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TWO-SCALE DIFFERENCE EQUATIONS
I. EXISTENCE AND GLOBAL REGULARITY OF SOLUTIONS*

INGRID DAUBECHIESf: AND JEFFREY C. LAGARIAS"

N
Abstract. A two-scale difference equation is a functional equation of the form f(x) Y,=o

where a > and /3o</31 <"" </3, are real constants, and c, are complex constants. Solutions of such
equations arise in spline theory, in interpolation schemes for constructing curves, in constructing wavelets
of compact support, in constructing fractals, and in probability theory. This paper studies the existence and
uniqueness of Ll-solutions to such equations. In particular, it characterizes Ll-solutions having compact
support. A time-domain method is introduced for studying the special case of such equations where
{a,/30, ,/3,} are integers, which are called lattice two-scale difference equations. It is shown that if a lattice
two-scale difference equation has a compactly supported solution in cm(a), then m < (/3, -/30)/(a 1)- 1.
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1. Introduction. A two-scale difference equation is a functional equation ofthe form

N

(1.1) f(x)= cnf(x-,)
n----O

where a > 1 and/30 </31 <" </3n are real constants, and x takes real values, while
the c, are complex constants. The right side of (1.1) is typical for difference equations,
and the name two-scale difference equation reflects the fact that (1.1) relates translates
of scaled versions ofthe same function, involving two different scales. A lattice two-scale
difference equation is the special case where a and all/3, are integers, i.e.,

N

(1.2) f(x)= E c,f(kx-n)
n----0

where k >= 2 is an integer. The apparently more general equation

(1.3) f(x)= E c.f(kx- n)
--N

can be reduced to the form (1.2) by the change of variable y x- N1/(k- 1).
This paper and its sequel (Daubechies and Lagarias (1988), hereafter called part

II) study Ll-solutions of two-scale difference equations, and of lattice two-scale
difference equations in particular. The basic questions concern the existence, unique-
ness, and degree of regularity of solutions for a given equation. We treat in detail
Ll-solutions having compact support. In fact, two-scale difference equations always
have solutions in the sense of distributions and may also possess functions not in

N
as solutions, e.g., if ,=o c, 1, then the constant functions are solutions. However,
only for special sets of {a, ft,, c,} will (1.1) have any nonzero Ll-solutions.

Functions that satisfy lattice two-scale difference equations arise in several
different contexts. G. de Rham is credited with an example of a continuous,
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nowhere-differentiable function which satisfies (1.2) with k 3 and Co 1, cl c-1--5,

c2 c-2 =, and all other c,-= 0. (This was communicated to us by Meyer (1987). We
have not found a direct reference to this function in de Rham’s papers but similar
functions appear in de Rham (1947), (1956), (1957), (1959).) Such functions also arise
as limits of "uniform subdivision schemes" for constructing curves and surfaces. As
observed and generalized in the work of Dahmen and Micchelli (1984), (1988) and
Micchelli and Prautzsch (1987a), (1987b), (1989), normalized B-splines and d-
dimensional box splines each satisfy a lattice two-scale difference equation with k 2.
They point out that this two-scale property is really the basic ingredient in a subdivision
algorithm for numerically evaluating B-spline curves and surfaces, given by Lane and
Riesenfeld (1980). This can be exploited to define and study other subdivision schemes
for the design of curves and surfaces, also characterized by a lattice two-scale equation
(Cavaretta and Micchelli (1989)). Dyn and Levin (1989) similarly link subdivision
algorithms with the study of a lattice two-scale equation. Dubuc (1986) proposed a
dyadic interpolation scheme where the "fundamental function" satisfies an equation
of type (1.3) with k 2. For special values of the parameters, he proved smoothness
results of this fundamental function. Dyn, Gregory, and Levin (1987) independently
and by different techniques proved similar results for the same dyadic interpolation
schemes. In Deslauriers and Dubuc (1987) this interpolation scheme was applied to
the construction of fractal objects and functions with fractal properties. Deslauriers
and Dubuc (1989) extend the dyadic interpolation scheme to other integer values of
k; they use the properties of solutions of (1.3) corresponding to specific values of the
c, to study Lagrange iterative interpolation processes. In another field, Daubechies
(1988) constructed orthonormal bases of compactly supported wavelets, i.e., ortho-
normal bases {h,,(x)} of L2() generated by translating and dilating a single compactly
supported function h via

hmn(X) 2-m/:Zh(2-mx- n).

The construction of such h requires an auxiliary function which is a solution of a
lattice two-scale difference equation, and our interest in these equations arose from
these functions. All of these examples actually involve Ll-solutions having compact
support.

Solutions of general two-scale difference equations (1.1) arise in other areas of
mathematics as well. Kershner and Wintner (1935) considered symmetric Bernoulli
convolutions dA(x, ) whose Fourier transform A(u, fl)

_
eiux dA(x, ) has

(1.4) A(u,/3) H cos (fl"u).
n=O

For certain values of /3 in (0, 1) the measure dA(x,)=h’(x,)dx is absolutely
continuous, and h’(x,/3) then satisfies the two-scale difference equation

h’(x)= h’ x-1 + x+l

Smoothness properties of this and related Bernoulli convolutions were studied by
Jessen and Wintner (1935), Erd/Ss (1939), (1940), Garsia (1962), and Brown and Moran
(1973). It remains a difficult open problem to characterize the set of/3 for which
dA(x, ) is absolutely continuous. More recently, Barnsley and Demko (1985, Ex. 21)
in studying iterated function systems construct a functionf (z) defined on C-A where
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A is the Cantor set, satisfying the two-scale difference equation

3o
f0(z) =- (f0 (3 z 2)+fo (3z)).

Here fo(z)- A dl(x)/(z-x), where d/z is uniform measure on the Cantor set.
We use two methods for studying these equations. They are a Fourier transform

approach that applies to the general equation (1.1), and a time-domain approach
described further below that applies only to lattice two-scale difference equations. Part
I describes Fourier transform results on existence and uniqueness, introduces the
time-domain approach, and uses it to establish bounds on the smoothness of L1-

solutions of compact support. Part II studies the time-domain construction in detail
and gives sufficient conditions for the existence of nonzero continuous solutions of
compact support, and determines their local and global regularity properties.

The Fourier transform provides a method for the study of Ll-solutions f of general
two-scale difference equations (1.1). The convolution character of the right side of
(1.1) leads to an infinite product expansion for the Fourier transform f(u) permitting
detailed study. Section 2 uses this approach to obtain existence and uniqueness results
for Ll-solutions to (1.1). These depend in a crucial way on the quantity

N

(1.5) A=c-1 E c.
m=0

There are no nonzero L-solutions if IAI < 1 or if I1 1 and A 1. The case of most
interest is A 1; it has at most one nonzero La-solution, up to a multiplicative scale
factor. This solution, if it exists, is of compact support with support(f)
[0, (a 1)-iN], and has _f(x) dx O. For IAI > 1 it is possible to have zero, one, or
infinitely many L-solutions, which need not have compact support, depending on the
values {a,/3, c}.

