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A SIMPLE WILSON ORTHONORMAL BASIS WITH
EXPONENTIAL DECAY*

INGRID DAUBECHIES’, STIPHANE JAFFARD:, AND JEAN-LIN JOURNI

Abstract. Following a basic idea of Wilson ["Generalized Wannier functions," preprint] orthonormal
bases for L2(R) which are a variation on the Gabor scheme are constructed. More precisely, b L-(R) is
constructed such that the ln, N, n 7, defined by

4,o.(X) (x- n)

q%(x)=x/b(x-)cos(27r/x) if O, l+ n 271

b(x-)sin(2"rr/x) ifl0, /+n2Z+l,.-.-
constitute an orthonormal basis. Explicit examples are given in which both b and its Fourier transform 4
have exponential decay. In the examples b is constructed as an infinite superposition ofmodulated Gaussians,
with coefficients that decrease exponentially fast. It is believed that such orthonormal bases could be useful
in many contexts where lattices of modulated Gaussian functions are now used.
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1. Introduction. In several applications in quantum mechanics and in signal analy-
sis, sets of functions generated from one single function by phase space translations
are encountered:

(1.1) gm,,(x)=e2"i’mXg(x--fln), m,n7/.

If the function g and its Fourier transform g,

() f dx e:’"’XC:g(x),

are both centered around zero, then the function g,n is centered around the phase
space point (am, fin). We can then hope to use the functions g,n for expansions of
functions with good phase space localization. More concretely, we would like
expansions of the type

(1.2) f= E Cm,,(f)g.,,,,

with the property that the c,,,(f) are nonnegligible only for those values of (m, n)
associated to phase space points where f is nonnegligible. For example, if
jltl>_r dt If(t)12-<_ ellfll and lel_>_a d If(:)l2= ellfll, then we would prefer most of the
"content" off to be concentrated in the c,,,,,(f) with (ma, nil) within or close to the
rectangle [-l),12] x [-T, T]. More concretely, this can be translated into the
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requirement

(1.3) ]Cmn(f)12 cllfll =,
Iozml>= T+A T

where C should be independent of e, T, and 1, and where A T, AO should only depend
on the desired precision e.

One example of a set of functions of type (1.1) are the phase space Wannier
functions used in solid state physics. In the absence of a potential they are obtained
by the choice

sin 7rx
g(x)

which corresponds to

1, 1 1<1/2,
(:)

0, otherwise.

(When the potential is nonzero, the Wannier functions are more complicated 1 ].) For
this choice of g, and for the parameter choice a =/3 1, the functions (1.1) constitute
an orthonormal basis of L2(). Expansions of type (1.2) are therefore simple to obtain:
it suffices to take mn(f)-- dx gmn(X)f(x). Unfortunately, the localization of g is not
very good. The function g has a rather long tail, so that

ax xZlg(x)l2- .
As a consequence of this, expansions of functions with respect to the phase space
Wannier functions do not have the good phase space localization features described
above.

Another example of a set of functions of type (1.1) is given by the "Gabor
expansions." These correspond to the choice

g(x)-- 21/4 exp (-zrx2).
In the original proposal of Gabor [2], the parameter choice a =/3 1 is made. Unfortu-
nately, this parameter choice leads to numerically unstable expansions: for any e > 0,
there existsf L2() such that ]If 1 but ,,,, ICm,,(f)12 e. It can be shown that this
phenomenon happens for any choice of a,/3 such that a/3 1 [3a, b], [4a, b]. If a/3 > 1,
then the g,, do not span all of L2() [5], [6]. If a/3 < 0.996, then numerically stable
expansions of type (1.2) do exist, with the "good" phase space localization described
by (1.3) (see [7], [8]; it is conjectured that this situation persists for a/3 < 1). There is,
however, a price to pay: for a/3 < 1, the g,,, are highly redundant, in the sense that
any finite number of them lies in the closed linear span of all the others. While Gabor
expansions with a/3 < 1 are indeed used in practical computations in atomic and nuclear
physics, this redundancy can be quite a nuisance.

These two examples illustrate how convenient it would be to have a nice orthonor-
mal basis (- no redundancy) of type (1.1), based on a function g such that both g
and have good decay properties (- expansions with good phase space localization).
Unfortunately, such an orthonormal basis does not exist. A theorem stated by Balian
[9] and Low [10] asserts that a set of functions of type (1.1) can only constitute an
orthonormal basis if either dx x2[g(x)l2-- o or dsc Balian’s and Low’s
proofs contain a technical gap that was filled by Coifman and Semmes, as reported
in [7]; a much simpler proof was subsequently found by Battle [11]. Even if the
orthonormality, but not the "basis" requirement, is given up, the same conclusion still
holds, as shown by the extension of Battle’s argument in [12]. Both the original proof
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and Battle’s proof of the Balian-Low theorem rely heavily on the special structure of
the g,n as defined by (1.1). We might therefore wonder whether there exist more
general bases, 4’m,,(X), with phase space localizations distributed more or less regularly
over phase space, and such that uniform bounds on the decay of all the 4,, and
(4,m)^, away from their central value, would hold. It turns out that there is indeed
improvement from giving up the simplicity of (1.1), but only very little. Bourgain [13]
has constructed an orthonormal basis of 4m, such that

