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Abstract. We present a constructive approach to surface comparison realizable by a polynomial-time

algorithm. We determine the “similarity” of two given surfaces by solving a mass-transportation problem
between their conformal densities. This mass transportation problem differs from the standard case in that

we require the solution to be invariant under global Möbius transformations. We present in detail the case

where the surfaces to compare are disk-like; we also sketch how the approach can be generalized to other
types of surfaces.

1. introduction

Alignment and comparison of surfaces (2-manifolds) play a central role in a wide range of scientific disciplines;
they often constitute a crucial step in a variety of problems in medicine and biology.

Mathematically, the algorithmic problem of surface alignment amounts to defining a metric function d(·, ·)
in the space of Riemannian 2-manifolds with the following two properties: 1) for any two surfacesM and N ,
d(M,N ) = 0 implies that M and N are isometric, and 2) given a reasonably large number of reasonably
well-distributed sample points on both surfaces, an accurate approximation to the distance d(M,N ) can be
calculated in a time that grows only polynomially in the sample set size. This second requirement is crucial
to ensure that the algorithm can be used effectively in applications.

A prominent mathematical approach to define distances between surfaces that has been proposed for practical
applications [10, 11] is the Gromov-Hausdorff (GH) distance; it considers the surfaces as special cases of
metric spaces. To determine the GH distance between the metric spaces X and Y , one examines all the
isometric embeddings of X and Y into (other) metric spaces; although this distance possesses many attractive
mathematical properties, it is inherently hard computationally. For instance, computing the Lp version of the
GH distance between two surfaces is equivalent to a non-convex quadratic programming problem, generally
over the integers [9]. This problem is equivalent to integer quadratic assignment, and is thus NP-hard [13].
In [9], Memoli generalizes the GH distance of [10] by introducing a quadratic mass transportation scheme
to be applied to metric spaces that are also equipped with a measure (mm spaces); the computation of
this Gromov-Wasserstein (GW) distance for mm spaces is somewhat easier and more stable to implement
than the original GH distance. The computation of the GW distance between two surfaces described in [9]
utilizes a (continuous rather than integer) quadratic programming method; the functional to be minimized is
generally not convex and optimization methods are likely to find local minima rather than the global minima
that realizes the surfaces’ distance.

In this paper we propose a new surface alignment procedure, introducing the conformal Wasserstein distance.
Our construction consists in “geometrically” aligning the surfaces, based on uniformization theory and opti-
mal mass transportation. The uniformization theory serves as a “dimensionality reduction” tool, representing
e.g. a disk-type surface by its conformal factor on the unit disk: the corresponding automorphism group (the
disk-preserving Möbius group) has only three degrees of freedom and is therefore searchable in polynomial
time. Next, the Kantorovich mass-transportation [3] is used to construct a linear functional the minimizer
of which furnishes a metric; as is well-known [2, 4], this can solved by a linear program, and can thus be
computed/approximated in polynomial time as-well.
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As far as we know, prior to our work, no polynomial time algorithm was known to compute, either exactly
or up to a good approximation, the GH distance or any other proposed intrinsic geometric distances between
surfaces. Although [10] uses a mass transportation as well (albeit quadratic mass transportation), our ap-
proach is nevertheless different. We solve the “standard” (and thus linear) Kantorovich mass transportation
problem, which is convex (even linear) and solvable via a linear programming method.

There exist earlier papers on aligning or comparing surfaces that use uniformization. In particular, the
papers by Zeng et al. [?, ?] which build upon the work of Gu and Yau [12], also use uniformization
for surface alignment (albeit without defining a distance between surfaces). However, they use prescribed
feature points (defined either by the user or by extra texture information) to calculate an interpolating
harmonic map between the uniformization spaces, and then define the final correspondence as a composition
of the uniformization maps and this harmonic interpolant. We use only intrinsic geometric information: we
make use of the surfaces’ metric (inherited from its embedding in R3) and the induced conformal structure
to define deviation from (local) isometry.

Optimal mass transportation has also been used before in aligning or comparing images. Following the
seminal work by Rubner et al. [2], it is used extensively in the engineering literature to define interesting
metric distances for images, interpreted as probability densities; in this context the metric is often called the
”Earth Mover’s Distance”.

Our paper is organized as follows: in Section 2 we briefly recall some facts about uniformization and optimal
mass transportation that we shall use, at the same time introducing our notation. Section 3 contains the main
results of this paper, constructing the conformal Wasserstein distance metric between disk-type surfaces, in
several steps; we also indicate how the approach can be generalized to other surfaces. Section 4 briefly
describes the discrete case.