Section 3 studies L-functions of compact support solving (1.1), and shows that
they are all derived from solutions of the case A 1, in the following sense. If a
two-scale difference equation (1.1) has a nonzero Ll-solution f of compact support,
then it is unique (up to normalization), and necessarily,

(1) A o for some nonnegative integer m;
(2) The two-scale difference equation with A= 1 obtained by replacing the

coefficients {c} with {a-"c} has a nonzero L-solution g of compact support, and
for a suitable choice of normalization,

d

dx
g(x)=f(x) a.e;

The remainder of part I and part II use time-domain methods that apply only to
the special case of lattice two-scale difference equations (1.2). This approach exploits
the special feature that lattice two-scale difference equations make sense when restricted
to the discrete domain 7/. Suppose we are given data {f(n); n 7} which satisfy

N

(1.6) f(x) E c,,f(kx- n)
n=0

for all x 7/. The functional equation then determines f(x) for x Z/k, and by iteration
for x t_J ,__ 7//k. In particular, such data {f(n); n Z} can be interpolated by at most
one continuous solution of (1.6). This approach thus applies most naturally to the
problem of finding continuous solutions of (1.6). Here we have the two subproblems
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of finding solutions to (1.6) on 7/, and then determining conditions under which such
solutions interpolate to solutions on R.

The time-domain approach applies particularly well in the study of compactly
supported continuous solutions, since we then know that {f(n); n 7} has f(n) =0 off
the finite set 0 <- n <-N/(k-1), and the set of solutions on Z to (1.6) is a finite-
dimensional vector space. The iterative process of recursively solving (1.6) on
{7//k"; n 1, 2,...} can be encoded using products of a finite set of matrices, as is
explained in part II, and this provides a vehicle for studying convergence and smooth-
ness of solutions. Such an approach was initiated by Micchelli and Prautzsch (1987a),
as we discovered after completing this work.

In the rest of part I we apply the time-domain approach to obtain information
about compactly supported solutions in the case where A 1, which by the results of
3 is essentially the most general case.

Section 4 obtains results on two different iterative methods to find solutions of
the lattice two-scale equation (1.6). A solution is a fixed point f= Vf of the linear
operator

N

(1.7) Vf(x) Y’. c,,f(kx- n),
n=0

and a natural approach is to consider iterative schemes f Vf-i that converge to a
fixed point f starting from suitable fo. Given data {f(n); n 7/} for an Ll-solution of
such an equation with A 1, we can construct a piecewise linear spline fo that has
fo(n) =f(n) for all n 7/. We show that if f is continuous, then the iterates f+l Vf
are piecewise linear splines with successively finer knot sets (Theorem 4.1) and that

ff pointwise, with a rate of convergence depending on the smoothness off Iff is
L times continuously differentiable, then fo can be chosen to be a CL piecewise
polynomial spline of degree 2L+l, with f(ol)(n)=f(1)(n) for all n7/, I=0,... ,L.
Then the iterates f+l Vf are again C/ piecewise polynomial splines of degree 2L+ 1
with successively finer knot sets, and we prove f)l f(l) pointwise, for all 0, , L.
These results show in particular that convergence to a C-solution f(x) occurs when
one exists, if we start with correct initial conditions on 7/. However, they give no
information concerning existence of such solutions.

The second iterative method for finding solutions to (1.6) discussed in 4 is the
"cascade algorithm." The successive approximationsf in this scheme are again defined
by f Vf_, but the starting point is now fo(x) 1 -Ixl for -1/2_-< x _-< 1/2 and fo(x) 0
otherwise. These initial conditions are not usually a solution to (1.6) on 7/. The advantage
of the cascade algorithm is that f can be computed via a "local" method" at every
step j, the value of (x) can be determined using only the values obtained in the
previous step in the region {y; lY-Xl <= C2-j} (C independent of j), a neighborhood
of x becoming exponentially small as j increases. This lends a "zoom-in" quality to
the successive steps of the cascade algorithm (when it converges). It is known that the
cascade algorithm does not always converge pointwise to a nonzero C-solution when
one exists. This scheme has been studied by several authors (cf. Deslauriers and Dubuc
(1989), Dyn, Gregory, and Levin (1989), (1990)), and various sufficient conditions for
its convergence are known.

Section 5 obtains bounds on the global regularity of any nonzero L-solution to
(1.6) when 4= 1. Theorem 5.1 shows that if such a solution is in C’(R), then
rn < N/(k-1)- 1. This result is best possible in the sense that there exist equations
having C"-solutions, for which rn >= N(k-1)- 2, for arbitrarily large rn.

Finally, 6 applies these results to three examples.
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A number of authors have studied more general solutions to two-scale difference
equations and related functional equations. In constructing fractals Barnsley and
Demko (1985) study measures/z which are solutions of

N

tz(S)= cnlz(ceS-fl,), S a Borel set.
n=0

The adjoint operator (in the L2-sense) to (1.1) is

N

VAg(x) E Cng(o-l(X +fin))"
n=O

The stationary measures/ studied by Diaconis and Shashahani (1986) are fixed points
of generalizations of such adjoint operators. It is also interesting to note that the mth
Bernoulli polynomial B,,(x) satisfies the equation VAB(x)= B(x) with

VAg(x) E n
n=O

2. Existence an uniqueness of L-solutions. We are interested in L-solutions f
to the two-scale difference equation

N

(2.1) f(x)= cf(x-).

Since f is in LI(), its Fourier transform

is a bounded continuous function. By viewing (.2.1) as a convolution equation, we see
that f satisfies

N

(2.3) P(u) __1__ , Cn e itnu.
n=0

The existence and uniqueness of Ll-solutions to (2.1) are governed by the value

NA=P(0)=--I c.,
n=0

as shown in the following result.
THEOREM 2.1. Let A be defined as above. Then the following are true.

(a) If IAI <--_ 1 and A 1, then the only L’-solution of (2.1) is the trivial solutionf=- O.
(b) If A 1 then there exists, up to normalization, at most one nontrivial L’-solution

to (2.1). If it exists, then its Fourier transform is given by

(2.4) f(u) A H P(a-ju)
j=l

where A =f(0)= jr(x) dx and the infinite product converges for all u. Conversely, if the
right-hand side of (2.4) is the inverse Fourier transform of an L-function f, then f is a
nontrivial La-solution to (2.1).

