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We describe new approaches for distances between pairs of 2-
dimensional surfaces (embedded in 3-dimensional space) that use
local structures and global information contained in inter-structure
geometric relationships. We present algorithms to automatically de-
termine these distances as well as geometric correspondences.
This is motivated by the aspiration of students of natural science
to understand the continuity of form that unites the diversity of
life. At present, scientists using physical traits to study evolu-
tionary relationships among living and extinct animals analyze data
extracted from carefully defined anatomical correspondence points
(landmarks). Identifying and recording these landmarks is time con-
suming and can be done accurately only by trained morphologists.
This renders these studies inaccessible to non-morphologists, and
causes phenomics to lag behind genomics in elucidating evolution-
ary patterns.
Unlike other algorithms presented for morphological correspondences
our approach does not require any preliminary marking of special fea-
tures or landmarks by the user. It also differs from other seminal
work in computational geometry in that our algorithms are polyno-
mial in nature and thus faster, making pairwise comparisons feasible
for significantly larger numbers of digitized surfaces. We illustrate
our approach using three datasets representing teeth and different
bones of primates and humans, and show that it leads to highly
accurate results.

homology | phenomics | morphometrics | Procrustes | Mobius transforma-

tions | automatic species recognition

To document and understand physical and biological phe-
nomena (e.g., geological sedimentation, chemical re-

actions, ontogenetic development, speciation, evolutionary
adaptation, etc.), it is important to quantify the similarity or
dissimilarity of objects affected or produced by the phenom-
ena under study. The grain size or elasticity of rocks, geo-
graphic distances between populations, or hormone levels and
body masses of individuals – these can be readily measured,
and the resulting numerical values can be used to compute
similarities/distances that help build understanding. Other
properties like genetic makeup or gross anatomical structure
can not be quantified by a single number; determining how to
measure and compare these is more involved [34, 36, 50, 53].
Representing the structure of a gene (through sequencing) or
quantification of an anatomical structure (through the digi-
tization of its surface geometry) leads to more complex nu-
merical representations; even though these are not measure-
ments allowing direct comparison with their counterparts for
other genes or anatomical structures, they represent an es-
sential initial step for such quantitative comparisons. The 1-
dimensional, sequential arrangement of genomes and the dis-
crete variation (four nucleotide base types) for each of thou-
sands of available correspondence points help reduce the com-
putational complexity of determining the most likely align-
ment between genomes; alignment procedures are now in-
creasingly automated [18]. The resulting, rapidly generated
and massive data sets, analyzed with increasing sophistication
and flexible in-depth exploration due to advances in comput-

ing technology, have lead to spectacular progress. For instance
phylogenetics has begun to unravel mysteries of large scale
evolutionary relationships experienced as extraordinarily dif-
ficult by morphologists [19].

Analyses of massive developmental and genetic data sets
outpace those on morphological data. The comparative study
of gross anatomical structures has lagged behind mainly be-
cause it is harder to determine corresponding parts on dif-
ferent samples, a prerequisite for measurement. The diffi-
culty stems from the higher dimension (2 for surfaces vs. 1
for genomes), the continuous rather than discrete nature of
anatomical objects,1 and from large shape variations.

In standard morphologists’ practice, correspondences are
first assessed visually; then, some (10 to 100, at most) feature
points can usually be defined as equivalent and/or identified
as landmarks. Just as comparisons of tens of thousands of nu-
cleotide base positions are used to determine similarity among
genomes, the coordinates of these dozens of feature points (or
measurements they define) are used to evaluate patterns of
shape variation and similarity/difference [42]. However, as
stated in 1936 by G. G. Simpson, the paleontologist chaperon
of the Modern Synthesis in the study of evolution, the “diffi-
culty in acquiring personal knowledge” ([21] p. 3) of morpho-
logical evidence limits our understanding of the evolutionary
significance of morphological diversity; this remains true to-
day. New techniques for generating and analyzing digital rep-
resentations have led to major advances (see, e.g. [25, 22, 23]),
but they typically still require determinations of anatomical
landmarks by observers whose skill of identifying anatomical
correspondences takes many years of training.

