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Digital image processing is proving to be of great help in the analysis and documenta-

tion of our vast cultural heritage. In this paper, we present a new method for the virtual

restoration of digitized paintings with special attention for the Ghent Altarpiece (1432),

a large polyptych panel painting of which very few digital reproductions exist. We

achieve our objective by detecting and digitally removing cracks. The detection of

cracks is particularly difficult because of the varying content features in different parts

of the polyptych. Three new detection methods are proposed and combined in order to

detect cracks of different sizes as well as varying brightness. Semi-supervised clustering

based post-processing is used to remove objects falsely labelled as cracks. For the

subsequent inpainting stage, a patch-based technique is applied to handle the noisy

nature of the images and to increase the performance for crack removal. We

demonstrate the usefulness of our method by means of a case study where the goal

is to improve readability of the depiction of text in a book, present in one of the panels,

in order to assist paleographers in its deciphering.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

In this work, we focus on crack detection and inpaint-
ing in the Ghent Altarpiece and extend upon the work
introduced in [1]. The polyptych, dated by inscription
1432, was painted by Jan and Hubert van Eyck and is
considered as one of their most important masterpieces
ll rights reserved.
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known all over the world. It is still located in the Saint
Bavo Cathedral in Ghent, its original destination.

Cracking is one of the most common deteriorations
found in old masters paintings; it is a sign of the
inevitable aging of materials and constitutes a record of
their degradation. Generally speaking, a crack (or craque-

lure) appears in paint layers when pressures develop
within or on it through the action of various factors and
cause the material to break [2]. The state of preservation
of a painting is mainly influenced by climate changes such
as variations in temperature, relative humidity or pres-
surization (e.g. during transport via air) [3]. As for most
15th century Flemish paintings on Baltic oak, fluctuations
in relative humidity, causing the wooden support to
shrink or expand, are the main causes for age crack
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formation. Age related or mechanical cracks can affect the
entire paint layer structure, including both the prepara-
tion and the paint layers on it. Age cracks are to be
distinguished from premature cracking [2]. The latter are
more dull-edged than those formed when aging and
originate in only one of the layers of paint. They generally
reveal a defective technical execution at the painting
stage, such as not leaving enough time for a layer to
dry, or applying a layer that dries faster than the under-
lying one. A third type is varnish cracks, formed only in
the varnish layer, when it becomes brittle through
oxidation.

Cracks form an undesired pattern that can be either
rectangular, circular, web-shaped, unidirectional, tree-
shaped or even completely random. The way in which
they manifest themselves and spread partly depends
upon the choice of materials and methods used by the
artist. This makes cracks useful for judging authenticity,
as is proposed in [4]. Cracks can also assist conservators
by providing clues to the causes of degradation of the
paint surface. This can be used for degradation monitoring
of the paint layer or a more in-depth study on which
factors contribute to the formation of cracks, so that steps
can be taken to reduce them [5]. The potential of using
cracks as a non-invasive means of identifying the struc-
tural components of paintings is highlighted in [6]. The
correlation between the network of cracks on the surface
and the structure of the panel below is also investigated
in [2] by using multi-layered X-ray radiography. An area
which is thought to be of great interest to art conservation
is content-based analysis where cracks are used for
content-based retrieval of information from image data-
bases [3].

Digital image processing can automatically detect crack-
like patterns. In the literature, this process is often referred
to as ridge-valley structure extraction [7]. Many types of
images contain similar elongated structures (e.g. medical
images of veins and vessels [8], images of fingerprints and
satellite imagery of rivers and roads) and the common goal
is to extract or detect these crack-like patterns in order to
separate them from the rest of the image. An overview of
different crack detection techniques can be found in [5].
These include different types of thresholding, the use of
multi-oriented filters (such as Gabor filters) and a plethora
of morphological transforms.

In the context of the virtual restoration of digitized
paintings, crack detection is often treated side-by-side
with crack removal. Inpainting, which is the image
restoration task of filling in missing parts of the image,
is used for this purpose. The literature contains a vast
number of general inpainting methods which can be
roughly separated into two groups: pixel-based and
patch-based methods. Pixel-based methods aim at repla-
cing one missing pixel at the time [9,10] by specially
focusing on structure propagation, i.e. propagation of lines
and object contours, from the boundaries of the missing
region to its center. Patch-based methods [11–14], on the
other hand, fill in the missing region patch-by-patch
ensuring in that way better texture propagation. They
also consider structural propagation by introducing a
certain priority in which the patches are visited.
A virtual restoration system to remove cracks on
digital images of paintings was developed in [15]. Their
method is based on a semi-automatic crack detection
procedure, where users need to specify a location believed
to belong to a crack network. The algorithm will then
track other suspected crack points based on two main
features, absolute gray-level and crack uniformity. Once
the algorithm has completely detected cracks, they can be
removed by interpolation. In [16–18] crack patterns are
detected by thresholding the output of a morphological
top-hat transform. Cracks are subsequently separated
from brushstrokes (i) by using the hue and saturation
information in the HSV or HSI colour space and feeding
it to a neural network or (ii) by letting a user manually
select seed points. Finally, the cracks are inpainted using
order statistics filtering for interpolation [17], controlled
anisotropic diffusion [16] or patch-based texture synth-
esis [18].

