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Two Recent Results on Wavelets: Wavelet Bases
for the Interval, and Biorthogonal Wavelets
Diagonalizing the Derivative Operator

Ingrid Daubechies

Abstract. The following two questions are often asked by researchers
interested in applying wavelet bases to concrete numerical problems:

1) how does one adapt a wavelet basis on IR to a wavelet basis on an
interval without terrible edge effects?
2) how does the wavelet transform deal with the derivative operator?

This paper reviews several answers to each of these questions, including
some recent constructions and observations. ' .

§1 Introduction

The construction of orthonormal wavelet bases or of pairs of dual, biorthogenal
wavelet bases for L2(IR) is now well understood. For the construction of
orthonormal bases of compactly supported wavelets for L2(IR), in particular,
one starts with a trigonometric polynomial mo(£) = 3, cae ™", satisfying
mo(0) = 1 and [mo(€)|? + |mo(€ + m}|* = 1, as well as some mild technical
‘conditions. The corresponding scaling function ¢ and wavelet ¥ are defined

by
3(&) = (2m)~1/? ] mo(279¢)

j=1

and

$(&) = e mo(E/2 + 1) $(E/2).

The functions ¥;4(z) = 279/2p(2~z — k), j,k € Z, then constitute an
orthonormal basis for L2(R). For fixed § € Z, the ¢ x(z) = 279/2 ¢(272—k)
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238 : _ I. Daubechies

are an orthonormal basis for a subspace V; C L*(IR); the spaces V; constitute
a multiresolution analysis, meaning in particular that

LL.ocWhcvicVooVaa oV C...,

with e
Nvi={} UVv=LR),
jeZ JEE

and

Projy,_, f =Projy, f+ Y {fs ¥ik) Vi

kEZ

See Mallat [16], Meyer [17] or Daubechies [9,11] for more details. Smoothness
for ¢ implies that mg has to have & zero at 7 of sufficiently high multiplicity.
More precisely, :

emogéﬂv\%aﬁ&np £=0,...,k

&m
e

L=

This in turn implies that mo has at least 2k non-zero coefficients. .

By far the oldest example of such an orthonormal basis of compactly sup-
ported wavelets is the Haar basis, with mo(¢) = 1(1+e7%). Other examples,
with arbitrarily high smoothness, were constructed in Daubechies [9]. They

—ie\ N .
correspond to myg of the type mg{é) = mE.va Qn(£), where Qn{£) is 2

polynomial of order N -1 in e~*. The resulting ¢ and ¢ have support width
2N — 1; their degree of smoothness increases linearly with N.

These smoother wavelets provide not only orthonormal bases for L*(R),
but also unconditional bases for function spaces consisting of more regular
functions. In particular (Meyer [17]), if ¢ € C"(R), then the ¢k, k € 72 and
Y_jk J € N, k € ZZ, provide an unconditional basis for the function spaces
C*(R), for all s < r. The reason why wavelet bases (unlike Fourier series)
can provide unconditional bases for C"-spaces is essentially that the wavelets
1) have vanpishing moments. Imposing such vanishing moments is equivalent
to requiring that any polynomial of degree less than or equal to N —1 can be
written as a linear combination of the ¢{z — n). -

Except for the Haar basis, the basic wavelet in an orthonormal basis of
compactly supported wavelets cannot have a symmetry or antisymmetry axis.
Symmetry can be recovered, without giving up the compact support, if the
orthogonality requirement is relaxed. In that case one builds two different
(but related) multiresolution hierarchies of spaces, L WocWicoeVac

Vaec..,and. ... VoV C V.1 C V_3 C ..., corresponding to two
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scaling functions ¢ and ¢ and two ém,.imﬂm.@ and 9. They are defined by
means of two trigonometric polynomials mo and g, satisfying

ma(€) Falé) +mo(§ +) Mol +m) =1.

'We then have o _
(&) =(2m) =22 [ mo(2778),
=1
3 (&) =(2m)~1* T mo(2799),
=1
and

B() =e~ I oE[2+ M/,
P (6) =e**ma(E/2 + mP (£/2)

Under some extra technical conditions the 3h;% and the 4z constitute dual
Riesz bases for LE(R), i.e., (4 ey Wy g} = 85,5+ G e FOX proofs and examples,
see Cohen, Daubechies and Feauveau [6}. There exist two possibilities leading
to symmetry for ¢, ¢ 1) if mo, o have an even number of coefficients, then
#(z) is symmetric, and 1 is antisymmetric around z = 1/2, 2) if me and Mo
have an odd number of coefficients, then ¢ and % are both symmetric, ¢(x)
around z = 0, ¥{z) around z = 1/2. Smoothness for these “biorthogonal”
wavelet bases again requires vanishing moments; we have now _