Several groups have sought to determine automatic cor-
respondence among morphological structures. Existing suc-
cessful methods typically introduce an effective dimensional
reduction, using, e.g., 2-D outlines and/or images [54], or, in
one of the few studies attempting automatic biological cor-
respondences in 3-D as a method for evolutionary morpholo-
gists, “automatically-detected crest lines” [26] on surfaces ob-
tained by CT-scans to register modern human skulls to each
other [27] or to pre-Neanderthal, Homo heidelbergensis skulls
[28]; another example is Wiley et al [25]. Studies using 2-

Reserved for Publication Footnotes

1These differences may seem innocuous but they lead to an exponential increase in the size of the
“search spaces” to be explored by comparison algorithms.
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D outlines or images sacrifice a lot of the original geometric
information available in the 3-D objects on which they are
based; such specifically limited representations cannot easily
be incorporated into other studies. More generally and most
importantly, none of these methods are independent of user
input. When outlines or standard 2-D views are used, precise
observations of the 3-D anatomical structures are required by
the trained technician who creates the outlines or 2-D views
[48, 47]. Several methods for 3-D alignment use Iterative Clos-
est Point (ICP) algorithms [29] that require observer input
to fix an initial guess (then further improved via local opti-
mization); ICP-generated correspondences can also have large
distortions and discontinuities of shape. In [7, 9] surfaces are
matched by using the Gromov-Hausdorff distances between
them, and applications to several shape analysis problems are
given. However, Gromov-Hausdorff distances are hard to com-
pute, and have to be approximated; the gradient descent op-
timization used in practice does not guarantee convergence to
a global (rather than local) minimum.

Determination of correspondences or similarities among
3-D digitizations of general anatomic surfaces that is both 1)
fully automated and 2) computationally fast (to handle the
large data sets that are becoming increasingly available as
imaging technologies become more widespread and efficient
[40]) is still elusive. Our aim here is to remedy this by fully au-
tomating the determination of correspondences among gross
anatomical structures. Success in this pursuit will help bring
to phenomic studies the rate, objectivity and exhaustiveness
of genomic studies. Large scale initiatives to phenotype model
species after systematically knocking out each gene [38], as
well as analysis of computational simulations of organogenesis
[39] stand to greatly benefit from automating the determina-
tion of correspondence among, and measurement of, morpho-
logical structures.

In this paper, we describe several new distances between
surfaces that can be used for such fully automated anatomic
correspondences, and we test their relevance for biologically
meaningful tasks on several anatomical dataset examples
(high resolution digitizations of bones and teeth).

The paper is organized as follows. Section 1 gives the
mathematical background for our algorithms: conformal ge-
ometry and optimal mass transportation (also known as Earth
Mover’s distance). In section 2, we use these ingredients to
define new distances or measures of dissimilarity, including a
generalization to surfaces of the Procrustes distance. Section
3 presents the results obtained by our algorithms for three
different morphological data sets, and an application.

No technical advance stands on its own; this paper is no
exception. Conformal geometry is a powerful mathematical
tool (permitting the reduction of the study of surfaces em-
bedded in 3-D space to 2-D problems) that has been useful in
many computational problems; [4] provides an introduction
to both theory and algorithms, with many applications, in-
cluding the use of conformal images of anatomical structures,
combined with user prescribed landmarks and/or special fea-
tures, for registration purposes, seeking “optimal” correspon-
dence between pairs of surfaces [6]. Earth Mover’s distances
[5] and continuous optimal mass transportation [1] have been
used in image registration and for more general image analysis
and parameterization [2]; in [8] (quadratic) mass transporta-
tion is used to relax the notion of Gromov-Hausdorff distance.
Procrustes distances for discrete point sets are familiar to mor-
phologists and other researchers working on shape analysis
[23, 42]. The mathematical and algorithmic contribution of
our work is the combination in which we use and generalize
these ingredients to construct novel distance metrics, paired

with efficient, fully automatic algorithms not requiring user
guidance. They open the door to new applications requiring
a large number of distance computations.

