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We wish to dedicate this paper to Leo Breiman.

Abstract. We present two main results, the first concerning Freund and

Schapire’s AdaBoost algorithm, and the second concerning Breiman’s arc-gv

algorithm. Our discussion of AdaBoost revolves around a circumstance called

the case of “bounded edges”, in which AdaBoost’s convergence properties can
be completely understood. Specifically, our first main result is that if Ada-

Boost’s “edge” values fall into a small interval, a corresponding interval can
be found for the asymptotic margin. A special case of this result closes an

open theoretical question of Rätsch and Warmuth. Our main result concern-
ing arc-gv is a convergence rate to a maximum margin solution. Both of these
results are derived from an important tool called the “smooth margin”, which

is a differentiable approximation of the true margin for boosting algorithms.

1. Introduction

In Caruana and Niculescu-Mizil’s 2006 empirical survey of classification algo-
rithms [3], boosted decision trees were rated as the best of the state-of-the-art
algorithms. Boosting algorithms are clearly among the most competitive and most
successful algorithms for statistical learning, yet there is still much to be under-
stood about the convergence properties of these algorithms. The field of boosting
was started in 1989 by Schapire [16] who showed that it was possible to construct a
“strong” classifier out of a collection of “weak” classifiers that perform only slightly
better than a random guess. Freund and Schapire’s AdaBoost algorithm [5] was
the first practical boosting algorithm. Due to AdaBoost’s success, many similar
boosting algorithms have since been introduced. Some of these algorithms, such

2000 Mathematics Subject Classification. Primary 68W40,68Q25; Secondary 68Q32.
Key words and phrases. boosting, large margin classification, coordinate ascent/descent,

AdaBoost, arc-gv, convergence rates.

This material is based upon work supported by the National Science Foundation under Grant

Numbers 0434636, CCR-0325463, IIS-0325500 and DMS-9810783; and by AFOSR award F49620-

01-1-0099. This work was done while CR’s affiliations were Program in Applied and Computational
Mathematics and Department of Computer Science, Princeton University, and Center for Neural

Science, Courant Institute, and Howard Hughes Medical Institute, New York University.

c©2006 American Mathematical Society

1



2 CYNTHIA RUDIN, ROBERT E. SCHAPIRE, AND INGRID DAUBECHIES

as Breiman’s arc-gv algorithm [2], were designed as empirical tools to study Ada-
Boost’s convergence properties; AdaBoost is difficult to analyze theoretically in the
separable case so such empirical tools are quite useful. Breiman’s arc-gv is quite
similar to AdaBoost (in fact the pseudocodes differ by only one line), though Ada-
Boost has been found to exhibit interesting dynamical behavior that may sometimes
resemble chaos, or may sometimes converge to provably stable cycles [13] (one can
now imagine why AdaBoost is difficult to analyze) whereas arc-gv converges very
nicely. See [17] or [7] for an introduction to boosting.

When AdaBoost was introduced by Freund and Schapire, a prescribed number
of iterations was associated with the algorithm. The theory suggested that the
user must stop iterating after the prescribed number is reached in order to prevent
overfitting. However, although overfitting is sometimes observed, in many cases,
the opposite effect was observed by experimentalists, namely that AdaBoost often
does not suffer from overfitting, even after a large number of iterations past the
prescribed number [1, 8, 4]. This lack of overfitting has been explained to some
extent by the margin theory [18]. This theory not only explains the success of
AdaBoost, but also helps us to understand cases in which the algorithm overfits or
otherwise gives poor results.

The margin of a boosted classifier (also called the minimum margin over train-
ing examples) is a number between −1 and 1 that can be used to provide a guarantee
on the generalization performance via the margin theory. A large margin indicates
that the classifier tends to perform well on test data. Moreover, the margin of
the boosted classifier is directly controlled by the edges of the weak classifiers, a
relationship whose understanding we significantly strengthen in this paper.

The margin theory for boosting was developed partly in response to experi-
ments, and partly to the corresponding margin theory for Support Vector Machines
(SVM’s) [19]. Yet, there is a difference in the history for AdaBoost and SVMs: the
SVM algorithm developed alongside the SVM margin bounds, so SVM was designed
to maximize its margin, whereas AdaBoost was not; AdaBoost was introduced be-
fore the margin bounds for boosting. AdaBoost’s convergence with respect to the
margin is actually quite difficult to understand; in fact prior to this work, the only
separable case where convergence could be understood was the very special cyclic
case [13].

In this paper, we discuss fundamental convergence properties of both AdaBoost
and arc-gv with respect to the margin. For AdaBoost, we present a new impor-
tant case in which convergence can be completely understood (called the case of
“bounded edges”). For arc-gv, we prove convergence, with a fast convergence rate,
to a maximum margin solution. A special case of the first result closes the “gap
in theory” referred to by Rätsch and Warmuth [10, 11], and answers the question
“how far below maximal could AdaBoost’s margin be?” The second result answers
what had been posed as an open problem Meir and Rätsch [7].

1.1. Background and Discussion of Results. The training set consists of
m > 1 examples with labels {(xi, yi)}i=1,...,m, where (xi, yi) ∈ X × {−1, 1}, and
our decision function is f : X → R, where sign(f) indicates the predicted class.
The margin is defined by µ(f) := mini yif(xi), and for boosting, f can be written
in the form f =

∑

j λjhj(xi)/‖λ‖1, where the hj ’s are the “weak classifiers”, or

“features”, hj : X → {−1, 1} and λ ∈ R
n
+. According to the margin theory, if

all other factors are equal, maximizing the margin indicates a lower generalization
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error, i.e., the vector λ should be chosen to maximize µ(λ). The corresponding
maximum margin is denoted by

ρ := max
λ∈R

n

+

µ(λ).