lax (X ,mn)211]lrnn(X)l2 C,

(1.4)

a: (- -m,,)l(q,,,,,,)^()l:’< C,

uniformly in m, n, where ’mn dx XI,I,m,,(X)I 2, and mn is defined analogously. However,
as soon as a slightly sharper localization is required, we hit another no-go-theorem,
even for these more general constructions: Steger [14] proved that L2(R) does not
admit an orthonormal basis ,,, satisfying

dx (x mn)2(l+e)lclmn(X)]2 C,

(.5)

d (- m,,)Z(l+)l(q6,,,,,)^()12-< C.

Orthonormality, or, what is weaker, the existence of numerically stable expansions of
type (1.2) with nonredundant functions 46, is therefore incompatible with good phase
space localization.

In all the above, "good phase space localization" stands for strong decay properties
of the 4,, (4m)^ away from the average values g,,, ,n. This corresponds to a picture
in which both 4’m, and (4’m,) have essentially one peak. In [15] Wilson proposes
instead to construct orthonormal bases 4’,, of the type

(1.6) bm,(X) f,,(x- n), m N,

where f,, has two peaks, situated near m/2 and m/2,

with b +., b-, centered around zero. He proposes numerical evidence for the existence
of such an orthonormal basis, with uniform exponential decay for f, and b+,,, b. In
his numerical construction he further "optimizes" the localization by requiring

(1.8) d:2(4%.)^(s) qm,,,() 0
if Im m’l > 1,
or if m m’l 1, > 1.

In [16] Sullivan et al. present arguments explaining both the existence of Wilson’s
basis and its exponential decay. In both 15] and 16] there are infinitely many functions

m; as rn tends to c, the b tend to a limit function
The moral of Wilson’s construction is that orthonormal bases with good phase

space localization are possible after all if bimodal functions as in (1.7) are used. This
is reminiscent of what happens for orthonormal wavelet bases, i.e., orthonormal bases
of L2(R) of the type

(1.9) hmn(X) 2-’/2h(2-’x n), m, n 7/.
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There exist functions h with excellent phase space localization properties such that
the functions (1.9) constitute an orthonormal basis. In [17] Meyer constructs such a
function h with compactly supported, C Fourier transform/; 18]-[20] give examples
of exponentially decaying h ck; and [21] constructs compactly supported h C k. In
all these examples, hl has two peaks, one for positive and one for negative frequencies.
It has been shown [22] that these two peaks need not be symmetrical in order for the
h,,n to constitute an orthonormal basis (the examples in [17]-[21] all have symmetric
peaks for I1). However, there is no example, so far, of reasonably well-localized
functions h such that support (h +/-) c R+/- and such that the hn constitute an orthonor-
mal basis of L2(R), corresponding to wavelet bases with only one "peak" in frequency.
(Equivalently, there is no example of a reasonably smooth function b =// such that
the functions 2 m/2 exp (2,rri2mn)b(2m) are an orthonormal basis of L2(+).) It is
believed, without proof so far, that no such basis exists. This seems to be the analogue,
for the wavelet situation, of the Balian-Low theorem.

In this paper we construct an explicit bimodal orthonormal basis of the type (1.6),
(1.7). Our basis is especially simple because it is again generated by one single function,
unlike the bases in [15], [16]. More explicitly, we construct a real function b such
that with the definitions

fl() b (:),

(1.9a) 1fe+K(sc)=__[b(sc_)+(_l)e+Kb(sc+g)] i’n’: \{0}, K=0 or 1

the family

(1.9b) ,,,(x)=fm(x-n), m \{0}, n7/

constitutes an orthonormal basis. Both b and its Fourier transform b have exponential
decay. Moreover, b can be explicitly constructed as a rapidly converging superposition
of Gaussians. All these features should make the basis constructed here especially
attractive for the computations in atomic and nuclear physics where the Gabor functions
are now used. The price we pay for the simplicity of our Wilson basis is that the
near-diagonalization (1.8) of :e no longer holds.

This paper is organized as follows. In 2 we derive necessary and sufficient
conditions on b for the ,,., defined by (1.9), to be an orthonormal basis of Le().
In 3 we rewrite these conditions in another form, via the Zak transform. In their new
form, it is easy to see how to satisfy these conditions. We use this in 4 to construct
an explicit Wilson basis with all the properties mentioned above. It turns out that our
construction is related to "tight frames" [23], [7]. We review this concept in 5, and
explain how it is linked to the present construction. This leads to an alternate construc-
tion method, given in 6, which is easier to implement numerically. Finally 7 gives
some concluding remarks. In particular, we show how a relabelling of the p,. in (1.9)
reduces the construction to the formula given in the Abstract.