emQxﬁﬁvuﬁv.\a& (z) =0, £€=0,...,k

bun
P

g=x

Because wavelet bases have many mathematical properties and are associ-
ated with fast algorithms that are easy to implement, they are now being tried
out for a host of applications. For many of these applications the constructions -
sketched above are not quite sufficient. In particular, one is often interested
in problems confined fo an interval rather than the whole line. Examples are
pumerical analysis (with boundary conditions at the edges of the interval), or
image analysis (where the domain of interest is the cartesian product of two
intervals). In this case, it is necessary to adapt the wavelet basis construction
to “life on gn interval”. We review some of the “standard” ways of solving this
problem, and point out some of their shortcomings. From the mathematical
point of view, the construction by Y. Meyer [18] was the first satisfactory an-
swer, in the sense that his construction led to interval-wavelets that were still
unconditional bases for many function spaces, including the Holder spaces.
For the special case of semi-orthogonal spline wavelets, another construction
was given in Chui and Quak {5). This construction exploits the possibility of
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defining splines with multiple knots to take care of edge effects. A technique
to incorporate boundary conditions into Meyer's construction was proposed
in Auscher [1]." From a numerical point of view, Meyer’s construction has
some shortcomings; for this reason a different construction with the same
nice mathematical properties was proposed independently but ‘more or less
simultaneously by B. Jawerth, by P.-C. Lemarié-Rieusset, and by A. Cohen,
1. Daubechies and P. Vial. We explain this construction and its properties in
the first part of the paper.

The second topic of this paper concerns how to deal with the derivative
operator when working with wavelet bases. An expansion into wavelets, with
their different scales, can often be used as an salternative to the Fourier ex-
pansion, with the added advantage of localization. A drawback is that the
derivative operator, 80 easy (diagonall) in the Fourier expansion, is less trivial
when working with wavelets. Here too several approaches have been proposed;
we review a straightforward approximation argument, as well as the observa-
tion by G. Beylkin that one can in fact use the “flter coefficients” associated
with compactly supported orthonormal wavelet bases, to write the matrix for
the derivative operator explicitly, even though no analytic expression is known
for the wavelets themselves: If one is willing to give up orthonormality, then
a recent observation by P.-G. Lemarié-Rieusset {14] gives an even simpler an-
swer: there exist explicit biorthogonal wavelet bases in which the derivative
is diagonal, The original observation appears in a paper in French where it is
exploited to construct divergence-free wavelet bases for n-dimensional veetor
fields; it deserves to be known more widely, and this is the goal of the second
part of this paper.

§2 Wavelets on the interval

Let us assume that the interval is 10,1]. It is very easy t0 restrict the Haar
basis for L2(R) to a basis for L([0, 1]); starting from the collection {go,x; & €
ZIU {Pip; § S Ok € 72}, which is an orthonormal basis for L*(R), i
suffices to take the restrictions of these functions to [0, 1]; since every oné of
these functions has support either within [0,1] or completely outside |0, 1], the
resulting collection {go0} VU {¥sx J <0, 0<k<2d-1}isan orthonormal
basis for L?([0,1]). Things are not so trivial when one starts from smoother
wavelet bases on the line, Assume that both ¢ and % have support width
oN ~ 1. In order to avoid baving to deal with the two edges of [0,1] at the
same time, we can choose to start from the basis { Gjois k€ BIU{ Pixi J <
—jo, k € Z} for L*(R}), where 2i~1 > N so that none of the functions has
support straddling both 0 and 1. Even so there will be 2N — 2 wavelets, at
every resolution level and at every end of [0,1], that straddle an endpoint, 50
that their support is neither completety in {0,1] nor completely in R\ 10, 1[.
Tt is not s priori clear how to adapt them in such g way that the result is ab
orthonormal basis of £2([0,1]). .

Several solutions have been proposed for this problem. They all corre-
spond to diffexent choices of how to adapt the multiresolution hierarchy to
the interval [0,1].




Two Recent Results on Wavelets 241

‘Extending by zeros

This solution consists in not doing anything at all. A function f supported
on [0,1] can always be extended to the whole line by putting f(z) = 0 for
‘z ¢ {0,1]. This function can then be analyzed by means of the wavelets on
the whole real line. There are two things wrong with this naive approach.
First of all, this kind of extension typically introduces a discontinuity in f
at z = 0 or 1 (except in those special cases where f(z) already tends to 0
smoothly for 2 — 0 and z — 1), which will be reflected by “large” wavelet
coefficients for fine scales (i.e., wavelet coefficients which do not decay very
fast) near the two edges, even if f itself is very smooth on [0,1]. The second
“bad” aspect is that this approach uses “00 many” wavelets. At scale —7,
one finds {f, ¥_jk) # 0 for typically 29 + 9N — 1 wavelets; intuitively one
should have to use only 27 wavelets, at scale —j, when looking at problems
on [0, 1].

Periodizing

In this method, one expands a function f on [0,1] into “periodized” wavelets
defined by

per () o | P77 Trem V@a+ VLK), 524020
ik 0, i<0,

for 0 < k < 29 — 1. These wavelets have to be supplemented by lowest resolu-
tion scaling functions ¢75. , defined analogously; the result is an orthonormal
basis of L2([0,1]), associated with a multiresolution analysis in which VZ;" is
spanned by the ¢°7,. One now has exactly 27 wavelets at scale —j, as well

. —2
as % scaling functions ¢27  in every VP, Since

' 1 =]

[ @) w5t = [ do | i) o)
expanding a function-on [0, 1] into periodized wavelets is equivalent to extend-
ing the original function into a periodic function with period 1 and analyzing
this extension with the standard whole-line wavelets. Unless f was elready
periodic, this construction again introduces a discontinuity at ¢ = 0, z = L,
which will show up as slow decay in the fin scale wavelet coefficients pertain-
ing to the edges. Again, it will be impossible to characterize the one-sided
regularity of f at 0 or 1 by looking at the decay of the {f, wwv_ for j — —ov,
unless f is periodic.