(2.2)

where
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(2.5)

(C) IflA > 1, then the Fourier transform ofany Ll-solutionfis necessarily oftheform

[ ] (lnAf(u) I] P(a-ju) exp \l-a In lul gsgn(u) Inj=l

where

p(u)-A-1p(u),

g+/- are continuous periodic functions with period 1, and

In A In ]A] + iO where A ]A] ei and -r o r.

Furthermore, the infinite product converges for all complex u. Converse&, if g+, g_ are
continuous periodic functions ofperiod 1 such that the inverse Fourier transform f of the
right side of (2.5) is in LI(), then fsatisfies (2.1).

Proof (1) We have

N

(2.6)
IP(u) A] a--1

.=o
[c,[ [e- 11

K min (1, lul) exp [B]Im (u)]]
Nwhere B max I,1 and K 2a- E,=o Ic1(1 + I1).

(2) We first treat the case where ]A] < 1. Since f LI(), f(u) is continuous for
u . From (2.6) we have (for real u)

It follows that, for all j ,
J

(2.7) If(u)l Ilflll ([al+ g-’lul).
/=1

For any real u we can make the product on the right side of (2.7) arbitrarily small by
choosing j large enough, since I1 < 1. Hencef 0. This proves (a), except for ]A[ 1,
which we treat below.

(3) For lal 1 define p(u)= a-’e(u). By (2.6) we have

(2.8) Ip(u)- 11 K eSa-llu := g’lul,

for complex ]u] < 1. Now we define

(2.9) fo(U):= H p(a-u),
j=l

and (2.8) shows that the infinite product converges absolutely and uniformly on compact
subsets of C to an entire function. The bound (2.8) shows that for ]u](2K’)-,
Ip(u)[ 1 K’lul (1 + 2K’iu])-’ and

I(-u)l=l(u)l H IP(-’u)l-’
/=1

J

1=1

IAl-llfll, exp [2K’(a

This implies that

If(u)l <= exp [(a 1)-l]]]flll IAI -j when lul (2K’)-’ a -.
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For any [u[ _-< (2K’)-1 we can find j so that (2K’)-la -(j+l) [u[-< (2K’)-la -j. It follows
that

If( u)l <-- exp [( a 1 )-1] ]If [A[ -j

(2.10) -<-exp [(a- 1)-’][[fl]l a-J’nlAI/’n

<= clul,/,n=
for all [ul (2K’)-1. Since ](u)] is bounded for real u (f L), (2.10) also extends
(with possibly a different constant) to all u e . Note that for A[ > 1, (2.10) implies that

ff(x) dx o,

which can also be obtained directly from (2.1) by integration. Define F(u) by

F(u) := exp (-lnA[ln[u[)f(u)’lna

Since f is continuous, F is continuous as well, except possibly at u 0, and by (2.10),
F is bounded near u 0. The function F satisfies the recursion

(2.11) F(u) e’p(-lu)F(-lu),

where A [A[ e and -< 0 . This yields

j=l

The first factor has the limit fo(u) as J . When this limit is not zero, the second
factor must also converge as J , and we denote this limit by (u), so that

The function is continuous, except possibly at u 0, where F may be discontinuous,
and at the zeros of fo(u). From (2.8) we find for complex lul 1 that

which implies that fo(u) is bounded away from zero in a neighborhood of u 0. It
follows that is continuous in a neighborhood of zero, except possibly at u 0. On
the other hand, the recursion (2.11) for F gives

Define the two functions

g+/-(t) := b(+a t) exp (iOt), .
Then

(2.12) g+/-(t+l)=g+/-(t).

If the periodic functions g+/- had any singularity (including discontinuities), then b
would have infinitely many singularities in a neighborhood of u =0. Since this is
impossible, it follows that the g+/- are continuous. To prove the converse statement, it
suffices to observe that, under the stated conditions, for [A] 1, the right-hand side of
(2.5) satisfies the functional equation f(u)= P(a-u)f(a-u). This establishes (c).

(4) If [A[ 1, then the above construction simplifies. We have

(2.13) f(u) fo(U)4(u),
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where 4 satisfies

b(U)-- A6(-lu)-’- ei)(ot-lu).

Since fo(u) is bounded away from zero for small lul, it follows from (2.13) that b is
continuous at zero. In particular,

6(0)

implying either A ei= 1 or b(0)=0. However, we also know that

t(U)-- gsgn(u) exp iO
a In a

where g+ are continuous periodic functions with period 1. If A 1 then b(0) 0; hence
Ig+(t)l [dp(+a’)l- 0 as t--. Since the functions g+ are periodic, this forces g+ 0;
hence b 0 and f= 0 for A 1, which proves the rest of (a). If A- 1 then g+/-(t)--
b(+a’) b(0) as - . By the peri,odicity of g+/- this implies that g b(0) are both
the same constant function; hence f(u)= th(0)f0(u). This proves (b). [-]

Remarks. (1)Theorem 2.1 also holds for "infinite" two-scale difference
equations, i.e.,

f(x)= E c.f(ax-fl.)

provided that ,_-.-o Ic.I I.1 < o for some 6 > o. The estimate (2.6) then becomes

IP(u)-al <a-1 E Ic,,I min (2, Ifl,,ul min(’’a)) eInll’mul,

and the other estimates can be adjusted similarly.
(2) Note that there may exist distributional solutions even if IAI < 1. One example

is the equation

f(x) f(2x) +[f(2x + 1) +f(2x 1)] ][f(2x + 2) +f(2x 2)],

which admits f(x)--x2 as a solution. The Fourier transform of this solution is a
distribution supported at the origin, so that the continuity argument used in the proof
of Theorem 2.1 does not apply.

(3) There are no distributional solutions with Fourier transform continuous at
zero if IA] < 1. For IAI >_-1, (2.4) and (2.5) always give distributional solutions to the
two-scale equation (2.1), but there may exist other distributional solutions with discon-
tinuous Fourier transforms.

Theorem 2.1 has the following corollary, proved in the lattice case by Deslauriers
and Dubuc (1987).

COROLLARY 2.2. If the two-scale dfference equation (2.1) with A 1 possesses a
nontrivial L1-solution f, then -oo f(x) dx 0 andf has compact support, with

(2.14) supp (f)c [flo(a 1) -1, flN(a 1)-1].