2. Necessary and sufficient conditions. It suffices to prove that

(2.1) I1 , .11 1, m6N\{O}, n7/,

and

(2.2) Z
m=l

(g, ..)( g’m., h) (g, h)
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for all g, h L2(R). Indeed, from (2.1) and (2.2) we obtain

1 +
(m,n)(m’ n’)

whence (,, ,,,) 6,6,,,. It follows that (2.1) and (2.2) imply that , constitute
a total ohonormal set.

We first concentrate on (2.2). Using Parseval’s identity and the Poisson summation
formula, we find

(g, )(, h)= J d() h(+k)f()f(+k).
m=l n=-- m=l k=-

(Note that we use the physicist’s convention for the inner product in L2(), which is
linear in the second argument, (g, h)=J dxg(x)h(x).) In order to have (2.2), it is
therefore necessary and sucient that

(2.3) E f()f(+ k)= o.
m=l

Let us write this out in terms of . For the time being, we disregard any convergence
questions; for the function we will construct all series converge absolutely and uni-
formly. We also assume to be real.

f()f(+ k)

((++ 2 [(_+(_le+(+]
g=l =0

(.4 [(,,,

1
=((++ 2 (+(++(+(-

1

ge,gO

If k is even, k 2j, then

(2.4)=

If k is odd, k 2j + 1, then

(2.4)= 2

as is easily shown by the change of summation index g’=-+ 2j + 1. It follows that
(2.3) is equivalent to

We now turn to (2.1). It clearly suces to prove IImll 1, m 0. For m 1
this gives
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For rn 2g+ o-, g>_-1, we find

IIf,l[2= d Ib(- {) + (-1)e+b(:+ {)12

1+(-1)e+ d(-g)(+g).

It follows that (2.1) is equivalent to

(2.6) d()(+2g) 6eo.

This condition is automatically satisfied if (2.5) holds:

d()(+2) Z d(+k)(+k+2)
ke

deo eo.

We have again assumed that is suciently well behaved so that the summation and
integration may be commuted in this computation. It is easily checked that it is sucient
that decays Nster than I1- for I1 . For the examples we will construct, this is
no problem. The following proposition summarizes our findings.
Pooso 2.1. Suppose tha is a real function on N satisfying

I()1 c(1 +ll) -1-

for some C, e O. en the functions , defined by (1.9) constitute an orthonormal
basis for L() Vand only V

(+)(++2j) ao.
We therefore have only one set of conditions, namely (2.5). This condition can

be almost trivially satisfied if we choose to be supposed in [-1, 1]. In this case
b()(+ 2d) 0 if d 0, for any . It follows that (2.5) is satisfied if(+d)
1. Since this sum is periodic in with period 1, we only need to check what happens
for 0 1. For supposed in [-1, 1], this means we only need to asceain that
b()+(-l)2= 1 for 01. Such are easy to construct: for any function F
such that

F’

F(x) {0, xN0,
1, xl,

ON F(x) N1 for allx,

,()

the function 4 defined by

sin

cos [F()], _->0
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is a function supported in [-1, 1] which satisfies (2.5), hence (2.1) and (2.2). If F is
C k (where k may be c), then b is C k. The corresponding qm, are C-functions; their
decay at c is regulated by the regularity of F. If F is C, then the q,,n have "fast
decay," i.e., for all N N, there exists CN such that

@m,(X)[ CN(1 +lx- hi2)-.
In practice, however, the constants CN turn out to be rather large, so that the numerical
localization ofthe q,,n is not very good. The examples we construct in 4, corresponding
to noncompactly supported b, have better effective localization.

3. The Zak transform--rewriting the conditions. Using a unitary transformation,
we will rewrite the infinitely many conditions (2.5) (one for every j) into a different
form, reducing them to one single condition which is then easy to satisfy. The unitary
map we shall use is the Zak transform. For the purposes of this paper, we define the
Zak transform by

(3.1) (Uzg)(t, s)=x/ e2"kg(2(s--k)).
kET/

This is well defined for functions g with sufficient decay, [g(x)[ <- C(1 -t-IX[2) -1/2-e. The
two-variable function G Uzg is periodic in the first and "semi-periodic" in the second
variable,

(3.2)
G(t+l,s)=G(t,s),

G(t, s+ 1)= e2="G(t, s).

The set of all functions G of two variables satisfying the periodicity conditions (3.2)
can be equipped with the norm

(3.3) IIGII== dt ds IG(t, s)l 2.