1. The mathematical components
Conformal geometry. A mapping ϕ from one 2-dimensional
(smooth) surface S to another, S ′, defines for every point
p ∈ S a corresponding point ϕ(p) ∈ S ′. If the mapping is
smooth itself, it maps a smooth curve Γ on S to a corre-
sponding smooth curve Γ′ on S ′ that is called the image of
Γ. Two curves Γ1 and Γ2 on S that intersect in a point s are
mapped to curves Γ′1, Γ′2 that intersect as well, in s′ = ϕ(s).
Consider the two (straight) lines `1 and `2 that are tangent
to the curves Γ1 and Γ2 at their intersection point s; the an-
gle between Γ1 and Γ2 at s is then taken to mean the angle
between the two lines `1 and `2; similarly, the angle between
the curves Γ′1 and Γ′2 (at s′ = ϕ(s)) is the angle between their
tangent lines at s′. The mapping ϕ is called conformal if for
any two smooth curves Γ1 and Γ2 on S, the angle between
their images Γ′1 and Γ′2 is the same as that between Γ1 and Γ2

at the corresponding intersection point.
Riemann’s uniformization theorem [4] guarantees that ev-

ery (reasonable) 2-d surface S in our standard 3-d space
that is a disk-type surface (i.e. that has a boundary but
no holes) can be mapped conformally to the 2-d unit disk
D = {z | z = x+ iy, |z| ≤ 1}, with the boundary of the disk
corresponding to the boundary of S2. This mapping is called
“conformally flattening” 3. This flattening process is accom-
panied by area distortion; the conformal factor f(x, y) on the
disk, varying from point to point, indicates the area distortion
factor produced by the operation.

One important practical implication of this theorem is
that the family of conformal maps between two surfaces can be
characterized naturally via the flattened representations of the
surfaces: if γ is a conformal mapping from S to S ′, and ϕ (ϕ′)
is a flattening (i.e. a conformal map to the disk D) of S (S ′),
then the family of all possible conformal mappings from S to

S ′ is given by γ = ϕ′
−1◦m◦ϕ, where m ranges over all the con-

formal bijective self-mappings of the unit disk D. We shall call
such m disk-preserving Möbius transformations; they consti-
tute a group, the disk-preserving Möbius transformation group
M. Each m inM is characterized by 3 parameters and given
by the closed-form formula m(z) = eiθ(z−α)(1−zᾱ)−1, where
θ ∈ [0, 2π), |α| < 1. For our applications, it is important
that the flattening process (starting from a triangulated digi-
tized version of S) and more importantly the disk-preserving
Möbius transformations can be computed fast and with high
accuracy; for more details, see [16, 15].4 Note that the flat-
tening map of a surface S is not unique; one can choose any
arbitrary point of S to be mapped to the origin of the disk
D, and any direction through this point to become the “x-
axis”. The transition from choosing one (center, direction)
pair to another is simply a disk-preserving Möbius transfor-
mation. It is convenient to equip the disk D with its hyper-
bolic measure dη(x, y) = [1 − (x2 + y2)]−2dx dy, invariant
with respect to Möbius transformations; correspondingly, we
set f(x, y) = [1− (x2 + y2)]2 f(x, y), so that f dη = f dx dy .

