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a b s t r a c t

The effects of several nonlinear regularization techniques are discussed in the framework
of 3D seismic tomography. Traditional, linear, ‘2 penalties are compared to so-called spar-
sity promoting ‘1 and ‘0 penalties, and a total variation penalty. Which of these algorithms
is judged optimal depends on the specific requirements of the scientific experiment. If the
correct reproduction of model amplitudes is important, classical damping towards a
smooth model using an ‘2 norm works almost as well as minimizing the total variation
but is much more efficient. If gradients (edges of anomalies) should be resolved with a min-
imum of distortion, we prefer ‘1 damping of Daubechies-4 wavelet coefficients. It has the
additional advantage of yielding a noiseless reconstruction, contrary to simple ‘2 minimi-
zation (‘Tikhonov regularization’) which should be avoided. In some of our examples, the ‘0

method produced notable artifacts. In addition we show how nonlinear ‘1 methods for
finding sparse models can be competitive in speed with the widely used ‘2 methods, cer-
tainly under noisy conditions, so that there is no need to shun ‘1 penalizations.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Since geophysical inverse problems are almost always underdetermined, regularization techniques are essential to obtain
a meaningful solution. Two major classes of techniques exist. The first one, named ‘mollifying’ in the mathematical literature,
or ‘optimally localized averaging’ (OLA) in helioseismology, can be traced back to the groundbreaking work of Backus and
Gilbert [1,2] in geophysics. In this approach one searches for the size of an averaging volume that can produce a local average
of the model parameter with an acceptable variance. Since this method is computationally very expensive, it has found little
application in large-scale geophysical inversions such as seismic tomography. To limit the computational effort, seismic
tomographers instead search for a biased (‘damped’) solution. This has the disadvantage of introducing a systematic error
– the bias – in lieu of the random error caused by the propagation of data errors. It can be turned into an advantage if
the bias actually reflects a justified disposition of the scientist to prefer certain models over others, as long as the data
are fit within their error bars.

Simple ‘2-norm damping, which biases model perturbations towards zero in the absence of information based on the
data, is generally a bad choice to regularize the inverse problem for seismic tomography as it tends to introduce structures
. All rights reserved.
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reflecting ray coverage into the images. For that reason, most tomographers prefer to bias the model towards ‘smooth’ anom-
alies, in effect trying to forge a compromise between Backus–Gilbert theory and the efficiency of damped inversions. The
smoothness of the images has the advantage that large structures become easily visible. Sharp discontinuities, however,
are blurred, and smaller structures, even when resolved, may be diluted beyond recognition. Recently, Loris et al. [3] — here-
after referred to as Paper I — introduced a third option for the bias in geophysical inversions: to minimize the ‘1 norm of the
wavelet decomposition. This also biases the model towards zero, but it turns out that such reconstructions always have
many (or most) wavelet coefficients exactly equal to zero (i.e. they are sparse). In a synthetic 2D experiment using surface
wave data, we showed how structurally coherent features (in a geophysical sense), were more faithfully reproduced using
this technique than with a simple ‘2-norm damping. In addition, as a result of their inherent sparsity, ‘1 reconstructions ex-
hibit much less noise than their ‘2 counterparts.

Though Paper I clearly showed the feasibility of wavelet-based ‘1 regularization it left a number of questions unanswered,
in particular which wavelet families work best, how they would perform against more sophisticated ‘2 norms (e.g. smooth-
ness damping) and whether the computational feasibility as well as the positive conclusions for wavelet regularization do
scale up to large, 3D models.

In this paper we therefore aim to refine the original conclusions of Paper I and to enlarge the scope of the investigation.
We extend tests to 3D inversions of body wave travel times and investigate the use of different families of wavelets (Haar,
D4, and dual tree). We include a comparison with smoothness damping, and with a fourth option named ‘total variation’
damping. Unlike Paper I, we also discuss so-called ‘0 constrained recovery. In contrast to the ‘1-norm technique which relies
on iterative soft-thresholding, the ‘0 recovery method uses iterative hard-thresholding of wavelet coefficients [4,5].

The (salt dome) model that we try to reconstruct here is more realistic than the model in Paper I and includes a wide
range of length scales. The problem described in Paper I was also of a very limited size: there were only about 104 degrees
of freedom in the reconstructed models. Here we perform 3D reconstructions, and increase the number of degrees of free-
dom by an order of magnitude to about �105. The number of data also increases accordingly to 24000. Our approach is com-
plementary to that of [6] who expand the Fréchet kernels into wavelets to obtain a significant reduction in the memory
requirements to store the kernel.

One disadvantage of the ‘1 norm, ‘0 and total variation penalties is that they lack the convenient linearity of the more
conventional ‘2-norm minimizations. Making use of recent algorithmic improvements, we do demonstrate that finding a
(nonlinear) sparse model reconstruction is not necessarily more expensive, computationwise, than ‘2-based (linear)
reconstructions.

The use of ‘1 norms in seismic tomography was to the best of our knowledge first proposed in [7] in the form of an iter-
atively reweighted least squares method (IRLS, see also [8]), but has never found much favor, possibly because the conver-
gence of IRLS was not guaranteed. Besides its use in seismic tomography ‘1 norms have found application in other
geophysical contexts such as deconvolution and interpolation [9–12]. The use of ‘1 norms in combination with a carefully
chosen basis (such as wavelets) is, however, more recent and is largely inspired by the recent development of compressed
sensing [13–15], that shows that under certain conditions an exact reconstruction can be obtained by solving an ‘1 regular-
ized inverse problem, provided there is an underlying basis in which the desired model is sparse. This emphasizes the impor-
tance of studying different ‘‘dictionaries” as we do here. Recently [16] has successfully applied the compressed sensing idea
to wavefield reconstruction, albeit on small-scale problems only. The success and promise of compressed sensing has there-
fore also increased interest in the speed-up of such ‘1 problems to be able to handle practical geophysical applications (e.g.
[17,18]).
2. Forward problem formulation

We plan to test the regularization methods on a synthetic data set generated for a salt dome model. Since the main goal of
this paper is to evaluate and compare a number of algorithms, numerical efficiency is more important than the wish to have
a tomographic problem at hand that is fully realistic. We have thus taken a few shortcuts to be able to run inversions quickly
in Matlab on a single processor. However, we took pains to ensure that we would invert for a model that has a large range of
length scales, and that the ray coverage would encompass both dense and sparse regions.