Proof By Theorem 2.1

f(u)=f(0) 1-I P(a-Ju)= f(O)fo(u)
j=l
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Hence oo f(x) dx =f(O) # O. We can without loss of generality reduce to the case that
flo--/3v by considering

fl(X) f(x-(a -1)-I fiN--riO)2

which is easily checked to satisfy

f(x= cf x-+
=0

Now suppose flo =-fin and (2.6) becomes

IP(u)-II<-K min (1, lul) exp (BlIm (u)l)
with B--/3v. On the annulus a k<- lul <- a k+l this gives

k+l

Io(u)l --< II [l/gA-exp(B-llm(u)l)] II [l/g’- exp(B)]
j=l j=k+2

(2.15)
_-< C(1 +lul) exp [B(a 1)-111m (u)l],

where M [lln ((KA-1 + 1)/a)l + 1] and C is a constant. Bythe Paley-Wiener theorem
for distributions (see, e.g., Reed and Simon (1975, Thm. IX.12)) fo(U) is the Fourier
transform of a distribution fo in ’() having compact suppo in the interval Ixl-<_
B(a-1)-1. By hypothesis this distribution is the Ll-function [f(0)]-lf; hence f has
compact support in ]x]<-(fln-flo)/(2(a-1)) and (2.14) follows.

This proof shows that all two-scale difference equations with A 1 possess a
distributional solutionf in 6e’(R) having compact support in [flo(a 1)-1, flv(a 1)-1]
which has Fourier transform (2.4). The arguments of 3 will show that up to a scale
factor this is the unique distribution in 9’(R) which satisfies (3.1) and has compact
support. The following examples illustrate a few cases, for different values of A.

Examples. (1) Consider the lattice two-scale difference equation

f(x) 1/2A[f(2x) + 2f(2x 1) +f(2x 2)].

Depending on the value of A, there will be one, infinitely many, or no nontrivial
Ll-solutions. If A- 1, then any candidate Ll-solution satisfies

f(u) =f(0) [1 +exp (i2-u)1
j=

(sin (u/2)
2

=f(O) e’u u-- /

It follows that f is a multiple of the function g,

g(x)= -x, l<=x<--_2,
otherwise.

Up to normalization, we therefore have a unique Ll-solution in this case. For A 2,
we find

\ u/2 gsgn(,)\ ln2

where g: are periodic, continuous functions of period 1. Clearly, f L2(N). If g+/- are
C 1, then we easily check that also (f)’e L2, which implies fe L1. There is therefore
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clearly an infinity of different possible Ll-solutions in this case. Only one of these
Ll-solutions is compactly supported (see 3). For A 4, however, we have

(ln lul)ln2
f(u) 4 eiU[sin (U/2)]Zgsgn(,\

This tends to zero for lul--> only if both functions g+/- =0. The only Ll-solution is
therefore the trivial solution f= 0.

(2) The following example shows that A 1 does not imply the existence of a
nontrivial Ll-solution. Take the lattice two-scale difference equation

f(x)=2f(2x-1).

Every candidate Ll-solution satisfies

f(u) =f(0) ]-I [exp (i2-Ju)] =f(0) e i".
j=l

Since e" is the Fourier transform ofthe Dirac &measure at x 1, there are no nontrivial
Ll-solutions.

(3) Consider the family of two-scale difference equations

f(x)={f(ax- 1) +f (ax + 1)},

which all have A 1. This equation always has a distributional solution with Fourier
transform

L(u) I-I cos (-"u),
n=l

which has compact support in [-(a- 1)-1, (a- 1)-1] by the same argument as in the
proof of Corollary 2.2. The smoothness of this distribution as a function of/3 a -1

for 0 </3 < 1 was studied by Kershner and Wintner (1935), Erd6s (1939), (1940), and
Garsia (1962). It is known that for a 2l/k, with k sufficiently large, the function f
is continuous (hence in LI()) and arbitrarily smooth. Erd6s (1940) showed that for
any k there is a constant c(k) such that for almost all/3 a -1 in the interval [c(k), 1]
the distribution f, is a function in C(k)().

3. L-solutions having compact support. We consider the general two-scale
difference equation

N

(3.1) f(x)= Z c,f(ax-fl,),
n=0

and derive necessary conditions for the existence of nonzero Ll-function of compact
support.

THEOREM 3.1. Suppose that the two-scale difference equation (3.1) possesses a
nonzero L1-solution f having compact support. Then"

(a) A a for a nonnegative integer m.
(b) f is unique up to a scale factor and has Fourier transform

(3.2) f(u) Aum I-I p(O-ktl)
k=l

where p(u)
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(c) The two-scale equation with A= 1 obtained by replacing {cn} by {og--mCn} has a
nonzero Ll-solution g unique up to scale, and with aproper choice ofscale d / dx g(x
f(x).

The main ingredient in the proof is the following result.
LMM 3.2. Suppose that the function Mo, defined on -{0} by

(3.3) Mo(u) := exp (Yo In lUl)gsgn(u)(]l In lul),

is such that
(1) g+/-(t) are periodic functions .of period 1.
(2) Yl is real.
(3) Mo(u) possesses an analytic continuation to C which is an entire function of

exponential type.
Then Mo(u)= Au" where rn is a nonnegative integer.

Proof (1) The function h(u)= exp (3,o In u) can be continued analytically to the
simply-connected two-sheeted region R {z r e i’, r > 0 and -7r < 0 < Tr} where r ei

and r ei(+2) are viewed as distinct points and

(3.4) h(r ei(+2)) exp (2yozri)h(r e),

whenever both sides are in R.
(2) Since Mo(u) is entire and h(z) is nonzero on R, it follows from (3.3) that

g+(Yl In u) has an analytic continuation to R. Therefore, in terms of the variable
t=yllnu, g+(t) has an analytic continuation to the horizontal strip T=
{ t; --327ryl < Im (t) < Tryl}. The periodicity

(3.5) g+(t+l)=g+(t)

on the real axis extends to this strip by analytic continuation. Now the single-valuedness
of Mo(u) on C means that

Mo(r ei(O+2r)) Mo(r el), i= 1,2,

on the region R, and combined with (3.3) and (3.4) this implies that

(3.6) g+(t + 2y17ri) =exp (-2yoTri)g+(t)

is valid when both t, t+2ylTriT, i.e., for {t; --’/7"1 <Im (t)<1/27ryl}. This relation
allows us to continue g+ analytically to the entire plane, and (3.5), (3.6) then hold for
all complex t.

(3) We claim next that g+(t) is an entire function of exponential type. To see
this, note that it is bounded by a constant, say C, on the rectangle 0<_-Re (t)<= 1,
O--< Im (t)-<- 27ryl, and the periodicity relations (3.5) and (3.6) then give

Ig+(t){ _<- C exp (27rl yol lIm (t)l),

proving the claim.
Next we show that g+(t) has no zeros. For if it had a zero at to, the periodicity

relations (3.5) and (3.6) would give it zeros at to+m+(2y17ri)n for m, nZ, which
contradicts the property that an entire function of exponential type has O(R) zeros
in the disc {t: [tl_-<R} as Ro.