Optimal mass transportation. An integrable function µ is a
(normalized) mass distribution on a domain D if µ(u) ≥ 0

2We shall restrict ourselves to this case here, although our approach is more general; see [15]).
3The uniformization theorem holds for more general surfaces as well. For instance, surfaces without
holes, handles or boundaries can be mapped conformally to a sphere; if one point is removed from
such a surface, it can be mapped conformally to the full plane. Surfaces with holes or handles can
still be conformally flattened to a piece of the plane.
4 If the digitization of the surface is given as a point cloud, standard fast algorithms can be used to
determine an appropriate (e.g. Delauney) triangulation.
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is well defined for each u ∈ D, and
∫
D
µ(u) du = 1. If τ

is a differentiable bijection from D to itself, the mass dis-
tribution µ′ = τ∗µ on D defined by µ(u) = µ′(τ(u)) Jτ (u)
(where Jτ is the Jacobian of the map τ), is the transportation
(or push-forward) of µ by τ in the sense that, for any arbi-
trary (non pathological) function F on D,

∫
D
F (u)µ′(u) du =∫

D
F (τ(u))µ(u) du. The total transportation effort is given

by Eτ =
∫
D
d(u, τ(u))µ(u) du, where d(u, v) denotes the dis-

tance between two points u and v in D.
If two mass distributions µ and ν on D are given, then the
optimal mass transportation distance between µ and ν (in
the sense of Monge, see [10], p. 4) is the infimum of the
transportation effort Eτ , taken over all the measurable bijec-
tions τ from D to D for which ν equals the transportation
of µ by τ . This set of bijections is hard to search; the de-
termination of an optimal mass transportation scheme be-
comes more tractable if the mass “at u” need not all end
up at the same end point. One then considers measures
π on D × D with marginals µ and ν (this means that for
all continuous functions F,G on D,

∫
D×D F (u) dπ(u, v) =∫

D
F (u)µ(u) du and

∫
D×D G(v) dπ(u, v) =

∫
D
G(v) ν(v) dv);

the optimal mass transportation in this more general Kan-
torovitch formulation is the infimum over all such measures π
of Eπ =

∫
D×D d(u, v) dπ(u, v). A comprehensive treatment of

optimal mass transport is in [10].

2. New distances between 2-dimensional surfaces
Conformal Wasserstein distance (cW). One can use opti-
mal mass transport to compare conformal factors f and f ′

obtained by conformally flattening two surfaces, S and S ′.
If m is a disk-preserving Möbius transformation, then f and
m∗f = f ◦m−1 are both equally valid conformal factors for S.
A standard approach to take this into account is to “quotient”
over M, which leads to the conformal Wasserstein distance:

TcW(S,S ′)= inf
m∈M

[
inf

π∈Π(m∗f ,f
′
)

∫
D×D̃

d
(
z, z′

)
dπ(z, z′)

]
, [1]

where d̃(·, ·) is the (conformally invariant) hyperbolic dis-
tance5 in D; TcW satisfies then all the properties of a met-
ric [12]. In particular, TcW(S,S ′) = 0 iff S and S ′ are
isometric. However, computing this metric requires solving
a Kantorovitch mass-transportation problem for every can-
didate m; even though the whole procedure has polynomial
runtime complexity, it is too heavy to be used in practice for
large datasets.

Conformal Wasserstein neighborhood dissimilarity distance
(cWn). We propose another natural way to use Kantorovich’s
optimal mass transport to compare surfaces S and S ′. Instead
of determining the most efficient way to transport “mass”
f from z to z′, we can quantify how dissimilar the “land-
scapes” are, defined by f and f ′ near z, resp. z′, and re-

place the distance d̃(·, ·) by a measure of neighborhood dis-
similarity. The neighborhood N(0, R) around 0 is given by
N(0, R) = { z ; |z| < R }; neighborhoods around other points
are obtained by letting the disk-preserving Möbius transfor-
mations act on N(0, R): for any m inM such that z = m(0),
N(z,R) is the image of N(0, R) under the mapping m. Next
we define the dissimilarity between f at z and f ′ at z′:

dR
f ,f
′ (z, z′) = inf

m∈M,m(z)=z′

[ ∫
N(z,R)

|f(w)− f ′(m(w)) | dη(w)

]
.

