit the proofs of 1 and 4. Note that if |||λ||| is large, s(λ)
is large since |||λ||| ≤ s(λ). Thus, 2 follows from 1.

Proof. (of property 3)

me−µ(λ)|||λ||| =
m∑

i=1

e− min�(Mλ)� ≥
m∑

i=1

e−(Mλ)i > e− mini(Mλ)i = e−µ(λ)|||λ|||,

hence, − (lnm)/|||λ||| + µ(λ) ≤ −(lnF (λ))/|||λ||| < µ(λ). (2)

	

The properties of G shown in Lemma 1 outline the reasons why we choose to
maximize G using coordinate ascent; namely, maximizing G leads to a maximum
margin solution, and the region where G is near its maximum value is concave.

4 Derivation of Algorithms

We now suggest two boosting algorithms (derived without analysis in [12]) that
aim to maximize the margin explicitly (like arc-gv and AdaBoost∗) and are
based on coordinate ascent (like AdaBoost). Our new algorithms choose the
direction of ascent (value of jt) using the same formula as AdaBoost, arc-gv,
and AdaBoost∗, i.e., jt ∈ argmaxj(dT

t M)j . Thus, our new algorithms require
exactly the same type of weak learning algorithm.

To help with the analysis later, we will write recursive equations for F and
G. The recursive equation for F (derived only using the definition) is:

F (λt + αejt
) =

cosh(γt − α)
cosh γt

F (λt). (3)

By definition of G, we know − ln F (λt) = stG(λt) and − lnF (λt + αejt) =
(st + α)G(λt + αejt). From (3), we find a recursive equation for G:

(st + α)G(λt + αejt
)=− lnF (λt)− ln

(
cosh(γt − α)

cosh γt

)

=stG(λt)+
∫ γt

γt−α

tanhu du.

(4)

508 C. Rudin, R.E. Schapire, and I. Daubechies

We shall look at two different algorithms; in the first, we assign to αt the
value α that maximizes G(λt+αejt

), which requires solving an implicit equation.
In the second algorithm, inspired by the first, we pick a value for αt that can
be computed in a straightforward way, even though it is not a maximizer of
G(λt + αejt). In both cases, the algorithm starts by simply running AdaBoost
until G(λ) becomes positive, which must happen (in the separable case) since:

Lemma 2. In the separable case (where ρ > 0), AdaBoost achieves a positive
value for G(λt) in at most �−2 lnF (λ1)/ ln(1 − ρ2)� + 1 iterations.

The proof of Lemma 2 (which is omitted) uses (3). Denote λ
[1]
1 , ...,λ

[1]
t to be

a sequence of coefficient vectors generated by Algorithm 1, and λ
[2]
1 , ...,λ

[2]
t to

be generated by Algorithm 2. Similarly, we distinguish sequences α
[1]
t and α

[2]
t ,

g
[1]
t := G(λ[1]

t), g
[2]
t := G(λ[2]

t), s
[1]
t , and s

[2]
t . Sometimes we compare the behavior

of Algorithms 1 and 2 based on one iteration (from t to t + 1) as if they had
started from the same coefficient vector at iteration t; we denote this vector by
λt. When both Algorithms 1 and 2 satisfy a set of equations, we will remove
the superscripts [1] and [2]. Although sequences such as jt, rt, γt, and dt are also
different for Algorithms 1 and 2, we leave the notation without the superscript.

4.1 Algorithm 1: Coordinate Ascent Boosting

Rather than considering coordinate descent on F as in AdaBoost, let us consider
coordinate ascent on G. In what follows, we will use only positive values of G, as
we have justified above. The choice of direction jt at iteration t (in the optimal
case) obeys: jt ∈ argmax

j
dG(λ[1]

t + αej)/dα
∣
∣
∣
α=0

, that is,

jt ∈ argmax
j

[∑m
i=1 e−(Mλ

[1]
t)iMij

F (λ[1]
t)

]
1

s
[1]
t

+
ln(F (λ[1]

t))
(
s
[1]
t

)2 .

Of these two terms on the right, the second term does not depend on j, and
the first term is simply a constant times (dT

t M)j . Thus the same direction will
be chosen here as for AdaBoost. The “non-optimal” setting we define for this
algorithm will be the same as AdaBoost’s, so Step 3b of this new algorithm will
be the same as AdaBoost’s.