2. Background and Notations

As described in the introduction, our framework makes use of two mathematical theories: uniformization
theory, to represent the surfaces as measures defined on a canonical domain, and optimal mass transportation,
to align the measures. In this section we recall some of their basic properties, and we introduce our notations.

2.1. Uniformization. By the celebrated uniformization theory for Riemann surfaces (see for example [7, 8]),
any simply-connected Riemann surface is conformally equivalent to one of three canonical domains: the
sphere, the complex plane, or the unit disk. Since every 2-manifold surface M equipped with a smooth
Riemannian metric g has an induced conformal structure and is thus a Riemann surface, uniformization
applies to such surfaces. Therefore, every simply-connected surface with a Riemannian metric can be mapped
conformally to one of the three canonical domains listed above. In this paper, we discuss 2D surfaces,
equipped with a Riemannian metric tensor g (possibly inherited from the standard 3D metric if the surface
is embedded in R3) that have a finite total volume (i.e. area, since we are delaing with surfaces). For
convenience, we shall normalize the metric so that the surface area equals 1. We shall discuss in detail the
case where the surfaces M are topologically equivalent to disks. (We shall address in side remarks how the
approach can be extended to the other cases.) For each such M there exists a conformal map φ :M→ D,
where D = {z ; |z| < 1} is the open unit disk. (we assume that M does not include its boundary, if it has
one). The map φ pushes g to a metric on D; denoting the coordinates in D by z = x1 + ix2, we can write
this metric as

g̃ = φ∗g = µ̃(z) δij dx
i ⊗ dxj ,

where µ̃(z) > 0, Einstein summation convention is used, and the subscript ∗ denotes the “push-forward”
action. The function µ̃ can also be viewed as the density function of the measure volM induced by the
Riemann volume element: indeed, for (measurable) A ⊂M,

(2.1) volM(A) =

∫
φ(A)

µ̃(z) dx1 ∧ dx2.
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It will be convenient to use the hyperbolic metric (1−|z|2)−2δijdx
i⊗dxj as the reference metric on the unit

disk, rather than the standard Euclidean δijdx
i ⊗ dxj ; note that the two are conformally equivalent (with

conformal factor (1 − |z|2)−2). Instead of the density µ̃(z), we shall therefore use the hyperbolic density
function

(2.2) µH(z) := (1− |z|2)2 µ̃(z) ,

where the superscript H stands for hyperbolic. We shall often drop this superscript: unless otherwise stated
µ = µH , and ν = νH . This density function µ satisfies

volM(A) =

∫
φ(A)

µ(z) dvolH(z) ,

where dvolH(z) = (1− |z|2)−2 dx1 ∧ dx2. In what follows we shall use the symbol µ both for the function µH

and as a shorthand for the absolutely continuous measure volM, and by extension for the surface M itself.

The conformal mappings of D to itself are the disk-preserving Möbius transformations m ∈ MD, a family
with three real parameters, defined by

(2.3) m(z) = eiθ
z − a
1− āz

, a ∈ D, θ ∈ [0, 2π).

Since these Möbius transformations satisfy

(2.4) (1− |m(z)|2)−2|m′(z)|2 = (1− |z|2)−2 ,

where m′ stands for the derivatives of m, the pull-back of µ under a mapping m ∈MD takes on a particularly
simple expression. Setting w = m(z), with w = y1 + iy2, and g̃(w) = µ̃(w)δijdy

i ⊗ dyj = µ(w)(1 −
|w|2)−2δijdy

i ⊗ dyj , the definition

(m∗g̃)(z)kl dx
k ⊗ dx` := µ(w) (1− |w|2)−2 δij dy

i ⊗ dyj

implies

(m∗g̃)k`(z) dx
k ⊗ dx` = µ(m(z))(1− |m(z)|2)−2 δij

∂yi

∂xk
∂yj

∂x`
dxk ⊗ dx`

= µ(m(z)) (1− |m(z)|2)−2 |m′(z)|2 δk` dxk ⊗ dx`

= µ(m(z)) (1− |z|2)−2 δk` dx
k ⊗ dx`.

In other words, (m∗g̃)(z)kl dx
k ⊗ dx` takes on the simple form m∗µ(z) (1− |z|2)−2 δkl dx

k ⊗ dx`, with

(2.5) m∗µ(z) = µ(m(z)).

Likewise, the push-forward, under a disk Möbius transform m(z) = w, of the (diagonal) Riemannian metric
defined by the density function µ = µH , is again a diagonal metric, with (hyperbolic) density function

m∗µ(w) = (m∗µ)
H

(w) given by

(2.6) m∗µ(w) = µ(m−1(w)).