It is straightforward to check that for all m,m′ in M,
dR
m∗f ,m

′
∗f
′ (m(z),m′(z′)) = dR

f ,f
′ (z, z′). We now use optimal

transport, and define the conformal Wasserstein neighborhood
dissimilarity distance between f and f ′:

DRcWn(S,S ′) = inf
π∈Π(f ,f

′
)

∫
D×D

df ,f
′ (z, z′) dπ(z, z′), [2]

where the superscript recalls that this definition depends on
the choice of the parameter R. For a proof that this defines a
true distance between (generic) surfaces S and S ′, and further
mathematical properties, see [12, 13]. One practical difference
with TcW is that (2) requires solving only one Kantorovitch
mass-transportation problem once the special dissimilarity
cost is computed, resulting in a simpler optimization prob-
lem. To implement the computation of these distances, we
discretize the integrals and the optimization searches, picking
collections of discrete points on the surfaces; the minimizing
measure π in the definition of DRcWn(S,S ′) can then be used
to define a correspondence between points of S and S ′.

Continuous Procrustes distance between surfaces (cP).
Both cW and cWn are intrinsic: they use only information
“visible” from within each surface, such as geodesic distances
between pairs of points; consequently they do not distinguish a
surface from any of its isometric embeddings in 3-D. The con-
tinuous Procrustes (cP) distance [14] described in this section
uses some extrinsic information as well; it fails to distinguish
two surfaces only if one is obtained by applying to the other
a rigid motion (which is a very special isometry).

The (standard) Procrustes distance is defined between
discrete sets of points X = (Xn)n=1,...,N ⊂ S and Y =
(Yn)n=1,...,N ⊂ S ′ by minimizing over all rigid motions:

dP (X,Y) = minR rig.mot.

[ (∑N
n=1 |R(Xn)− Yn|2

)1/2
]
,

where |·| denotes the standard Euclidean norm. 6 Often X, Y
are sets of landmarks on two surfaces, and dP (X,Y) is inter-
preted as a distance between these surfaces. This practice has
several drawbacks: 1) dP (X,Y) depends on the (subjective)
choice of X,Y, which makes it a not necessarily “well-defined”
or easily reproducible proxy for a surface distance; 2) the (rel-
atively) small number of N landmarks on each surface disre-
gards a wealth of geometric data; 3) identifying and recording
the xn, yn is time consuming and requires expertise.

We eliminate all these drawbacks by a landmark-free
approach, introducing the continuous Procrustes distance. In-
stead of relying on experts to identify “corresponding” dis-
crete subsets of S and S ′, we consider a family of continuous
maps a : S → S ′ between the surfaces, and rely on optimiza-
tion to identify the “best” a. The earlier exact correspondence
of one point Yn to one point Xn, and the (tacit) assumption
that X (Y) collectively represent all the noteworthy aspects
of S (S ′) in a balanced way, are recast as requiring that the
“correspondence map” be area-preserving [14], that is, for ev-
ery (measurable) subset Ω of S,

∫
Ω
dAS =

∫
a(Ω)

dAS′ , where

dAS and dAS′ are the area elements on the surfaces induced
by their embeddings in R3. We denote A(S,S ′) the set of all
these area-preserving diffeomorphisms. For each a inA(S,S ′),
we set d(S,S ′, a)2 = minR rig.mot.