The cracks considered here are particular in a number
of ways. Their width ranges from very narrow and barely
visible to larger areas of missing paint. Furthermore,
depending on the painting’s content, they appear as
dark thin lines on a bright background or vice versa,
bright thin lines on a darker background. In Section 2 we
introduce three different detection schemes, each able to
detect bright and dark cracks and each having its own
strength. Since this masterpiece contains many details
and some of the brushstrokes are of similar colour and
structure as the cracks, we introduce a semi-supervised
clustering based post-processing step to remove false
positives. The detection is finalized by combining the
cleaned crack maps of each of the three methods using
a simple voting scheme.

Additionally, the bright borders that are present
around some of the cracks (and are accentuated by the
way the data set was acquired) cause incorrect and
visually disturbing inpainting results. These borders are
the result of two factors: where a crack is forming, the
paint is pushed upwards and forms a small inclination.
Light gets reflected on the ridges caused by this cracking
and makes them appear brighter than their immediate
surroundings. Also, during previous cleaning, the surface
paint on these elevated ridges may have been accidentally
removed, revealing parts of the underlying white pre-
paration layer. Section 3 elaborates on the improved
patch-based inpainting for the digital filling of cracks
and the inpainting results.

In Section 4 the practicability of our technique is
confirmed by means of a case study which consists of
improving the readability of depicted text in a very small
detail in one of the panels. We end the paper with
concluding remarks, presented in Section 5.

2. Crack detection

Cracks can visually be categorized into two classes,
bright cracks on a dark background or dark cracks on a
bright background (see Fig. 1). Mainly dark cracks are
treated in the literature, where they are typically considered
as having low luminance and being local (grayscale) inten-
sity minima with elongated structure [19]. Different crack
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detection techniques include simple thresholding, line
detectors and various morphological filters (see [5] for an
overview). Thresholding does generally not work well due
to the noisy nature of the images and the presence of other
‘‘crack-like’’ structures in the image. The varying quality of
the images and the difficulty of detecting cracks in low-
contrast zones justifies several pre-processing steps. We
introduce three different crack detection techniques that
can be applied for the detection of both dark and bright
cracks, each having its own strength. A semi-automatic
clustering based post-processing step is applied to reduce
the number of false detections. We subsequently combine
the results of each technique and hence put to use their
respective strengths. The procedure for the entire crack
detection is shown in Fig. 2.

Furthermore, we identified the need to detect bright
borders that surround some of the cracks (as depicted in
detail in the upper right corner of Fig. 1 and in Fig. 4)
because they cause incorrect and visually unpleasing
inpainting results. We will show in Section 3 that their
detection and treatment as missing regions lead to
improved inpainting.
2.1. Pre-detection processing

The detection of cracks in low contrast areas is a
particularly difficult task. To deal with this problem,
we introduce a local contrast enhancement step for
darker zones in the image prior to crack detection. This
Fig. 1. Crack types: dark cracks on bright background (top), and bright

cracks on dark background (bottom). The width of the mouth is 2.86 cm

(approximately 1.13 in) on the panel.
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Fig. 2. Workflow for the entire crack detection procedure. The optional inpain

around the crack are prominently present (e.g. in Fig. 21).
pre-processing step consists of taking the weighted aver-
age of the original grayscale image (Iorig) and its locally
contrast enhanced version (ICLAHE) such that only darker
areas are replaced with a contrast enhanced version. The
resulting image I is constructed as follows:

I¼ ð1�wÞIorigþwICLAHE, ð1Þ

where the high contrast image ICLAHE is constructed by
using contrast limited adaptive histogram equalization

(CLAHE) [20] and the weights w for each pixel are
determined by blurring (Gaussian kernel with s¼ 15
and mask size 45�45) the inverted image Iorig (see Fig. 3).

Due to the noisy nature of the images we perform
anisotropic diffusion [21] on image I as isotropic blurring
would remove edges too much, which is in fact what we
want to detect. We work on high resolution scans of
original photographic negatives (Kodak Safety Film
13�18 cm) taken by a professional photographer, the
late Rev. Alfons Dierick, whose material is currently
preserved in the Alfons Dierickfonds archive of the Ghent
University. The capturing process (i.e. field of view, light-
ing, etc.) is undocumented and the images are noisy
(an example is given in Fig. 4). Not only were different
chemical processes used to develop the negatives, but
some of them were also acquired at different resolutions
and with different scanning hardware. In strong contrast
to the medical world, where standardization made com-
mon image processing tools possible, it is very challen-
ging to find a global parameter set for all images under
investigation. The data set being heterogeneous in nature,
the amount of anisotropic diffusion is determined heur-
istically: the higher the resolution of the images, the more
iterations are chosen for the diffusion.
2.2. Detection methods

Three novel crack detection methods are applied for
the detection of both dark and bright cracks. These
techniques have complementary strengths, which are
explained in Section 2.4.
2.2.1. Filtering with oriented elongated filters

Oriented elongated filters (see Fig. 5) were originally
introduced to detect and enhance blood vessels of different
thicknesses and orientations in medical images [22]. They
are used here for the detection of cracks and are obtained
ing Merging 
Inpainting 

pre-
processing 

ting preprocessing (see Section 2.5) is applied whenever bright borders
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Fig. 3. Local contrast enhancement workflow.