In dimensionless variables, the expression for a finite frequency sensitivity kernel corresponding to a constant back-
ground and a Gaussian power spectrum is given by the formula:
Kðx; y; zÞ ¼ e�u2
H5ðuÞ

24kdsdr
; ð1Þ
where u ¼ pðds þ dr � dsrÞ=k. Here d sr is the distance between source (earthquake) and receiver (station), and ds; dr are the
distances to source and to receiver, measured from the point ðx; y; zÞ. k is the dominant wavelength and
H5ðuÞ ¼ 120u� 160u3 þ 32u5 denotes the Hermite polynomial of order 5. Eq. (1) can be derived from the expressions for
the Fréchet kernel in a homogeneous medium using an analytical expression for the spectral integration (see [19]).

The constant background model that we use here is not at all realistic from a physical point of view for the salt dome
input model that we will use in Section 4: in case of large velocity contrasts kernels are bent rather than straight as in
expression (1). However, as we will use the same constant background kernels (1) for generating synthetic data as well
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as for reconstructing models from these data, we believe it is possible to accurately evaluate the effects of the regularization
technique on the inversions. Obviously, reconstructing a model from actual measurements requires kernels of a more com-
plicated shape than (1) but their resolving power is not fundamentally different from those used in our simple application.

For each source–receiver pair and each dominant wavelength, the travel time differential and the model perturbation m
are connected by the linear integral relation [20]1
1 For
dT ¼
Z

V
K mdV : ð2Þ
Given sufficiently many data, the aim of seismic tomography is to reconstruct the model m from a noisy version of the data
vector d containing many travel time differentials corresponding to many source–receiver pairs.

In Section 4 we will perform a number of seismic reconstructions. The domain on which we will do this is the cube
V ¼ ½�1;1�3. For discretization, this domain is subdivided in 643 voxels, a convenient choice for the digital reconstruction
of a model m, leading to 262,144 degrees of freedom in m. In order to be able to produce meaningful reconstructions, we
expect to need at least 104 data (about 1 datum for 10 degrees of freedom). Hence we will choose 4800 source–receiver pairs
and five different dominant wavelengths so as to yield 24,000 data. This represents an overparametrization by a factor of
more than 10. Thus regularization will be an essential requirement for any data inversion.

A very efficient set-up of our numerical experiment was obtained as follows: we first choose 100 source–receiver pairs in
random positions on the surface of the cube, while making sure source and receiver are never on the same face (the kernels
(1) are not curved and would not be able to cross the model domain very much if source and receiver were on the same face).
From these initial 100 pairs, we construct the full set of 4800 pairs by using the 48 symmetry transformations of the cube.
These 48 operations are constructed from the 3! permutations of the coordinates (x,y,z), and by the 23 reflections
(�x;�y;�z), as listed in Table 1. In other words, starting from one initial kernel Kðx; y; zÞ we easily obtain 47 other kernels:
Kðz; x; yÞ;Kðy; x;�zÞ, . . ., corresponding to differently positioned source–receiver pairs. The random nature of the positions of
the original 100 source–receiver pairs (i.e. no coordinate is exactly zero or exactly equal to plus or minus another coordinate)
ensures us that none of the 4800 source–receiver pairs are identical. The initial 100 source–receiver pairs and the final 4800
pairs are shown in Fig. 1.

For each of the 4800 source–receiver pairs we will construct five finite frequency sensitivity kernels of type (1) corre-
sponding to five different dominant wavelengths k ¼ f0:5;0:2;0:08;0:04;0:025g. Thus, in total there will be 24,000 kernels
at our disposal. Because of the symmetry transformations used and the random choice of the initial 100 source–receiver
pairs, the coverage of the domain by these 24,000 kernels is quite uniform. A picture that illustrates this property is too large
to include here, but it is available in the online Supplementary material as Fig. A.1.

In order to give the reader an idea of the size of the Fresnel zones of these finite frequency kernels, we include in Fig. 2 and
in one of the panels of Figs. 6 and 7 a cross-sectional view of five kernels. Each of these kernels corresponds to one of the five
wavelengths ðk 2 f0:5;0:2;0:08;0:04;0:025gÞ and source–receiver distance dsr ¼ 2. The width of the Fresnel zone is propor-
tional to

ffiffiffiffiffiffiffiffiffi
kdsr

p
[21]. The cross sections in Fig. 2 illustrates not only the typical widths of the kernels, but also their relative

amplitudes.
Additionally we construct a second operator containing only 20,000 out of the 24,000 kernels. We choose to remove the

4000 kernels for which the line connecting source and receiver (i.e. the central ray) comes closest to the point
(0.24,�0.7,�0.23). In this way, we end up with an operator that has a ‘hole’ in its coverage of the cube (see Fig. A.1, right).
Using this operator we will be able to study the effect of non-uniform coverage on reconstructions.

To discretize the model into voxels we calculate the integral of the sensitivity kernels over each voxel (using a Riemann
sum with 43 terms/voxel) for each source–receiver pair and for each of the five dominant wavelengths we consider. The
resulting values make up the operator A we want to invert: Because there are 24,000 kernels and 643 ¼ 262;144 voxels,
the matrix A will have 24,000 rows and 262,144 columns.

The use of the 48 symmetry transformations of the cube allows us to save a factor of 48 in memory requirements for our
calculations, i.e. we need to compute and store only 500 kernels corresponding to the initial 100 source–receiver pairs and 5
wavelengths. The remaining ones are easily (and quickly) generated from these 500 kernels by the symmetry transforma-
tions of the cube (quick rearrangements of the elements in a 3D array).

