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ON THE INSTABILITY OF ARBITRARY BIORTHOGONAL
WAVELET PACKETS*

A. COHENt AND I. DAUBECHIES

Abstract. Starting from a multiresolution analysis and the corresponding orthonormal wavelet
basis, Coifman and Meyer have constructed wavelet packets, a library from which many different
orthonormal bases can be picked. This paper proves that when the same procedure is applied to
biorthogonal wavelet bases, not all the resulting wavelet packets lead to Riesz bases for L2(R).
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I. Short review of orthonormal wavelet bases. An orthonormal basis of
wavelets j,k(x) 2J/2(2x-k), j, k E Z, associated with a multiresolution analysis,
is completely determined by a 2-periodic function m0(). More precisely,

with

(1.2) ()---(271")--l/2H0(--J).
j--1

Here ^ denotes the Fourier transform, normalized by

1

x/ /dxe-’f(x)"

Conversely, given a 2r-periodic function m0, one can define (1.1) and (1.2); if m0
satisfies a few conditions, then the resulting will generate an orthonormal wavelet
basis. Which conditions? Let us assume that m0 is continuous (which is the case
in all useful examples). Then in order for (1.2) to converge, we need m0(0) 1. If
moreover Im0()- 11 _< Clla for some c > 0, then (1.2) converges uniformly on
compact sets. (This is not really necessary, but satisfied in all examples of even the
remotest interest.) Furthermore, orthonormality of the Cj,k implies that

(1.3) Imo()[2 + [mo( + .)[2 1

(see Mallat [14]). This is not sufficient to ensure orthonormality of the ,k, however;
to guarantee this orthonormality we need one more (necessary and sufficient) condition
on m0, of a more technical nature: there should exist a compact set K, congruent
with [-r, r] modulo 2r, such that

(1.4) inf inf [too(2-n)l > O.
Kn>_l
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INSTABILITY OF BIORTHOGONAL WAVELET PACKETS 1341

If all these conditions on m0 are verified, then the Cj,k’S do indeed constitute an
orthonormal basis for L2(). Note that m0(0) 1 automatically ensures that
Im0(2-n)[ > 1/2 for sufficiently large n and all E g (because g is compact), so
that (1.4) is a constraint for only finitely many values of n. See Cohen [4] or Cohen
[5] for a proof of the necessity and sufficiency of this last condition; the condition can
also be recast in other forms [13], [5], [6]. A consequence of (1.4) is that (see Cohen

(1.5) inf [()[ > 0.

The orthonormal basis {j,k;j, k E Z} generated by can be interpreted within
the framework of a multiresolution analysis (see Mallat [14], Meyer [15]). Let V0 be
the space spanned by the functions (x- k), k e Z (which are also orthonormal).
Define V to be the space obtained by dilating V0 by 2J,

f e V f(2-j-) V0;

an orthonormal basis of V is given by {j,k; k e Z}, with Cj,k(x) 2J/2(2Jx- k).
Then

..cV_cV_ c Vo c V c V c ...,

N v (0}, U V L2(It).

Let Wj be the orthogonal complement in V+I of V.
orthonormal basis in Wj, and

Then (j,k; k E Z} is an

(1.6) Wj L2(R).

This is the standard decomposition of L2(R) into different "layers" of wavelets with
resolution 2-J. One can also choose to use only reasonably fine scale wavelets, and to
lump the coarser aspects together into one space, corresponding to the decomposition

(1.7)

2. Orthonormal wavelet packets. Given a 2r-periodic function m0 which sat-
isfies all the conditions in 1, one can define many other orthonormal bases, corre-
sponding to decompositions of L2(R) different from (1.6) or (1.7). They are all des-
ignated by the name "wavelet packets," first defined by Coifman and Meyer; for a
discussion of their properties and some applications, see the two papers by Coifman,
Meyer, and Wickerhauser in [16]. Their construction can be understood easily by
using the following lemma [8].

LEMMA 2.1 (the "splitting trick"). Suppose that the functions fk(x) f(x- k),
k , are orthonormal. Define fo, fl by

a =0,1,
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where mo is as above, ml() e-ie mo( +r). Then the functions f(x)
"1 fo ( z k) f (x) 2fl ( k) k e Z, constitute an orthonormal basis for
E Span{fk}.