This expression can be rewritten by defining an m × n matrix M elementwise by
Mij = yihj(xi), and thus

ρ = max
λ∈R

n

+

mini(Mλ)i

||λ||1
,

where (·)i means the ith vector component. AdaBoost is an iterative update proce-
dure for λ. At each iteration, AdaBoost’s weak learning algorithm selects a weak
classifier with a large edge value, where the edge can be thought of as the weak
classifier’s advantage over a random guess, or equivalently a directional derivative
of AdaBoost’s objective function along one of the coordinates of λ. As we will
discuss, AdaBoost’s edge values are required to be greater than ρ, i.e., the weak
learning algorithm does not need to be optimal, but must at least be sufficiently
good.

As we mentioned, SVM’s are designed to maximize the SVM margin, whereas
AdaBoost was not designed to maximize the margin for boosting, or even to achieve
large margins; it was only after AdaBoost was designed that its margin properties
were theoretically and empirically explored. Empirically, many authors have argued
that AdaBoost often asymptotically maximizes the margin [6, 10] (even though it
is now theoretically known that AdaBoost can fail badly to maximize the mar-
gin [13]). There was a notable empirical work to challenge this claim before the
theoretical result, namely the work of Breiman [2]. In his paper, Breiman proposed
the algorithm arc-gv. His thesis was that arc-gv achieves larger margins than Ada-
Boost, yet achieves worse generalization error. In fact, Breiman’s conjecture is far
reaching, since his work on arc-gv suggests that maximizing the margin does not
help generalization error, which disagrees with the predictions of the margin theory.
Recent work has provided some explanation for his results, firstly, the theoretical
result that, indeed, AdaBoost does not generally maximize the margin [13], and sec-
ondly, that experimental artifacts concerning the complexity of the weak learning
algorithm may be responsible for some of his observations [12]. When this com-
plexity is controlled, arc-gv continues to achieve larger minimum margins µ(λ), but
there is a significant difference between the distribution of margin values yif(xi)
between the two algorithms; AdaBoost achieves much higher margins overall (and
generally better test performance). Years earlier, Grove and Schuurmans [6] ob-
served the same phenomenon; highly controlled experiments showed that AdaBoost
achieved smaller minimum margins µ(λ), overall larger margins yif(xi), and often
better test performance than LP-AdaBoost. In Section 3 we present a set of very
controlled experiments supporting the margin theory; these experiments, which
compare AdaBoost with only itself, show that the margin is actually quite a good
indicator of generalization in a specific sense.

Let us discuss the theoretical results concerning AdaBoost’s convergence prop-
erties in more depth. AdaBoost has been shown to achieve large margins, but not
maximal margins. To be precise, Schapire et al. [18] showed that AdaBoost achieves
at least half of the maximal margin, i.e., if the maximum margin is ρ, AdaBoost
will achieve a margin of at least ρ/2. This bound has been tightened by Rätsch and
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Warmuth, who have shown that AdaBoost asymptotically achieves a margin of at
least Υ(ρ) > ρ/2, where Υ : (0, 1) → (0,∞) is a monotonically increasing function
shown in Figure 1 (the monotonicity can be shown by considering its derivative),

(1.1) Υ(r) :=
− ln

(

1 − r2
)

ln
(

1+r
1−r

) .
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Figure 1. Plot of Υ(r) versus r (lower curve), along with the
function f(r) = r (upper curve).

Our contribution is from the other direction; we have just described theoretical
lower bounds for the margin, whereas we are now interested in upper bounds.
Previously, we have shown that it is possible for AdaBoost to achieve a margin
that is significantly below the maximal value [13], and in this work, we show that
Rätsch and Warmuth’s bound is actually tight. In other words, we will prove that it
is possible for AdaBoost to achieve an asymptotic margin arbitrarily close to Υ(ρ).
So how far below maximal could AdaBoost’s margins possibly be? The answer is
Υ(ρ), where ρ is the value of the maximum margin. More generally, our theorem
regarding the case of “bounded edges” says the following:

• If AdaBoost’s edge values are within a range [ρ̄, ρ̄+σ] for some ρ̄ ≥ ρ, then
AdaBoost’s margin asymptotically lies within the interval [Υ(ρ̄),Υ(ρ̄+σ)].

Hence, this result is a direct relationship between AdaBoost’s edges (which measure
the performance of the weak learning algorithm) and the asymptotic margin. As
far as we know, this case of bounded edges and the case of stable cycles studied
in [13] are the only two currently known circumstances where AdaBoost’s conver-
gence, with respect to the margin, can be analytically understood in the separable
case (where the training error vanishes). In Section 3, we will state the theorem
formally and provide theoretically-driven experiments indicating that an increase
in the margins does correlate directly with a decrease in AdaBoost’s probability of
error on test data. Thus, it is possible that margins are an important indication of
generalization error.
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We present a convergence rate for Breiman’s arc-gv as our second main result.
For two similar algorithms, it is quite a contrast; AdaBoost has idiosyncratic ten-
dencies such as cyclic patterns, whereas arc-gv converges to a maximum margin
solution with a fast convergence rate.