Since g/(t) is an entire function of exponential type having no zeros, g/(t)=
A/ exp (c/z) for some constant c/. The periodicity (3.5) forces c/ 2kTri for some k Z.
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(4) A similar argument applied to g-(T11n (-u)) shows that g_(t) A_ exp (c_z)
where c_ 2hri for some ;7.

(5) Now we have for real u that

[A+exp[(To+2k’rri) In u], u>0,
Mo(u) A_ exp [(To+2hri) In (-u)], u<0.

The first expression has a singularity at u =0 unless 7o+2kcri m+ is an integer.
Similarly, we conclude that To + 2hri- m_ is an integer. Analyticity of Mo(u) at u 0
yields A+=A_ and m+ m_ m ->_ 0, and Mo(u)-Au for a nonnegative
integer m. [3

We now proceed to prove Theorem 3.1.
Proof of Theorem 3.1. (1) By the Paley-Wiener theorem the Fourier-Laplace

transform f off is necessarily an entire function of exponential type, satisfying

(3.7) If(u)l =< C exp (Bllm ul)
for some constants B, C. Now set

:o(,,) := H
j=l

which by the argument in the proof of Corollary 2.2 is also entirely of exponential
type. We claim that

(3.8) M(u) :- fo(U)
is also an entire function of exponential type, i.e., any zero of f(u) has at least the
multiplicity of fo(u). To see this, note that for any zero uo of fo(u) of multiplicity m
there is a finite product H]_- p(a-u) having a zero of the same multiplicity. Iterating
the basic recursion (2.2) yields

f(u) A p(a-gu) f(a-u).
j=

Since all terms on the right side of this expression are analytic at Uo and the product
has a zero of multiplicity m, f(u) has a zero there of at least that multiplicity, and the
claim follows.

(2) Since f L1, it satisfies the formula of Theorem 2.1(c). Thus the hypotheses
of Lemma 3.2 are satisfied for M(u) given by (3.8). Consequently, M Aum and

(3.9) f(u) Au H P(a-ku)
k=l

This proves claim (b). On the other hand, the two-scale equation (3.1) implies

:(t/)
Substituting (3.9) gives A= a ", which provers (a).

(3) For (c), observe that if rn 1 then f(0) =0; hence

(3.10) j’_ f(x) dx O.

Define f(x)

_
f(w) dw and observe that since f has compact support (3.10) shows

that J(x) is in L(R) with compact support. Furthermore, f satisfies the two-scale
equation (3.1) with {c,} replaced by {a-c,}, by integrating (3.1). Of course
(d/dx)(f(x))=f(x). By integrating rn times, (c) follows. F!
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Remarks. (1) Under the weaker hypothesis that (3.1) possesses a solution which
is a tempered distribution of compact support, the conclusions (a) and (b) of the
theorem still hold.

(2) Ll-solutions satisfying (a) can exist for arbitrarily large values of m, for
suitable values of a and of the Cl,/3i. By (c), this is equivalent to saying that there
exist Ll-solutions with arbitrary high regularity for two-scale difference equations with
A 1. Examples are given in 6.

4. Lattice two-scale difference equations: iterative approximations. In the remainder
of this paper we study compactly supported continuous solutions of lattice two-scale
difference equations,

N

(4.1) f(x) , c,,f(kx- n),
nO

Nwhere k is an integer _->2. We will suppose that A=(1/k),=o c,= 1, which involves
essentially no loss of generality by Theorem 3.1.

A continuous solution of such an equation is a fixed point Vf=f of the linear
operator

N

(4.2) Vf(x) c,f(kx- n)
n=0

acting on a function space, e.g., C(R). A natural method to construct a solution of
(4.1) is as a limit of the iterative approximation scheme f+l Vf, where fo is a suitable
initial function. In this section we discuss the convergence of two such approximation
schemes.

We first suppose that a compactly supported continuous solution f(x) exists, and
that the data {f(n): n7/} are known. We consider initial functions fo which are
piecewise linear splines interpolating these data with knots at the integers 7. That is,
fo is defined by

fo(x)=f(n)(n+l-x)+f(n+l)(x-n) forn<-x<-n+l.

Since f(n) =0 for n[0, (k-1)-IN],fo has compact support in [0, [(k- 1)-aN]], so
we may regard it as being defined on the finite knot set Z fq [0, [(k-1)-aN]]. (As
usual [a] stands for "smallest integer larger than or equal to a.") It immediately
follows that f= Wfo is a piecewise linear spline with knots at the k-in, 0<-_ n<=
[ki(k 1)-iN], which agrees withf at these knots. Consequently we have Theorem 4.1.

THEOREM 4.1. Suppose that the lattice two-scale equation (4.1) with A 1 has a
nonzero continuous solution f of compact support. Let fo be the spline of degree 1 with
knot set {n; n 7 (’1[0, [(k-1)-N]], and with fo(n)=f(n). Definef= Wfo, with Vas
in (4.2). Then

(1) f is an interpolating spline ofdegree 1 with knot set k-i(Z f’) [0, [ki(k 1)-IN]I).
(2) f agrees with fat its knots, f(k-in)=f(k-in).
(3) IIf-f 0 as j -(4) Iffe Lip for 0< a _-< 1, i.e., If(x)-f(y)l <-- CIx-yl, then IIf-fll-< Ck-.
Proof. (1) and (2) were derived above; (3) and (4) are standard spline convergence

results; see, e.g., Schumaker (1981, Thm. 6.15) or Theorem 4.2 below.
If the compactly supported solutionf has more regularity, e.g., iff LipL’ (which

means f C and dLf/dxlLip), then the same piecewise linear f converge even
faster to f (Schumaker (1981, Thm. 6.15)). In order to obtain convergence of the
derivatives as well, we need to use an initial function fo that is more regular. This can
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be achieved by choosing for fo a CL piecewise polynomial spline of degree 2L+ 1 that
agrees with f and its first L derivatives on the knot set 77. (Similar fast convergence
of the f and their derivatives can be achieved by other CL choices for fo, for which
the derivatives on 77 do not necessarily agree with those of f. In our present case,
however, we can determine the f((n) easily, and we can therefore afford to pick this
particular fo. The aSsociated f will play a role in part II as well.)

THEOREM 4.2. Suppose that the lattice two-scale equation (4.1) with A 1 has a
nonzero solution f of compact support which is L times continuously differentiable. Let fo
be the C interpolating spline ofdegree 2L+ 1 with knot set {n; n 77 fq [0, [(k- 1)-IN]]}
and such that fol(n)=f((n), /=0,..., L. Define f= Wfo, with V as in (4.2). Then

(1) f is a CI interpolating spline ofdegree 2L+ 1 with knot set k-J(77 f’) [0, [k(k

(2) f)(k-n)=f((k-n) for n 77 and, /=0,.-., L.
(3) For all 1, 0<-_ <- L, IIft)-f)’llo<-_ Ck-(L-.