Remark. Note that with this notation convention, f(x) 22fa () and not

fa(x).
Proof.

1. Since

d’(k-e) I]( + 2m)l2,

orthonormality of the f is equivalent to ’meZ I](+2m)[ =- almost everywhere.
2. Similarly,

(f, f)) 2 f dSI](25)12e2(k-)e

2 de2i(k-e) Z I/(2 -I- 27rm)[ 2.

Splitting the sum over m into even and odd m leads to

21m0()l2 $]( + 2n)l

+ 21m0( + r)l 2Y 1]( + 7r + 27rn)l2 __1,
n

proving that the f are orthonormal. Orthonormality of the f is proved analogously,
as well as orthogonality of fk and f.

3. On the other hand, if Y]k Ckfk I f[ for all g E Z a 0, 1, then

0 y[,Z Ckfk Z-k dei(k-2e)ma(),
k k

i.e. c() -k cke-ik is orthogonal (in L2([0,2r])) to the e-i2tma(),g e Z, a
0, 1, implying

c()ma() + c( + r)ma( + 7r) 0 a.e., j 0, 1.

Multiplying with ma(), and adding the two equations gives

0 () [Im0()l + m0( + r)l2]
+ ( +.) [o( + )0() 0()0( +.)] (),

proving that -]k ckfk O, SO that the {f[; g Z, a O, 1} span all of E. D
Modulo appropriate dilations, the splitting trick can of course also be applied

to spaces with an orthonormal basis generated by the regularly spaced translates
f(x ak), k Z of a single function, even if a 1.
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If the splitting trick is applied to V0, the space with orthonormal basis {0,k; k E
Z}, where f , then the corresponding functions f0, fl are exactly f(x) (x)
and f(x) (x); it easily follows that the splitting of V0 into the spaces generated
by the fg on one hand, the f on the other hand, is exactly V0 V_ W_. One
can, therefore, view the transition from (1.7) to (1.6) as a result of infinitely many
successive splittings, where at every step the 1 space with smallest index gets split
into two.

Starting with (1.7) one can of course choose to apply the splitting trick to many
subspaces other than V0, leading to many different orthonormal bases. Every one
of the functions generated in this way can be labelled by an overall dilation J, a
translation k, and a sequence e consisting of only ones and zeros, and ending in a tail
of all zeros. Concretely,

fg,k;(X) 2J/2(2Jx k)

with

if jmax is the largest index for which ejm.x 1, this can be rewritten as

The function fJ,t:; is the result Of jmax 1 splittings of Wjmax+J_ For every fixed
choice of a sequence of splittings the result is an orthonormal wavelet packet basis. In
applications to signal analysis, one can use entropy estimates to find the "best" basis
(Coifman and Wickerhauser [11]).

An important special case is where each Wj space is split exactly j times. The
resulting orthonormal basis functions are the integer translates of all the Ce, with e
ranging over all possible sequences of zeros and ones, with a tail of all zeros. This
orthonormal basis is, of all the wavelet packet bases, the closest to a windowed Fourier
transform.

3. Biorthogonal wavelet bases. There exist orthonormal wavelet bases with
compactly supported and . The 2r-periodic function m0 is then a trigonometric
polynomial. By imposing a factorization of the type

m() ( l + e-i )N2
one can construct and with arbitrarily high degree of smoothness [12]. One
inconvenience of these compactly supported orthonormal wavelets is that they are not
symmetric. One can restore symmetry by relaxing the orthonormality requirement.
In this case one works with two 2r-periodic functions, m0 and #to, satisfying

(3.1) mo()ho() + mo( + r)ho( + r) 1.
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There are similarly two pairs of scaling functions and wavelets, defined by

(3.2) H  0(2- 0
j=l j=l

The ,k and ,k now constitute dual Riesz bases; both and can be symmetric (or
antisymmetric) and have compact support (Cohen, Daubechies, and Feauveau [9]).
(Note that there also exists a different scheme of biorthogonal Riesz bases of wavelets,
in which and are symmetric or antisymmetric, and one of them is compactly
supported, while the other is not. See Chui and Wang [3] and Chui [1].)