An additional saving in memory requirements is obtained by exploiting the fact that most kernels are well localized (i.e.
they are thin), and thus that the Aij are practically zero for many voxels. In other words, each row of the matrix A is relatively
sparse.

Although this set-up is completely unrealistic from a physical perspective, this configuration of rays provides for an easy
way to compare dense and partial data coverage of the model. It also allows us to focus on the relative merits of the inversion
methods rather than on the difficulties a physically faithful modeling would entail.

In reality, sensor coverage is limited to the surface and a few boreholes. High-frequency data with narrow Fresnel zones
therefore leave significant areas at depth not illuminated by acoustic waves. Low-frequency data have wider Fresnel zones
but suffer a reduced sensitivity to small length scales. Illumination itself does not guarantee resolution as becomes clear
when one regards the singular value spectrum of A: though the spectrum depends strongly on the experimental set-up, it
convenience, we denote the model perturbation by m instead of dm as is often done.



Fig. 1. (Left) The cube ½�1;1�3 with the initial 100 source–receiver pairs (black, source and red, receiver). (Middle) The 4800 source–receiver pairs one
obtains by applying the 48 symmetry transformations of Table 1 on the initial 100 pairs. (Right) A single source–receiver pair joined by a straight line and its
48 transformations. Plotting all 4800 rays obtained in this way would fill the whole cube. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 2. Cross sections (perpendicular to the midpoint of the central ray) of five finite sensitivity kernels corresponding to k 2 f0:5;0:2; 0:08;0:04; 0:025g.
Larger wavelength kernels are wider but have smaller amplitude.

Table 1
A list of rotations and reflections that map the unit cube ½�1;1�3 onto itself. They are constructed by combining the six permutations of ðx; y; zÞ and eight sign
changes of the components ðx; y; zÞ.

Permutations

Sign changes (x,y,z) (x,z,y) (y,x,z) (y,z,x) (z,x,y) (z,y,x)
(x,y,�z) (x,z,�y) (y,x,�z) (y,z,�x) (z,x,�y) (z,y,�x)
(x,�y,z) (x,�z,y) (y,�x,z) (y,�z,x) (z,�x,y) (z,�y,x)
(x,�y,�z) (x,�z,�y) (y,�x,�z) (y,�z,�x) (z,�x,�y) (z,�y,�x)
(�x,y,z) (�x,z,y) (�y,x,z) (�y,z,x) (�z,x,y) (�z,y,x)
(�x,y,�z) (�x,z,�y) (�y,x,�z) (�y,z,�x) (�z,x,�y) (�z,y,�x)
(�x,�y,z) (�x,�z,y) (�y,�x,z) (�y,�z,x) (�z,�x,y) (�z,�y,x)
(�x,�y,�z) (�x,�z,�y) (�y,�x,�z) (�y,�z,�x) (�z,�x,�y) (�z,�y,�x)
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often has a rapid drop-off and a significant fraction of eigenvalues is either zero or too small to be useful. In the present syn-
thetic experiment, we chose to have about 1 datum for every 10 degrees of freedom in the model. The uniform random dis-
tribution of sources and receivers on the surface of the cube has a favorable influence on the singular value spectrum of A
(we were able to confirm this on a scaled-downed version of the present operator A, but not on the full 24,000�262,144
matrix), and will aid in the reconstruction . This will allow us to focus on the characteristics of the different reconstruction
methods, rather than on the lack of data.
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3. Reconstruction methods

Reconstructing the model m from the data d is done, in principle, by solving the linear system Am=d, where A denotes, as
before, the matrix containing the kernels discretized in the voxel basis. This system may contain incompatible equations
(due to noise), and at the same time be underdetermined (not enough data to reconstruct all of m).

The problem of incompatible data can be solved by replacing the original problem with the minimization of a data fidelity
term:
�m ¼ arg min
m
kAm� dk2

: ð3Þ
Here and in the following kuk (without subscripts) always denotes the usual 2-norm of u: kuk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiP

iu
2
i

q
. Although a mini-

mizer always exists (because of the quadratic nature of the functional), it may not always be unique. In other words, the
problem is still underdetermined and an iterative numerical scheme for finding a minimizer of (3) may diverge. In fact, be-
cause of the existence of data errors we are not even looking for the exact minimizer (3). We rather augment the functional
in (3) by a term that will penalize a whole category of models that is thought to be unphysical.

3.1. ‘2 penalties

The prime example of this kind of method is Tikhonov regularization [22] whereby a penalty proportional to the ‘2 norm
of the model is imposed:
�m ¼ arg min
m
kAm� dk2 þ lkmk2

: ð4Þ
This will effectively prevent the model from growing unboundedly due to noise in d and ill-conditioning of the matrix A.
Another, closely related, possibility is to impose a penalty consisting of the ‘2 norm of the (discrete) Laplacian Dm of m:
�m ¼ arg min
m
kAm� dk2 þ lkDmk2

: ð5Þ
As we will see in Section 4, this will enforce a certain degree of smoothness on the reconstructed model. The Laplacian used
here is defined as the difference of the model with the local average over the six nearest neighbors: ðDmÞijk ¼mijk�
ðmi�1jk þmiþ1jk þ . . .þmijkþ1Þ=6.

The above two versions of the Tikhonov regularization method have the advantage of being solvable by linear equations.
The variational equations that determine the minimizers of (4) and (5) are:
AT Amþ lm ¼ AT d; ð6Þ
and
AT Amþ lDTDm ¼ AT d; ð7Þ
respectively (with suitable treatment of boundary voxels, DT ¼ D in the latter case). For these linear equations, we can use
the conjugate gradient algorithm. With mð0Þ = arbitrary and rðnÞ ¼ ATðd� AmðnÞÞ � lDT DmðnÞ, we set
vðnÞ ¼
rðnÞ n ¼ 0
rðnÞ þ krðnÞk2

krðn�1Þk2 vðn�1Þ n > 0

(
mðnþ1Þ ¼mðnÞ þ kvðnÞk2

kAvðnÞk2þlkDvðnÞk2 vðnÞ;

ð8Þ
where D is either the unit matrix I (in case we seek to minimize functional (4)) or D (in case we use functional (5)). The mod-
el estimates mðnÞ converge to the minimizer (4) or (5), respectively, as n increases.