To determine the step size, ideally we would like to maximize G(λ[1]
t + αejt

)
with respect to α, i.e., we will define α

[1]
t to obey dG(λ[1]

t + αejt)/dα = 0 for
α = α

[1]
t . Differentiating (4) with respect to α (while incorporating dG(λ[1]

t +
αejt)/dα = 0) gives the following condition for α

[1]
t :

G(λ[1]
t+1) = G(λ[1]

t + α
[1]
t ejt) = tanh(γt − α

[1]
t). (5)

There is not a nice analytical solution for α
[1]
t , but minimization of G(λ[1]

t +
αejt) is 1-dimensional so it can be performed quickly. Hence we have defined

Boosting Based on a Smooth Margin 509

the first of our new boosting algorithms: coordinate ascent on G, implementing
a line search at each iteration. To clarify the line search step at iteration t using
(5) and (4), we use G(λ[1]

t), γt, and s
[1]
t to solve for α

[1]
t that satisfies:

s
[1]
t G(λ[1]

t) + ln

(
cosh γt

cosh(γt − α
[1]
t)

)

= (s[1]
t + α

[1]
t) tanh(γt − α

[1]
t). (6)

Summarizing, we define Algorithm 1 as follows:

– First, use AdaBoost (Figure 1) until G(λ[1]
t) defined by (1) is positive. At this

point, replace Step 3d of AdaBoost as prescribed: α
[1]
t equals the (unique)

solution of (6). Proceed, using this modified iterative procedure.

Let us rearrange the equation slightly. Using the notation g
[1]
t+1 := G(λ[1]

t+1)
in (5), we find that α

[1]
t satisfies the following (implicitly):

α
[1]
t =γt − tanh−1(g[1]

t+1) = tanh−1 rt − tanh−1(g[1]
t+1)=

1
2

ln

[
1 + rt

1 − rt

1 − g
[1]
t+1

1 + g
[1]
t+1

]

.

(7)

For any λ ∈ R
n
+, from (2) and since |||λ||| ≤ s(λ), we have G(λ) < ρ. Con-

sequently, g
[1]
t+1 < ρ ≤ rt, so α

[1]
t is strictly positive. On the other hand, since

G(λ[1]
t+1) ≥ G(λ[1]

t), we again have G(λ[1]
t+1) > 0, and thus α

[1]
t ≤ γt.

4.2 Algorithm 2: Approximate Coordinate Ascent Boosting

The second of our two new boosting algorithms avoids the line search of Al-
gorithm 1, and is even slightly more aggressive. It performs very similarly to
Algorithm 1 in our experiments. To define this algorithm, we consider the fol-
lowing approximate solution to the maximization problem (5):

G(λ[2]
t) = tanh(γt − α

[2]
t), or more explicitly, (8)

α
[2]
t =γt − tanh−1(g[2]

t) =tanh−1 rt − tanh−1(g[2]
t) =

1
2

ln

[
1 + rt

1 − rt

1 − g
[2]
t

1 + g
[2]
t

]

. (9)

This update still yields an increase in G. (This can be shown using (4) and
the monotonicity of tanh.) Summarizing, we define Algorithm 2 as the iterative
procedure of AdaBoost (Figure 1) with one change:

– Replace Step 3d of AdaBoost as follows:

α
[2]
t =

1
2

ln

(
1 + rt

1 − rt

1 − g
[2]
t

1 + g
[2]
t

)

, g
[2]
t := max{0, G(λ[2]

t)},

510 C. Rudin, R.E. Schapire, and I. Daubechies

where G is defined in (1). (Note that we could also have written the procedure
in the same way as for Algorithm 1. As long as G(λ[2]

t) ≤ 0, this update is the
same as in AdaBoost.)

Algorithm 2 is slightly more aggressive than Algorithm 1, in the sense that
it picks a larger relative step size αt, albeit not as large as the step size defined
by AdaBoost itself. If Algorithm 1 and Algorithm 2 were started at the same
position λt, with gt := G(λt), then Algorithm 2 would always take a slightly
larger step than Algorithm 1; since g

[1]
t+1 > gt, we can see from (7) and (9) that

α
[1]
t < α

[2]
t .

As a remark, if we use the updates of Algorithms 1 or 2 from the
start, they would also reach a positive margin quickly. In fact, after at most
�2 lnF (λ1)/[− ln (1 − ρ2) + ln(1 − G(λ1))]� + 1 iterations, G(λt) would have a
positive value.