This corresponds to m0 and h0 which are trigonometric polynomials. We shall
restrict ourselves to this case. In order for the whole construction to work, we need,
of course, to impose again some conditions on m0 and rh0. First, we need m0(0)
1 0(0); the infinite products in (3.2) then converge uniformly on compact sets.
We also need more technical conditions. One of them is similar to the orthonormal
case; i.e., we need that for some compact set K, congruent to [-r, r] modulo 2r,

(3.3) inf inf mo(2-)] > 0
jK n>O

and

inf inf ro(2-’)1 > O.
jEK n>O

Another condition concerns the spectral radius of two matrices derived from m0 and
h0 (see Cohen and Daubechies [7]). One consequence of (3.3) (the only one we shall
use here) is that

inf I()1 > 0, inf b ()l > 0
EK jEK

(see Cohen, Daubechies and Feauveau [9]).
The two pairs of scaling functions generate two multiresolution hierarchies,

cV_cV_cVcVcVc
C r_2 C "_1C /"0 C r1C ,r2 C ...,

(3.5) L2(]R) V0 @ Wj,
j=O

or

and the Wj Span{j,k; k C Z}, (or IV Span(,k; k c Z}) are still complement
spaces of the Vj in Vj+I (or in +1), though no longer orthogonal complements.
The two hierarchies are linked via the property that, for all j E Z,

+/-%.
We can again decompose L2(R) either

(3.4) L2(R) W
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where the direct sums are not sums of orthogonal spaces. If we define Qj to be the
(nonorthogonal) projection operator onto Wj associated with this expansion, then the
L2-norm Ilull 2 is still equivalent with j IIQjull2:

LEMMA 3. l. Let ,, (bj, be biorthogonal wavelet bases, as defined above, with

Then for all u E L2(R),

and

A/B IIQII: <_ Ilull : _< B/A IIQull :

Proof. We can write u Y]j,k Cj,kj,k. It then follows that Qju k Cj,kj,k,

The lower bound is proved analogously. D
A similar theorem holds, of course, for the splitting (3.5).
4. The biorthogonal splitting trick. A natural question is now whether wave-

let packets can be generalized to the biorthogonal setting. Let us first generalize the
"splitting trick."

LEMMA 4.1 (the "biorthogonal splitting trick"). Suppose that the functions
fk(x) f(x k) constitute a Riesz basis for their closed linear span E, with

(4.1) Alckl < ckfk < BZ Ickl’k

for all square integrable sequences (Ck)kg. Define f0, fl by

]() ,(1)](12), O, 1,

with mo as above, and ml() e-iho( / r). Then the functions f o

f(x) 2 f ( k), k e Z constitute a Riesz basis for E, with

(4.2) A’ [la[u + Iblu] [af + bf] B’ [[alu + Ibl],
k k k

where

B A (Mo_/tT/o)/2B’= B(max(Mo, 2t7/o)+ Ao)+
2
e (oo)1/A’= A-l(max(Mo,/17/o) + Ao)+ 2AB
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and

Mo sup [Imo()l2 + Imo( + r)l 2]

2t:/o sup 2 +  )12]
Ao sup Imo()ho( + r) mo( + r)rho()l

Remark. If the fk are orthonormal to start with, and if rho mo (orthonormal
filter case), then Mo -/1/o 1, Ao -0, B A 1, and the new bounds B’ A are
also equal to 1. The estimates below can also be used to prove bounds of the type
(4.2) where the constants B", A" are simply proportional to B and A respectively,
namely

B": B [max(Mo,/Qo) + (MohT/o) 1/]
(4.3)

A" A [max(Mo,2t:/o)+ (M0Jr0)l/2] -1

these "simpler" bounds are less sharp, in the sense that they do not collapse to 1 if
everything is orthonormal.