Reflecting at the edges
Io this method, one extends the function f on [0,1} by mirroring it at 0 and

=* " 1; beyond ~1 and 2 one mirrors once more, and so on. The full extension is

then defined by

%E l A.‘Aa:,. MMW. w” ma mwa +..M.
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Tf the original function on [0, 1] is continuous, then this extension will be con-
tinuous. Typically, however, the derivative of the extension has discontinuities
at the integers. Expanding the “reflected” extension of a function on [0,1] in
a whole-line-basis of wavelets is equivalent to expanding the original function
on [0,1] with respect to “folded” wavelets 1} defined on [0, 1] by

.MM_M&AHV = MU mb.u..xﬁun - M.mu + MU dvu.._wAMN - Hv .

e 2e7Z

Starting from an orthonormal wavelet basis, this folding typically does not
lead to an orthonormal wavelet basis on [0,1]. If 4z, ¥jr are two biorthog-
onal wavelet bases, with ¢ and 9 both symmetric or antisymmetri¢ around
- 1/2, then their folded versions turn out to be still biorthogonal on {0,1]. The
resulting biorthogonal multiresolution analysis hierarchies on [0, 1] have 2/ +1
(symmetric case) or 27 (antisymmetric case) scaling functions and 27 wavelets
at resolution level j. Because the “reflected” extension typically has a discon-
tinuous derivative, again we can not expect to characterize arbitrary regularity
of f by means of the wavelet coefficients; decay of the (f, pi¢) can charac-
terize up to Lipschitz regularity (a gain over the two previous “solutions”},
but not more, although one can do a little better by using two different pairs
of biorthogonal bases. Explicitly, if the “original” (unfolded) ,¢ are in C7
with r > 1, one finds that a function f on [0, 1} is in C*([0,1}), with0 < s <1,
if and only if .
sup PEHYD _Q:mﬁmnv_ <50 .
320 :
o<k —~1
{For s = 1 a similar result holds, with C* replaced by a Zygmund-type space.)
As usual, the “only if” part follows from

1 . oo .
\ dz PI(z) = \ dz P_jk(z) =0,
0 —co

while the “if” part follows from the smoothness of 4. If one tries to see what
goes wrong if s > 1, say 1 < s < 2, then the “only if” part would require
[z x fold =0, the “if” part ¢ € C" with r > 5. The first requirement is
equivalent to hH dz (1 — |z|}W(z — £) = 0 for all £ € ZZ, which is.only possible
if ¢ is the tent function

b(z) = ﬁ —lzl, |zl <1,

0, otherwise.

But then % ¢ C!, and the “if” part fails. One can, however, characterize
f€C?, 1<s<2if one uses two pairs of biorthogonal wavelet bases, one for
the “if” part, one for the “only if” part. Values of s > 2 cannot be attained.
For more details, see Coben, Danbechies and Vial [8].
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The construction of Y. Meyer

A fourth solution was proposed in Meyer [18]. The starting point of this
sonstruction is any one of the compactly supported bases in Daubechies (9],
with N vanishing moments, and support ¥ = support ¢ = [-N+1,N].
The basis on [0,1] constructed by Y. Meyer is derived from a multiresolu-
tion analysis that “lives” on [0,1]. At sufficiently fine scales, the approxima-
tion spaces a@aq.h consist of 2/ — 2N +2 winterior” functions, 2N ~ 2 “left
edge” functions, and 2N — 2 “right edge” ‘functions. The complement spaces
_\ﬁ.@:. are generated by of 9N — 2 “interior” wavelets, N — 1 “left edge”
wavelets, and N — 1 “right edge” wavelets. The total number of wavelets
at scale j is thus 24, but the total mumber of scaling functions is larger,
9i +2N—2. The “interior” functions are simply those ¥—;k of ¢k (as they
were defined on the whole line) which happen to have their support contained
in [0,1]. The “edge” fnctions have to be constructed explicitly. Tn particular,
the left edge functions ﬂ_mw.x are obtained by orthonormalizing the (2N —2)
restrictions ¢—jkl0,1) wWhere & is chosen so that 0 € interior support (¢ j,k)-
The right edge scaling functions are obtained similarly; the edge wavelets
can then.be computed from projections of those ¥_jk]jo,1) Which straddle 0
or 1 and for which more than half the support is within [0,1]. For details,
see Meyer [18]. The result of the construction is an orthonormal family of
wavelets in [0, 1), with N vanishing moments, and the same regularity as the
original 1. Together with an orthonormal family of scaling functions on [0,1]
ot the coarsest scale under consideration, these adapted wavelets constitute
an orthonormal basis for L*([0, 1)). In addition, their regularity and vanish-
ing moment properties ensure that they are unconditional wavelet bases for
the Hélder spaces C*{[0,1]} for all s < r, where r is the regularity of the
original wavelet basis, 3 € C7. In order to implement the scheme, all the
orthonormalization and projection matrices have to be computed explicitly.
This involves the computation of integrals of the type

o0
\ iz oz + K)o(a+ ) with —N+1<kE<N.
3} .