5 Convergence of Algorithms

We will show convergence of Algorithms 1 and 2 to a maximum margin solution.
Although there are many papers describing the convergence of specific classes
of coordinate descent/ascent algorithms (e.g., [15]), this problem did not fit into
any of the existing categories. The proofs below account for both the optimal
and non-optimal cases, and for both algorithms.

One of the main results of this analysis is that both algorithms make signif-
icant progress at each iteration. In the next lemma, we only consider one incre-
ment, so we fix λt at iteration t and let gt := G(λt), st :=

∑
j λt,j . Then, denote

g
[1]
t+1 := G(λt +α

[1]
t), g

[2]
t+1 := G(λt +α

[2]
t), s

[1]
t+1 := st +α

[1]
t , and s

[2]
t+1 := st +α

[2]
t .

Lemma 3.

g
[1]
t+1 − gt ≥ α

[1]
t (rt − gt)

2s
[1]
t+1

, and g
[2]
t+1 − gt ≥ α

[2]
t (rt − gt)

2s
[2]
t+1

.

Proof. We start with Algorithm 2. First, we note that since tanh is concave on
R+, we can lower bound tanh on an interval (a, b) ⊂ (0, ∞) by the line connecting
the points (a, tanh(a)) and (b, tanh(b)). Thus,

∫ γt

γt−α
[2]
t

tanhu du ≥ 1
2
α

[2]
t

[
tanh γt + tanh(γt − α

[2]
t)
]

=
1
2
α

[2]
t (rt + gt), (10)

where the last equality is from (8). Combining (10) with (4) yields:

s
[2]
t+1g

[2]
t+1 ≥ stgt +

1
2
α

[2]
t (rt + gt), thus s

[2]
t+1(g

[2]
t+1 − gt) + α

[2]
t gt ≥ 1

2
α

[2]
t (rt + gt),

Boosting Based on a Smooth Margin 511

and the statement of the lemma follows (for Algorithm 2). By definition, g
[1]
t+1

is the maximum value of G(λt + αejt
), so g

[1]
t+1 ≥ g

[2]
t+1. Because α/(s + α) =

1 − s/(α + s) increases with α and since α
[1]
t ≤ α

[2]
t ,

g
[1]
t+1 − gt ≥ g

[2]
t+1 − gt ≥

(
α

[2]
t

s
[2]
t+1

)
(rt − gt)

2
≥
(

α
[1]
t

s
[1]
t+1

)
(rt − gt)

2
. 	

Another important ingredient for our convergence proofs is that the step size
does not increase too quickly; this is the main content of the next lemma. We
now remove superscripts since each step holds for both algorithms.

Lemma 4. limt→∞ αt/st+1 → 0 for both Algorithms 1 and 2.

If limt→∞ st is finite, the statement can be proved directly. If limt→∞ st = ∞,
our proof (which is omitted) uses (4), (5) and (8).

At this point, it is possible to use Lemma 3 and Lemma 4, to show asymptotic
convergence of both Algorithms 1 and 2 to a maximum margin solution; we defer
this calculation to the longer version. In what follows, we shall prove two different
results about the convergence rate. The first theorem gives an explicit a priori
upper bound on the number of iterations needed to guarantee that g

[1]
t or g

[2]
t is

within ε > 0 of the maximum margin ρ. As is often the case for uniformly valid
upper bounds, the convergence rate provided by this theorem is not optimal, in
the sense that faster decay of ρ − gt can be proved for large t if one does not
insist on explicit constants. The second convergence rate theorem provides such
a result, stating that ρ − gt = O (t−1/(3+δ)

)
, or equivalently ρ − gt ≤ ε after

O(ε−(3+δ)) iterations, where δ > 0 can be arbitrarily small.
Both convergence rate theorems rely on estimates limiting the growth rate

of αt. Lemma 4 is one such estimate; because it is only an asymptotic estimate,
our first convergence rate theorem requires the following uniformly valid lemma.

Lemma 5.

α
[1]
t ≤ c1 + c2s

[1]
t and α

[2]
t ≤ c1 + c2s

[2]
t , where c1 =

ln 2
1 − ρ

and c2 =
ρ

1 − ρ
. (11)

Proof. Consider Algorithm 2. From (4),

s
[2]
t+1g

[2]
t+1 − s

[2]
t g

[2]
t = ln cosh γt − ln cosh(γt − α

[2]
t).