We will denote the closure of this set, under the norm (3.3), by Lr. A function G is in
Lr if and only if its restriction to [0, 1[ [0, 1[ is square integrable, and it satisfies the
periodicity conditions (3.2) almost everywhere. It follows that Lr is isomorphic with
L2([0, 112). The functions E,,(t, s), defined by

Emn( t, s) e2i"t e2=i’s for t,s[0,1[,

extended by (3.2) to all of R-, constitute an orthonormal basis for .
The map Uz defined by (3.1) can be extended to a unitary map from L2(R) to

This follows from the fact that Uz maps the orthonormal basis e,,n(x) e=i’XX(x-2n),
where X(x) 2 -1/2 if 0 -< x < 2, X(x) 0 otherwise, to the orthonormal basis
Uze,, Emn.

The Zak transform has many interesting properties; it derives its name from its
systematic study by J. Zak, who introduced it as a tool in solid state physics [24a-c].
It had already been studied sporadically before Zak’s work, and it is claimed that even
Gauss was already aware ofsome of its properties. An excellent review ofthe mathemati-
cal properties of Uz and its applications to signal analysis is Janssen’s paper [25],
which also contains an extensive reference list.

The inverse transform of (3.1) is given by

(3.4) U1G)(x) -- at G t,
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Again this is only well defined for some G in Y (including all bounded G), but it can
be extended to all of .

There exists a relationship between Uzg and Uz. Using the Poisson summation
formula, we find

(Uz,)(t, s)= x/ eeE e2ite I_ dx e4i(s-e)Xg(x)

e2ist E e_2=iskg(2k)(3.5a) -x/ k

Similarly,

_1 e2=,s(,+j) (Uzg) -4s,
2j=0

(3.5b) Uzg)( t, s) j-o e2is(t+J( Uz) 4s,

Let us now apply all this to the problem at hand. We define Uzch, and we
rewrite (2.5) in terms of . We have

e 2

=-e2 dt dr’ t,
2

k
’2 k+j

+k t’, +k+j
2 2. dt dt’ e2ik(t+t’) d 2ijt’

2 o

(use (3.2))

dt e-2rijt

2

2

In the last step we have assumed that (., s) is square integrable for all s; by the
definition (3.1) of the Zak transform we easily check that this is equivalent to the
requirement that k 14,(2S- 2k)]2 be bounded for all s, which is certainly true if, as in
Proposition 2.1, b decays faster than I1 -. Note that we have used (-t, s)= @(t, s),
which is true for real functions b. All this proves the following proposition.

PROPOSITION 3.1. Let qb be as in Proposition 2.1. Then (2.5) is satisfied, i.e.,

E 6(+ e)6(+ e+ej) o
if and only if the Zak transform dp Uzqb of qb, as defined by (3.1) satisfies
(3.6) [(t, s)[2 + [(t, s + 1/2)[2 2

for almost all t, s [0, 1 ]2.
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4. Constructing solutions. Now that we have reduced the infinitely many condi-
tions (2.5) to the single condition (3.6), we can get down to the business of constructing
explicit "nice" b satisfying (2.5). Typically, we start with a real function g with
exponential decay,

(4.1) Ig(x)l <- C e-lxl,
such that its Fourier transform has exponential decay as well,

(4.2) Iff(y)[ <: C e-Iyl.

Define G Uzg; G is well defined and continuous. Since g is real, we have, for all
t, seN,

G(-t,s)=G(t,s).(4.3)

Assume that

(4.4)

We then define

(4.5)

where

inf [Ia(t,s)l+lG(t,s+1/2)12]>O.
t,s[0,1]

/) UI(I),

G(t,s)
(4.6) O(t, s) =x/

[IG(t, s)l+lG(t, s /-12)1=] 1/"

Then the following theorem holds.
THEOREM 4.1. The function oh, defined by (4.5), is a real function, and satisfies

(2.5). Furthermore, both dp and ch have exponential decay.
Proof 1. It follows from (4.3) and (4.6) that

O(-t,s)=O(t,s),

so that, using (3.4) and (3.2),

1Io () 1 fo| ()c(x)=- dt t, =- dt -t,

if lfo’-x/ -1

dt t, =- dt t, =th(x).

2. To prove that b has exponential decay, we first extend the definition domain
of G from N2 to (N+ i(-A/r, oe)) xN. From (4.1) we see that the series

(4.7) G( + i-, s) x/ eE"i(t+i’)fg(2(s 1))

converges absolutely for ’>-A/r. The function G(z,s) is continuous on
i(-A/cr, co)) xN, and G(-, s) is analytic on N+ i(-A/cr, oo) for every s eN. Moreover,

G(z, s+ 1)= e2iZG(z, s),
(4.8)

G(z+l,s)=G(z,s).