Using the refinement equation for ¢, these can be computed by solving an
(N-1)(2N -3) dimensional linear system. This system is however very badly
conditioned, because, -€.9. o de |¢(z - N+2)i2 >>> I3 d _@xa+2|5_u.

The disparity among the [ dx |¢(z + k)|? also expresses itself in other
ways. Omne application of wavelet bases and multiresolution on the inter-
val is the “natural” extension of functions living on the intervel to functions
on the whole line. Since the edge-wavelets and scaling functions can all be
written as linear combinations of restrictions of whole-line functions, one can
extend them trivially by “gluing on their tails again”, 4.e., by replacing every
b—j ko bY G—ik- Tf this is done for every edge term in the expansion of &
function f on {0, o0}, the result is a smooth function Foxt extending f to R,
with the appealing property that high frequency components in f spread out
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less to (—o0,0} than low frequency components. At any scale j, the exten-
sion is limited to [—277(2N — 2),00). This doesn't work so well in practice,
however: the extension of those edge scaling functions that are obtained from
restricting ..k to [0, 1] which have only a tiny piece of their support in [0, 1]
can have a huge amplitude outside [0,1}. This is the reason why B. Jawerth,
in an application involving such extension operators for surface design in col-
laboration with B. Dahlberg, decided to develop a construction different from
Meyer's. Another instance where one can feel the imbalance among the ﬁwww
is in the plots of the edge functions. Typically, ¢o,—N+1}[p,00) has much faster
high amplitude oscillations than ¢ itself {the same oscillations are of course
present in the tail of ¢, but with exceedingly small amplitude); because of
the orthonormalization procedure, this oscillatory behavior spreads to several
edge scaling functions. Figures 1 and 2 show the ‘edge scaling functions for
N = 2 and N = 4, at the left side of the interval {0,1}; they illustrate this
oscillatory behavior. :

A4t -1

-8 L -2 " .
0 125 .25 0 125 25

Figure 1. The adapted scaling functions in a\._lﬁw: at the left edge in the
construction of Y. Meyer for N = 2.

One can check that Meyer’s idea can be used also for biorthogonal wave-
lets. If one wants to use the interval wavelets to solve a differential equation
(or in higher dimensions, a partial differential equation) with boundary con-
ditions, then it is convenient to use & wavelet basis where all the wavelets
themselves already satisfy the boundary conditions. Auscher [1] shows how
Meyer’s construction can be adapted to achieve this.

A different construction of interval wavelets

We now look at a fifth solution, also derived from compactly supported wavelet
bases for R. Like Meyer’s construction, it uses “interior” and “edge” scaling
functions at every resolution. We introduce fewer edge functions however,
tailoring them so that the total number is exactly 27 at resolution j. Moreover,
as in Meyer's case, all the polynomials on [0,1] of degree < N — 1 can be
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2 .-
\.\/\l O =
25 5 .75 25 5 5
_ 4
23
0
0 25 5 5 .25 5 NEI 35 .5 5

Figure 2. The adapted scaling functions in f\wﬁw: at the left edge in the
construction of Y, Meyer for N =4

written as linear combinations of the scaling functions at any fixed scale. It
then follows that all the corresponding wavelets, at the edge as well as in the
interior, have N vanishing moments, and this is sufficient to ensure that we
have again unconditional bases for the C*([0,1])-spaces, withs <rifypeC".
This construction was proposed independently and around the same time
(1990-91) by B. Jawerth (to obtain better extension operators — see the
" paper by Andersson et al. in this volume fox this and other applications), by
A. Jouini and P.-G. Lemarié [13] (who also adapted the new construction to
the treatment of boundary conditions), and by A. Cohen, L. Daubechies and
P. Vial [8] (who wanted more symmetry between numbers of wavelets and
numbers of scaling functions at every resolution, and who sought to avoid
the oscillatory. behavior of Meyer’s edge functions). A joint announcement
by two of these groups was made in Cohen, Daubechies, Jawerth and Vial
[7). A related but different construction, from the point of view of filter
construction rather than with the goal of obtaining wavelets, is in Herley,
Kovadevié, Ramchandran and Vetterli {12].
Our starting point is again the /N vanishing moment family of Daubechies
9], or a variant (see Daubechies [10,11]). We choose to translate them so that
support(¢) = support(y) = [—N 4 1, N]. Our goal is to retain the interior
sealing functions, and to add adapted edge scaling functions in such a way
that their union still generates alt polynomials on [0, 1], up to a certain degree.
Let us illustrate the principle of the construction by working on the half line
{0, 00) instead of on [0, 1]; we then only have to deal with the left edge, and
it doesn’t matter at which scale we work. The “interior” scaling functions at
scale 0 are the ¢ox with k > N — 1; their support is contained in {0, c0). By
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themselves, the interior ¢ % do not even generate the constants on (0, 00), as
is clear from ¢o(0) = ¢(—k) =0 for all k > N —1. Let us therefore add the
constants “by hand”. We define an edge function ¢° by