3.2. ‘1 penalties

Another and much more recent method of regularization consists of imposing a carefully chosen ‘1-norm penalty [23]. It
can be shown that this leads to a sparse model, i.e. a model with few nonzero components [14,15]. It would therefore not be a
good idea to apply this technique to the model in the voxel basis (there is no reason to assume the model would be sparse in
that basis); we would rather use this penalty on the coefficients of the model in a different basis in which we believe the
model to be sparse.

Harmonic functions would allow us to select resolvable scales, but the complete lack of localization of these functions
makes them even worse candidates than voxels. 3D wavelets offer a compromise between the concentration of power in
both scale and location, and are intuitively more suitable to build geophysically reasonable models. In fact, our earlier expe-
rience (Paper I) showed the advantages of using a wavelet basis, and constructing the model by finding the minimum of the
functional
kAm� dk2 þ 2lkwk1; ð9Þ
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where w ¼Wm are the wavelet coefficients of m. This minimization problem can be rewritten as:
�m ¼W�1 �w and �w ¼ arg min
w

FðwÞ with FðwÞ ¼ kAW�1w� dk2 þ 2lkwk1: ð10Þ
W is the wavelet decomposition matrix and W�1 the wavelet synthesis operator. This type of ‘1-norm penalty leads to a
model that has a sparse wavelet representation, i.e. a model with (very) few nonzero wavelet coefficients. The aim is thus
to rely on the properties of the wavelet basis to be able to represent the desired solution with few nonzero components.
In geophysics wavelets are a good choice for seismic reconstruction as they allow for sparse representations of overall
smooth functions, while still capable of taking into account the possibility of isolated sharp features [24,3].

Another advantage of the ‘1 method is that they yield noise-free model reconstructions. This is a consequence of the sim-
ple fact that noise in the model cannot be represented in a sparse way (in any reasonable basis). This method is thus able to
produce clean models without the need for additional smoothing. It is important to note that the least-squares functional
(10) is convex. This implies that a local minimum of (10) is always a global minimum as well.

In Section 4, we shall consider a number of different choices of orthonormal wavelet bases. For each of these choices, we
have W�1 ¼WT , which we will implicitly assume hereafter.

In order to find the minimizer �w of the ‘1-penalized functional (10), one may use the iterative soft-thresholding algorithm
[23]:
wðnþ1Þ ¼ T wðnÞ
� �

; ð11Þ
with
TðwÞ ¼ Sal wþ aWAT d� AWT w
� �h i

; ð12Þ
and where wð0Þ may be chosen arbitrarily. The soft-thresholding SsðuÞ function operates componentwise and is defined by
SsðuÞ ¼
u� s u P s
0 juj 6 s
uþ s u 6 �s:

8><>: ð13Þ
This algorithm was used in a 2D seismic tomography toy problem in Paper I, to which we also refer for a brief but elementary
derivation (Section 2 of Paper I). In effect, it is a simple gradient descent algorithm (with fixed step length a) where the addi-
tional soft-thresholding operation Sal is a mathematical consequence of the ‘1-norm term present in functional (10).

The constant a should be chosen such that akAT Ak is smaller than or equal to 1 (kAT Ak is defined as the largest eigenvalue
of AT A) [23]. In our calculation we always choose a ¼ 0:95=kAT Ak.

The wavelet transform W and its inverse WT are fast transforms. This means that they cost only a fraction of the computer
time needed to perform one application of A or AT . In other words, working in a wavelet basis does not significantly change
the computational complexity of the reconstruction algorithm.

As the iterative soft-thresholding algorithm (11) can be slow in practice, we have opted here for using the so-called Fast
Iterative Soft-Thresholding Algorithm (FISTA) [25] (see also earlier work of Nesterov [26,27]):
wðnþ1Þ ¼ T wðnÞ þ tn � 1
tnþ1

wðnÞ �wðn�1Þ� �� �
; ð14Þ
with t0 ¼ 1 and tnþ1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

n

q� �
=2. The FISTA algorithm has practically the same computational complexity as the iter-

ative soft-thresholding algorithm (11). It only requires one additional vector addition. With this algorithm the ‘1 penalized
cost function (10), evaluated at w ¼ wðnÞ, is bounded by Oð1=n2Þ from its limiting value:
F wðnÞ
� �

� F �wð Þ 6 4
kwð0Þ � �wk2

aðnþ 1Þ2
; ð15Þ
as opposed to the Oð1=nÞ decrease:
F wðnÞ
� �

� Fð �wÞ 6 kw
ð0Þ � �wk2

an
; ð16Þ
that can be proven for algorithm (11). These upper bounds are valid non-asymptotically, i.e. even for small n [25,28].

3.3. ‘0 penalties

Recently, mathematical advances on direct ways of constraining the number of nonzero components in a reconstructed
model have appeared. In [4,5] an iterative hard-thresholding algorithm is proposed of the following form:
wðnþ1Þ ¼ eT wðnÞ
� �

; ð17Þ
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with
eT ðwÞ ¼ Hk wþ aWAT d� AWT w
� �h i

ð18Þ
and where the hard-thresholding operation HkðuÞ sets all but the largest (in absolute value) k components of u to zero. This
algorithm converges to a local minimum of
kAW�1w� dk2 under the condition kwk0 6 k: ð19Þ
Here kwk0 denotes the number of nonzero coefficients of w. Just as with the ‘1 penalty method, we shall apply this technique
using a wavelet basis. The underlying reason is again the suitability of a wavelet basis to represent a physically acceptable
model with few nonzero wavelet coefficients. We stress that the appearance of the hard-thresholding operation Hk is a
mathematical consequence of the constraint kwk0 6 k, just as soft-thresholding in (12) is a mathematical consequence of
the ‘1 term in (10) [23,3].