Both discussions (the one for AdaBoost in Section 3 and the one for arc-gv
in Section 4) depend heavily on a quantity called the smooth margin. The smooth
margin obeys a useful recursion relation which helps greatly in the analyses for both
algorithms. For more detailed analysis of the smooth margin function see [14], and
for detailed proofs, see the extended version of this work [15].

2. Notation

We have already introduced the collection of weak classifiers {hj}j=1,...,n, the
coefficient vector λ, the matrix M, the margin µ(λ), and the maximum margin ρ,
and recall that the number of examples is m. A boosting algorithm maintains a
distribution, or set of weights, over the training examples that is updated at each
iteration t. This distribution is denoted dt ∈ ∆m, and dT

t is its transpose. Here,
∆m denotes the simplex of m-dimensional vectors with non-negative entries that
sum to 1. At each iteration t, a weak classifier hjt

is selected by the weak learning
algorithm. The probability of error at iteration t, denoted d−, of the selected weak
classifier hjt

on the training examples (weighted by the discrete distribution dt) is
d− :=

∑

{i:Mijt
=−1} dt,i. Also, denote d+ := 1−d−. The edge of weak classifier jt at

time t is rt := (dT
t M)jt

, which can be written rt = (dT
t M)jt

= d+ − d− = 1− 2d−.
Thus, a larger edge indicates a lower probability of error. Note that d+ = (1+rt)/2
and d− = (1 − rt)/2. Here, AdaBoost in the optimal case means that the best
weak classifier is chosen at every iteration: jt ∈ argmaxj(d

T
t M)j , while AdaBoost

in the non-optimal case means that any good enough weak classifier is chosen:
jt ∈ {j : (dT

t M)j ≥ ρ}. The case of bounded edges is a subset of the non-optimal
case for some ρ̄ ≥ ρ and σ ≥ 0, namely jt ∈ {j : ρ̄ ≤ (dT

t M)j ≤ ρ̄ + σ}. Due to the
von Neumann Min-Max Theorem for 2-player zero-sum games,

min
d∈∆m

max
j

(dT M)j = max
λ̄∈∆n

min
i

(Mλ̄)i = ρ.

That is, the minimum value of the maximum edge (left hand side) is the maximum
margin ρ. Thus there is at least one edge available satisfying the requirement of the
non-optimal case. Pseudocode for AdaBoost and arc-gv can be found in Figure 2.

Let us introduce AdaBoost’s objective function F (λ) and the Smooth Margin
G(λ). AdaBoost is a coordinate descent algorithm for minimizing

F (λ) :=

m
∑

i=1

e−(Mλ)i

as shown by Breiman [2] and others. The smooth margin is defined by:

G(λ) :=
− ln F (λ)

‖λ‖1
.

One can think of G as a smooth approximation of the margin. As ‖λ‖1 becomes
large, G(λ) tends to µ(λ). Specifically for each iteration t, using the notation
st := ‖λt‖1 =

∑

j λt,j , we have (see [14]):

(2.1) −
ln m

st
+ µ(λt) ≤ G(λt) < µ(λt) ≤ ρ ≤ rt.
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(1) Input: Matrix M, No. of iterations tmax

(2) Initialize: λ1,j = 0 for j = 1, ..., n, also d1,i = 1/m for i = 1, ...,m, and
s1 = 0.

(3) Loop for t = 1, ..., tmax

(a)

{

jt ∈ argmaxj(d
T
t M)j optimal case

jt ∈ {j : (dT
t M)j ≥ ρ} non-optimal case

}

(b) rt = (dT
t M)jt

(c) µt = µ(λt) = mini(Mλt)i

/

st

(d)







αt = 1
2 ln

(

1+rt

1−rt

)

AdaBoost

αt = 1
2 ln

(

1+rt

1−rt

)

− 1
2 ln

(

1+µt

1−µt

)

arc-gv







(e) λt+1 = λt + αtejt
, where ejt

is 1 in position jt and 0 elsewhere.

(f) st+1 = st + αt

(g) dt+1,i = dt,ie
−Mijt

αt/zt where zt =
∑m

i=1 dt,ie
−Mijt

αt

(4) Output: λtmax
/stmax

Figure 2. Pseudocode for the AdaBoost algorithm and the arc-gv algorithm.

The last two inequalities above incorporate rt ≥ ρ (even in the non-optimal case),
and that ρ is the largest possible value for the margin µ(λ).

Section 3 contains a convergence result for AdaBoost and Section 4 contains
a convergence result for arc-gv; thus, we use the superscripts Ada and arc for the
statements of the main theorems in Sections 3 and 4 respectively, since the sequences
of λt, rt, etc., will be different for the two algorithms. The proofs for Sections 3
and 4 can be found in Sections 5 and 6 respectively. Also, we use the notation
gt = G(λt).

3. AdaBoost in the Case of Bounded Edges

We now discuss AdaBoost in the case where the edge values lie within a specific
interval. That is, throughout the run of AdaBoost, our weak classifiers always have
edges within the interval [ρ̄, ρ̄+σ] where ρ̄ ≥ ρ. As ρ̄ → ρ and σ → 0 we approach the
most extreme non-optimal case. The justification for allowing a range of possible
edge values is practical rather than theoretical; a weak learning algorithm will
probably not be able to achieve an edge of exactly ρ̄ at every iteration since the
number of training examples is finite, and since the edge is a combinatorial quantity.
Thus, we assume only that the edge is within a given interval rather than an exact
value. We elaborate on this observation in Theorem 3.2 later. In practice, if the
number of weak classifiers is reasonably large, it is likely that the edges can be
chosen to be within a specific interval if desired (as we will experimentally show).
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Here is our first main result; it shows that in the case of bounded edges, the
margins also fall within a small interval asymptotically.