We also define, for z e N + i(-A / r, ), s e N

(4.9) Cg(z, s)= G(z, s) G(-z, s) + G(z, s + 1/2)G(-z, s + 1/2).
Then cg(., s) is analytic on N+ i(-A/or, m) for every seN, and

(4.10) Cg(z + 1, s)= Cg(z, s)= (z, s+1/2)
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for all z + i(-h/zr, o), s . Using (4.2), we can show that G is uniformly con-
tinuous on ([+i[-h/, ))[0, 1]; together with (4.10) this implies that is uni-
formly continuous on (+ i[-h/r, o)). On the other hand, the restriction of to

g is real, and bounded below away from zero by (4.4). It follows that there exists
>0 so that [qd[ is bounded below away from zero on (+ i[-, ])x. We can
therefore define c-1/2 as a uniformly continuous function on (+i[-,])x;
q3(z, s) -1/2 is analytic in z+i(-, ]) for all s. We can therefore extend (4.6),
and define for z + i(-, ), s ,

(z, s) (z, s)-/a(z, s).

By (4.8) and (4.10) this extension satisfies

(4.11)
gP(z + I, s) (z, s),

(z, s+ 1) e2=iZ(z, s).

We can now use this extension to prove exponential decay of b. By (4.5) and (3.4)

1 Io’ ()p(x): dt P t,

Assume that x _-> 0. (We will treat x _-< 0 afterwards.) Using the analyticity of in + i%
we can deform the integration path,

dp x - dr gp iz, + dt + A, + dz l + iz,

where we assume 0< A < . Since (1 + iz, x/2)=(iz, x/2), the first and third integral
cancel out. If x 2n + 2xl, with xl [0, 1 ], then, by (4.11),

1
dt e2rin(t+iA)((t + iA, x)

e-2"rrAn-< sup [(z, s 1[
s[O,1]

<= C’ e-Ax.
For x <-0 we use the same argument, but we deform the integration path by going into
the Im z < 0 half plane. It follows that for all A such that

A<min (, inf{l-[; c(t+i%s)=O for some t, s[0, 1]}),
there exists a constant CA such that

(4.12) ]b(x)[ <-- CA e-atxl.

3. To prove the exponential decay of , we use the connection (3.5) between the
Zak transforms of a function and of its Fourier transform. Because of (4.2) and (3.5b),
arguments similar to those in step 2 above show that G can be extended to a uniformly
continuous function on x(+ i(tx/4r, )), and that, for every te, G(t, s+ kr) is
analytic in s+krE+i(tx/47r, o). We can now define, for t6E, w=s+kr
+ i(tx/47r, c),

F(t, w)= G(t, w)G(-t, w)+ G(t, w+1/2)G(-t, w+1/2).
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Again F(t, w) is analytic, and there exists /2 > 0 so that IFI is bounded below away
from zero on E x (E + i[-/,/2]). It follows that has an extension to (R + i[-/2,/2]),

t, s + ir) G( t, s +/)r( t, s + i) -/,
which is analytic in s + i for every fixed t, and which satisfies

(t, w+ 1)= e2it(t, w),

(t+ 1, w)=(t, w).

By (3.4) and (3.5a) we have

ds eiy(+) -2y,
2=o

We can now play the same game as before (deform the integral over s into the complex
plane, ). The result is that for all such that

A<min(,4inf{ll;F(t,s+i)=O for some t, se[O, 1]}),
there exists a constant Ca such that

(4.13) (Y)l N da e-alyl.

4. It remains to show that satisfies (2.5). It is obvious from Ia(t, s+ 1)1 IG(t, s)[
and from (4.6) that

(4.14) I*(t, s)[ + I(t, s +)l 2

for all t, s e N. Because of the exponential decay of and , all the manipulations of
3 are indeed allowed, and (4.14) implies (2.5).

Any function g satisfying (4.1), (4.2), and (4.4) can therefore be used to construct
an oahonormal Wilson basis of type (1.9). An explicit example is given by the Gaussian

(4.5) g(x) (e)’/4 e-x.
The Zak transform of g is related to one of Jacobi’s theta functions,

a(t, s)= (2p)/4 e-4: e-4e eee(4+it

(4.16)
(2p) /4 e_4O3(t_4ipsl4ip),

with Bateman’s notation [26]

03(zl ): 1 + 2 cos (2) ei",e.

As defined by (4.16), the function G has only one zero in [0, 1]
[26]. Consequently, (4.4) is satisfied. Since g and (y)=(2/p) 1/4 e-y/ obviously
have exponential decay, the construction (4.5)-(4.6) does lead to a Wilson basis with
exponential phase space localization. For p 0.5 we find

inf{Irl; (t+ir, s)=O for some t,s[O, 1]}=0.5,

inf {1; r(t, s + i) 0 for some t, s e [0, 1 ]} 0.25.
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Consequently, for every e > 0 there exists C such that

(4.17)
[(y)l<_fe-(-)txl.