It follows that checking whether or not two surfacesM andN are isometric, or searching for (near-) isometries
between M and N , is greatly simplified by considering the conformal mappings from M, N to D: once the
(hyperbolic) density functions µ and ν are known, it suffices to identify m ∈ MD such that ν(m(z)) and
µ(z) coincide (or “nearly” coincide, in a sense to be made precise). This was exploited in [6] to construct
fast algorithms to find corresponding points between two given surfaces. In the next section we provide a
precise formalization of this idea using the notion of optimal mass transportation, described in the following
subsection.
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2.2. Optimal mass transportation. Optimal mass transportation was introduced by G. Monge [1], and L.
Kantorovich [3]. It concerns the transformation of one mass distribution into another while minimizing a cost
function that can be viewed as the amount of work required for the task. In the Kantorovich formulation, to
which we shall stick in this paper, one considers two measure spaces X,Y (each equipped with a σ-algebra),
a probability measure on each, µ ∈ P (X), ν ∈ P (Y ) (where P (X), P (Y ) are the respective spaces of all
probability measures on X and Y ), and the space Π(µ, ν) of probability measures π on X×Y with marginals
µ and ν (resp.), that is, for A ⊂ X, B ⊂ Y , π(A × Y ) = µ(A) and π(X × B) = ν(B). The optimal mass
transportation is the element of Π(µ, ν) that minimizes

∫
X×Y d(x, y)dπ(x, y), where d(x, y) is a cost function.

(In general, one should consider an infimum rather than a minimum; in our case, X and Y are compact,
d(·, ·) is continuous, and the infimum is achieved.) The corresponding minimum,

(2.7) Td(µ, ν) = inf
π∈Π(µ,ν)

∫
X×Y

d(x, y)dπ(x, y),

is the optimal mass transportation distance between µ and ν, with respect to the cost function d(x, y).

Intuitively, one can interpret this as follows: imagine being confronted with a pile of sand on the one hand
(corresponding to µ), and a hole in the ground on the other hand (−ν), and assume that the volume of the
sand pile equals exactly the volume of the hole (suitably normalized, µ, ν are probability measures). You
wish to fill the hole with the sand from the pile (π ∈ Π(µ, ν)), in a way that minimizes the amount of work
(represented by

∫
d(x, y)dπ(x, y), where d(·, ·) can be thought of as a distance function).

In what follows, we shall apply this framework to the density functions µ and ν on the hyperbolic disk D
obtained by conformal mappings from two surfaces M, N , as described in the previous subsection.

The Kantorovich transportation framework cannot be applied directly to the densities µ, ν. Indeed, the
density µ, characterizing the Riemannian metric on D obtained by pushing forward the metric on M via
the uniformizing map φ : M → D, is not uniquely defined: another uniformizing map φ′ : M → D may
well produce a different µ′. Because the two representations are necessarily isometric (φ−1 ◦ φ′ maps M
isometrically to itself), we must have µ′(m(z)) = µ(z) for some m ∈ MD. (In fact, m = φ′ ◦ φ−1.) In a
sense, the representation of (disk-type) surfaces M as measures over D should be considered “modulo” the
disk Möbius transformations.

We thus need to address how to adapt the optimal transportation framework to factor out this Möbius
transformation ambiguity. The next section starts by showing how this can be done.

3. The conformal Wasserstein framework: optimal volume transportation for surfaces

We want to measure distances between surfaces by using the Kantorovich transportation framework to
measure the transportation between the metric densities on D obtained by uniformization applied to the
surfaces. The main obstacle is that these metric densities are not uniquely defined; they are defined up to a
Möbius transformation. In particular, if two densities µ and ν are related by ν = m∗µ (i.e. µ(z) = ν(m(z))),
where m ∈MD, then we want our putative distance between µ and ν to be zero, since they describe isometric
surfaces, and could have been obtained by different uniformization maps of the same surface. We thus want
a distance metric between orbits of the group MD acting on the conformal factors rather than a metric
distance between the conformal factors themselves. If we choose a metric distance d on D that is invariant
under Möbius transformations, i.e. that it is a multiple of the hyperbolic distance on the disk, then a natural
definition is as follows

(3.1) T(µ, ν) = inf
m∈MD

(
inf

π∈Π(m∗µ,ν)

∫
D×D

d(z, w) dπ(z, w)

)
.