Because 1
2eξ ≤ 1

2

(
eξ + e−ξ

)
= cosh ξ ≤ eξ for ξ > 0, we have ξ − ln 2 ≤

ln cosh ξ ≤ ξ. Now,

s
[2]
t+1g

[2]
t+1 − s

[2]
t g

[2]
t ≥ γt − ln 2 − (γt − α

[2]
t), so

α
[2]
t (1 − ρ) ≤ α

[2]
t (1 − g

[2]
t+1) ≤ ln 2 + s

[2]
t

(
g
[2]
t+1 − g

[2]
t

)
≤ ln 2 + ρs

[2]
t .

Thus we directly find the statement of the lemma for Algorithm 2. A slight
extension of this argument proves the statement for Algorithm 1. 	

512 C. Rudin, R.E. Schapire, and I. Daubechies

Theorem 1. (first convergence rate theorem) Suppose R < 1 is known to be an
upper bound for ρ. Let 1̃ be the iteration at which G becomes positive. Then both
the margin µ(λt) and the value of G(λt) will be within ε of the maximum margin
ρ within at most

1̃ + 1 + �(s1̃ + ln 2) ε−(3−R)/(1−R)� iterations, for both Algorithms 1 and 2.

Proof. Define ∆G(λ) := ρ − G(λ). Since (2) tells us that 0 ≤ ρ − µ(λt) ≤
ρ − G(λt) = ∆G(λt), we need only to control how fast ∆G(λt) → 0 as t → ∞.
That is, if G(λt) is within ε of the maximum margin ρ, so is the margin µ(λt).

Starting from Lemma 3,

ρ − gt+1 ≤ ρ − gt − αt

2st+1
(rt − ρ + ρ − gt), thus

∆G(λt+1) ≤ ∆G(λt)
[

1 − αt

2st+1

]

−αt(rt − ρ)
2st+1

≤∆G(λ1̃)
t∏

�=1̃

[

1 − α�

2s�+1

]

.(12)

We stop the recursion at λ1̃, where λ1̃ is the coefficient vector at the first iteration
where G is positive. We upper bound the product in (12) using Lemma 5.

t∏

�=1̃

[

1 − α�

2s�+1

]

=
t∏

�=1̃

[

1 − 1
2

s�+1 − s�

s�+1

]

≤ exp

−1
2

t∑

�=1̃

s�+1 − s�

s�+1

≤ exp

−1
2

t∑

�=1̃

s�+1 − s�

s� + ρ
1−ρs� + ln 2

1−ρ

 = exp

−1 − ρ

2

t∑

�=1̃

s�+1 − s�

s� + ln 2

≤ exp

[

−1 − ρ

2

∫ st+1

s1̃

dv

v + ln 2

]

=
[

s1̃ + ln 2
st+1 + ln 2

](1−ρ)/2

. (13)

It follows from (12) and (13) that

st ≤ st + ln 2 ≤ (s1̃ + ln 2)
[
∆G(λ1̃)
∆G(λt)

]2/(1−ρ)

. (14)

On the other hand, using some trickery one can show that for all t, for both
algorithms, αt ≥ (∆G(λt+1))/(1 − ρg1̃), which implies:

st ≥ s1̃ + (t − 1̃)
∆G(λt)
1 − ρg1̃

. (15)

Combining (14) with (15) leads to:

t − 1̃ ≤ (1 − ρg1̃)st

∆G(λt)
≤ (1 − ρg1̃)(s1̃ + ln 2) [∆G(λ1̃)]

2/(1−ρ)

[∆G(λt)]
1+[2/(1−ρ)] , (16)

which means ∆G(λt) ≥ ε is possible only if t ≤ 1̃ + (s1̃ + ln 2)ε−(3−ρ)/(1−ρ).
Therefore, ∆(G(λt) < ε whenever t exceeds

1̃ + 1 + (s1̃ + ln 2)ε−(3−R)/(1−R) ≥ 1̃ + 1 + (s1̃ + ln 2)ε−(3−ρ)/(1−ρ). 	

Boosting Based on a Smooth Margin 513

In order to apply the proof of Theorem 1, one has to have an upper bound for
ρ, which we have denoted by R. This we may obtain in practice via the minimum
achieved edge R = min�≤t r� < 1.