Proof.
1. For (ck)kez E 2(Z), we denote by c() the 2r-periodic function c()

,k Cke-ik L2([0, 2r]). Then
2 2

ckfk d
k

dlc()l2 I]( + 2k)l2,
k

SO that (4.1)is seen to be equivalent to A/2r k I]( + 2k)l2 B/2.
2. Define ] E by <], fk) $o,k. Then the ](x) ](x- ), E constitute

the dual Riesz basis for the fk. In particular,

and

2

__< A-1 E Icl
k

(Both can easily be derived from f () f()[E I]( + 2rk)]21-1.)
3. We start by proving that the J’, f span all of E. Assume that u E is

orthogonal to all the f[, Z, a 0, 1. Since the ]k constitute a Riesz basis for E,
we can write u -k Ck]k" We have then

0 (u, f[) f dc()f ()]()ma()e-2’,

+ +
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this impliesBecause m and c are 2zr-periodic, and e ]( + 2zr)f ( + 2r) 5-,

ma()c() + ma( + r)c( + zr) 0 a.e.

Multiplying with (), and adding the two equations (a 0, 1) leads to (again,
almost everywhere)

0 (e) [,o(e)o(e) + o(e + )o(e + )]
+ (e + ) [o(e + )o(e) o(e)o(e + )] (e),

which proves that u 0.
4. Next we derive an upper bound on -k [akfg + bkf]. With the notation

F() -]k I]( + 27k)12, we have

[akfg + bkf] 2 d[]()[2 Zake-2ikm() + bke-2ikml ()
k oo k k

2 d [a(2)l2 (F()mo()[2 + F( + )[mo( + )2)
+[b(2)[2 (F()]o( + r)[ 2 + F( + r)[o()[2)

2 d (2() Mo + 2
Im()( + ) too(( + )o(()

+ ()-(+

(- F()+ F( + r)+ Ib(2() Mo + 2
lmo(()o( + ) too(( + )o()

+ F()-F(+r)2 (Moo)1/2)]
[B(Mo + o)+ (Moo)/ I1

+ (o + o)+ (Moo)1/ Ibl,
which implies the upper bound in (4.2).

5. To derive the lower bound in (4.2), we introduce a dual family ]g, ], defined
by ](x)= 2]" (- k), with

/ () h(/2)/(/2),

where rh0() is as above, and rhl() e-imo( + 70. One easily proves (f/, ])
5a,rh,m. For a T 0, for instance,

(f2, ]o) 2 d.o(),o()f()f ()’(-)
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2r

7r- dmo()Cno()e2i(t-m)

7r- d m0()rh0() + m0( + r)rh0( + r) e2i(e-’)

6. The same arguments as in point 4, together with (4.4), prove that

II 12E ak] + bk]
k

_< [A-(max(Mo, AT/o) + Ao) +

A’-I E [lakl 2 / Ibkl2].
k

A-t _B- ]2
(M/1:/) 1/2 [la*l +

k

The lower bound in (4.2) now follows from a simple duality argument.

An immediate corollary is the following.
COROLLARY 4.2. We assume the same as in Lemma 4.1. If u uo + ul is the

unique decomposition of u E E into ua -]k Ckf, then

A B’ 2]B-S [lluoll 2 + Iluxll 2] _< Ilull 2 _< [lluoll 2 + Ilulll

Proof. By the same argument as for Lemma 3.1.

5. Biorthogonal wavelet packets. We can now apply the biorthogonal split-
ting trick to the spaces V0, Wj in the nonorthogonal decomposition (3.5). We start by
choosing, among V0 and all the Wj, an arbitrary subset of spaces to be split, and we
apply the biorthogonal splitting trick to all of them. We end up with a different de-
composition, in which all the "split" spaces are replaced by their two offspring. We can
then repeat the procedure: choose an arbitrary subset, and split again. Every splitting
corresponds to a replacement of the basis vectors as well. If, after L splitting steps,
the subspace W has undergone J _< L splittings, then the ,k(x) 2/2(2Jx- k),
k E Z, will have been replaced by .J 2(J-J)/2bg (2J-gx- l) en 0

3 ;et ,...,ek ;t(a) "ret ,...,ej

or 1, g e Z, with Jt ej () met (/2),... ,mej (2-g) (2-J). The following the-
orem tells us that as long as we confine ourselves to a finite number of splitting steps,
the result is still a Riesz basis.