Remarks. 1. The decay rates in (4.17) can be adjusted by starting with a Gaussian
different from (4.15). For v 2-/ e.g., we find that the corresponding and are
bounded by

(4.18)
I(Y)I N C exp (-(- e)lyl/).

2. It is easy to show that if g is an even function, then & is even as well.
3. In [16] the explanation for the existence and exponential decay of the basis

constructed by Wilson in [15] stas from an ansatz different from (1.9): the bimodal
functions used as a staing point are of the form

(4.19) g
2m+l

+(_l)mg +4 4

For this ansatz the normalization (2.1) and the "completeness requirement" (2.2) do
not reduce to the same condition. The oahonormalization of the functions in (4.19),
staaing from a "nice" g, results therefore in

f() ( 2m+l) (2m+l)+6 +
where the depend on m. In the ohonormalization procedure in 16] the "overlap
matrix" of the functions (4.19) is used. This overlap matrix also contains the quantity
G(t, s)l+lG(t, s+)l:, where G is the Zak transform of g (see Appendix B in [16];
the notation is very different, however). The merit of the present construction, staing
from (1.9), is that the oahonormality (2.1) automatically follows once (2.2) is estab-
lished; moreover, (2.1) + (2.2) are equivalent to the single condition (3.6), which enables
us to construct, via (4.5)-(4.6) a single function generating the whole Wilson basis.

5. The link with tight frames. We sta by briefly reviewing some material concern-
ing "frames." Frames were introduced by Dun and Schaeffer [27] in the context of
nonharmonic Fourier series; in [23] and [7] special frames, constituted by families of
functions of type (1.1), were studied in connection with the windowed Fourier trans-
form. We review here some results from [7].

A family of gmn, as defined in (1.1), constitutes a frame if there exist A
such that, for all f in Le(E),

(5.1) mllfll E I<g.,f>l=nllfll.
This condition can also be rewritten as

(5.2) A Id_-<P_-< B Id,

where P is the positive operator

(5.3) P= Y’. Pro,,, P,,f= (gm,,f)gm,.
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If the gmn constitute a frame, then functionsf L2([) can be completely characterized
by the family of inner products ((gmn,f))m,nZ, and there exists a numerically stable
inversion procedure to reconstruct f from these inner products,

f= Y (gmn, f),mn,
m

with

,mn(X) e2rrimn ff, (X rt),
p-lg,

with P as defined by (5.3). Because of (5.2), P has a bounded inverse, so that is well
defined. A special case arises when the frame is tight, i.e., when the frame bounds A
and B are equal,

Y I(gm,,f)l2-- Allfll 2.
m, rlG7/

It then follows that

P=A Id,

=A-lg,

f=A- , (gmn,f)gmn.
m, Z

In general, frames are redundant (they contain "too many" vectors, or more precisely,
any frame vector lies in the closed linear span of all the others). If the frame is tight,
then A indicates how redundant the frame is; for tight frames of type (1.1) we find [7]
(5.4) A (ce/3)-il[g[I 2

A frame of type (1.1) can only be an orthonormal basis if a/3 1 (and if, moreover,
g is chosen appropriately), corresponding to A 1, or no redundancy. Tight frames
with "nice" g exist if and only if a/3 < 1; see [23] for a construction with compactly
supported g.

Let us now specialize to the case ce .5,/3 1,

g,,,,,(x)=ei’Xg(x-n).
The density of the phase space lattice corresponding to the g,, is then twice as high
as for an orthonormal basis. Suppose g is "nice," i.e., both g and have fast decay
at oo. Let us investigate under which conditions on g the g, constitute a frame
(respectively, tight frame). Because (cq3)-= 2 is an integer, the Zak transform is a
natural tool to study these questions, as observed in [8]. Using (3.1), we find

Uzg,,2,)(t, s) e-2"" e2="SG(t, s),
(Uzgm2n_l) (t, S) e-2with e2wires G( t, s + 1/2),

where G Uzg. It follows that, for all hi, h2 L2(),
E (hi, Pm2nh2)-- E (hi, gm2n)(gm2n,

m, m, 7/, dt ds Uzhl(t, s)G(t, s) e" e-2rims
m, T/

dt ds Uzh2( t, s) G( t, s) e2=t. e-2wims

de ds Szh(t, s) Szh(, s)la(, s)l.
o
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Consequently, Uz[mng Pm2n]U is multiplication by G(t, S)I 2 in Y. Similarly,
--i’Uz[Y’.,,.,z P,,z,-1]Uz s multiplication by [G(t,s+1/2)[ -. Consequently, P=m.,

is unitarily equivalent to multiplication by ]G(t, s)l z + IG(t, s +)l2 on . It follows that
the g, constitute a frame, or equivalently that P satisfies (5.2), if and only if

o<alG(t, s)12+G(t, s+)12B<
for all t, s [0, 1 ]. All this is summarized in the following proposition.