The algorithm (17) converges very slowly. We therefore propose the following FISTA/Nesterov-like modification:
wðnþ1Þ ¼ eT wðnÞ þ tn � 1
tnþ1

wðnÞ �wðn�1Þ� �� �
; ð20Þ
with t0 ¼ 1 and tnþ1 ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

n

q
Þ=2. As far as the authors know, this is the first time this algorithm is proposed. Although

there is no proof of convergence yet, we found that it worked quite well on the examples that we studied (see Section 4). We
used the same choice for the step-length a as with the ‘1 algorithm: a ¼ 0:95=kAT Ak. The choice of the number of nonzero
model wavelet coefficients k in method (19) is discussed in Section 3.5.

On a side note, it would also be possible to calculate a local minimizer of the (non-convex) functional
kAW�1w� dk2 þ lkwk0 ð21Þ
using componentwise hard-thresholding (with a fixed threshold
ffiffiffiffilp ) [4]. However, [5] seems to prefer the formulation (19)

that imposes a fixed number of nonzeros in each step of the iteration, rather than a fixed lower bound
ffiffiffiffilp for the absolute

values of the wavelet coefficients.
Although no proof of convergence of algorithm (20) is given, we shall refer to it by the name ‘‘0 method’ (instead of calling

it ‘hard-thresholded Nesterov accelerated gradient descent algorithm’).

3.4. Total variation penalty

A final penalty term we will consider is the so-called ‘total variation’ (TV) penalty:
�m ¼ arg min
m
kAm� dk2 þ 2l

X
ijk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxmð Þ2 þ Dym

� �2 þ Dzmð Þ2
q

; ð22Þ
with Dxm ¼mijk �mi�1jk and similarly for Dy and Dz. This penalization will favor piecewise constant models in the voxel ba-
sis. Unfortunately, the equations that determine the minimizer (22) are again nonlinear. We will use a reweighed conjugate
gradient method [29] to determine the minimum of the TV functional (22). More specifically, defining the weights
uðnÞ ¼ ðDxmðnÞ þ DymðnÞ þ DzmðnÞÞ�1=2, we shall use algorithm (8) where we choose DT D ¼ DT

x uðnÞDx þ DT
y uðnÞDy þ DT

z uðnÞDz

(which depends on the iteration n) and use that kDvðnÞk ¼ hDT DvðnÞ;vðnÞi. Because of the non-quadratic nature of functional
(22), the conjugate gradient algorithm no longer preserves conjugacy between successive search directions vðnÞ as n grows.
For this reason, the iteration is also reset every so often (in accordance with [29]).

An algorithm similar to (11) and (14) may also be used to find the minimizer of the TV-penalized functional (22) [30,31].
In fact, in [30] it is shown how the ‘1-norm penalty and the TV penalty can be combined in a single functional.

3.5. Choice of the penalty parameter

As such, the minimizers defined by (4), (5), (10) and (22) still depend on the penalty parameter l, or in case of the hard-
thresholding algorithm (20) on the parameter k. In the reconstructions below, we select this parameter by requiring in each
instance that the reconstructed model �m fits the data d as well as possible, but not any better than the noise level:
kA �m� dk � knk; ð23Þ
with n representing the noise vector. In other words, the discrepancy principle tells us to choose the penalty parameter l (or
k) such that
kA �m� dk2
.
r2 � number of data; ð24Þ
where r is the noise variance (if different data have different variance, it is simplest to divide from the outset each row as
well as the right hand side by the standard deviation of its datum, and set r ¼ 1 in (24)). In practice, this means that we will
have to perform the minimization several times, until a suitable value of l or k is determined for each reconstruction.
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4. Reconstructions

In this section we present some sample reconstructions using the algorithms mentioned in Section 3, applied to the finite
frequency tomography problem described in Section 2. First we will consider a simple checkerboard input model that we
will try to reconstruct from incomplete and noisy data. We will also look at a more complicated salt dome model which
we obtained from BP America, Inc.

In each case, our procedure will be the following. We start from a known input model minput from which we construct
synthetic noisy data d:
2 For
d ¼ Aminput þ n: ð25Þ
The noise n is taken from a Gaussian distribution, with zero mean and variance r chosen in such a way that
knk=kAminputk ¼ 0:1; in other words, we add 10% noise to the noiseless data. The goal is then to try to reconstruct minput

as well as possible from d and A. For this we will use methods (4), (5), (10), (19) and (22), and compare the results. Since
we know the noise variance r, we can use the criterion (24) to choose the penalty parameter l or k. This parameter will
be different for the various synthetic data and for the various penalties that we impose.

For the wavelet-based methods (10) and (19), we also need to choose a specific wavelet family. There are many wavelet
bases, with varying degrees of smoothness and approximation properties [24]. This gives us the opportunity to adapt our
choice of wavelet basis to the model: we will choose the basis in which we suspect the model to be sparse. In particular,
for the checkerboard reconstruction we will use Haar wavelets because we know that the true solution is very sparse in that
basis. We thus expect a very accurate reconstruction in that case. For the salt dome input model, we will compare the effects
of different choices of wavelets bases on the reconstruction. Our choice will include Haar wavelets, D4 wavelets and also
directional dual tree wavelets. Haar wavelets are the least smooth, and directional wavelets are the most smooth of these
three.

4.1. Checkerboard

The first example consists of a checkerboard pattern; in other words the input model minput is piecewise constant (±1) on
small cubes of 8 by 8 by 8 voxels. It mainly serves as a proof of principle for the ‘1 wavelet method (10) because we know
that this input model is sparse in the Haar wavelet basis [32]. The Haar wavelets are piecewise constant. In fact, the model
only has 99 nonzero coefficients in that basis (out of 262,144). Hence, we may expect that the ‘1 method will work very well
with this model and this basis.

A single horizontal slice of the checkerboard input model and its four reconstructions are shown in Fig. 3. These four
reconstructions use all 24,000 kernels so that no particular region in the model is favored or disadvantaged. The ‘1 recon-
struction (10) with Haar wavelets is visually the most faithful to the original, closely followed by the ‘0-Haar reconstruction.
The ‘2-reconstructions 4, 5 and the TV reconstruction (22) display smooth transitions between +1 and �1. The reconstruction
result of the simple ‘2 method (4) is quite noisy, which is not the case for the other methods. For completeness and viewing
convenience, the online Supplementary material includes a picture (Fig. A.2) of all the horizontal slices of the input model
and its various reconstructions.