Fig. 4. Close-up of Kodak negative scan (showing bright borders around

the cracks and noise). The height of one letter (marked in red) is

approximately 0.17 cm (or 0.07 in) on the panel. (For interpretation of

the references to colour in this figure caption, the reader is referred to

the web version of this article.)
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by performing linear combinations of 2D Gaussian kernels:

Gðx,yÞ ¼ exp �
x2þy2

2s2

� �
: ð2Þ

In order to construct a filter that emphasizes edges ortho-
gonal to a given unit vector n¼ ðnx,nyÞ, the directional
derivative of the Gaussian kernel G is calculated as

Gnðx,yÞ ¼ nx
@Gðx,yÞ

@x
þny

@Gðx,yÞ

@y
: ð3Þ

The first order partial derivatives of G can be approximated
with sufficient accuracy by adequately shifting the Gaus-
sian kernels. For example:
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For the filter to be sensitive to vessel- or crack-like
structures the kernel obtained above is combined in the
following way:

G0nðx,y,wÞ ¼ Gnðxþwnx,yþwnyÞ�Gnðx�wnx,y�wnyÞ, ð5Þ

where w controls the half-width of the filter. To make the
filter more directionally sensitive we combine shifted
versions of the kernel G0n in a slightly different fashion as
what is proposed in [22]: a finer sampling grid is used in
horizontal and vertical direction which induces a denser
succession of kernels and results in a smoother filter,

G0nðx,y,w,lÞ ¼
1

2lNþ1

XlN
k ¼ �lN

G0n xþ
k

N
t1,yþ

k

N
t2,w

� �
, ð6Þ

where t¼ ðt1,t2Þ is a unit vector orthogonal to n and l

controls the length of the resulting kernel. These filters can
directly be applied to detect cracks brighter than their
background. To detect dark cracks it is sufficient to invert
the sign of all filter coefficients and apply this new set of
filters on the image I. Examples of oriented elongated filters
for the detection of dark cracks are shown in Fig. 5.

As the filters tend to respond to step-like edges as well,
the filtered images are validated by comparing gray
values of pixels on both sides of the edge pixel at a



Fig. 5. Directional kernels G0 n of size 51�51: s¼ 1:4, w¼ s, N¼1 and l¼ 10s.

Fig. 6. Influence of the high threshold (fixed lower threshold):

(a) threshold too low, (b) selected threshold, and (c) threshold too high.

1 Using other shapes of similar dimensions did not really affect the

detection process.
2 n¼8 for all images except for the special case of the book of which

a detail is shown in Fig. 4, where n¼10.
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certain distance and angle (provided by n) in the blurred
version ðB¼ InGÞ of the image I as defined in Fig. 3. For a
dark crack, the pixels on each side of the edge pixel need
to have a higher grayscale value than the crack pixel and
vice versa for bright cracks.

The resulting filtered and validated images (one for
each directional filter) are hysteresis thresholded. First,
the image is thresholded with a high and a lower thresh-
old. All the high thresholded edges are retained together
with low thresholded edges that are connected to them.
The low thresholded edges that are not connected to high
thresholded edges are discarded. Both thresholds are
image dependent, which forces us to manually determine
them through visual inspection of the results. Note that
we use a single threshold value for all directionally
filtered images. The final binary image, marking the
location of cracks, is formed by combining the
thresholded images with a logical OR operation and is
referred to as crack map. We found experimentally that
especially the value of the high threshold is critical, Fig. 6
shows its effect on the resulting crack map. The entire
workflow is depicted in Fig. 7.

2.2.2. Multiscale morphological top-hat

A popular technique to detect details with particular
sizes is the use of a morphological filter known as the top-

hat transformation [23] which was already successfully
applied in crack detection [3,17,19]. For the detection of
dark cracks on a lighter background we use the black

top-hat (or closing top-hat) transform THbðIÞ which is
defined as the difference between the morphological
closing jbðIÞ of a grayscale image I using a structuring
element b and the input image I and results in a grayscale
image with enhanced details. Clearly, the structuring
element should be chosen according to the size and
nature of the cracks to be detected. However, this process
is still an open problem [5]. Recall that the morphological
closing operation is defined as dilation followed by ero-

sion. By thresholding THb(I), which in our case is per-
formed automatically by using Otsu’s method [24], we
create a binary image of details which are most likely to
be dark cracks. A similar technique can be employed for
the detection of bright cracks by replacing the black top-
hat transform with a white top-hat (or opening top-hat)
transform, which is defined as the difference between the
input image I and its opening gbðIÞ by a chosen structuring
element b.

Instead of using the classical top-hat transforms we
use a multiscale morphological approach, introduced in [1]
and depicted in the workflow of Fig. 8. The noisy nature of
the images as well as the multitude of structures having
crack-like properties can cause many misdetections
(undesired for the subsequent inpainting). Both the
reduction of the undesired false positives and the detec-
tion of cracks of varying size (ranging from very small
hairline cracks to larger areas of missing paint) benefit
from a multiscale detection scheme. We perform the top-
hat operation described above with square shaped1

structuring elements b of varying sizes (ranging from
3�3 to n�n pixels, where n depends on the width of
the crack to be detected2). By choosing a small structuring
element, we extract hairlike cracks but also a lot of other
fine scale structures that do not correspond to cracks.
When using a large structuring element, on the other
hand, we detect cracks but coarser structures as well.
Next, we automatically threshold the results of the
successive morphological filterings using Otsu’s method
to obtain different crack maps, which is an improvement
on the detection method of [1] because manual selection
of thresholds is avoided. All the crack maps are subse-
quently further processed, by bridging pixel gaps and
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removing isolated or small groups of pixels as much as
possible.3