∫
S |R(x) − a(x)|2dAS ; the

continuous Procrustes distance between S and S ′ is then

DP (S,S ′) = inf
a∈A(S,S′)

d(S,S ′, a). [3]

5This is the geodesic distance on D induced by the hyperbolic Riemann metric tensor dη on
D. The geodesic from the origin to any point z in D is the straight line connecting them, and

d̃(0, z) = ln[(1 + |z|)/(1− |z|)].
6 It is interesting to note that in [11], a Kantorovich version of dP was introduced, and its equiva-
lence to the Gromov-Wasserstein distance (when the shapes are endowed with Euclidean distances)
was proved.
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This defines a metric distance on the space of surfaces (up to
rigid motions: for congruent surfaces the distance is 0) [14].
Minimizing over rigid motions is easy; there exist closed form
formulas, as in the discrete case. But the second set over
which to minimize, A(S,S ′), is an unwieldy, formally infinite-
dimensional manifold, hard to explore7. This is an optimal
transport problem again, now in the much harder Monge for-
mulation. For “reasonable” surfaces (e.g., surfaces with uni-
formly bounded curvature), transformations a close to optimal
are close to conformal [14]. This crucial insight allows limit-
ing the search to the much smaller space of maps obtained by
small deformations of conformal maps. Concretely, we com-
pose a conformal map (represented as a Möbius transforma-
tion) m ∈ M with maps χ and %, where % is a smooth map
that roughly aligns high density peaks, and χ is a special de-
formation (following [41]) using local diffusion to make χ◦%◦m
area preserving (up to approximation error). For each choice
of peaks p, p′ in the conformal factors of S, S ′, the algorithm
1) runs through the 1-parameter family of m that map p to p′;
2) constructs a map % that aligns the other peaks, as best pos-
sible; and 3) computes d(S,S ′, % ◦m). Repeat for all choices
of p, p′; the %◦m that minimizes d is then deformed to be area
preserving, producing the map a = χ ◦ % ◦m; d(S,S ′, a) and
a are our approximate DP (S,S ′) and correspondence map,
respectively. (More in Supplementary Materials.)

3. Application to anatomical datasets
To test our approach, we used three independent datasets,
representing three different regions of the skeletal anatomy,
of humans, other primates, and their close relatives. Digi-
tized surfaces were obtained from High Resolution X-ray Com-
puted Tomography (µCT) scans (see Supplementary Materi-
als) of (A) 116 second mandibular molars of prosimian pri-
mates and non-primate close relatives, and (B) 57 proximal
first metatarsals of prosimian primates, New and Old World
monkeys, and (C) 45 distal radii of apes and humans. For
every pair of surfaces, the output of our algorithms consists
of 1) a correspondence map for the whole surface (i.e. not
just a few points), and 2) a non-negative number giving their
dissimilarity (where zero means they are isometric or congru-
ent). Typical running times for a pair of surfaces were ∼ 20
sec. for cP, ∼ 5 min. for cWn. To evaluate the performance
of the algorithms, we compared the outcomes to those deter-
mined independently by morphologists. Using the same set of
digitized surfaces, geometric morphometricians collected land-
marks on each, in the conventional fashion [42], choosing them
to reflect correspondences considered biologically and evolu-
tionarily meaningful (see Supplementary Materials). These
landmarks determine “discrete” Procrustes distances for ev-
ery two surfaces (see § 2), here called Observer-Determined
Landmarks Procrustes (ODLP) distances. For each of the
three distances we obtain thus a (symmetric) matrix.

Comparing the distance (dissimilarity) matrices. We compare
cWn- and cP- with ODLP-matrices in two different ways. Sets
of distances are far from independent, and it is traditional to
assess the relationship between distance matrices by a Man-
tel correlation analysis [43]: first correlate the entries in the
two square arrays, and then compute the fraction, among all
possible relabelings of the rows/columns for one of them, that
leads to a larger correlation coefficient; this Mantel signifi-

cPObs.1 cPObs.2 Obs.1 cWn Obs.2 cWn

Table 1.

Teeth

1st Metatarsal

Radius

0.690 0.0001

0.0001

0.0001

0.640

0.240

0.620 0.0001

r PPr

0.373 0.0001

r PPr

0.0001 0.0001

0.075 0.166

0.365 0.392

Dataset:

not applicable

not applicable

not applicable

not applicable

Results of Mantel correlation analysis for cP and cWN versus ODLP distances.

cance is a stronger indicator than the correlation coefficient
itself. Table 1 gives the results for our datasets.
In all cases the Mantel significance between ODLP and cP
distances is higher than that between ODLP and cWn. This

indicates that distances computed using cP match those
determined by morphometricans’ better than those using
cWn.