< Ck-j(’-l+’ for O, L.(4) Iff Lip’, then Ilf(1)-f)l)llLo=
Proof. Note first that fo exists and is uniquely determined by the constraints

imposed" on every interval n, n + 1 ], the 2L+ 2 coefficients of fo are linear functions
of the 2L+ 2 boundary values fol)(n), fo(n + 1), 0,. ., L. It is obvious that fo C.
It then immediately follows that f is also CL, that f is piecewise polynomial of degree
2L+ 1, with knots at k-77, and that fl)(k-n)=f(l)(k-n), for/=0,..., L. Points 3
and 4 are again standard results in spline approximation theory (they can, e.g., easily
be proved by methods similar to those used in the proof of Theorem 6.15 in Schumaker
(1981)); for the sake of convenience we also give an explicit and simple proof in the
Appendix. [3

Theorems 4.1 and 4.2 guarantee convergence of spline interpolants, provided we
start from the right data {f(n); n77} or {f(n); n77,/=0,-...,L}. In the latter
case, we obtain very fast convergence offand its derivatives. However, the theorems
do not show how to determine these data or how to estimate smoothness of f given
the data {k, c,..., c,} specifying (4.1).

In the next section we shall see that the f(n), n =0 to [(k- 1)-iN] can be related
to the eigenvector of eigenvalue I of a particular matrix constructed from the coefficients
c. If this eigenvalue is nondegenerate, then this provides a way to determine the f(n).
Similarly, nondegenerate eigenvectors of this matrix, corresponding to the eigenvalue
k-l, are linked to the f(l)(n). We shall also see how this matrix provides an upper
bound for the regularity of f; more subtle matrix techniques in part II will lead to
more precise regularity estimates.

There exists another iterative scheme that is often used for the construction of f.
The jth approximation function f; in this scheme is also a spline function with knot
set 2-7/, andf+l Vf, but the initial functionfo is different. It is a continuous, piecewise
linear spline, with fo(0) 1, fo(n) --0 for n # 0. The advantage of this choice for fo is
that it results in a "local" algorithm called the cascade algorithm. We check (see, e.g.,
Daubechies (1988)) that, for 0<_- < k,

f(k-J(km+ 1)) Y C,+knf_l(k-;+l(m-n)).

This means that the f(k-gn) can be computed by using only the values of fj--1 in a
small neighborhood of k-n; more precisely, f(k-n) is determined by the f_(k-J+l)
with k-g(n-N)<-k-g->l<-k-gn. This is quite unlike the previous scheme, where
f(k-gn) was computed from the f_l(k-J-Xn m), 0 -< m -< N. We remark that in general
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fo(n) tno does not satisfy the two-scale difference equation (4.1) restricted to 7/. It
does so only if all but one of the coefficients Ckn (with index of a multiple of k) vanish,
Ck, t,o. (We suppose here that c, 0 for n < N1, or n > N2, where N1 need not be
equal to zero. We can shift this to the standard situation c, 0 for n < 0 or n > N; in
this case we would have Ckn/no tn0 for some no, and we would choose fo(n)=
correspondingly.) In this case the cascade algorithm corresponds to an interpolating
subdivision scheme (Chaiken (1974), Dyn, Gregory, and Levin (1987), (1989), (1990),
Micchelli (1986), Micchelli and Prautzsch (1987a), (1987b), (1989)): at every level j,
the function fj coincides with fj_l at the knots of fj-1, i.e.,

fj(k-;+ln) =fj_l(k-;+ln);

the intermediate values f(k-J(kn+l)), 0</<k, are computed by an appropriate
interpolation procedure (determined by the c,). The "local" aspect of the cascade
algorithm makes subdivision schemes of interest for the construction of curves and
surfaces. In Daubechies (1988) the same scheme was called the "graphical" construction
algorithm.

A drawback of the cascade algorithm is that it does not always converge, even
when a continuous solution to the two-scale difference equation exists. An example is

f(x) 1/2f(2x 3) +f(2x) +f(2x + 3).

This equation corresponds to a subdivision scheme. It has a continuous solution with
support [-3, 3], namely,

l ,x,/ 3, Ixl--<3,
f(x)=

otherwise.

The cascade algorithm converges to this solution in the sense of distributions, but not
in C(R): indeed f,(1) =0 for all n. In the special case of interpolating subdivision
schemes (Ckm tm0), Dyn and Levin (1989) give necessary and sufficient conditions to
ensure convergence of the cascade algorithm. Daubechies (1988) lists a different set
of sufficient conditions for convergence of the cascade algorithm.

5. Lattice two-scale difference equations: global regularity of compactly supported
solutions. Assume that the lattice two-scale difference equation

N

(5.1) f(x) _, c,f(kx- n),
n=0

N
with h (1/k) ,--o c, 1, has a nontrivial L-solution, necessarily of compact support.
The regularity of this function can be bounded above purely in terms of its support
width.

THEOREM 5.1. Given a lattice two-scale difference equation,f(x) rq,=o c,f(kx- n)
with A 1. Let No be the largest integer strictly smaller than N/ k- 1), and define M
to be the No x No matrix

(5.2) M,j Ck,-.j i, j 1,’’’, No.

If there exists a nontrivial Ll-solution f which is in C"(R), then {1, k-l, k-"}c
spectrum M ). In particular,

N
(5.3) m<-l.

k-1
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Proof. (1) Sincef is continuous, and support (f)= [0, N/(k- 1)], it follows that
f(l) 0 for _-< 0 and > No. Define v No by

o
vj =f(j), j= 1,’’’, No.

Substituting x =j, with j 1,. ., No, into equation (5.1) leads to

V
0 MvO,

where M is defined by (5.2).
(2) On the other hand, it is clear that v 0. Indeed, if v= 0, i.e. f(j) 0 for all

j 7/, thenf(k-lm) 0 would follow, for all N, m 7/, by applying (5.1). By continuity
this would imply f= 0. Since f 0, we have v 0. Consequently, 1 is an eigenvalue
of M.

(3) Similarly we define, for l_-< m, v No by

vjl=fl)(j), j 1, No,

where fl) denotes the/th derivative off Differentiating (5.1) times, and substituting
x-- 1,..., No leads to

V kMv.
Again v =0 would imply f(l)0, hence f(/-1)_= constant. Since f(/-1) has compact
support, f(l-1) 0 would follow. By induction this would imply that f-= 0. Since f 0,
v 0, and k-I is an eigenvalue of M for 0-< l_-< m.