We now combine the resulting crack maps from
successive scales in a novel way. The crack maps of the
three smallest scales are added to form our base map

which is used as a reference for selecting cracks in crack
maps corresponding to coarser scales. The final crack map
results from the base map by adding only objects
(i.e. groups of connected pixels) from maps at coarser
scales that are connected to the base map. This way of
working has the major advantage that unwanted larger
structures such as the mustache of Adam in Fig. 1 or the
letters in the book image depicted in the example of Fig. 8,
more often detected at larger scales, will not be included
in the final map while cracks are still allowed to grow
through successive scales.
3 Standard parameterless Matlab functions are used in the following

sequence: bridge, clean and fill. These are followed by an additional

cleaning step, removing objects of size smaller than 20, 30, 40,y, 70

pixels for the six successive morphological filtered images.
2.2.3. K-SVD for crack enhancement

The third technique proposed in this paper relies on
the use of the K-SVD algorithm [25], which is used for
constructing and adapting dictionaries in order to achieve
sparse signal representations and which was never
applied before in a crack detection context. It is an
iterative method that alternates between sparse coding
of the data based on the current dictionary and the
updating of dictionary atoms to better fit the data.

The K-SVD algorithm works on small (usually over-
lapping) patches x 2 Rn of size

ffiffiffi
n
p
�

ffiffiffi
n
p

. The learning of
the over-complete dictionary D 2 Rn�k with a fixed num-
ber of atoms k and sparsity constraint L (i.e. each patch is
composed of no more than L dictionary atoms) can be
described by the following optimization problem:

min
a,D

JX�DaJ2
2 s:t: JalJ0rL, ð7Þ

where the column vectors (xl) of X are M image patches on
which the dictionary D is learned. Each dictionary atom
di 2 D, for i¼ 1 . . . k, is a unit vector in the ‘2-norm. The
column vector al of a is the sparse coefficient matrix vector
corresponding to the patch xl and JalJ0 denotes the number



Fig. 10. Candidate image patches, Ic, for training of dictionary.
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of non-zero elements in the vector. K-SVD is an iterative
method specifically designed to minimize the energy of (7)
and where each iteration consists of two steps. The first one
is the sparse coding step which addresses the problem of
finding the best decomposition Dal for each patch xl. To this
end, a greedy orthogonal matching pursuit (OMP) is used. The
second step, called the dictionary update step, optimizes the
least-square problem (i.e. the ‘2-norm in (7)) for each atom
individually while keeping the remaining atoms fixed and
updates the corresponding non-zero coefficients in a. K-SVD
is used in this context as a method for enhancing cracks
within the image by training an optimal dictionary D for each
image and altering the coefficient matrix a during recon-
struction in an appropriate way.

A dictionary (k¼128) is trained on overlapping patches of
the image I, containing cracks, hence producing an over-
complete dictionary tweaked to that image. Patches must be
sufficiently large to capture crack-like edges ð

ffiffiffi
n
p
¼ 16Þ and

the sparsity constraint is very strict (L equal to 1 is typically
chosen). After training (using 20 iterations, and on a suffi-
ciently large number of patches), some dictionary elements
will contain information for the ‘‘optimal’’ representation of
cracks due to the strong sparsity constraint. We use the
trained dictionary to reconstruct an image patch Ic containing
only cracks, which obviously favours the usage of crack-like
dictionary elements. This can be observed in the histogram of
dictionary usage depicted in Fig. 9. Choosing an appropriate
Ic is straightforward: examples are given in Fig. 10. When
reconstructing the image I, the number of elements in the
coefficient matrix a, corresponding to less used dictionary
elements for Ic are put to zero. Note that the dictionary itself
remains unaltered. The rule for zeroing out coefficients is as
follows:

8l, ali ¼
ali if Ja0iJ04b maxJa0iJ0,

0 otherwise,

(
ð8Þ

where a0 is the coefficient matrix when reconstructing the
crack-only image patch Ic, Ja0iJ0 the corresponding total usage
d i
 o

cc
ur

re
nc

e 

Initial dictionary D 

Most used d i 

Fig. 9. Dictionary usage histogram and
of dictionary element di, l the index of the patch extracted
from I and b a parameter controlling the amount of coeffi-
cients to put to zero. The default value for b is chosen as 0.5
and its value is lowered when it is observed that an
insufficient number of cracks are reconstructed, but this
happens rarely and hence user interaction is kept to a
minimum. Through this procedure, non-crack dictionary
elements are omitted during the reconstruction of I.

Note that the DC component of each patch is sub-
tracted before training and reconstruction, which results
in a reconstructed image that can contain negative values
as well. As a final step the image is hysteresis thresholded
in the same fashion as described in Section 2.2.1 for the
detection of bright cracks while for the detection of dark
cracks the reconstructed image needs to be inverted first
(results are shown in Fig. 11).

2.3. k-Means clustering based semi-automatic

post-processing

In the three proposed methods some objects, having a
similar structure as cracks (such as eyebrows, eyelashes
and the mustache in the Panel depicting Adam or the
letters of the book in the Annunciation to Mary panel) are
d
i = || α ||

0 

th 

most used di ðth¼ b maxJa0iJ0).



Fig. 11. K-SVD results (left: original; middle: reconstructed (inverted); right: thresholded).

Fig. 12. Results of detection with K-SVD (left: original detection; right:

after post-processing with k-means clustering).