Theorem 3.1 (Convergence of AdaBoost with Bounded Edges). Assume that
for each t, AdaBoost’s weak learning algorithm achieves an edge rAda

t such that
rAda
t ∈ [ρ̄, ρ̄ + σ] for some ρ ≤ ρ̄ < 1 and for some σ > 0. Then,

lim sup
t→∞

gAda

t ≤ Υ(ρ̄ + σ), and

lim inf
t→∞

gAda

t ≥ Υ(ρ̄),

where Υ is defined in (1.1). For the special case limt→∞ rAda
t = ρ, this implies

limt→∞ gAda
t = limt→∞ µ(λAda

t ) = Υ(ρ).

This theorem gives an explicit small range for the margin µ(λAda
t ), since for

AdaBoost, limt→∞(gAda
t − µ(λAda

t )) = 0, i.e., the limiting smooth margin is the
limiting true margin.1 Thus, we have provided a direct relationship between the
performance of the weak learning algorithm (measured by the edge) and the asymp-
totic margin.

The special case limt→∞ rAda
t = ρ shows the tightness of the bound of Rätsch

and Warmuth [10, 11]. Their result, proved in [9], which we summarize only
for AdaBoost rather than for the slightly more general AdaBoost%, states that
lim inft→∞ µ(λAda

t ) ≥ Υ(rinf), where rinf = inft rAda
t .2 Theorem 3.1 gives bounds

from both above and below, so we now have a much more explicit convergence
property of the margin.

In practice, the theorem can be directly applied to estimate a range for Ada-
Boost’s margin on the fly. The value of σ does not need to be small; the proof holds
for any interval. So, as long as the edge values do not become unbounded, one can
estimate σ and ρ̄, and then use the theorem to provide a range for the asymptotic
margin. Furthermore, the proof depends only on the asymptotic regime, so the
first few edge values can be disregarded in the estimations. Sometimes, σ is very
small in practice, in which case Theorem 3.1 specifies the margin value with high
precision.

The following theorem shows that AdaBoost is capable of producing all possible
values of the margin. Specifically, Theorem 3.2 below shows that Theorem 3.1 can
be realized even for arbitrarily small interval size σ. Since we can obtain edges
within any arbitrarily small interval, Theorem 3.1 tells us the convergence bound
can be made arbitrarily tight. That is, we can coerce AdaBoost into producing
whatever asymptotic margin we wish, with whatever precision we wish, as long as
the training data and weak classifiers are carefully constructed.

Theorem 3.2 (Bound of Theorem 3.1 is Non-Vacuous for any σ and ρ̄). Say
we are given 0 < ρ̄ < 1 and σ > 0 arbitrarily small. Then there is some matrix M

for which non-optimal AdaBoost may choose an infinite sequence of weak classifiers
with edge values in the interval [ρ̄, ρ̄ + σ]. Additionally for this matrix M, we have
ρ̄ ≥ ρ (where ρ is the maximum margin for M).

1This is not difficult to show using (2.1); we have only to show that limt→∞ sAda
t → ∞, which

is always true for AdaBoost in the separable case since sAda
t increases by at least tanh−1 ρ > 0 at

every iteration.
2The statement of their theorem seems to assume the existence of a combined hypothesis and

limiting margin, but we believe these strong assumptions are not necessary, and that their proof

of the lower bound holds without these assumptions.
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The proof is by explicit construction, in which the number of examples and
weak classifiers increases as more precise bounds are required, i.e., as the precision
width parameter σ decreases.

Let us see Theorem 3.1 in action. Now that one can more-or-less pre-determine
the value of AdaBoost’s margin simply by choosing the edge values to be within a
small range, one might again consider the question of whether AdaBoost’s asymp-
totic margin matters for generalization. To study this empirically, we use AdaBoost
only, several times on the same data set with the same set of weak classifiers. Our
results show that the choice of edge value (and thus the asymptotic margin) does
have a dramatic effect on the test error. Artificial test data for Figure 3 was de-
signed as follows: 300 examples were constructed randomly such that each xi lies on
a corner of the hypercube {−1, 1}800. The labels are: yi = sign(

∑51
k=1 xi(k)), where

xi(k) indicates the kth component of xi. For j = 1, ..., 800, the jth weak classifier is
hj(x) = x(j), thus Mij = yixi(j). For 801 ≤ j ≤ 1600, hj = −h(j−800). There were
10,000 identically distributed randomly generated examples used for testing. The
hypothesis space must be the same for each trial as a control; we purposely did not
restrict the space via regularization (e.g., norm regulation, early stopping, or prun-
ing). Hence we have a controlled experiment where only the choice of weak classifier
is different, and this directly determines the margin via Theorem 3.1. AdaBoost
was run 9 times on this dataset, each time for tmax = 3000 iterations; the first
time with standard optimal-case AdaBoost, and 8 times with non-optimal Ada-
Boost. For each non-optimal trial, we selected a ‘goal’ edge value rgoal (the 8 goal
edge values were equally spaced). The weak learning algorithm chooses the closest
possible edge to that goal. In this way, AdaBoost’s margin is close to Υ(rgoal).
The results are shown in Figure 3B, which shows test error versus margins for the
asymptotic regime of optimal AdaBoost (lower scattered curve) and the last 250
iterations for each non-optimal trial (the 8 clumps, each containing 250 points). It
is very clear that as the margin increases, the probability of error decreases, and
optimal AdaBoost has the lowest probability of error.