Figure 1 illustrates the relationship of cP, cWn, and ODLP
distances in a different way. In each of the two square matri-
ces (corresponding to cP and cWn, each vs. ODLP), the color
of each pixel indicates the value of the entry (using a red-blue
colormap, with deep blue representing 0, and saturated red
the largest value); upper right triangular halves correspond to
cP or cWn; (identical) lower left halves to ODLP. The same
ordering of samples is used in the three cases, with samples or-
dered so that nearby samples typically have smaller distances.
This type of display is especially good to compare the struc-
ture of two distance matrices for small distances, often the
most reliable 8. Note the better symmetry along the diagonal
for ODLP/cP comparison on the left: in this comparison, as
in the previous one, cP outperforms cWn.

Fig. 1. For small distances, the structures of the matrices with cP-, cWn-distances

and distances based on Observer Landmarks (ODLP) are very similar, with cP (on

the right) the most similar to ODLP. The dataset illustrated here is dataset (A).

Comparing scores in taxonomic classification. Accurately
placed ODL usually result in smaller ODLP distances between
specimens representing individuals of the same species/genus
than between individuals of different species/genera.

Radius

2

not applicable

not applicable

Obs.1 cWn cP Obs.2 cWn Obs.1 cWn

Dataset: 1st Metatarsal

5

# cP

68

75.1

83.3

#

9

# cP

 

77.8 68.9550.8

68.9

98.4

91.8

76.3

83.6

95.7

94.3

91.990.9

92.5

94.8Above family

Classification

Genera 24

17

13

100 100 100

79.9

93.4

88.1

Family

[N=45]

Obs.1

N=[59,61,61] 

84.4

Teeth N=[99,106,116]

To assess whether this holds as well for the algorithmic cP and
cWn distances, we run three taxonomic classification analyses
on each data set, one using ODLP distances, and two using

7 It can be viewed as the continuous analog to the exponentially large group of permutations.
8 In some modern data analysis methods, such as diffusion-based or graph-Laplacian based methods,
only the small distances are retained, to be used in spectral methods that “knit” the larger scale
distances of the dataset together more reliably.
9We do not claim this is a new/alternative method for automatic species or genus identification.
Reliable automatic species recognition uses, in addition, auditory, chemical, non-geometric mor-
phological and other data, analyzed by a range of methods; see e.g. [47, 51, 49] and references.
Comparison of taxonomic classification based on human-expert-generated vs. algorithm-computed-
distances is meant only as a quantitative evaluation based on biology rather than mathematics.
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cP and cWn distances9, with a “leave one out” procedure:
each specimen (treated as unknown) is assigned to the taxo-
nomic group of its nearest neighbor among the remainder of
the specimens in the data set (treated as known). Table 2 lists
success rates (in %) for three different classification queries
for the three datasets. For each dataset N is the number of
objects; for each query # is the number of groups. Classifi-
cations based on the cP distances are similar in accuracy to
those based on the ODLP distances, outperforming the cWn
distances for all three of our anatomic datasets.
Note: a similar classification based on topographic variables
is less accurate: for the 99 teeth belonging to 24 genera, only
54 (54 %) were classified correctly with a classification based
on the four topographic variables Energy, Shearing Quotient,
Relief Index, OPC. (Details in Supplementary Materials.)

Comparing the correspondence maps. Morphometric analy-
ses are based on the identification of corresponding landmark
points on each of S and S ′; the cP algorithm constructs a
correspondence map a from S to S ′. (The correspondence in-
duced by cWn is less smooth and will not be considered here.)
For each landmark point L on S, we can compare the location
on S ′ of its images a(L) with the location of the corresponding
landmark points L′. Fig. 2 shows that the “propagated” land-
marks a(L) typically turn out to be very close to those of the
“true” landmarks L′. (More in Supplementary Materials.)