Plz) =1~ > dle—k).

k=N-1

The interior ¢o,x and this edge function ¢° together generate all the constants
on [0, c0). Moreover, becatise 3 pe o, $(z — k) = 1, we also have

N-2 N—-2
FE)= S $z-k= Y dz—k)
k=—00

k=N+1

for 0 < z < oo, showing that ¢° has compact support. It also shows, inciden-
tally, that ¢° is orthogonal to all the interior ¢p k. The only thing that we
have to check is that by adding functions in this ad hoc way we don’t leave
the framework of a multiresolution hierarchy. We have, however,

N+2k
$a—K)=v2 3. e $(2m-0),

2=2k-N+1

and

¢° = ¢°(2z) + Mouolu ¢(2z —£) 1-+2 W he_zk

f=N-1 k=N-1

aIN—4 L+ N—1)/2!
=)+ > ¢2m-0{1-V2 3. hea| s

P=N-1 k=[{£—N}/2]

where we have used that h, = 0forn < —N-+lorn > Nand 37, hon = qum =
¥ hans1. It follows therefore that

Vielt = Span {¢%, do; k> N —1}

C Span (o), bum k2 N -1} =V

Similar inclusions hold immediately if we scale by other integer powers of 2,
and we still have a hierarchy of nested spaces.

T'his is essentially all there is to the construction proposed here. If we.
want the set of edge plus interior scaling functions to gemerate more poly-
nomizis than only the constants, then we have to add, by hand, more edge
functions {for the polynomials up to degree L, we add a total L+1 functions).
If we work on the interval, then the same has to be done at the other edge




Two Reeent mmmzx_m on Wavelets 247

as well. For many applications, it is desirable to have exactly 24 gealing func-
tions of scale j when working on [0, 1]. Let us figure out how much room this
Jeaves us for adding extra functions at the edges. If we start from a minjmal
support N-vanishing moment wavelet, then support(¢) = [N '+ 1, N], and
for j sufficiently large we have exactly 27 — 2N 4 2 interior scaling functions
at scale 7. This leaves room for adding N — 1 ad hoc functions at each edge,
go that the total family can generate polynomials of degree at most N — 2.
The unaltered whole-line scaling functions can generate all polynornials up to
degree N — 1, so that we seem to have “lost” one degree. In order to Tecover
this one extra degree {and so be able to characterize the C*({0, 1]} spaces for
the same range of s as we could on all of R), we have to make room for one
extra function at each edge of the interval, For this reason we abandon the
swo outermost interior scaling functions {one at each end of [0,1]), which cor-
responds to retaining only the dox with & > N rather than k> N — 1 on the
half line. More precisely, we define the N edge functions e k=0,..., N~ 1,
on [0, 00) by
IN-2

Jnl s.
iaT,;Muo AL &izlziu. E
These are all compactly supported, and their supports are staggered, i.e.,
support(¢*) = [0,2N -1 — k]; they are independent, and orthogonal to the
do,m, m = N. Together with the ¢o,m, ™ > N, they generate all the polyno-
mials up to degree N — 1 on [0,00). Finally, there exist constants ak.ez, brm
{which can be computed explicitly) so that

| 3N-2-2k

k
Sy =S ane d(20) + S bem (22 -m). (2
=0

3‘—.".?_.

For proofs, see, €9+ Cohen, Daubechies and Vial (8]. _

One can obtain an orthonormal basis for VJe® by orthonormalizing the P,
gince they are already orthogonal to the orthonormal go m; scaling them leads
to an orthonormal basis for every S_._nn. If one orthonormalizes by a Gram-
Schmidt procedure, starting with ¢V—*, and working down to lower values
of k, then the resulting orthonormal @i, k=10, ..., N -1, still have stag-
gered supports: support{¢ic™) = [0, N + k}. To carry out the Gram-Schmidt
orthonormalization explicitly, we again need the overlap matrix ?w_n. . To
compute this overlap matrix, we use the recurrence (2). For k=10, for in-
stance, we have

- 1. - IN-2 1
_Kwo:N = Qw.c M__%o:w + M @w_.:... M ’
: m=N
from which we obtain ||¢°l|%. It then follows that -
AN—4

A&o. mﬁv = ag,p 41,0 w?wo__.s + ap,0 81,1 WA.mo. .ﬂwpv + .M MU  bom bim

m=N
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leading to an explicit formula for (¢°, ¢*), since [|¢°||? is known. One proceeds
similarly for higher values of k; all Ehm mBosbﬂm to inverting a triangular
matrix, and no ill-conditioning occurs.

The orthonormal ¢i¢®, constructed with staggered supports along the
lines indicated abaove, satisfy a recursion relation simnilar to (2) and inherited
by all the scales j. Explicitly, there exist constants Hi°} and A%, (which can
be computed explicitly from the ax ¢, bke in (2) and gm ogwonodumrnmsou
Ednmmﬁ.mv such that

N+2k

left left _m? left

I.u:.w.lMHm l.w uh MD ﬁlm 1m - AWV
m=N

All this was on the half line. If we work on the interval (0, 1], and we start
with a scale fine enough so that the two edges don't interact, ie, 27 > 2N,
then there are 27 — 2NV interior scaling functions ¢.; N, ..., $jos—N-1, 80d .
we add N functions at each end, following the principles outlined above. - ;.
Together, these 29 orthonormal functions span d\._.wp_.