THEOREM 5.1. Suppose we start from the decomposition (3.5), with
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(5.1)
k j,k kZ j--O kZ

Let us denote by gt the vectors obtained after L splitting steps, as described above
(the label A stands .for J, j, el,... ,eg and g.). Then the still constitute a Riesz
basis, and

(5.2) ALE I’TAI2 -The constants BL, AL are defined recursively by

Bo B, Ao A, o B/A, ao A/B,

and

(5.3)
BL L-1 [BL-1/-t0 -[- (BL-1 AL-1) P0]

AL aL-1 [A_l#o + (A B_I1) o] -1

with

L L-1 [BL-I#0 + (BL-1 AL-1)0] [AI_I#O -b (AI BI) o]
CL L-1 [A#o + (A_I sl) o] -1

[BL-I#O -b (BL-1 AL-1)/2o1-1
and

#o max(Mo, 21/o) + Ao
UO 1/2(Mo/1/o)1/2

(Mo,/1/0, Ao as defined in Lemma 4.1).
Proof.

1. We will work by induction on L, the number of splittings. Suppose that we
have gone through / splitting steps, resulting in a (nonorthogonal) decomposition of
L2(R), i.e.,

L2(R)-Et,m;
m

in each Et,. we have a Riesz basis F,m; k, k E Z. Assume that

2Ay lc., < m,k Cm,kFt,m; k
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and that for arbitrary u E L2(]R), u -]m Ut,m, with Ut,m Et,m, we have

We now choose an arbitrary subset of the (Et,m; m Z} of spaces to be split, and
we apply the biorthogonal splitting trick to each of them. If Et,n is a space that gets
split into E,n Elt,n, then for arbitrary

Ut’n 2 0 0 F,1 u0 uCn,kF,n;k -Jv y Cn,k t,n;k t,n -[- t,n
k k

applying Lemma 4.1 leads to

Bringing all these inequalities together, combining with (5.5), and relabeling the Ft,n; k
as Ft+l,m; k’, we obtain

at [A-I/zo + (A-1 B-1) Vo] -1 = <_
k

<_ t [Bt#o + (Bt At)0] I m, l =.
k

2. From Corollary 4.2 and (5.5) we also obtain

(5.7) = _< I1 11 = _< II ,e+ , ll =
m m

with

fit [Bt#0 + (Bt At)0] [A-[l#o + (A[ B[l) 0],
at [Bt#0 + (Bt At)0] -1 [A-[l#o + (A-[ B[l) u0] -1

(5.6) and (5.7) can be used for the next induction step.
3. To start it all (at L 0), we need (5.1), together with Lemma 3.1, which

leads to

Ao A, Bo B
ao A/B, Bo B/A.

Remarks.
1. If A B 1 and m0 rho, then Mo M0 1, A0 0, and AL BL 1

for every L; in the orthonormal case we recover the exact estimates for orthonormal
wavelet packets.

2. In the nonorthonormal case, BL and A increase very rapidly with L" one

easily checks that (5.2) and (5.3) imply that BL CM2L for large L. In Chui and
Li [2] a different technique is used to derive bounds similar to (5.2), with log BL
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const. L, i.e., only exponential growth for BL. The bounds of Chui and Li do not
seem to collapse to the optimal bounds 1 in the orthonormal case, however. They
also restrict themselves to the case where one chooses, at every splitting step, to split
every available subspace; this is probably not a crucial restriction. The estimates in
the next section show that BL grows at least exponentially with L.

3. For every possible choice of splittings, the dual basis of the resulting Riesz
basis can be constructed by applying e_xactly the same choice of splittings on the
original dual decomposition (with the Cj,k instead of the Cj,k), and using ?0,1
instead of m0, m at every splitting step. This follows from the constructions in 4;
see also Chui and Li [2].

6. Instability of arbitrary biorthogonal wavelet packets. If we choose to
restrict to at most L splittings, then the previous section tells us that we will still have
a Riesz basis, even though the constants involved may be large. In the orthonormal
case, a very beautiful special wavelet packet basis resulted from splitting every Wj
exactly j times. In this decomposition, the total number of splitting steps is not
limited, and Theorem 5.1 does not guarantee that the biorthogonal analog leads to
a Riesz basis. We shall show in this section that in fact we don’t have a Riesz basis
(except in the orthonormal case). Define, as in the orthonormal case,

where e (el,... ,N) is a sequence of length N ([e[ N) consisting of only zeros and
ones. We start by proving several lemmas about the .