(4) f C’() implies that the No No matrix M has m+ 1 eigenvalues. Hence
m <- No- l < N/(k-1)- l. [-1

Remarks. (1) The bound (5.3) of Theorem 5.1 cannot be improved. For N=
(k- 1)L there exist {c, n 0, 1,. ., N} such that the (L- 1) x (L- 1) matrix M has
exactly the eigenvalues 1, k-1, , k-t+2, and such that the correspondingf is in c-2.
One such example is given by

(k--1)L

P()= E c,,ei"=[(l+ei+’’’+ei(k-1))/k]L,
n----0

leading to f(s)= [(l+e)/s]. The function f is a B-spline of degree L-l; it is in
C-2. The fact that any c’-l-spline with knot set ;Y must have support width greater
than or equal to n+2 has long been known (cf. Schoenberg (1973, p. 13)).

(2) The condition {1, k-1, k-"}= spectrum (M) is not sufficient to ensure
__1thatf C". For k 2, N 3, e.g., all the choices Co

all other c, 0, where h is arbitrary, lead to 2 x 2 matrices M with the same spectrum,
namely, {1, 1/2}. Nevertheless, the regularity off depends on h. Using the techniques of
part II, we can check that f is continuous if and only if IAl <, and thatf C if and
only if [hi <1/4. For h=], e.g., we find p()= (1 + e’)2/4; hence f(x)= x for 0-<x-< 1,
2-x for 1 x_-< 2, zero otherwise, which is clearly not in C 1.

(3) It follows from the proof that, provided that they are nondegenerate, the
eigenvectors of M with eigenvalue k-1 determine the f(l)(n), up to normalization. It
is not a priori obvious how to choose these rn + 1 different normalizations (one for
each l) in a coherent way. In part II we shall see how this can be done, modulo some
restrictions on the

6. Examples.
6.1. The de Rham function. The de Rham function is a classical example of a

continuous nowhere-differentiable function. Like many such examples, it is defined as
the limit of successive approximations.
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Define

-1--<x--<O,
fo(x)= l-x, O<=x<= l,

O, Ix[ >- 1.

Clearly fo is piecewise linear; its restriction to the intervals m, m + 1 ], m Z, is linear.
The next function fl in the approximation scheme is constructed as follows: fl is again
piecewise linear, with its restriction to the intervals [m/3, (m+ 1)/3] linear, for all
mZ. The nodes off1 are given by fl(m)=fo(m), fl(m+1/2)=fo(m+) fl(m+)
fo(m+), for all m Z. Graphically, this corresponds to splitting every interval on
which fo is linear into three equal parts, exchanging the values at fo at the two interior
points, and linearly interpolating between the nodes obtained in this way (see Fig. 1).
Exactly the same procedure is then repeated to obtain fj+l from fj, for all j.
The resulting f are piecewise linear, with linear restrictions to the intervals [m3-,
(m + 1)3-], for all m 7/. Geometrically it is clear that this process converges pointwise
to a continuous limit function f.

It can be checked fairly easily that f,+l Vf,, where

Vf(x) f(3x) +[f(3x + 1) +f(3x 1 )] +[f(3x + 2) +f(3x 2)].

(a)

-1 0

I1.

-1 0

(b)

-1 0

FIG. 1. (a) The first three approximations fo, fl, f2 to the de Rham function. (b) The de Rham function.
(Note. We have plotted f8 rather than f. At the scale of the figure, they are indistinguishable.)
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As the pointwise limit of the f, the de Rham function f satisfies the two-scale
difference equation

(6.1) f(x) f(3x) + 1/2[f(3x + 1) +f(3x 1)] +[f(3x + 2) +f(3x 2)].

The corresponding trigonometric polynomial is given by

p(sC) e-2i[(1 + e’ + e2)/3][(2 e + 2e2’)/3];

it is not clear how to deduce the continuity off from this expression for p! In part II
we shall use a time-domain method to prove thatf is H/Slder continuous, with exponent
y 1- In 2/ln 3 .36907... but is nowhere differentiable. The method of part II also
allows us to analyze local properties of f, to show that there exist fractal sets with
nonzero Hausdorff dimension, but zero Lebesgue measure, on which f is "almost"
differentiable, in the sense that the local H61der exponent can be chosen arbitrarily
close to 1. (The choice of the fractal set depends on the desired H61der exponent.)

A variant on the de Rham function is obtained by choosing k 3, Co 1, cl C_l

1/2-a, c2 c_2--1/2+ a, all other cn--0. The correspondingf andf are plotted in Fig.
2; for a = we obviously revert to the de Rham case. The analysis of part II will show

(a)

-1 0

1

-1 0 1

(b) I1

-1 0 1

FIG. 2. (a) Thefirst three approximationsf ,j 0, 1, 2for the generalized de Rhamfunction corresponding
to a 2. (b) The generalized de Rham functionf itself.
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that for sufficiently small a, a(1 + 2a)2<7, or a <.0492..., the resulting function

f is Lipschitz almost everywhere.
Note that for any a we have N 4, hence No 1, so that the matrix M reduces

to the scalar 1. It therefore follows immediately from Theorem 5.1 thatf andf cannot
possibly be C a, since then M would have at least the two eigenvalues 1 and 1/2.

6.2. The Lagrange interpolation functions of Deslauriers and Dubuc. These func-
tions are obtained by choosing an integer, k > 1, called the "base" of the interpolation
scheme, and an even integer M, M => 2, called the "number of nodes," in the language
of Deslauriers and Dubuc (1989). The interpolation function is then defined by the
recursive process

f[k-J(km + n)]

where

M/2

m’= -M/2+l

M/2

(6.2) Z /3m’,- =1
m’=--M/2+l

m,,,f[k-(J-1)(m+m’)],

for all n 1, , k-1.

This corresponds to a two-scale equation of the type

f(x) =f(kx)+
M/2-1 k-1

Y a,,,,f(kx- km- n)
--M/2

where Olmn --m,n" The tim, or a,,,, are determined by (6.2), by the requirement that
p(:) be divisible by as many factors [l+ei+ .+ei(k-1)] as possible, and by the
symmetry condition fl_l,,,=fl/a,k_,,, O<=l<=M/2, n= 1,..., k-1. For base 2, with
four nodes (k 2, M 4), this leads to the two-scale difference equation

(6.3) f(x) f(2x) +6[f(2x + 1) +f(2x 1)] 6[f(2x + 3) +f(2x 3)],

corresponding to

p() e-3i[(1 + ei)/214[---+ 2e’--1/2e2i]
(COS /2)4(2 COS ).