We now turn to the wavelets H.E&ma than the scaling functions. As usual, _
we define S\_o W 1 T\E :v Fromr dimension counting, it immedi-
ately follows that dim S\@z = 27, On the other hand it is easy to check that
the 2/ — 2N functions #_jm, m =N, ..., 27 — N —1l areallin qﬂ_ou: Since
they are all orthonormal, we therefore need to add an extra 2N wavelets (N
at each edge) to provide an orthonormal basis for W, How should they

-3
be constructed? To simplify notation, we return to the haif line [0,00). We

define there Wieft = Vholf 1y (V)L The 44 ., m 2 NV all belong to W},
and we are Hoow_um for N extra functions in W)™, orthonormal to these ess
Define ,

.2 1 .
P =0 - 2 (¢ dhn e @

m=0

Then the ¥F are N independent functions in Wi, orthogonal to the ¥o,m,
m > N. Because of the recursion relation (3), the ¥/* can be written as a
linear combination of ¢*°F, and ¢_1 m:

3N--2

k
HMUEi e, + M dem Porm - ()
m=N , .

=0

In & final step, these ¥* can be orthonormalized and we end up with an
orthonormal family @%m k=0, ..., N—1. It is possible to orthonormalize in -
such a way that the Pt have mﬁmmmmamg supports, support{°t) = [0, N + k.
For any j € 7 we define again Pl (z) = 29/2 et (27); together with the

Y_jm, m > N, the @ww»._ k=0,..., N—1 provide an orthonormal basis for
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Wk, moreover, there exists constants Gie% and gl*® o that
T 3

N1 N42k
left _ left left lef:
Yok = M Gie ¢35 10+ MU Ik Dit,m - (6)
£=x0 m=N o

This completes our explicit construction, at least at a left end. The same has
to be repeated at a right end. Combining the two leads to orthonormal bases
for w1, | |

The result is an orthonormal basis for £2(J0,1]). If &4 € C7, this is
also an unconditional basis for C*([0,1)) for s < . In particular, a bounded
function f is in C*([0, 1]) if and only if

(592 15 eam, )5 9185 )] s e,

where C is independent of jorm,k.

2

Figure 3. The adapted scaling functions in H\c_c_oov at the left edge in the
new construction for N = 2, .

Figures 3 and 4 plot the scaling functions for N = 2 and N = 4, at
the left end of [0, 00). Note that, as on the whole line, we have no explicit
analytic expression for the wavelets and scaling functions on the interval. For
practical applications, all that is really needed are the filter coefficients. In ad-

dition to the hun, gm = (~1)™han 41—, we now also have the H'*f_,, awn..s_
GR 4 g%, from (3) and (6) {and the same on the right). Tables for these
,—~£ k,m

filter coefficients can be found in Cohen, Daubechies and Vial (8]. The adapted
scaling functions in these plots are less oscillatory than those in Meyer’s con-
struction. On [0, 1) the NV functions ¢E", k=.0,..., N ~1, are ptre polyno-
mials (of degree NV — 1). This is because all the scaling functions together on
[0, co) generate the polynomisls up to degree N — 1; since the interior scaling
functions ¢o,m, m > N, only start kicking in from z > 1 onward, the N
adapted scaling functions have to be polynomials themselves,
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-1

0 2 PR 0 2 4 6
Figure 4. The adapted scaling functions in <o€.8v at the left edge in the
new construction for N = 4.

Discussion of the new construction

Many variations are possible. One can, for instance, start from completely
different families of whole-line waveléts, and adapt the number of additional
edge scaling functions to their support width and to their number of vanishing
moments. :

We have assumed that we want the scaling functions to generate all pos-
sible polynomials up to a certain degree. If the interval wavelets are used to
solve a differential equation, then it may be useful to adapt the construction
so that all the scaling functions and wavelets involved satisfy certain pre-
scribed boundary conditions. P. Auscher [1] adapted the original construc-
tion by Y. Meyer in this way; his scheme carries over entirely to the present
construction (with more numerical stability). The construction by A. Jouini
and P. G. Lemarié-Ricusset, which is essentially the same as ours, obtained
independently, was carried out in view of this application. :

The same ideas apply of course to biorthogonal wavelet bases. If one
starts from a choice with (anti}symmetric wavelets and scaling functions, then
the adapted scaling functions and wavelets at the right edge can be chosen
to be the mirrors of their left edge equivalents. Since biorthogonality instead
of orthonormality is wanted, there is more freedom in the choice of the edge
functions, and one can optimize for extra criteria. ,

"There is an important difference between wavelets on the line and wave-
lets on [0,1], which results in the necessity, in at least some applications, t0
precondition the data (eg., an image) prior to their wavelet decorposition.
Scaling functions on all of R have the property [dz ¢_jxlz) = 2-i/2 in-
dependently of k. A consequence of this is that the corresponding low pass
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filter preserves the sequence ...1111... . For the specially adapted scaling
functions at the edge of [0, 1], we typically have .s.cp dz ﬁm.wmmﬁav #£279/2 The
result is that the sequence invariant under low_pass filtering is not 111...111,
but rather a sequence consisting of only 1’s in the middle, but with different
initial and final entries. Something similar happens for sequences correspond-
ing to higher degree polynomials. In practical examples ( e.g., images) one still
would like simple polynomial sequences like 1 1.11...0r1 23 4... to lead to
& zero high-pass component, however. This can still be achieved if we perform
a prefiltering on the data. The details of this scheme can be found in Cohen,
Daubechies and Vial [8]. In the biorthogonal case, the extra freedom in the
construction can be exploited so as to make this prefiltering unnecessary.