Fig. 13. Results of detection with elongated filters (left: original detection;

right: after post-processing with k-means clustering).
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sometimes falsely labelled as cracks. We propose a
clustering based semi-automatic method to assist in
filtering out those structures.

First the binary map, obtained by applying one of the
methods described above, is thinned to obtain one-pixel
wide cracks [26]. Crack pixels are linked together into lists
of coordinate pairs,4 where a crack junction is encoun-
tered. The list is terminated and a separate list is gener-
ated for each of the branches. In this manner, each crack is
broken down into segments which can be treated as
separate objects. For each of these objects, a number of
features are calculated: colour (the object’s mean colour
values in RGB and HSV colour space) and physical proper-
ties such as length, orientation and eccentricity. Next to
these, the colour values of the immediate region sur-
rounding the crack are computed as well. Recall that
cracks can sometimes be surrounded by a bright border
(as explained in the beginning of Section 2) which can be
a crucial feature for discerning cracks from non-cracks.
As the last feature, a spatial density value is assigned to
each object, which will prove to be a very significant
feature (e.g. eyebrow edges typically belong to more
dense regions than crack edges in the image as can be
observed in Fig. 12). All these features are combined into a
feature vector and serve as input to a k-means clustering.
It is now a matter of manually removing undesired
clusters which correspond to falsely labelled objects, by
simply specifying one or more cluster numbers. Results
4 Matlab functions are available on: http://www.csse.uwa.edu.au/

�pk/Research/MatlabFns/index.html#edgelink.
are shown in Figs. 12 and 13 for k equal to 3 and after the
removal of one cluster.

2.4. Combining the results of each method

During experimentation, it became clear that each
method has its own strength and weakness. Filtering with
the elongated oriented filters usually detects most of the
cracks since a single value for s (which controls the width
of the filter, see Section 2.2.1) will generate a high
response from elongated structures of various widths.
This is one of the major advantages of this technique,
but also its weakness since other elongated structures
tend to have a high response after filtering as well. The
multiscale morphological approach described in Section
2.2.2 works well on images containing letters and sig-
nificantly reduces the number of mislabelings compared
to the classical top-hat transform. Moreover, thanks to the
introduced notion of scale when constructing the final
crack map, a distinction between fine and coarser cracks
is possible. However, on images such as parts of the face
of Adam, the method can miss some of the very small
cracks during the construction of the base map, resulting
in a number of undetected cracks when gradu-
ally building the final crack map through scale. The
K-SVD approach works generally well and provides a
very smooth crack map but results will depend on how
well the dictionary reflects different crack widths and
orientations.

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html#edgelink
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/index.html#edgelink
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Fig. 14. Crack merging workflow.
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In summary:
�
 We use elongated filters as a sensitive crack detector
with low selectivity for crack width.

�
 The multiscale morphological approach adds selectiv-

ity with respect to the crack width.

�

Fig. 15. Detecting white borders (left: original; right: detection results).

(For interpretation of the references to colour in this figure caption, the

reader is referred to the web version of this article.)
K-SVD adds smoothness to the crack delineation.

We propose a method for combining the above-men-
tioned techniques to exploit their respective strengths.
First we add all crack maps to obtain one ‘‘image’’ where
the value of each pixel ranges from 0 (no crack was
detected at that location) to 3 (all schemes detected a
crack at that location). From that image we generate a
binary map which we split in the same fashion as
mentioned in Section 2.3. For each of the objects a ratio
of ‘‘pixels detected by at least two methods’’ to ‘‘the total
number of pixels’’ is calculated. When that ratio falls
under a chosen threshold, the crack segment is discarded
from the final map (see Fig. 14 for an overview). In all our
examples a fixed threshold of 0.3 gave the best results.

2.5. Detecting crack borders-inpainting preprocessing

Some of the images suffer from an additional artefact
that proves to be very bothersome when inpainting, i.e.
the presence of whitish/bright borders along some of the
cracks. Most inpainting algorithms fill in gaps based on
pixel values from their immediate surroundings, in this
case the whitish borders around a crack. Hence the
missing regions will likely be filled with incorrect content
and the positions of cracks remain visible after inpainting.
When detecting bright cracks most of the thin bright
borders are captured, which on its own, proves to be
insufficient for acceptable inpainting results, since white
borders can be much wider than cracks. To solve this
problem, we extend the crack map with the correspond-
ing bright regions by using their high response in the blue
plane of the RGB representation of the image (Fig. 15
shows the blue plane for a window in the original).
A flood filling algorithm, using the maxima in the blue
plane as seeds and RGB values as filling condition, extends
the crack map so that the extension contains most whitish
borders. To avoid excessive extension of the borders too
far from the crack, we restrict the flood filling by an
Euclidean distance transform. Fig. 15 shows an example
where the detected bright borders are marked in yellow
(bright borders cannot extend further than 6 pixels from a
crack).
2.6. Two extra examples of crack detection results

Figs. 16 and 17 contain some extra examples of
detection results for dark and bright cracks, obtained
with the method described above (see Fig. 2). The test
images contain typical objects found in the different
panels from the Ghent Altarpiece.
3. Inpainting

3.1. Existing crack inpainting methods

In the process of virtual restoration of digitized paintings,
cracks, once detected, can be treated as missing regions that
need to be filled in. Therefore, removal of cracks falls into
the category of image inpainting. Crack inpainting methods
considered in the literature so far are mostly pixel-based
and include order statistics filtering [16,17], controlled



Fig. 16. Detection results: (a) original, (b) detail, wing span of bird (marked in red) is 1.2 cm (approximately 0.47 in) on the panel (c) overlap with dark

crack map, and (d) overlap with bright crack map. (For interpretation of the references to colour in this figure caption, the reader is referred to the web

version of this article.)