An important remark is that the technique of proof of Theorem 1 is much
more widely applicable. In fact, this proof used only two main ingredients:
Lemma 3 and Lemma 5. Inspection of the proof shows that the exact values
of the constants occurring in these estimates are immaterial. Hence, Theorem 1
may be used to obtain convergence rates for other algorithms.

The convergence rate provided by Theorem 1 is not tight; our algorithms
perform at a much faster rate in practice. The fact that the step-size bound in
Lemma 5 holds for all t allowed us to find an upper bound on the number of
iterations; however, we can find faster convergence rates in the asymptotic regime
by using Lemma 4 instead. The following lemma holds for both Algorithms 1
and 2. The proof, which is omitted, follows from Lemma 3 and Lemma 4.

Lemma 6. For any 0 < ν < 1/2, there exists a constant Cν such that for all
t ≥ 1̃ (i.e., all iterations where G is positive), ρ − gt ≤ Cνs−ν

t .

Theorem 2. (second convergence rate theorem) For both Algorithms 1 and 2,
and for any δ > 0, a margin within ε of optimal is obtained after at most
O(ε−(3+δ)) iterations from the iteration 1̃ where G becomes positive.

Proof. By (15), we have t − 1̃ ≤ (1 − ρg1̃)(ρ − gt)−1(st − s1̃). Combining this
with Lemma 6 leads to t − 1̃ ≤ (1 − ρg1̃)C

1/ν
ν (ρ − gt)−(1+1/ν). For δ > 0,

we pick ν = νδ := 1/(2 + δ) < 1/2, and we can rewrite the last inequality
as: (ρ − gt)3+δ ≤ (1 − ρg1̃)C

2+δ
νδ

(t − 1̃)−1, or ρ − gt ≤ C
′
δ(t − 1̃)−1/(3+δ), with

C
′
δ = (1−ρg1̃)

1/(3+δ)C
(2+δ)/(3+δ)
νδ . It follows that ρ−µ(λt) ≤ ρ−gt < ε whenever

t − 1̃ > (C
′
δε

−1)(3+δ), which completes the proof of Theorem 2. 	

Although Theorem 2 gives a better convergence rate than Theorem 1 since

3 < 1+2/(1−ρ), there is an unknown constant C
′
δ, so that this estimate cannot

be translated into an a priori upper bound on the number of iterations after
which ρ − gt < ε is guaranteed, unlike Theorem 1.

6 Simulation Experiments

The updates of Algorithm 2 are less aggressive than AdaBoost’s, but slightly
more aggressive than the updates of arc-gv, and AdaBoost∗. Algorithm 1 seems
to perform very similarly to Algorithm 2 in practice, so we use Algorithm 2. This
section is designed to illustrate our analysis as well as the differences between
the various coordinate boosting algorithms; in order to do this, we give each
algorithm the same random input, and examine convergence of all algorithms
with respect to the margin. Experiments on real data are in our future plans.

Artificial test data for Figure 2 was designed as follows: 50 examples were con-
structed randomly such that each xi lies on a corner of the hypercube {−1, 1}100.

514 C. Rudin, R.E. Schapire, and I. Daubechies

We set yi = sign(
∑11

k=1 xi(k)), where xi(k) indicates the kth component of xi.
The jth weak learner is hj(x) = x(j), thus Mij = yixi(j). To implement the
“non-optimal” case, we chose a random classifier from the set of sufficiently
good classifiers at each iteration.

We use the definitions of arc-gv and AdaBoost∗ found in Meir and Rätsch’s
survey [8]. AdaBoost, arc-gv, Algorithm 1 and Algorithm 2 have initially large
updates, based on a conservative estimate of the margin. AdaBoost∗’s updates
are initially small based on an overestimate of the margin.

AdaBoost’s updates remain consistently large, causing λt to grow quickly and
causing fast convergence with respect to G. AdaBoost seems to converge to the
maximum margin in (a); however, it does not seem to in (b), (d) or (e). Algorithm
2 converges fairly quickly and dependably; arc-gv and AdaBoost∗ are slower
here. We could provide a larger value of ν in AdaBoost∗ to encourage faster
convergence, but we would sacrifice a guarantee on accuracy. The more “optimal”
we choose the weak learners, the better the larger step-size algorithms (AdaBoost
and Algorithm 2) perform, relative to AdaBoost∗; this is because AdaBoost∗’s
update uses the minimum achieved edge, which translates into smaller steps
while the weak learning algorithm is doing well.