Note that the asymptotic margin is not the whole story; optimal AdaBoost
yields a lower probability of error even before the asymptotic regime was reached.
Thus, it is the degree of “optimal-ness” of the weak learning algorithm (directly
controlling the asymptotic margin) that is inversely correlated with the probability
of error for AdaBoost.

4. A Convergence Rate for arc-gv

We now give a convergence rate for arc-gv. We do not know of any general (non-
specialized) convergence rate results that would allow us to find such a convergence
rate; our proof follows the outline of the (specialized) convergence proof for the
Smooth Margin Boosting Algorithms given in [14]. arc-gv is defined as in Figure 2,
where the update in Step 3d uses αarc

t :

αarc
t =

1

2
ln

(

1 + rarc
t

1 − rarc
t

)

−
1

2
ln

(

1 + µarc
t

1 − µarc
t

)

, where µarc
t := µ(λarc

t ).

(Note that we are using Breiman’s original formulation of arc-gv, not Meir and
Rätsch’s variation.) Note that αarc

t is non-negative since µarc
t ≤ ρ ≤ rarc

t . We start
our calculation from when the smooth margin is positive; if the data is separable,
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one can always use AdaBoost until the smooth margin is positive (see [15]). We de-
note by 1̃ the first iteration where G is positive, so garc

1̃
> 0. Here is our guaranteed

convergence rate:

Theorem 4.1 (Convergence Rate for arc-gv). Let 1̃ be the iteration at which
G becomes positive. Then max{`=1̃,...,t} µ(λarc

` ) will be within ε of the maximum
margin ρ within at most

1̃ +
(

sarc

1̃
+ ln 2

)

ε−(3−ρ)/(1−ρ)

iterations, for arc-gv.

The fact that arc-gv makes progress with respect to the smooth margin at
each iteration is our most useful tool for the convergence proof, especially since
the margin itself does not necessarily increase at each iteration. Now that we have
stated our main results, we move onto the proofs.

5. Proofs of Theorems 3.1 and 3.2

We drop superscripts Ada for this section. We will first write recursive equations
for F and G as in [14]. Define: γt := tanh−1 rt. The recursive equation for F is:

(5.1) F (λt + αejt
) =

cosh γt cosh α − sinh γt sinhα

cosh γt
F (λt) =

cosh(γt − α)

cosh γt
F (λt).

The recursive equation for G comes from this directly (see [14]):

(5.2) (st+α)G(λt+αejt
)= stG(λt)+ln

(

cosh γt

cosh(γt − α)

)

=stG(λt)+

∫ γt

γt−α

tanh u du.

Proof. (Of Theorem 3.1) Choose δ > 0 arbitrarily small. We shall prove that
lim supt gt ≤ Υ(ρ̄ + σ) + δ and lim inf t gt ≥ Υ(ρ̄)− δ, which (since δ was arbitrarily
small) would prove the theorem. Starting with (5.2), subtracting αtgt from both
sides yields st+1(gt+1 − gt) = Υ(rt)αt − αtgt, and dividing by st+1,

(5.3) gt+1 − gt = (Υ(rt) − gt)
αt

st+1
.

First we will show that, for some t, if gt is smaller than Υ(ρ̄)− δ, then gt must
monotonically increase for t̃ ≥ t until gt̃ meets Υ(ρ̄) − δ after a finite number of
steps. Suppose gt is smaller than Υ(ρ̄) − δ, and moreover suppose this is true for
N iterations: Υ(ρ̄) − gt̃ > δ > 0, for t̃ ∈ {t, t + 1, t + 2, ..., t + N}. Then, since
Υ(rt̃) ≥ Υ(ρ̄), we have

gt̃+1 − gt̃ > δ
αt̃

st̃+1

≥ δ
tanh−1 ρ̄

tanh−1(ρ̄ + σ)

1

t̃ + 1
,

which is strictly positive, so values of gt̃ are strictly increasing. For the last inequal-

ity, we have used that tanh−1 ρ ≤ αt ≤ tanh−1(ρ + σ) since ρ ≤ rt ≤ ρ + σ and
αt = tanh−1 rt. Since the sum of 1/(1 + t̃) eventually exceeds any value, and since
1 ≥ gt+N − gt, a recursive argument yields that N must be finite. An identical
argument can be made to show that if gt − Υ(ρ̄ + σ) > δ > 0, then the values of
gt̃, for t̃ ≥ t will monotonically decrease to meet Υ(ρ̄ + σ) + δ after a finite num-
ber of iterations. To summarize, the sequence of values of gt cannot remain below
Υ(ρ̄) − δ, and cannot remain above Υ(ρ̄ + σ) + δ.
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Next we show that from some t0 onwards, the gt’s cannot even leave the interval
[Υ(ρ̄) − δ,Υ(ρ̄ + σ) + δ]. First,

|gt+1 − gt| = |Υ(rt) − gt|
αt

st+1
≤ max(Υ(ρ̄ + σ), 1)

tanh−1(ρ̄ + σ)

tanh−1 ρ̄

1

t + 1
=: Cσ

1

t + 1
.