Fig. 17. Detection results: (a) original, (b) dark crack map, (c) bright

crack map, and (d) combined dark and bright crack maps.
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anisotropic diffusion [16] and interpolation [15]. In [18] a
patch-based texture synthesis method was used.

We shall compare our approach to the best performing
crack inpainting methods among aforementioned ones.
In particular, we use as a reference controlled anisotropic
diffusion, which was reported in [16] to outperform other
pixel-based crack inpainting methods, including order
statistics filtering. Our second reference method for
comparison is a ‘‘greedy’’ patch-based method of [11],
which was employed for crack inpainting (in a slightly
simplified form) in [18]. In addition, we tested a global
patch-based method of [13], which gives state-of-the-art
results among general inpainting techniques even though
it was not, to our knowledge, used for crack inpainting
before. For all of these methods, only crack pixels are
substituted, leaving the rest of the image intact.

Anisotropic diffusion [21] belongs to the pixel-based
inpainting methods where crack pixels are updated itera-
tively as a result of the diffusion process within their
neighbourhoods. It combines smoothing of slowly varying
intensity regions and edge enhancement. Controlled
anisotropic diffusion [16] takes into account crack orien-
tation, i.e. the operation is performed only in the direction
perpendicular to the crack direction. In our experiments,
this pixel-wise method does not always perform suffi-
ciently well (see Figs. 18 and 19) because of its inability to
reproduce texture and to fill in larger holes. Cracks should
normally be represented by thin lines, but in our case they
are quite wide because of the high resolution at which the
negatives were scanned. The lack of performance is
aggravated when the cracks suffer from whitish borders
which need to be treated as missing regions too (see
Section 2.5). Furthermore, the quality of the scans, i.e. the
presence of noise and scanning artefacts, raises the need
for better texture replication because diffusion-based
methods produce blurry results.

Patch-based methods fill in the missing (target) region
patch-by-patch by searching for similar patches in the
known (source) region and placing them at corresponding
positions. The basic idea of the ‘‘greedy’’ method [11] is
the following: for each patch at the border of the missing
region (target patch), find only the best matching patch
from the source region (source patch) and replace the
missing pixels with corresponding pixels from that match,



Fig. 18. Inpainting results for the central part of Fig. 17(a): (a) original,

(b) with controlled anisotropic diffusion, (c) with ‘‘greedy’’ patch-based

method, and (d) with global patch-based method.

Fig. 19. Influence of bright borders on inpainting. Left: Dark crack map

as input. Right: Combined dark and bright crack map as input. First row

shows the original image overlapped with crack maps. Second and third

rows show inpainting results with controlled anisotropic diffusion and

the patch-based method, respectively.

Fig. 20. Schematic representation of a patch-based inpainting algorithm.
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until there are no more missing pixels (Fig. 20). The
matching criterion is usually the sum of squared differ-
ences between the known pixels in the target patch and
the corresponding pixels in the source patch. In this way,
both texture and structure are replicated. Preserving
structures is achieved by defining the filling order. Priority
should be given to the target patches that contain object
boundaries and less missing pixels. In the case of digitized
paintings, the object boundaries are usually difficult to
determine due to painting technique (incomplete brush-
strokes), scanning artefacts, etc. Therefore, we define
priority based only on the relative number of existing
pixels within the target patch.

The global patch-based method [13] poses inpainting
as a global optimization problem. For each target patch in
the missing region several candidate patches are found
based on the known pixels and/or neighbouring context.
Again, the target patches are visited in a certain order that
favours patches containing object boundaries and less
missing pixels. Then one of the candidates is chosen for
each position so that the whole set of patches (at all
positions) minimizes the global optimization function.

The performance of the aforementioned methods is
evaluated only by visual inspection, as in other papers on
this application [16–18]. Quantitative comparison is
infeasible due to the unavailability of the ground truth
data, i.e. we have no information on how the painting
looked like in its original state, before the deterioration of
wooden panels. On the other hand, the nature of the
painting itself and the influences of the acquisition
process of the digitized version (such as noise and
scanning artefacts) make it very difficult to replicate the
problem in a form of a suitable toy example on which the
objective measurements could be performed.



Fig. 21. Inpainting with patch-based methods on part of the book:

(a) original image, (b) method [11] with dark crack map, (c) method [11]

with combined dark and border crack map, (d) label constrained

method, k-means segmentation [1], (e) label constrained method, MRF

segmentation, fixed patch size, and (f) label constrained method, MRF

segmentation, adaptive patch size.
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By visually comparing the results of these three
methods (see Fig. 18), we can see that both patch-based
methods outperform the pixel-based one, due to the
aforementioned reasons. However, they both still leave
much room for improvement when crack inpainting is
considered. The complex global method performs similar
to the simpler greedy one, but it results in a very high
computational load due to the high resolution of the scans
(e.g. for an image of 660�700 pixels it is around 100
times slower than the ‘‘greedy’’ method), making it
impractical for processing of larger areas. On the other
hand, limiting the method to small areas can jeopardize
finding the right match. Therefore, we adopt the ‘‘greedy’’
patch-based method and improve it for crack inpainting.