LEMMA 6.1. There exists a constant C > 0 such that

(6.1)

for all N and e with [e N.
Proof.

1. Remember (see 3) that there exists a compact set K, congruent with [-r, r]
modulo 2r, so that [(()[ _> C2 > 0 for all ( e g.

2. We have

N

H
j=l

hence

N

j=l

N

H Im, 
j=l

N

II
j=l
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where we have used the congruency of K with [-Tr, 7r], and the 27r-periodicity of the

m. O
LEMMA 6.2. Define p() --Im0()l2 q-Iml ()12. Then for some C > O,

N-1

(6.2) I111 > c2N[ d5 H p(25),
eS Sll_<r j=0

where S is the set of all sequences e (e,... ,e) of length N and consisting of only
zeros and ones.

Proof. The proof follows immediately from (6.1) by summing over the 2N se-
quences e with lenh N, and by chging the integration variable. D

The following lemma will allow us to compute a lower bound for the right-hand
side of (6.2).

LEMM 6.3. Th fuio p() Imo()l Im()l satisfies

P()P( + ) .
Moreover, if mo o (nonohogonal case), then

p()p( + ) > ..
Proof.

I. We know (see 4) that

(6.3) o()o() +o( +)o( + ) .
By Cauchy-Schwarz, this implies

(6.4) [Imo()l + Io( + )i] [Io()I + Imo( + )I] 1

or

+ _> (uso +
2. Equality in (6.4) is only possible for those { for which

rh0() c()mo(), m0( -t- 7r) a()rh0( -t- 7r)
for some c(). For such ,
(6.5) ’rho()’rho( + ’) mo( + ’rr’)mo() O.

3. Suppose that (6.5) were true for all . If we extend the trigonometric poly-
nomials from z e-i on the torus to all z E C (extending Mo(e-i) m0()), then
the identity (6.5) would still hold for all z,

(6.6) lo(z)(-z-) Mo(z)-o(-z-) O,

where for A(z) -]n anzn, we use the notation A(z) -]n ,zn" On the other hand,
extension of (6.3) gives

Mo(z)Mo(z-x) + Mo(-z)lo(-z-) 1,

which means that Mo(z) andM(-z-) share no zeros. It then follows from (6.6) that
Mo(z) is zero whenever Mo(z) is. Similarly one concludes that Mo(z) is zero whenever
Mo(z) is. Since both are polynomials (up to multiplication by an integer power of z),
Mo ---/1/o follows.
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4. If vh0 m0, one finds therefore that the left-hand side of (6.5) is a nontrivial
trigonometric polynomial. It follows that (6.5) can only hold in a finite number of
j. Consequently, (6.4) is a strict inequality except in this finite number of j, which
implies that p()p( + r) > 1 almost everywhere.

We are now ready for the following theorem.
THEOREM 6.4. There exist C > O, A > 1 so that, for all N 6 N, N

_
1,

(6.7) IIll _> cv

Proof.
1. By Lemma 6.2, we only need to prove that

r N--I

f II (1 > c.
j=0

2. By Jensen’s inequality,

log d H p(2j) > dlog p(2j)
[=0

1
d logp(2) d logp().

j=o

3. Since p()p( + zr) > 1 a.e., it follows that

if 1 j"2r d logp() d log[p()p( + )] ff > 0.

Consequently,

w N--I
1 /_ df H P(2if) > en"
27r r j=0

Remark. The argument in this proof is borrowed from the proof of Theorem 3 in
Coifman, Meyer, and Wickerhauser [10].

This suffices to prove the instability claimed above. If the collection

C ((.- k); k e Z} U (e(.- k), k e Z and

were a Riesz basis for L2(R), then it would follow that the L2-norms of all these
functions could be bounded uniformly by some constant C. (A Riesz basis is the
image of an orthonormal basis under a continuous map.) In particular it would follow
that, for all N N,

IIll
_
c# c2g.

This is contradicted by (6.7); the collection C does therefore not constitute a Riesz
basis.
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