Using supe [2-cossl=3, we obtain If()l<-C]:1-4+1g23 (see, e.g., Lemma 3.2 in
Daubechies (1988)), from which it follows that f6 C a. We can bound the regularity
of f(x) by Theorem 5.1. We have N =6, k 2, so that No 5. The spectrum of the
5 5 matrix M is in this case {1 1/2 g, } where the eigenvalue has multiplicity 2. By
Theorem 5.1 we know therefore that f can be at most C3. In fact, however, f is not
even C2, as is shown in Deslauriers and Dubuc (1989), using the infinite product
formula for f together with the special property that p(s)_->_ 0. They show that f is
"almost" C2, in the sense thatf’ is HSlder continuous with exponent 1 e (e arbitrarily
small), but not C a. In Dubuc (1986) the sharper estimate ]f(x)-f(x+t)]<=
Cltl log (1/Itl) is proved, for small enough t. This same example was also studied by
Dyn, Gregory, and Levin (1987), with more general weights in (6.3) (1/2+ w, w instead
of , 6). For the parameters fixed as in (6.3), their results are slightly weaker than
Dubuc’s. For a thorough and detailed analysis of this example we refer to Dubuc
(1986), Dyn, Gregory, and Levin (1987), or to part II.

6.3. Orthonormal bases of compactly supported wavelets. A family of wavelets is
generated by translating and dilating one single function,

q%(x) 2-/2q(2-Jx k), j,kZ.
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For some choices of O, the family (ftjk constitutes an orthonormal basis of L2(). One
such choice is

1, 0--<x <1/2,
O(x)= -1, 1/2=<x<l,

0 otherwise.

The corresponding orthonormal basis is well known; it is called the Haar basis, and
provides an unconditional basis for all LP-spaces, 1 <p <. Recently some other,
more interesting choices for 0 have been found. The first one was constructed by
Stromberg (1982); later Meyer (1985/86) constructed independently another wavelet
basis, which was extended to higher dimensions by Lemari6 and Meyer (1986). In the
Meyer construction q is C and compactly supported; the basis {jk} is not only an
orthonormal basis for L2(), but also an unconditional basis for all the LP-spaces
(1 < p < ), the Sobolev spaces, the Besov spaces, etc. Later Battle (1987) and Lemari6
(1987) constructed other orthonormal bases of wavelets, based on 0 which have faster
(exponential) decay; their examples are K times continuously differentiable (K
arbitrarily large, but finite). Mallat (1989) and Meyer (1986), (1990) devised a scheme
into which all these constructions fit naturally, which they call multiresolution analysis.
Finally, Daubechies (1988) constructed orthonormal bases of wavelets generated by
compactly supported 0 which are K times differentiable.

1.5 2

0.5

-0.5
0 2 5

t.5

0.5

11

0.5
0 5 10

0.5

0

-0.5
0 5

FIG. 3. Some examples of orthonormal wavelet bases with compact support constructed in Daubechies

(1988). In every case both d and 0 are plotted. The number of nonvanishing c, is, respectively, 4, 12, and 20,
corresponding to support widths of respectively, 3, 11, and 19.
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A typical construction of an orthonormal basis of wavelets uses an auxiliary
function 4 such that

(6.4) (x) Y’. c,,6 (2x- n).

Provided the b(x-n) are an orthonormal set, the function q is then given by

(X)= Z (--1)nCn+16(2x+n).

(If the functions b(x-n) are not orthonormal, we first construct b by b(:)= (s) x
(Y-,,z [(:+2rm)]2)-1/2; the (x-n) are orthonormal, and satisfy an equation of
type (6.4), with different , for more details see Daubechies (1988) or Mallat (1989)).

A construction of b using only finitely many c, results in a compactly supported
b (see 2), and therefore a compactly supported q. As a finite linear combination of
translated and dilated versions of b, q has the same regularity as b. It follows that a
good understanding ofthe regularity ofsolutions of finite two-scale difference equations
is important in the construction of orthonormal bases of compactly supported wavelets.
The examples constructed in Daubechies (1988) have the property that their support
width increases linearly with their regularity. This is illustrated by Fig. 3, which shows
the pairs b, q for support widths 3, 11, and 19, respectively. It is clear that b, q become
more regular as their width increases; Daubechies (1988) showed that there exists

/z > 0 such that

bN, C where [supp 4’N[ [supp qN[ N.

The question then arose whether this linear increase ofthe support width was necessary.
This question is now answered affirmatively by Theorem 5.1" if b C/, then Isupp b] >_-

K + 2. This also provides a simple proof for the (known) fact that it is impossible to
construct wavelet bases generated by a compactly supported C-function b.

Appendix.
PROPOSITION. Suppose f is a compactly supported function in LipL’% Define

functions f by:
(1) On every interval n2-J, n + 1)2-], f is a polynomial of degree 2L+ 1.
(2) f is in Ct and

f)l)(n2-) =f(/)(n2-J) for 0,. ., L, n 7/.

Then [If()-f)’)[l<-c2--+) for /=0,... ,L, and for some C independent of
j and I.

Proof (1) Choose x support (f), j arbitrary. Find n so that 2-Jn _-< x -<

2-J(n + 1). Then

(A.1)
If(l)(x) f)l)(x)]

t 1f(O(x) Z
k= (k-/)t

f(k)(2-2n)(x 2-2n) (k-)

L 1fO(X)
k=t (k- l)’.

f(k)(2-;n)(x- 2-n)(-0

Since fLip’ and support(f) is finite, the first term is bounded by
CIx-2-Jn]’+-<- C2-+-l) with C independent of x or j. It therefore suffices to
bound the second term.

(2) On [2-n, 2-(n+ 1)] we have
L 1 L 1

f(Y) =o f(t)(2-Jn)(y-2-;n)t+ =o (t+ 1 + l)V.
aJn’l(Y--2-Jrt)L+l+!
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with the aj determined by the L+ 1 equations, 0 <m < L,n,!

t 1 1--j(L+l+l--m)

=o
y
(L+l+l-m) ’an’’. =f(m (2-J(n + 1))_ =,,Y (l m)’.

f(O(2-Jn)2-J(’-m)

or

t 1
(A.2) Z a,2-(+1) b

/=o (L+ 1 + 1- m)! n,,,

where

t 1 f 2_j(l_m) 1bJn, 2-j(L-m) f(")(2-(n + 1))-- Y )(2-Jn)
=., (1-- m)!

is bounded, uniformly in n, by C2- because jr e Lipt, and jr is compactly supported.
It follows, by inverting the system (A.2), that

]aJn, 2-j(l+1)] < c2-J,’,.

(3) Consequently,

1
fS’)(x) k=l k -1). f(’)(2-])(x 2-n )(’-’)

t 1 aJn,k(X 2-Jn L+l+k-Io (+ + k- )!

1
C2(k+ )2-J’2-(+ +k-)

=<=0y (L+l+k-l).

<__ C2-(t-+).

Hence (A.1)_-<C2-(t-+) for all x, with C independent of j, l, or x, and the
proposition is proved.
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