§3 Dealing with the derivative operator

The derivative operator is not diagonal in a wavelet basis. Nevertheless, com-
pactly supported and reasonably smooth wavelets are well localized “on both
sides of Fourler” (meaning that both (z) and (&) are well localized), so
that we expect the matrix of the derivative operator in such a wavelet basis
to be sparse. More concretely, if 1(¢) is mainly localized in mm_m_Mmﬁ

then we expect .

d
Amm. VYjkes ﬁ;.wv ~0
if [j ~ j') 2 4. Moreover, if support(y) = [~N + 1, N], then

d
Amm Vi ks @&.Qv =0

for
~N@ T 4 1) 27 <k i S NI 41) 1.

Together, these two conditions mean that Amm_m Wik, Py 1) is negligible unless
(5,k) and (§', k') are “close”. _ e

This argument does not tell us how to compute the significant matrix
elements, however. A first simple strategy for their computation can be found
in Liandrat and Tchamitchian [15]: they worked with (truncated versions
of) orthonormal cubic spline wavelets (from the Battle-Lemarié family), and
approximated & 9 by : .

% Pik = M A ik ﬁu...tu.nv b2,

]

which amounts to sssuming that for f € W;, & f — Projy, ,4f = 0.
Since (¥} ¢, ¢j-2,6) =279(¢, ¢_g,e-2x), it suffices to compute the integrals
J ' (2)¢(4z — n)dz; this was done numerically in Liandrat and Tchamitchian.
For different wavelets it might be necessary to replace Vi—2 by even finer scale

spaces Vy_r, L > 2, in this approach.
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Within the framework of orthonormal wavelets with compact support,
G. Beylkin [2] makes the following interesting observation. Since

Ny
%?ﬁv = J\M M 33&AM8 - ﬁu t

n=N;

it follows that the az = [ ¢'(z) ¢(z ~ k)dz, which differ from zero only if
|k} < Na — Ny (since support{g) = [N1, N2]), satisfy the equation

. Nz
ap = 2 MU w._..: _J.q: Aok+m—n

n,m=Ni
Ny —Ny Nz

=2 MU M hn _.ﬂpmlmw._:.: ag .

I (Np—N1) \n=MN

The ay can therefore be found by constructing the eigenvector with eigenvalue
% of the matrix A with entries

Na
Are = M hy Repn—2k

n= Ny

for k|, 16} € Na— N1 — 1L Hmo(f) = 7= N hn e hasazeroat £ =7
of multiplicity at least 2, then the matrix A does indeed have the eigenvalue
1/2, and it is nondegenerate. Moreover, Beylkin {2] also proves that

MU ka,=-1.
k

(This is a direct consequence of 3, Plz — k) =1and ¥ {z —k)d(z —k) =

. constant.) This fixes the normalization of the ak, so that they are uniquely de-

termined, and can be computed directly from the hn. Once the Awmﬂ 30,01 Po,k)
are known, all the A%u. Wik, Pirx) can be derived easily by the usual recur-

rences
Gik =D Bnok $imiks
n

Vik =Y Gn-2k $i-1 5

n

with g, = (=1)"® A_nt14+2K, where K can be chosen so that ﬂrm set of indices

n where hn, # 0 coincides with the set where g, # 0. Another way of viewing
this is to start with a large array with entries ax_g; successive high- and
low-pass filterings on columns and rows (similar to the use of wavelets for
image compression) then lead to the nonstandard form of the matrix for the

derivative operator, i.e., an array containing the entries

d d d
T Wi ks ﬁ.,tv, . A.Hm Wi ks @u..w.v“ AH @4,k e.\,..wv
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for j=1,...J, as well as the coarse scale Amam Dk ﬁu..w.v. Since
d domif2 1 o
mmﬁ.._...w AHVHM 9= @AM qu.«nVu

we have (= Wi, dp) = 2771 (L oy 1. 6; &) (and the same for other matrix
elements), which means that we only need to compute one level. From the
nonstandard form, one then obtains the standard form, i.e., the array with

entries p
Amm Yik, ew_tv

by the usual additional filterings where needed {see Beylkin, Coifman and
Rokhlin {3}). Note that this procedure leads to the exact values of the deriva-
tive operator matrix elements; the only approximation involved when this
matrix is used consists in the choice of the finest scale space, implying an
effective truncation of the derivative operator. .