1 2 3 4
0.04

0.1

0.18
0.2

0.22
0.24

Log(Iterations)

M
ar

gi
n

AdaBoost

approximate
coordinate
ascent boosting

arc−gv

AdaBoost*

1 2 3 4

0.05

0.15

0.2

0.25

Log(Iterations)

M
ar

gi
n

AdaBoost*

approximate
coordinate
ascent boosting
and
arc−gv

AdaBoost

2 3 4
0.04

0.1

0.18

0.2

0.22

Log(Iterations)

M
ar

gi
n

approximate
coordinate
ascent
boosting AdaBoost

arc−gv

AdaBoost*

0.05

0.15

0.2

0.22

Log(Iterations)

M
ar

gi
n

AdaBoost*

approximate
coordinate
ascent
boosting

AdaBoost

arc−gv

2 3 4

Fig. 2. AdaBoost, AdaBoost∗ (parameter ν set to .001), arc-gv, and Algorithm 2 on
synthetic data. (a-Top Left) Optimal case. (b-Top Right) Non-optimal case, using the
same 50 × 100 matrix M as in (a). (c-Bottom Left) Optimal case, using a different
matrix. (d-Bottom Right) Non-optimal case, using the same matrix as (c).

Boosting Based on a Smooth Margin 515

7 A New Way to Measure AdaBoost’s Progress

AdaBoost is still a mysterious algorithm. Even in the optimal case it may con-
verge to a solution with margin significantly below the maximum [11]. Thus,
the margin theory only provides a significant piece of the puzzle of AdaBoost’s
strong generalization properties; it is not the whole story [5,2,11]. Hence, we give
some connections between our new algorithms and AdaBoost, to help us under-
stand how AdaBoost makes progress. In this section, we measure the progress of
AdaBoost according to something other than the margin, namely, our smooth
margin function G. First, we show that whenever AdaBoost takes a large step,
it makes progress according to G. We use the superscript [A] for AdaBoost.

Theorem 3. G(λ[A]
t+1) ≥ G(λ[A]

t) ⇐⇒ Υ (rt) ≥ G(λ[A]
t), where Υ : (0, 1) →

(0, ∞) is a monotonically increasing function.

In other words, G(λ[A]
t+1) ≥ G(λ[A]

t) if and only if the edge rt is sufficiently large.

Proof. Using AdaBoost’s update α
[A]
t = γt, G(λ[A]

t) ≤ G(λ[A]
t+1) if and only if:

(s[A]
t + α

[A]
t)G(λ[A]

t) ≤ (s[A]
t + α

[A]
t)G(λ[A]

t+1) = s
[A]
t G(λ[A]

t) +
∫ α

[A]
t

0
tanhu du,

i.e., G(λ[A]
t) ≤ 1

α
[A]
t

∫ α
[A]
t

0
tanhu du,

where we have used (4). We denote the expression on the right hand side by
Υ (rt), which can be rewritten as: Υ (rt) := − ln

(
1 − r2

t

)/
ln
(

1+rt

1−rt

)
. Since Υ (r)

is monotonically increasing in r, our statement is proved. 	

Hence, AdaBoost makes progress (measured by G) if and only if it takes a big
enough step. Figure 3, which shows the evolution of the edge values, illustrates
this. Whenever G increased from the current iteration to the following iteration,
a small dot was plotted. Whenever G decreased, a large dot was plotted. The fact
that the larger dots are below the smaller dots is a direct result of Theorem 3.
In fact, one can visually track the progress of G using the boundary between the
larger and smaller dots.

AdaBoost’s weight vectors often converge to a periodic cycle when there are
few support vectors [11]. Where Algorithms 1 and 2 make progress with respect
to G at every iteration, the opposite is true for cyclic AdaBoost, namely that
AdaBoost cannot increase G at every iteration, by the following:

Theorem 4. If AdaBoost’s weight vectors converge to a cycle of length T iter-
ations, the cycle must obey one of the following conditions:

1. the value of G decreases for at least one iteration within the cycle, or
2. the value of G is constant at every iteration, and the edge values in the cycle

r
(cyc)
t,1 , ..., r

(cyc)
t,T are equal.