3.2. Open problems and proposed solutions for crack

inpainting

To improve the inpainting performance, some specifics
of the problem need to be tackled. In some cases the
presence of bright borders around the cracks (see begin-
ning of Section 2) causes the missing crack regions to be
filled with incorrect content and the positions of cracks to
remain visible after inpainting (see the results on the left
of Fig. 19). Often, this problem is partially solved by using
the bright crack map, which extends the dark crack map
with the corresponding bright regions. Because this bright
crack map also marks some of the bright borders, the
benefit of using this map is evident in all cases: in
the results on the right of Fig. 19 more cracks are detected
and inpainted, causing a more pleasing visual appearance.
However, for some images this procedure might not be
sufficient due to the width of the borders. In those cases,
the inpainting preprocessing from Section 2.5 is used to
obtain the map of crack border locations (see Fig. 15). The
improvement of the inpainting result is shown in Fig. 21c,
in comparison with the result obtained using just the dark
crack map shown in Fig. 21b. If the image also contains
bright cracks, all three maps (dark crack map, bright crack
map and border crack map) are combined together.

The standard patch-based method gives reasonably
good visual results for most parts of the panels. However,
the book of the Annunciation to Mary panel is exception-
ally difficult to process due to the width of the cracks,
prominent scanning artefacts and imperfect brushstrokes
(see Fig. 4 for a detail and Fig. 24 for the whole book). This
causes some cracks to remain undetected and misguides
the inpainting during the patch matching process. A first
consequence is that we can get an inpainted image where
small parts of letters appear erroneously in the back-
ground and the other way around, parts of letters get
‘‘deleted’’, i.e. replaced by background. A second conse-
quence is that positions of cracks remain visible. Exactly
in the part of the panel containing the book, accurate
inpainting is very important because of the case study on
paleographical deciphering explained in Section 4. To
further improve the crack inpainting results, we introduce
a novel method that involves two contributions: an
approach to patch candidate selection and an approach to
patch size adaptation. This method, that we call constrained

candidate selection, aims at performing context-aware
inpainting by constraining the search to certain parts of
the image, depending on the content of the current target
patch. Our method consists of three main steps:
1.
 Exclusion of damaged pixels: Although we use the bright
crack map and/or border crack map (see earlier in
Section 3.2) to deal with the problem of whitish borders
around the cracks, some damaged pixels still remain.
These pixels are either too distant from the crack, belong
to the non-detected cracks or appear in the source region
not related to the cracks. We detect these pixels based on
their high values in the blue plane and we treat them as
missing ones. We do not use the patches from the source
region containing damaged pixels as possible matches.
The threshold applied to the blue plane is chosen high
enough to allow sufficient number of candidate source
patches, while still detecting the artefacts around cracks.
In particular, we chose a fixed threshold equal to 220 by
inspecting the histogram of manually marked damaged
regions.
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Fig
(a)
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Label constrained matching: In the results from Fig. 21c
it can be seen that patch-based inpainting occasionally
introduces some artefacts. This can happen because
the known part of the target patch is not distinctive
enough to find the right source patch. Another reason
is that undetected cracks can be present in the known
part of the target patch so that the matched source
patch will probably contain a letter, since cracks and
letters often have similar properties. To minimize
these errors we first segment the image into two
classes: foreground (the letters and undetected cracks)
and background (the page of the book). In [1], we used
the k-means segmentation algorithm on the values of
the red plane because the difference between the two
classes is most visible there. Here, we improve the
results by using Markov Random Field (MRF) based
segmentation [27], which is briefly explained below.
Based on this segmentation, we constrain the search
for candidate patches. When inpainting a part of the
background, i.e. when all the known pixels in the
target patch are labelled as background, we only
accept source patches that belong completely to the
background as candidate patches. We could perform a
similar procedure for the target patches belonging
completely to the foreground. However, some cracks
that remain undetected by using the detection meth-
ods of Section 2 are also identified as foreground. This
can result in the unjustified insertion of letters and/or
cracks (foreground) in the background. Therefore, if
the target patch is not entirely in the background, we
search through all possible candidates.
3.
 Adaptive patch size: Instead of using a fixed patch size,
as most inpainting methods do, we make the patch
size adaptive to the local context. We start from the
maximal patch size and check if the target patch
completely belongs to the background. If this is the
case, we constrain the search to the background, as in
the previous step. If not, we reduce the patch size by
half and repeat the same procedure. Finally, if even
this smaller patch only partially belongs to the
. 22. Segmentation results for part of the book (cracks detected as in Section 2

result of k-means [1] and (b) result of MRF based segmentation. (For interpret

rred to the web version of this article.)
background, we search for the match of the target
patch of the maximal size at all possible locations.
As can be seen in Fig. 22a, k-means (as used in [1])
yields a noisy segmentation result with a lot of misclassi-
fied isolated dots in the background. Better context aware-
ness would be beneficial to circumvent the incompleteness
of letters. For these reasons, we use MRF based segmenta-
tion. To define the MRF, we need to specify local evidence,
i.e. the relationship between the measured (pixel) value
and the segment label, and a pairwise potential function, i.e.
the dependency between two neighbouring segment labels
(see [27] for more details). The former is defined as the
Gaussian function with mean value equal to the value of
the cluster center obtained with the k-means algorithm,
and standard deviation computed within each cluster. The
pairwise potential is determined by the discontinuity
preserving Potts model Vi,jðxi,xjÞ ¼ KTðxiaxjÞ, where T is
one if its argument is true and zero otherwise, K is a
positive constant and xi and xj are neighbouring segment
labels. For inference, i.e. to find the maximum a posteriori
estimate of the global optimization function, we use the
method from [28] previously developed by some of the
authors of this paper. The segmentation yielded by this
method is shown in Fig. 22b, and we can see that the
isolated dots have been removed and that the letters are
more compact.