If one is willing to give up orthonormality, then dn even more elegant
representation of the derivative operator can be found, by using two special
pairs of biorthogonal or dual bases of compactly supported wavelets. Such a
pair of dual bases

Pip(e) =272 pa-iz — k),  giu(e) = 2-3/2 P2z k),

with corresponding scaling functions ¢, Am_ is defined by

$(&) = (2m) =2 [T mo(2-%¢)

i=1
O =m0 (547) 8(5)

with ¢, ) defined analogously (reverse the roles of mg, fg). Here my, g are
as described in §1. Many examples are constructed in Cohen, Daubechies and
Featuveau [6]. In addition, there are also examples when mg and o have the
same (even) number of nonvanishing coefficients (C. Brislawn [4]). Duality is
expressed by

A&.? AF;_EV = &3 G e -

If 4 is in CE=*, then v must have L vanishing moments, i.e.,
\.% W)t =0, £=0,...,L—1.

(This is a consequence of the duality — see, e.g., Theorem 5.5.1 in Daubechies
{11).) This implies that my should be divisible by (1 + e~)Z; a similar
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statement holds of course if we reverse the roles of ¥, and mo,ho. In all
interesting applications, mo and /o are symmetric, and can be written as

L
mo(€) = A%m @ | e/ P(eost), -

i (M
o(é) = ASm mv g=iK¢/2 PlcosE) ,

where "
1, if L and L are odd,

K=
ﬁo. if L and L are even,

(L and L necessarily have the same parity). The polynomials P and P satisfy
the equation ’

(1+2)X P(2)P(z) + (1 — )X P(~2)P(—z) = 2 ._ )

where 2K = L + L. The important thing to note here is that P and P
are determined solely by L + L; splitting up 2K into & different sum, 2K =
I#4L#, leads to different mf and ¥, but P and P can be left untouched by
this nwmumm. Substituting the formulas (7) into the infinite products defining

g‘w and ¢ we find

. L o0
(&) = (2m)~V/2emiKer? TM \M\ J T Pleos2798) ,
j=1

where we have used [J32, cos(277a) = sine  Consequently,

DE) = (2n) "2 5 mmuw. ’ i.llﬂﬁm\p * m P(cos277¢)

4 g4 ] '
(Similar formulas hold for 9, .) The Fourier transform of the derivative ¥’
of 7 is simply 64 (£), which can be written as

. . E41 . | L-1 oo
i€ (&) = 45+ @m)=V2 (sin 2 sin/4 P(cos2778) .
( i~ (2m) AmE »v A 7 v m c0s

Up to a multiplicative constant 4, this is exactly the Fourier transform of the

wavelet 3# that would have corresponded to the same P, P and K in (8), but
with the choice L#¥ =L —1, L¥ = L+1,

m. L-1
m#(6) = va ¢~G-KI/2 P(cose),

w,Z .
i (€) = AoOm mv mlﬁlaum\wvﬁoom@.
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It follows that if we construct two pairs of biorthogonal wavelet bases, one
using 1,9, the other ¢#, ¢#, then

(i) =277 497, ,

and hence

d : .
Amm Wi eﬁx.v =4 277 835850 -

We have indeed “diagonalized” the derivative operator! (Since we use two
different bases, this is not a “true” diagonalization, however.) What this
means in practice is that we can find the wavelet coefficients of f'(z), i.e.,

A.gz, ﬁc_.xv = ....Ah Ec..&‘v
by simply computing the coeflicients of f itself with respect to the eﬁn

() =425(0, )

In a practical problem, we are usually given a discrete approximation of f
to start with { e.g., in the form of sampled values). From these, we have to
determine the (f, ¢o &), which corresponds to a deconvolution, inverting the
filters with coefficients ¢(k): :

AN

Y

ey 8 ) dlk —n} .

R
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We make the approximation here that (Projy, f)(n) = f (r), which need
not be correct, but without other a priori information on f we cannot bope
to'do better. With a priori information, we can adapt the deconvolution
procedure. Similarly, we have to determine the {f,¢g ). Once these are
obtained, we simply go through the usual high- and low-pass filtering %_ﬁw
decimation stages, with the filters mq and /o on one hand, m¥ and 72} on
the other hand, to obtain both the (f, ;) and the {f, 9%} = § 27 (F, ;).

Another way of viewing the construction is to lock at the link between ¢
and ¢#. We have

= o (S2502) e

or
i£G(¢) = (¥ — 1)6*(6) ,
implying
¢(z) = ¢*(z +1) — ¢* () -

The transition from the “¢-picture” to the “s#_picture” translates differenti-
ation into a finite difference operation:

Projy, f’ MU A.Nz. ﬁo.wvﬁc_x
R
=375, do
k

= MA%_ e%» - e%wlpv dok -
k

1

This is closer to the presentation in Lemarié [14].

Note that Cohken, Daubechies and Feauveau [6] contains Ewn% examples
of ¢, %, 1P, ¥# quadruplets, although the link with the differentiation operator .
was not noticed. Figure 5 plots one such quadruplet.

Acknowledgments. The first part of this paper was also presented at the -
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Figure 5. One exampleofa quadruplet ¢, ¥, 1, o#, as found in Cohen,
Daubechies and Feauveau [6]. Normalizations are slightly different from

-above; here ¥ = —19/, and #'(z) = ¢ (z) I.%% (@~1).
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