As shown in the Appendix, T(µ, ν) is indeed a distance between disk-type surfaces; its computation can
moreover be implemented in running times that grow only polynomially in the number N of sample points
used in the discretization of the surface (necessary to proceed to numerical computation). The optimization
over m in the definition of T(µ, ν) always achieves its minimum in some m (depending on µ and ν of
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course); denoting this special minimizing m ∈MD by mµ,ν , we can rewrite T(µ, ν) as the result of a single
minimization (for details, see Appendix):

T(µ, ν) = inf
π∈Π([mµ,ν ]∗µ,ν)

∫
D×D

d(z, w) dπ(z, w)

= inf
π∈Π(µ,ν)

∫
D×D

d(mµ,ν(z), w) dπ(z, w) .(3.2)

This is, however, purely formal; since the determination of mµ,ν involves the original double minimization of
(3.1), a numerical implementation does require solving a mass-transportation functional for many m ∈MD.
In practice, this means that, despite its polynomial running time complexity, the numerical computation of
T(µ, ν) is too heavy for many applications, in which all pairwise distances must be computed for a collection
of that may contain hundreds of surfaces [?]. This seems to lead to an impasse, since there exists no other
distance metric on D that is conformally invariant, so that the natural “quotienting operation” over the
group MD can produce no other metric than T(·, ·).

However, T(µ, ν), rewritten as in (3.2), suggests another way in which we can define an appropriate distance
metric between orbits of the group MD acting on the conformal factors. Note that (3.2) has exactly the
same form as for a standard Kantorovich mass transportation scheme, except for the (crucial) difference
that the cost function depends on µ and ν. By retaining the idea of (Kantorovich) mass transportation,
but allowing the use of cost functions d(·, ·) in the integrand that depend on µ and ν (without picking
them necessarily of the form d(mµ,ν(z), w)), we can construct other distance metrics D on the conformal
factors that are invariant under action of MD, i.e. for which D(µ, ν) = D(m∗µ, ν) for all m ∈ MD. In
addition, we can pick cost functions of this type ensuring that the distance between (or dissimilarity of) µ
and ν exhibits some robustness with respect to deviations from global isometry. More precisely, we want the
distance to be small for surfaces that are not isometric but nevertheless very close to isometric on parts of
the surfaces; this can be achieved by picking a cost function dRµ,ν(z, w) that depends on a comparison of the
behavior of µ and ν on neighborhoods of z and w, mapped by m ranging over MD. This cost function, once
incorporated in the Kantorovich mass transportation framework, will lead to a metric between disk-type
surfaces (some generic conditions aside) based on solving a single mass transportation problem. The next
subsection shows precisely how this is done. As is the case throughout the paper, we first give the full details
of the construction for disk-like surfaces, and then indicate later how to generalize this to e.g. sphere-like
surfaces. It is worthwhile to note that the “quotient approach” sketched above would not even have been
applicable in a straightforward way to sphere-like surfaces, since they do not possess a metric invariant under
all their Möbius transformations. As we shall explain at the end of this section, the same obstruction will
not exist for the construction introduced in the next subsection.

3.1. Construction of dRµ,ν(z, w). We construct dRµ,ν(z, w) so that it indicates the extent to which a neigh-
borhood of the point z in (D, µ), the (conformal representation of the) first surface, is isometric with a neigh-
borhood of the point w in (D, ν), the (conformal representation of the) second surface. We will need to define
two ingredients for this: the neighborhoods we will use, and how we shall characterize the (dis)similarity of
two neighborhoods, equipped with different metrics.

We start with the neighborhoods.

For a fixed radius R > 0, we define Ωz0,R to be the hyperbolic geodesic disk of radius R centered at z0.
The following gives an easy procedure to construct these disks. If z0 = 0, then the hyperbolic geodesic disks
centered at z0 = 0 are also “standard” (i.e. Euclidean) disks centered at 0: Ω0,R = {z ; |z| ≤ rR}, where
rR = tanh(R). The hyperbolic disks around other centers are images of these central disks under Möbius
transformations (= hyperbolic isometries): setting m(z) = (z − z0)(1− zz̄0)−1, we have

(3.3) Ωz0,R = m−1(Ω0,R) .
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If m′, m′′ are two maps in MD that both map z0 to 0, then m′′ ◦ (m′)−1 simply rotates Ω0,R around its
center, over some angle θ determined by m′ and m′′. From this observation one easily checks that (3.3) holds
for any m ∈MD that maps z0 to 0. In fact, we have the following more general

Lemma 3.1. For arbitrary z, w ∈ D and any R > 0, every disk preserving Möbius transformation m ∈MD
that maps z to w (i.e. w = m(z)) also maps Ωz,R to Ωw,R.