Fig. 21d contains the result of the constrained candi-
date selection from [1] that uses k-means segmentation.
The effects of the proposed constrained candidate selec-
tion, using the MRF based segmentation, are illustrated in
Fig. 21e for the constant patch size, and in Fig. 21f for the
adaptive patch size. The results in Fig. 21e and f are
perceptually better than those in Fig. 21d. Compared to
Fig. 21e, Fig. 21f has less artefacts in the background
meaning that the adaptive patch size approach can better
locate target and source patches belonging to the back-
ground. Also, some letters are better inpainted. In com-
parison with the results of the method from [11] in
in red, letters and undetected cracks in black, background in white):

ation of the references to colour in this figure caption, the reader is



Fig. 23. Label constrained matching for image containing four seg-

ments: (a) original, (b) MRF segmentation, (c) result of patch-based

method [11], and (d) result with label constrained matching. Fig. 24. Book in the panel of the Annunciation to Mary. Its actual size on

the panel is approximately 12 cm (or 4.7 in) in length and a page is

approximately 7 cm (2.8 in) wide.
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Fig. 21c, the letters are better inpainted and the whole
image contains less visually disturbing bright borders.

Note that our label constrained matching, i.e. the
second step of the complete method, can in principle also
be used on more complex images, containing more than
two segments, to limit the search to specific areas so that
the computation time is reduced. However, in general, the
improvement on the quality of the inpainting result is
minimal. Results are shown in Fig. 23: (c) shows results
without label constrained matching and (d) with label
constrained matching, based on the segmentation shown
in (b).

4. A case study—De Visione Dei

In this section we focus on a detail that has puzzled art
historians for years, namely the text in a book represented
on the panel of the Annunciation to Mary (see Fig. 24).
The text can only be studied from high resolution photo-
graphs as access to the altarpiece (which is being kept
inside a vault behind glass) is difficult. Furthermore, the
height at which the text is situated on the panel makes a
direct reading for paleographers impossible. The text in
the Virgin Annunciate’s book is written in a so-called
littera formata (see Fig. 4 for a detail), which always poses
difficulties for paleographers to decipher. Sequences of
vertical stripes, often without ligatures, as e.g. 9999, can be
read as combinations of i, u, n, m, v, w, etc. Moreover,
horizontal abbreviation marks above the text lines replace
letters ‘n’ or ‘m’. In this particular text, the crack pattern
made deciphering even more problematic. Therefore, only
two significant word groups have been read: de visione dei

(on the vision of God), and dicit sapiens: ut possim edificare

(says the wise man: that I may build) [29]. This provides
not enough information to identify the text; it allows only
to speculate that it could be one of the numerous
medieval commentaries on the Bible.

As amply demonstrated in the abundant art historical
literature on the Ghent Altarpiece, each one of the many
inscriptions or texts on this painting bares important
clues to the original complex iconographical and theolo-
gical meaning of this work of art. Therefore any attempt
to improve the legibility of the text next to the Virgin
Annunciate is of great relevance to its art historical
interpretation.

The crack detection and inpainting process described
above has yielded a better legibility indeed. Although the
text cannot be read entirely, some additional word groups
can be deciphered now as: hio dicta significata (telling the
message with mouth wide open), de virtutibus d[ei]

(on the virtues of God), in videndo (the appearance of
God). The former reading of Prologus iste est ad can be
completed with the words differentiam cognite dei. More-
over, the paragraph mark on the upper left of the page
should be read as LXII (62) rather than VII (7).

All deciphered text fragments are related to the
Annunciation, and can be found in Thomas of Aquino’s
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Summa Theologica (written between 1266 and 1273). This
prominent medieval theologian commented in his book
on the Annunciation, on the vision of God, and in the 62nd
paragraph of the Summa, on the cardinal and theological
virtues (virtutibus). These first results provide a basis for
further research into the iconographical implications of
this text.

5. Conclusions

In this paper, we introduce a novel way of virtually
restoring paintings by detecting and removing cracks.
The practicability of the proposed methods is demon-
strated on images taken from the Ghent Altarpiece. Due to
the heterogeneous nature of these images, existing solu-
tions found in the literature have proven to be insuffi-
cient. For the detection of cracks, the outputs of three new
detection schemes are combined, hence capitalizing on
each method’s strength as much as possible. The paper
describes in detail all problems encountered and proposes
solutions for each of them. Due to the complexity of the
problem to separate the semantic content of the painting
from the crack pattern, several case dependent para-
meters have to be introduced, either automatically deter-
mined or manually tuned. For each of them we describe
how the values can be found and we motivate the choices
made. Furthermore, we explored the use of patch-based
inpainting for the removal of the detected cracks and
highlighted specific issues when inpainting the Ghent
Altarpiece. Improvements to existing patch-based
inpainting are proposed and we demonstrate the gained
performance. The inpainted images show less artefacts
and the results are overall visually more pleasing. To
demonstrate the applicability and the use of the proposed
techniques, we presented the initial findings of a case
study involving the deciphering of text in the panel of the
Annunciation to Mary.
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