Now, if t ≥ Cσ[Υ(ρ̄ + σ) − Υ(ρ̄) + δ]−1 =: T1, then the bound we just proved
implies that the gt for t ≥ T1 cannot jump from values below Υ(ρ̄) − δ to values
above Υ(ρ̄ + σ) + δ in one time step. Since we know that the gt cannot remain
below Υ(ρ̄)−δ or above Υ(ρ̄)+δ for more than a finite number of consecutive steps,
it follows that for t ≥ T1, the gt must return to [Υ(ρ̄) − δ,Υ(ρ̄ + σ) + δ] infinitely
often. Pick t0 ≥ T1 so that gt0 ∈ [Υ(ρ̄) − δ,Υ(ρ̄ + σ) + δ]. We distinguish three
cases: gt0 < Υ(ρ̄), Υ(ρ̄) ≤ gt0 ≤ Υ(ρ̄ + σ), and gt0 > Υ(ρ̄ + σ). In the first case, we
know from (5.3) that gt0+1 − gt0 > 0, so that

gt0 < gt0+1 ≤ gt0 + Cσ
1

t0 + 1
≤ Υ(ρ̄) + Υ(ρ̄ + σ) − Υ(ρ̄) + δ,

i.e., gt0+1 ∈ [Υ(ρ̄) − δ,Υ(ρ̄ + σ) + δ]. A similar argument applies to the third case.
In the middle case:

dist(gt0+1, [Υ(ρ̄),Υ(ρ̄ + σ)]) := max(0, gt0+1 − Υ(ρ̄ + σ),Υ(ρ̄) − gt0+1)

≤ |gt0+1 − gt0 | ≤
Cσ

t0 + 1
,

which does not exceed δ if t0 ≥ Cσδ−1 =: T2. It follows that if t0 ≥ T0 :=
max(T1, T2), and gt0 ∈ [Υ(ρ̄) − δ,Υ(ρ̄ + σ) + δ], then gt0+1 will likewise be in
[Υ(ρ̄) − δ,Υ(ρ̄ + σ) + δ]. By induction we obtain that gt ∈ [Υ(ρ̄) − δ,Υ(ρ̄ + σ) + δ]
for all t ≥ t0. This implies

lim inf
t→∞

gt ≥ Υ(ρ̄) − δ, and lim sup
t→∞

gt ≤ Υ(ρ̄ + σ) + δ.

Since, at the start of this proof, δ > 0 could be chosen arbitrarily small, we obtain
lim inft→∞ gt ≥ Υ(ρ̄), and lim supt→∞ gt ≤ Υ(ρ̄ + σ).

Note that we do not really need uniform bounds on rt for this proof to work. In
fact, we need only bounds that hold “eventually”, so it is sufficient that lim supt rt ≤
ρ̄ + σ, lim inft rt ≥ ρ̄. In the special case where limt rt = ρ, i.e., where σ = 0 and
ρ̄ = ρ, it then follows that limt gt = Υ(ρ). Hence we have completed the proof. �

Proof. (Of Theorem 3.2) For any given ρ̄ and σ (arbitrarily small), we will
create a matrix M such that edge values can always be chosen within [ρ̄, ρ̄ + σ].
For reasons that will become clear later, choose a constant φ such that φ ≥
(1 + ρ̄ + σ)/(1 − ρ̄ − σ), and choose m ≥ 2φ/σ. Let M contain only the set of
possible columns that have at most m(ρ̄ + 1)/2 entries that are +1. (We can as-
sume m was chosen so that this is an integer.) This completes our construction of
M. One can verify that ρ of matrix M obeys ρ ≤ ρ̄ (see [15] for details).

We will now describe our procedure for choosing weak classifiers, and then
prove that this procedure always chooses edge values rt within [ρ̄, ρ̄ + σ]. As usual,
for t = 1 we set d1,i = 1/m for all i. Let us describe the procedure to choose our
weak classifier jt, for iteration t. Without loss of generality, we reorder the training
examples so that dt,1 ≥ dt,2 ≥ · · · ≥ dt,m. We choose a weak classifier jt that
correctly classifies the first ī training examples, where ī is the smallest index such

that 2
(

∑ī
i=1 dt,i

)

− 1 ≥ ρ̄. That is, we correctly classify enough examples so that
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the edge just exceeds ρ̄. The maximum number of correctly classified examples, ī,
will be at most m(ρ̄+1)/2, corresponding to the case where dt,1 = · · · = dt,m = 1/m.
Thus, the weak classifier we choose thankfully corresponds to a column of M. The

edge rt is rt = 2
(

∑ī
i=1 dt,i

)

− 1 ≥ ρ̄. We can now update AdaBoost’s weight

vector using the usual exponential rule. Thus, our description of the procedure is
complete.

By definition, we have chosen the edge such that ρ̄ ≤ rt. We have only to show
that rt ≤ ρ̄ + σ for each t. The main step is to show φ = K1 = Kt for all t, where:

Kt := max

{

max
i1,i2

dt,i1

dt,i2

, φ

}

.

We will prove this by induction. For the base case t = 1, K1 = max{1, φ} = φ. In
order to make calculations easier, we write AdaBoost’s weight update as in [13]:

dt+1,i =

{

dt,i

1+rt
for i ≤ ī

dt,i

1−rt
for i > ī

}

.

Now for the inductive step. Assuming φ = Kt, we will show that Kt+1 = Kt, using
the update rule above.

Kt+1 =

{

maxi1 dt+1,i1

mini2 dt+1,i2

, φ

}

= max

{

dt,1

dt,̄i

,
dt,̄i+1

dt,m
,

dt,1

dt,m

1 − rt

1 + rt
,
dt,̄i+1

dt,̄i

1 + rt

1 − rt
, φ

}

.