Fig. 2. Observer-placed landmarks can be propagated from structure M (A) using

cP determined correspondence maps (B) to another specimen N (C). The similar-

ity between propagated landmarks in (C) and observer placed landmarks in (D) on

N shows the success of the method, and makes explicit the geometric basis for the

observer-determinations.

An application. These comparisons show our algorithms cap-
ture biologically informative shape variation. But scientists
are interested in more than overall shape! We illustrate how
correspondence maps could be used to analyze more spe-
cific features. In comparative morphological and phylogenetic
studies, anatomical identification of certain features (e.g., par-
ticular cusps on teeth) is controversial in some cases; an ex-
ample of this is the distolingual corner of sportive lemur (Lep-
ilemur) lower molars in our data set (A) [37, 36].

In such controversial cases, transformational homology
[17] hypotheses are usually supported by a specific compara-
tive sample or inferred morphocline [35, 52, 36]. Lepilemur is
thought by some researchers to lack a cusp known as an en-
toconid (Fig. 3) but to have a hypertrophied metastylid cusp
that “takes the place” of the entoconid [36] in other taxa. Yet,
in comparing a Lepilemur tooth to a more “standard” primate
tooth, like that of Microcebus, both seem to have the same
basic cusps; alternatives to the viewpoint of [36] have there-
fore also been argued in the literature [37]. However, another
lemur, Megaladapis (now extinct), arguably a closer relative
of Lepilemur than Microcebus, has an entoconid that is very
small and a metastylid that is rather large, thus providing
an evolutionary argument supporting the original hypothesis.
(For more details, see Supplementary Materials.) Such argu-
ments can now be made more precise. We can propagate (as
in Fig. 2) landmarks from the Microcebus to the Lepilemur
molar; this direct propagation matches the entoconid cusp
of Microcebus with the controversial cusp of Lepilemur (Fig.
3, path 1), supporting [37]. In contrast, when we propagate
landmarks in different steps, either from Microcebus to Megal-
adapis and then to Lepilemur(Fig. 3, path 2), or through
the extinct Adapis and extant Lemur (Fig. 3, path 3), the
Lepilemur metastylid takes the place of the Microcebus ento-
conid, supporting [36]. Automatic propagation of landmarks
via mathematical algorithms recenters the controversy on the
(different) discussion of which propagation channel is most
suitable.

Fig. 3. Observer-placed landmarks on a tooth of Microcebus are propagated us-

ing cP-determined correspondence maps to a tooth of Lepilemur. Path 1 is direct,

Path 2 and 3 have intermediate steps, representing step-wise propagation between

teeth of other taxa.

Summary and Conclusion. New distances between 2-D sur-
faces, with fast numerical implementations, were shown to
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lead to fast, landmark-free algorithms that map anatomi-
cal surfaces automatically to other instances of anatomically
equivalent surfaces, in a way that mimics accurately the de-
tailed feature-point correspondences recognized qualitatively
by scientists, and that preserves information on taxonomic
structure as well as observer-determined-landmark distances.
Moreover, the correspondence maps thus generated can incor-
porate, in their tracking of point features, evolutionary rela-
tionships inferred to link different taxa together.

Our approach makes morphology accessible to non-
specialists and allows the documentation of anatomical varia-
tion and quantitative traits with previously unmatched com-
prehensiveness and objectivity. More frequent, rapid, ob-
jective, and comprehensive construction of morphological

datasets will allow the study of morphological diversity’s evo-
lutionary significance to be better synchronized with studies
incorporating genetic and developmental information, leading
to a better understanding of anatomical form and its genetic
basis, as well as the evolutionary processes that have con-
tributed to their diversity among living things on earth.
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