The smoothing effect of the reconstructions can quantitatively be seen from the histogram of the reconstructed model
amplitudes (see Fig. 4). The ‘2 reconstruction takes on mostly values around zero, whereas the input model only has ampli-
tudes +1 and �1 (vertical blue2 lines). In this case, the ‘1 Haar reconstruction does a very good job at recovering the �1
amplitude distribution, as it is naturally well suited for the particular checkerboard model used. The ‘0 method does second
best and the TV method (22) does third best from this point of view. It is surprising that the ‘1 method outperforms the ‘0

method in this case.
The checkerboard model shows that good reconstructions are possible if one has very good prior knowledge on the mod-

el. When using the ‘0 and ‘1 methods this requires a basis in which the desired model is very sparse. The checkerboard model
that was used here aligns optimally with the chosen Haar basis. The results of ‘1 and ‘0 reconstructions deteriorate when the
checkerboard pattern is shifted w.r.t the Haar basis or when the size of the fields are changed (the Haar basis decomposition
of such a checkerboard would seize to be sparse). As such, the checkerboard model we choose is very particular. For realistic
reconstruction scenarios one should not expect such excellent results.

A discussion of the mean square error of the various reconstructions is given in Section 4.3, where other computational
aspects are also discussed.

4.2. A 3D salt dome model

In this section we try to reconstruct a complex 3D model of a realistic salt body in the subsurface. The complex salt dome
model was obtained from a prestack depth-migration of field seismic data in the deep-water part of the Gulf of Mexico, and
was kindly provided to us by BP America, Inc. To better accommodate the straight-ray tomography used in this paper, the
interpretation of the references to color in this figure the reader is referred to the web version of this article.
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Fig. 3. A single horizontal slice (number 25 (from top) out of 64) of the checkerboard model and its reconstructions using all 24,000 data. The whitish
transitions in several of the reconstructions are the result of smoothing between +1 and �1 of the input model. As the input checkerboard has fields of size
8� 8� 8 with constant model value ±1, the smoothing occurs with period 8 as well. In addition, the ‘2 reconstruction has a distinctive noisy appearance.
The ‘1 reconstruction using Haar wavelets is visually indistinguishable from the input model. The ‘0 method does almost as well.
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Fig. 4. Histograms of the amplitude distribution of the five checkerboard reconstructions. The input model takes on values +1 and �1 only. The ‘1

reconstruction in the Haar basis, and to a lesser extent the ‘0-Haar reconstruction, result in almost perfect reconstruction of the amplitude distribution
whereas the amplitudes are shifted towards zero by the other reconstruction methods.
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sediment velocities surrounding the salt dome model that were present in the original model provided to us, were replaced
with a constant velocity. This model was superimposed on a background model with long-wavelength variations (smoothed
Gaussian). The model has a rather sharp contrast between the velocity in the salt and in the surrounding background model,
providing for sharp edges. A single horizontal slice through the resulting salt dome model is pictured in Figs. 6 and 7. For
completeness, all 64 horizontal slices are shown in Fig. A.3 (right) of the online Supplementary material (as well as the
smoothed Gaussian that was added in; Fig. A.3, center). Three contour plots of this model are shown in Fig. 5, corresponding
to the model values m ¼ 0:9;m ¼ 1 and m ¼ 1:1. The model contains 64� 64� 64 ¼ 262;144 voxels as in the checkerboard
examples.

We perform the same type of experiment as before: we construct synthetic data and add 10% Gaussian noise to it. From
this noisy data, we try to reconstruct the input model. There are two differences with the checkerboard reconstructions. First,
we will compare several different wavelet families for the ‘1 and ‘0 reconstructions (in this case, there is no obvious reason to
prefer Haar wavelets over other wavelet bases). Second, we will repeat the reconstruction experiment for an operator that
has only 20,000 kernels instead of 24,000, to simulate imperfect coverage of the model domain by the kernels. In other
words, with the 20,000 kernel reconstruction, a region of the model is ill resolved.

The wavelet families used are, in order of increasing smoothness: Haar [32], D4 [33,34] and so-called directional dual tree
(DT) wavelets [35,36]. The Haar and D4 wavelet transform on the cube are direct products of the corresponding wavelet
transforms in 1D. The DT wavelet transform is not and it has, by construction, better directional sensitivity. The D4 wavelets
that we will use do not suffer from edge effects as they do not use periodic boundary conditions, but follow the interval
scheme proposed in [33,34]. Other model parameterizations that could be used are shearlets or curvelets (they are partic-
ularly suited to sparsely represent models with singularities along curves or surfaces), but we did not include them in our
study [37–39].

Judging the success of an algorithm to reconstitute the input model invariably involves a degree of subjectiveness, even if
one designs a numerical measure for goodness of model fit. Such measure might also depend on the goal of the scientific
experiment conducted. For example, if one deducts temperatures from velocity variations, it is more important that the
amplitudes are correct and less important that sharp edges of an anomaly are preserved, but a structural geologist may
be more interested in the edges and may wish to involve the misfit of the gradient, for example.

In Table 2, we list the amplitude misfit ðkm�minputk=kminputkÞ and judge the fit to other features visually. A single hor-
izontal slice (number 25) of the different reconstructions is pictured in Fig. 6 and all 64 horizontal slices are shown in Fig. A.4
in the online Supplementary material. For the reconstructions using all 24,000 kernels, the TV method works best based on
the final resulting error, as well as visual inspection. It is closely followed by the ‘1 method using dual tree wavelets (‘1-DT)
and by the ‘2 method with Laplacian smoothing ð‘2 � DÞ. The ‘1 method with D4 wavelets does better than with Haar wave-
Fig. 5. Three contour plots, i.e. surfaces of constant model value, of the salt dome model ðm ¼ 0:9;1:0;1:1Þ.