By our inductive assumption, the ratios of dt,i values are all nicely bounded, i.e.,
dt,1

dt,̄i
≤ Kt = φ,

dt,̄i+1

dt,m
≤ φ, and

dt,1

dt,m
≤ φ. We have automatically (1− rt)/(1+ rt) ≤

1. Since none of the first three terms can be greater than φ, they can thus be

ignored. Since we have ordered the training examples,
dt,̄i+1

dt,̄i
≤ 1. If we can bound

(1 + rt)/(1− rt) by φ, we will be done with the induction. We can bound the edge
rt from above, using our choice of ī. Namely, we chose ī so that the edge exceeds
ρ̄ by the influence of at most one extra training example:

(5.4) rt ≤ ρ̄ + 2max
i

dt,i = ρ̄ + 2dt,1.

Let us now upper bound dt,1. By definition of Kt, we have
dt,1

dt,m
≤ Kt, and thus

dt,1 ≤ Ktdt,m ≤ Kt/m ≤ φσ/2φ = σ/2, where we have used dt,m = mini dt,i ≤ 1/m
since the dt vectors are normalized to 1, and m ≥ 2φ/σ as specified. Thus, (5.4)
yields rt ≤ ρ̄ + 2σ/2 = ρ̄ + σ. So,

1 + rt

1 − rt
≤

1 + ρ̄ + σ

1 − ρ̄ − σ
≤ φ.

Thus, Kt+1 = φ. We have just shown that for this procedure, Kt = φ for all t.
Lastly, we note that since Kt = φ for all t, we will always have rt ≤ ρ̄ + σ, by

the upper bound for rt we have just calculated. �

6. Proof of Theorem 4.1

We drop the superscripts arc for the proof. In order to prove the convergence
rate, we need the two lemmas below.

Lemma 6.1. (Progress at Every Iteration)

gt+1 − gt ≥
αt(rt − gt)

2st+1
.
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The proof (see [15]) uses the concavity of the function tanh, the relation
tanh(γt − αt) = µt which holds for arc-gv by definition of the update αt, and the
recursive equation (5.2). Since the right hand side of Lemma 6.1 is non-negative,
the sequence of gt’s is non-negative and non-decreasing; arc-gv makes progress ac-
cording to the smooth margin.

Lemma 6.2. (Step Size Bound)

αt ≤ c1 + c2st and αt ≤ c1 + c2st, where c1 =
ln 2

1 − ρ
and c2 =

ρ

1 − ρ
.

The proof of Lemma 5 of [14] is identical to the proof of this lemma; it follows
from only the recursive equation (5.2) and the non-negativity of the gt’s.

Now for the proof of Theorem 4.1. Define ∆G(λ) := ρ − G(λ). Since (2.1)
states that gt ≤ µ(λt), we know 0 ≤ ρ − µ(λt) ≤ ρ − gt = ∆G(λt), and thus we
need only to control how fast ∆G(λt) → 0 as t → ∞. That is, if gt is within ε of
the maximum margin ρ, so is the margin µ(λt). Starting from Lemma 6.1,

ρ − gt+1 ≤ ρ − gt −
αt

2st+1
(rt − ρ + ρ − gt), thus

(6.1) ∆G(λt+1) ≤ ∆G(λt)

[

1 −
αt

2st+1

]

−
αt(rt − ρ)

2st+1
≤ ∆G(λ1̃)

t
∏

`=1̃

[

1 −
α`

2s`+1

]

.

We stop the recursion at λ1̃, where λ1̃ is the coefficient vector at the first iteration
where G is positive. Before we continue, we upper bound the product in (6.1) the
same way as in [14, 15]:

(6.2)

t
∏

`=1̃

[

1 −
α`

2s`+1

]

≤

[

s1̃ + ln 2

st+1 + ln 2

](1−ρ)/2

.

It follows from (6.1) and (6.2) that:

(6.3) st ≤ st + ln 2 ≤ (s1̃ + ln 2)

[

∆G(λ1̃)

∆G(λt)

]2/(1−ρ)

.

We now have an upper bound for st, and we will soon have a lower bound. Define
∆µ(λt) = ρ − µt:

αt ≥ tanh αt = tanh[γt − (γt − αt)] =
tanh γt − tanh(γt − αt)

1 − tanh γt tanh(γt − αt)

=
rt − µt

1 − rtµt
≥

ρ − µt

1
= ∆µ(λt).

Thus, we have:

st+1 = s1̃ +

t
∑

`=1̃

α` ≥ s1̃ +

t
∑

`=1̃

∆µ(λ`) ≥ s1̃ + (t − 1̃ + 1) min
`∈1,...,t

∆µ(λ`).

or, changing the index and using min`∈1,...,t−1 ∆µ(λ`) ≥ min`∈1,...,t ∆µ(λ`),

st ≥ s1̃ + (t − 1̃) min
`∈1,...,t

∆µ(λ`).



REFERENCES 13

Combining with (6.3), keeping in mind that ∆G(λt) ≥ ∆µ(λt) ≥ min`∈1,...,t ∆µ(λ`),

t − 1̃ ≤
st

min`∈1,...,t ∆µ(λ`)
≤

(s1̃ + ln 2) [∆G(λ1̃)]
2/(1−ρ)

[min`∈1,...,t ∆µ(λ`)]
[1+2/(1−ρ)]

,

which means that min`∈1,...,t ∆µ(λ`) ≥ ε is possible only if t ≤ 1̃+(s1̃+ln 2)ε−(3−ρ)/(1−ρ).
If t exceeds this value, min`∈1,...,t ∆µ(λ`) < ε. In other words, if t exceeds this value,
then at some prior iteration tprior, it is true that µ(λtprior

) was within ε of ρ. This
concludes the proof.