POPOSITOy 5.1. e functions g,(x) em=Xg(x n) constitute a frame if and
only if the Zak transform G Uzg of g, as defined by (3.1), satisfies

A= inf
t,s[0,1]

and

B sup [I G(t, s)l - +lG(t, s + 1/2)12] < oo.
t,s[0,1]

Note that if Ig(x)l_-< c(1 /lxl) --, then G is bounded, and B is automatically finite.
There are other procedures than the Zak transform to check whether the g,,, constitute
a frame [7]. The point of Proposition 5.1 is that any reasonably well-localized g such
that the g,,, constitute a frame can be used as a starting point in the construction of
b in 4. Note that the computations above also prove the following proposition.

PROPOSITION 5.2. Let be a real function such that Icb(x)l<=C(l+lxl)-- and
dx Ib(x)l2= 1. Then the following are equivalent:

(1) The q,,,,, as defined by (1.9), constitute an orthonorrnal basis,
(2) The Zak transform dp= Uzcb of cb satisfies

I(t, s)l 2 + I(t, s + 1/2)12 2,

(3) The functions Cmn(X) eim=xqb(X n), m, n 7], constitute a tight frame.
Proof

(1) :> (2) is proved in Proposition 5.2.

Define now P(b) by

P(b)f-- (4)mn,f)4)mn.

Then, by the computation above,

(5.5) P(b) ul{multiplication with Ilk(t, s)=l /l(t, s/)12]}uz,
If (2) holds, then it follows that P(b)= 2 Id, i.e.,

Z I<,b..,f)l’-- 21lfll

so the b,,, constitute a tight frame.
On the other hand, if the )mn constitute a tight frame, i.e.,

then A= 2 by (5.4) (a .5,/3 1, and Ilgll ). It follows that P(6)= 2 Id, which by
(5.5) implies (2).

Remark. From this analysis it follows that the construction in 4 and 6 below
can also be used to generate tight frames with exponential localization in both time
and frequency. The construction in 6 can easily be extended to tight frames with
arbitrary redundancy. These tight frames contrast with those constructed in [23 ], where
either 4 or b had compact support.
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Proposition 5.2 leads to the following interpretation of our Wilson bases. Suppose
that the tm constitute a tight frame. Since a/3 .5, this tight frame has redundancy
2, i.e., it has "two times as many vectors" as an orthonormal basis. The Wilson basis
vectors generated by b via (1.9) are given by

lmn )^ e27rinm
or

(5.6a) (Ol,)^(sc) e2="eb()=

1
e2in i.rrK[(2g+n)’() e 6(-e)+ (-1)

(5.6b) 1
(e+ + (- 1)e+-e2+)(),

{0}, =0 or 1.

Formula (1.9) can therefore be viewed as a procedure eliminating the redundancy
factor 2 from the tight frame , by choosing only the o with even n, and replacing
every pair e,, -e (fl 0) by one judiciously chosen linear combination of these two
vectors. It seems a small miracle that the result is an ohonormal basis

Note that (5.6) can be made even simpler by a relabelling of the m,. Denote

e2.+ qze+., g# 0, 0 or 1,

Then (5.6) becomes

(I’o.)^ o2.,

1
(*e.)^ (be. + (-1)e+"th_e.),

making the reduction from the right frame with redundancy 2 to the orthonormal basis
even more elegant.

6. The construction revisited. The equivalence between (4.4) and the flame condi-
tion (5.1) leads to an alternate construction for the function b which is very easy to
implement numerically.

Choose g such that (4.1), (4.2), and (4.4) are satisfied. Then, by the argument in
5,

consequently,

UzPU’ multiplication by IG(t, s)l 2 + IG(t, s +1/2)12;

/I G(t, s)12+lG(t, s+1/2)l2
(])-- UZ

X/ p-lwlG x/ p-1/g.

The operator p-l/2

U1Uzp-1/2UI G

can be written as a convergent series. Since

A Id-<P_-< B Id
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for all A > 0, B < c satisfying

a-_< inf [I G( t, s )l= / a( t,
t,s[0,1]

we have

(6.1)

B-> sup [IG(t,s)[:+lG(t,s+1/2)l:],
t,s[O,1]

A- B
Id- Id-

A+ B

_( 2 )1/2 (2k)! ( 2P ) k

A+B =o (k! A+B22k )2
Id-

where the series converges because

Id-A+ B
B-A
=<<1.
B+A

This can be used to write b as a combination of gmn, with coefficients computed
recursively. For instance, if g is Gaussian, g,,(x)=(2u) 1/4 e-,,x2, then we find