Table 2
The number of iterations and the resulting reconstruction error for the various models and methods.

Checkerboard Saltdome w. 24,000 data Saltdome w. 20,000 data

Iterations Error (%) Iterations Error (%) Iterations Error (%)

‘2 100 68.8 100 48.8 100 56.9
‘2 � D 100 61.6 100 40.1 100 46.4
‘1-Haar 100 1.8 1000 48.1 100 55.1
‘1-D4 – – 1000 42.8 100 50.0
‘1-DT – – 1000 39.5 100 46.8
‘0-Haar 100 4.4 1000 61.5 100 67.9
‘0-D4 – – 1000 52.6 100 63.2
‘0-DT – – 1000 44.1 100 49.4
TV 100 64.0 1000 39.0 100 49.7
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Fig. 6. Horizontal slice number 25 of the salt dome model and its various reconstructions using all 24,000 kernels. The TV, ‘2 � D; ‘1-DT and ‘0-DT methods
introduce the most smoothing. The ‘1 and ‘0 Haar reconstructions have the least smoothing but are very blocky. A good compromise, in this respect, may be
found in the ‘1-D4 reconstruction. The ‘0-D4 reconstruction is less appealing. The bottom right figure shows five representative kernel cross sections for
different frequencies. These cross sections are taken perpendicular to and in the middle of the central rays , and give the reader an idea of the size of the
kernels relative to the structure in the model and of the relative Fresnel zone widths of the different kernels.
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Fig. 7. Horizontal slice number 25 of the salt dome model and its reconstructions using only 20,000 kernels and thus non-uniform coverage. The area of the
input model that lies in the region that is not covered by any kernel in this slice (indicated by a dashed circle), is not well reconstructed. Different methods
compensate for the missing information in different ways. The ‘0-D4 reconstruction shows a distinctive artifact. As in Fig. 6, the bottom right pane shows
five representative kernel cross sections.
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lets, that has a relative reconstruction error almost as bad as obtained using the simple ‘2 penalized method. However, the
‘‘top three” methods (TV, ‘1-DT, ‘2 � D) produce much smoother models than the input model. In case the correct sharpness
of features is a desirable characteristic of the solution, the ‘1 reconstructions with Haar or D4 wavelets are more faithful to
the input data. In this case one may well prefer D4 over Haar to avoid the rather blocky nature of the shapes. The qualitative
differences with the noisy ‘2 reconstruction are obvious. The ‘0 reconstructions that were obtained using iterative hard-
thresholding, are less appealing. Numerically the ‘0-Haar and ‘0-D4 perform worst of all reconstructions, whereas ‘0-DT
comes in fifth.

The reconstructions with only 20,000 kernels are shown in Fig. 7 (a single horizontal slice) and Fig. A.5 in the Supplemen-
tary material (all horizontal slices). The most interesting comparisons are again done visually. The lack of data coverage af-
fects most strongly the areas around voxel (10,40) in slice 25 (Fig. 7) and the lower left corner of slices 13–44 (third and
fourth row in Fig. A.5 especially). Not surprisingly, none of the algorithms is able to ‘recreate’ the model where there are
no data at all. But close inspection of the model near the edge of the region affected by the data gap shows that the Haar
and D4 wavelets produce the model that is least contaminated by smoothing effects beyond the gap, with D4 occasionally
trying to correctly ‘fill in’. The ‘0-D4 reconstruction creates a distinctive artifact in this area. We speculate that this is caused
by the non-convex nature of the ‘0 problem (19).
4.3. Computational aspects

Apart from the aspect of the visual reconstruction quality it is also important to compare reconstruction times. The four
numerical algorithms that were used – conjugate gradient, fast iterative soft and hard thresholding, and reweighed conju-
gate gradient – all need one application of A and one application of AT per iteration step. These dominate the other, but much
faster, operations such as addition of vectors and vector norms, that are also present in each iteration step. The forward and
inverse wavelet transforms that are used in some of the methods (via the Fast Wavelet Transform algorithm) also take a neg-
ligible time compared to an application of A and AT . It follows that it is sufficient to compare the number of iterations when
we evaluate the efficiency of different reconstructions.

The number of iterations and corresponding relative reconstruction errors km�minputk=kminputk are given in Table 2. In
all cases, the iterative reconstruction algorithms were started from wð0Þ ¼ 0 or mð0Þ ¼ 0.

For the checkerboard model the data in Table 2 show that the ‘1 and ‘0 methods do extraordinarily well, with a mean
square error far below what could be expected based on the data noise level of 10%. In the same sense, the total variation
minimization and the Laplacian penalization perform somewhat better than the simple ‘2 method; a large number of sim-
ulations with different noise realizations would be necessary to verify whether this is a statistically significant difference. In
case of the checkerboard reconstructions, only 100 iterations were performed for each method. This shows that the ‘1 and ‘0

methods can be very successful if the sought after model is very sparse in the basis used, even with a limited number of iter-
ations. We have also verified that the functionals (4), (5), (10), (19) and (22) remain almost constant after this number of
iterations, as did the relative distance to the input model.

In case of the salt dome reconstructions, the ‘0-Haar, ‘0-D4 and the simple ‘2 method do worst (in terms of reconstruction
error) closely followed by the ‘1-Haar method. The latter is due to the inappropriateness of the Haar basis to represent the
salt dome model in a sparse fashion. The other three methods (‘1-D4, ‘1-DT and TV) do about equally as the ‘2 � D method for
the salt dome reconstruction with 24,000 data.

To gauge wether there is a significant difference in reconstruction error between the TV, ‘1-DT and ‘1 � D methods (and
possibly the ‘0-DT technique), one would also need to repeat the numerical experiment with many noise realizations.