7. Conclusions

In this work, we present fundamental convergence properties for two historically
important boosting algorithms. For AdaBoost, which is a difficult algorithm to ana-
lyze in general, we have presented the case of “bounded edges” for which AdaBoost’s
convergence can be completely understood. Specifically, we give a fundamental con-
vergence property with respect to the margin; if the edge values (which measure the
performance of the weak learning algorithm) are bounded within a small interval,
then a corresponding interval exists for AdaBoost’s asymptotic margin. We use
this theoretical result to conduct a set of controlled experiments showing a clear
relationship between the margin and the generalization error, namely that a larger
margin indicates a lower error in this setting. We also prove that for any given small
interval, training data and a set of weak classifiers can be constructed such that
the edges will fall into this interval. That is, we can coerce AdaBoost to converge
within a small interval of any given margin. For our discussion of Breiman’s arc-gv,
we provide what we believe is the first convergence rate of arc-gv to a maximum
margin solution.
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[7] R. Meir and G. Rätsch. An introduction to boosting and leveraging. In S. Mendelson

and A. Smola, editors, Advanced Lectures on Machine Learning, LNCS, pages 119–
184. Springer Verlag, 2003.

[8] J. R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth National

Conference on Artificial Intelligence, pages 725–730, 1996.
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[11] Gunnar Rätsch and Manfred Warmuth. Efficient margin maximizing with boosting.
Journal of Machine Learning Research, 6:2131–2152, December 2005.

[12] Lev Reyzin and Robert E. Schapire. How boosting the margin can also boost classifier
complexity. In Proceedings of the Twenty-third International Conference on Machine

Learning, 2006.
[13] Cynthia Rudin, Ingrid Daubechies, and Robert E. Schapire. The dynamics of Ada-

Boost: Cyclic behavior and convergence of margins. Journal of Machine Learning

Research, 5:1557–1595, December 2004.
[14] Cynthia Rudin, Robert E. Schapire, and Ingrid Daubechies. Boosting based on a

smooth margin. In Proceedings of the Seventeenth Annual Conference on Computa-

tional Learning Theory, pages 502–517, 2004.
[15] Cynthia Rudin, Robert E. Schapire, and Ingrid Daubechies. Analysis of boosting

algorithms using the smooth margin function. Accepted, Annals of Statistics, 2007.
[16] Robert E. Schapire. The strength of weak learnability. In 30th Annual Symposium

on Foundations of Computer Science, pages 28–33, October 1989.
[17] Robert E. Schapire. The boosting approach to machine learning: An overview. In

Nonlinear Estimation and Classification. Springer, 2003.
[18] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the

margin: A new explanation for the effectiveness of voting methods. Ann. Statist.,
26(5):1651–1686, October 1998.

[19] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

Columbia University, Center for Computational Learning Systems, Interchurch

Center, 475 Riverside MC 7717, New York, NY 10115

E-mail address: rudin@cs.columbia.edu

Princeton University, Department of Computer Science, 35 Olden St., Princeton,

NJ 08544

E-mail address: schapire@cs.princeton.edu

Princeton University, Program in Applied and Computational Mathematics, Fine

Hall, Washington Road, Princeton, NJ 08544-1000

E-mail address: ingrid@math.princeton.edu



REFERENCES 15

−0.1 −0.05 0 0.05 0.1
0

0.1

0.2

0.25

−0.1 −0.05 0 0.05 0.1
0.25

0.35

0.45

0.53

10^1 10^2 10^3
−1

−0.5

0

0.3

Figure 3. AdaBoost’s probability of error on test data decreases as the
margin increases. We computed 9 trials, namely, 8 trials of non-optimal
AdaBoost, ` = 1, ..., 8, and one trial of optimal AdaBoost (denoted via
` = 0). For each non-optimal trial `, a goal edge value r` was manually
pre-specified. For 3000 iterations of each trial, we stored the edge values
r`,t and margins µ`,t on the training set, along with the probability
of error on a randomly chosen test set e`,t. A - top figure: edge vs.
margin. In each of the 9 trials, we plot (µ`,t, r`,t) for iterations t that
fall within the plot domain. Later iterations tend to give points nearer
to the right in the plot. Additionally, dots have been placed at the points
(Υ(r`), r`) for ` = 1, ..., 8. By Theorem 3.1, the asymptotic margin value
for trial ` should be approximately Υ(r`). Thus, AdaBoost’s margins
µ`,t are converging to the pre-specified margins Υ(r`). B - middle figure:
probability of error versus margins. The lower scattered curve represents
optimal AdaBoost; for optimal AdaBoost, we have plotted all (µ0,t, e0,t)
pairs falling within the plot domain. For clarity, we plot only the last
250 iterations for each non-optimal trial, i.e., for trial `, there is a clump
of 250 points (µ`,t, e`,t) with margin values µ`,t ≈ Υ(r`). This plot
shows that the probability of error decreases as the pre-specified margin
increases. C - bottom figure: edges r0,t (top curve), margins µ0,t (middle
curve), and smooth margins (lower curve) versus number of iterations t

for only the optimal AdaBoost trial.