2 ., am,,g,,(x)(6.2) b(x)

with

(6.3)

where

(2k)!
a,,,, k 22k .)2

bk
=o (kV

k ( 2 ) bk,,-,_2
COmn,m,n,bm,n,,

Wm,,,.,,n, exp [ i( m, m )( n + n,)
,rr v’rr

n,)2 ’77"--- n --u m m

bm. mO6nO

While this seems lengthy, it is very easy to program on a computer. The procedure
converges at least as fast as a geometric series in (B,,-A,,)/(B,,+A,,). For v=.5 we
find A,,= 1.670, B,,=2.361, (B,,-A,,)/(B,,+A,,)=.1712; for v=2-/2, we have A,,=
1.:533, B,, =2.492, (B,,-A,,)/(B,,+A,,)=.2381. Figures 1 and 2 give graphs of th and
b, for v .5 and v 2 -1/2, respectively.

Remarks. 1. A and B can be computed via the Zak transform"

A inf [l( Uzg)(t, s)l2 + I( Uzg)(t, s + 1/2)12],
t,se[0,1]

B= sup [l(Uzg)(t,s)l+l(Uzg)(t,s+)[].
t,s[0,1]

In [7] an alternative way of estimating A and B is given, leading to a lower bound
for A and an upper bound for B, without recourse to the Zak transform. Using the
Poisson summation formula, we find

(6.4) re(g) r(g) A =< B =< M(g) + r(g),
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2

-1
-4 -2 0 2 4

-1
-4 0 2 4

FIG. 1. Plots of ok and , constructedfrom g(x)= e-x2/2. For this choice ofg, we have (y)= x/ b(2y)
(see (6.6)). To draw these graphs, the recursive computation (6.2), (6.3) was used.

where
re(g) xto,]inf Ig(x- n)l,
M(g) sup 2 Ig(x- n)l =,

x[O,1]

r(g)=2 [(2k)(-2k)]/,
k=l

/3(s) sup Y Ig(x- n)g(x- n + s)l.
x[O,1]

Note that the lower bound in (6.4) also gives a sufficient condition ensuring that (4.4)
holds, without having to check the Zak transform. In some cases, more efficient bounds
can be computed from the Fourier transform ff of g. We obtain [7]

(g) -(g) <= A <- B -<_ ll(g)-(g)
with

(g)= inf Z I(sc-n/2)]2,
:[0,1/2]

l/l(g) sup Iff(- n/2)l 2,
[0,1/2]

(g)=2 [(k)(-k)]1/2,

/3(s) sup
c[0,1/2]
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-1
-4 4-2 0 2

--4 -2 0 2

FIG. 2. Plots of dp and constructed from g(x)= 2/8 e-’2/’/. For this choice of g, the decay rates of &
and are identical (see (4.18)). We have again used (6.2), (6.3) to compute oh; is simply obtained by
replacing g,, in (6.2) by (gnn)"(y)=(--1) e2iyngl/V(y+(m/2)).

2. Let us introduce the notation F for the Fourier transform and D for the
dilations (Daf)(x) --[all/2f(ax), and let us write P(g), b(g) to make the dependence
of the operator P and the function 4 on the function g more explicit. Then we easily
check that

D1/2 FP(g) P(DI/Fg)D1/2F,

implying

(6.5) D1/2Fdp(g) qb(D/2Fg).

Denoting b(g) by b, where g(x)= (2u)/4 exp (-rux2), we find therefore

(6.6) (b)^(y) b(4,,)-(2y).

In particular, for u=.5, (b/)^(y)= 1/2(2y).

7. Conclusion. We have shown how to construct very simple Wilson bases
generated by a single function 4, via

,,,,(x)=fm(X-n), n_7, m NI\{O},

(7.1)
1fze+(j)=---.[(,-{)+(-1)e+"ch(gj+{)] ei=, {NI\{O}, =0 or 1.
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We have explicitly constructed such bases;Ain order to obtain exponential decay for
both the qmn and their Fourier transforms p,,n, it suffices to choose a function g such
that g and have exponential decay, and such that condition (4.4) is satisfied, or
equivalently, such that the g,,,(x)=e=imXg(x-n) constitute a frame. (For this it is
sufficient that m(g)-r(g) > 0 or fi(g)-(g) > 0--see 6.) The function b can then be
constructed from g either via the Zak transform (see 4) or via a recursive algorithm
(see 6).

The functions f,, in (7.1) are given by the inverse Fourier transform of . If g is
real and even, then so is , so that its Fourier transform and inverse Fourier transform
coincide. We then have

2’igx

Using the relabelling

we find

%.(x)

( ){cos (2r&)
e(x) x/ x-

sin (2rgx)
if g+ n is even,
if g+ n is odd.

It follows that the Wilson bases constructed here are very similar to the functions (1.1):
the only difference is the alternate use of sines and cosines instead of complex
exponentials. This trick is sufficient to beat the no-go Balian-Low theorem.
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