516 C. Rudin, R.E. Schapire, and I. Daubechies

0 2000 6000 8000 10000
0.55

0.65

0.85

Iterations

E
dg

e

1 5 10 15 20 25

1

4

8

12

Fig. 3. Value of the edge at each iteration t, for a run of AdaBoost using the 12 × 25
matrix M shown (black is -1, white is +1). AdaBoost alternates between chaotic and
cyclic behavior. For further explanation of the interesting dynamics in this plot, see [11].

In other words, the value of G cannot be strictly increasing within a cycle.
The main ingredients for the proof (which is omitted) are Theorem 3 and (4).
For specific cases that have been studied [11], the value of G is non-decreasing,
and the value of rt is the same at every iteration of the cycle. In such cases, a
stronger equivalence between support vectors exists here; they are all “viewed”
similarly by the weak learning algorithm, in that they are misclassified the same
proportion of the time. (This is surprising since weak classifiers may appear more
than once per cycle.)

Theorem 5. Assume AdaBoost cycles. If all edges are the same, then all sup-
port vectors are misclassified by the same number of weak classifiers per cycle.

Proof. Let rt =: r which is constant. Consider support vectors i and i′. All
support vectors obey the cycle condition [11], namely:

∏T
t=1(1 + Mijt

r) =
∏T

t=1(1 + Mi′jt
r)=1. Define τi := |{t : Mijt

= 1}|, the number of times example
i is correctly classified during one cycle of length T. Now, 1 =

∏T
t=1(1+Mijtr) =

(1 + r)τi(1 − r)T−τi = (1 + r)τi′ (1 − r)T−τi′ . Hence, τi = τi′ . Thus, example i is
misclassified the same number of times that i′ is misclassified. Since the choice
of i and i′ were arbitrary, this holds for all support vectors. 	

References

[1] Leo Breiman. Arcing the edge. Technical Report 486, Statistics Department,
University of California at Berkeley, 1997.

[2] Leo Breiman. Prediction games and arcing algorithms. Neural Computation,
11(7):1493–1517, 1999.

[3] Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, Ad-
aBoost and Bregman distances. Machine Learning, 48(1/2/3), 2002.

Boosting Based on a Smooth Margin 517

[4] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119–139, August 1997.

[5] Adam J. Grove and Dale Schuurmans. Boosting in the limit: Maximizing the
margin of learned ensembles. In Proceedings of the Fifteenth National Conference
on Artificial Intelligence, 1998.

[6] V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding
the generalization error of combined classifiers. The Annals of Statistics, 30(1),
February 2002.

[7] Llew Mason, Peter Bartlett, and Jonathan Baxter. Direct optimization of margins
improves generalization in combined classifiers. In Advances in Neural Information
Processing Systems 12, 2000.

[8] R. Meir and G. Rätsch. An introduction to boosting and leveraging. In S. Mendel-
son and A. Smola, editors, Advanced Lectures on Machine Learning, pages 119–
184. Springer, 2003.

[9] Gunnar Rätsch and Manfred Warmuth. Efficient margin maximizing with boost-
ing. Submitted, 2002.

[10] Saharon Rosset, Ji Zhu, and Trevor Hastie. Boosting as a regularized path to a
maximum margin classifier. Technical report, Department of Statistics, Stanford
University, 2003.

[11] Cynthia Rudin, Ingrid Daubechies, and Robert E. Schapire. The dynamics of
AdaBoost: Cyclic behavior and convergence of margins. Submitted, 2004.

[12] Cynthia Rudin, Ingrid Daubechies, and Robert E. Schapire. On the dynamics of
boosting. In Advances in Neural Information Processing Systems 16, 2004.

[13] Robert E. Schapire. The boosting approach to machine learning: An overview. In
MSRI Workshop on Nonlinear Estimation and Classification, 2002.

[14] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the
margin: A new explanation for the effectiveness of voting methods. The Annals
of Statistics, 26(5):1651–1686, October 1998.

[15] Tong Zhang and Bin Yu. Boosting with early stopping: convergence and consis-
tency. Technical Report 635, Department of Statistics, UC Berkeley, 2003.

	Introduction
	Notation and Introduction to AdaBoost
	The Smooth Margin Function $G(bm {lambda })$
	Derivation of Algorithms
	Algorithm 1: Coordinate Ascent Boosting
	Algorithm 2: Approximate Coordinate Ascent Boosting

	Convergence of Algorithms
	Simulation Experiments
	A New Way to Measure AdaBoost's Progress