The nonlinear reconstructions with 24,000 data were done with 1000 iterations. We used formula (15) to derive
a rough upper bound on the relative error remaining in the functional (10) w.r.t to the minimum after this number of
iterations:
FðwðnÞÞ � Fð �wÞ
FðwðnÞÞ 6

4kwð0Þ � �wk2

aðnþ 1Þ2FðwðnÞÞ
/ 10�3; ð26Þ
where we used wð0Þ ¼ 0 and approximated k �wk by kwðnÞk. In other words, the calculated value of the minimum of the func-
tional is accurate up to three decimal places (this bound is valid for the three wavelet families). A simple plot of FðwnÞÞ as a
function of n also reveals that the functional is virtually constant after 1000 iterations, a conclusion which also holds for the
TV method, the ‘0 method and for the ‘2 methods (after 100 iterations).

The corresponding reconstructions with 20,000 data were done with only 100 iterations. In this way we demonstrate that
a reasonable result can already be obtained without an excessively long computation time. This is evident by comparing Figs.
6 and 7 (or Figs. A.4 and A.5 in the Supplementary material): apart from the unresolved region near (0.24,�0.7,�0.23) the
reconstructions are pairwise almost identical, despite the significant differences in number of iterations. In other words, the
‘1 and TV algorithms already succeed, after a small number of iterations, in producing qualitatively quite characteristic
reconstructions.

In case of the ‘0 reconstructions the differences (far from the unresolved region) are somewhat larger, we believe, because
the ‘0 method only finds a local minimum of (19).
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As a result of the thresholding, the ‘0 and ‘1 algorithms provides sparse models at every iteration step (not just in the limit
n!1). In other words it is not necessary, or desirable, to run the FISTA/Nesterov style algorithm for a very long time. Even
after a small number of iteration, they will provide a sparse model that fits the data to within its error bars.
5. Conclusions

In Paper I we showed how a large scale anomaly could be reconstituted even where it was ill resolved because of the
selective nature of the wavelet coefficients and the ‘1 criterion: one wavelet coefficient reconstituting a large, circular, anom-
aly gave a better optimization than a couple of coefficients reconstituting only the resolved part. With the results of the
much more complex salt dome model at hand, we must now conclude that this probably represents more a (lucky) exception
than a rule. There is no magical solution for the absence of data.

For the checkerboard reconstructions, the ‘1 method with Haar wavelets is able to do very well – much better than could
be expected based on the data themselves – because the Haar wavelets are very efficient in representing this particular
checkerboard pattern in a sparse way. The success of the ‘1 method thus depends heavily on the choice of a suitable basis.
For realistic models it is much more difficult to find a good – sparsifying – basis, and the reconstruction errors will be much
larger. For the 3D salt dome reconstruction, one could argue that the ‘1-DT method does well because it has good directional
sensitivity and is therefore able to adapt to the ‘‘curvy” nature of the outline of the salt body, as opposed to ‘1-Haar and ‘1-D4
methods. The ‘2 � D method does well because the Gaussian background that is present in the model is smooth ‘noise’ and
this is exactly the prior information put into the minimization criterion. The TV method does well as the main part of the salt
dome model is roughly piecewise constant and TV favors that. The ‘0 methods do not perform particularly well, both from a
quantitative as a qualitative side.

The wavelets, however, do have the distinctive quality of retaining sharp features even when regularizing by penalizing
highly oscillatory models. If the preservation of sharp boundaries is not as important as the correct estimation of amplitudes,
the smoothed solution, using the ‘2-D method, is to be preferred as it is fully linear and efficient to solve with conjugate gra-
dients. Methods using wavelets with small support, however, are able to retain sharp features, despite their regularization
effect that penalizes highly oscillatory models. These methods are thus preferable when edges are important; our preference
would go to the ‘1-D4 algorithm which gives less blocky solutions than ‘1-Haar. In no cases should one use simple norm
damping (‘2 method). Without imposing additional smoothing, i.e. while still allowing for sharp transitions, the ‘1 methods
yield models which do not show signs of noise.

The ‘0 methods, which use hard-thresholding of wavelet coefficients rather than soft-thresholding, cannot outperform the
‘1 methods. In some cases they appear to produce severe artifacts. Another reason not to favor ‘0 penalties is that they only
produce a local minimum of the functional (19). This may lead to larger variability in the reconstructions (depending on the
starting point of the iteration). There is currently no proven technique to tackle the minimization more efficiently that algo-
rithm (17). The (unproven) method (20) proposed in this paper is, as far as the authors can tell, new.

We conclude that using hard-thresholding is less appealing than using soft-thresholding of wavelet coefficients: the
mathematical theory is less developed, the hard-thresholded reconstruction may exhibit significant artifacts and the recon-
structions are not better than the ones obtained with soft-thresholding (‘1 method).

Speedwise the nonlinear methods cannot do better than the conjugate gradient algorithm for the ‘2 methods. Many ap-
plied mathematics groups [40,31,41,42,25,43,44] are currently working on speeding up the iterative soft-thresholding algo-
rithm (11), but it is still at least as time-consuming to use the ‘1 norm as it is to use the ‘2 norm for penalization, especially
for severely ill-conditioned matrices and low noise conditions [45].

In case the data is heavily contaminated by noise, it follows from relation (24) that a large value of the penalty parameter
l must be chosen. In [45] it was demonstrated that many competing algorithms for minimizing an ‘1 penalized functional
converge quickly in such a case. We therefore expect that such methods remain competitive with the traditional ‘2 smooth-
ing methods in case of travel time seismic tomography where the data noise level may reach 50%.

Based on the results in this paper, we can conclude that the nonlinear methods offer a way to invert data and denoise the
resulting model in a single procedure without necessarily smoothing the model too much. The two salt dome examples also
show that a good reconstruction, clearly showing the characteristic effects of the penalizations used, is still possible with a
very limited number of iterations: This is a consequence of the FISTA algorithm producing sparse models at every iteration
step. Sparse models can therefore be constructed with few iterations and little computer time (see [46] for a discussion of the
number of iterations used as a regularization parameter).

As an alternative to D4 or complex DT wavelets one could consider using curvelets or shearlets, as they are naturally de-
signed to sparsely represent singularities along smooth curves, such as, e.g. the sediment salt interface in our model. In this
work we have not studied how the different regularization methods behave in conjunction with these particular choices of
dictionaries.
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