Next we define how to quantify the (dis)similarity of the pairs (Ωz0,R , µ ) and (Ωw0,R , ν ). Since (global)
isometries are given by the elements of the disk-preserving Möbius group MD, we will test the extent to
which the two patches are isometric by comparing (Ωw0,R , ν ) with all the images of (Ωz0,R , µ ) under Möbius
transformations in MD that take z0 to w0.

To carry out this comparison, we need a norm. Any metric gij(z)dx
i ⊗ dxj induces an inner product on

the space of 2-covariant tensors, as follows: if a(z) = aij(z) dx
i ⊗ dxj and b(z) = bij(z) dx

i ⊗ dxj are two
2-covariant tensors in our parameter space D, then their inner product is defined by

(3.4) 〈a(z),b(z)〉 = aij(z) bk`(z) g
ik(z) gj`(z) ;

as always, this inner product defines a norm, ‖a‖2z = aij(z) ak`(z) g
ik(z) gj`(z). Let us apply this to the

computation of the norm of the difference between the local metric on one surface, gij(z) = µ(z)(1−|z|2)−2δij ,
and hij(w) = ν(w)(1− |w|2)−2δij , the pull-back metric from the other surface by a Möbius transformation
m. Using (3.4), (2.5), and writing δ, g, h, for the tensors with entries δij , gij , and hij , respectively, we have:

‖g −m∗h‖2z = ‖µ(z)(1− |z|2)−2δ − ν(m(z))(1− |z|2)−2δ ‖2z

=
(
µ(z)− ν(m(z))

)2

(1− |z|2)−4 δij δk` g
ik(z) gj`(z) =

(
1− ν(m(z))

µ(z)

)2

.

For every pair of µ, ν, we are now ready to define the distance function dRµ,ν(·, ·) on D:

(3.5) dRµ,ν(z0, w0) := inf
m∈MD ,
m(z0)=w0

∫
Ωz0,R

|µ(z)− (m∗ν)(z) | dvolH(z),

where dvolH(z) = (1− |z|2)−2 dx ∧ dy is the volume form for the hyperbolic disk. The integral in (3.5) can
also be written in the following form, which makes its invariance more readily apparent:

(3.6)

∫
Ωz0,R

∣∣∣∣ 1− ν(m(z))

µ(z)

∣∣∣∣ dvolM(z) =

∫
Ωz0,R

‖g −m∗h‖z dvolM(z),

where dvolM(z) = µ(z)(1− |z|2)−2 dx1 ∧ dx2 =
√
|gij | dx1 ∧ dx2 is the volume form of the first surface M.

The next Lemma shows that although the integration in (3.6) is carried out w.r.t. the volume of the first
surface, this measure of distance is nevertheless symmetric:

Lemma 3.2. If m ∈MD maps z0 to w0, m(z0) = w0, then∫
Ωz0,R

∣∣∣µ(z)−m∗ν(z)
∣∣∣ dvolH(z) =

∫
Ωw0,R

∣∣∣m∗µ(w)− ν(w)
∣∣∣ dvolH(w).

Proof. By the pull-back formula (2.5), we have∫
Ωz0,R

∣∣∣µ(z)−m∗ν(z)
∣∣∣ dvolH(z) =

∫
Ωz0

∣∣∣µ(z)− ν(m(z))
∣∣∣ dvolH(z).

Performing the change of coordinates z = m−1(w) in the integral on the right hand side, we obtain∫
m(Ωz0,R)

∣∣∣µ(m−1(w))− ν(w)
∣∣∣ dvolH(w),



Comparing Surfaces in Polynomial Time 7

where we have used that m−1 is an isometry and therefore preserves the volume element dvolH(w) = (1 −
|w|2)−2 dy1 ∧ dy2. By Lemma 3.1, m(Ωz0,R) = Ωw0,R ; using the push-forward formula (2.6) then allows to
conclude. �

Note that our point of view in defining our “distance” between z and w differs from the classical point of
view in mass transportation: traditionally, d(z, w) is some sort of physical distance between the points z and
w; in our case dRµ,ν(z, w) measures the dissimilarity of (neighborhoods of) z and w.

The next Theorem lists some important properties of dRµ,ν ; its proof is given in the Appendix.

Theorem 3.3. The distance function dRµ,ν(z, w) satisfies the following properties

(1) dRm∗1µ,m∗2ν(m−1
1 (z0),m−1

2 (w0)) = dRµ,ν(z0, w0) Invariance under (well-defined)

Möbius changes of coordinates

(2) dRµ,ν(z0, w0) = dRν,µ(w0, z0) Symmetry

(3) dRµ,ν(z0, w0) ≥ 0 Non-negativity

(4) dRµ,ν(z0, w0) = 0 =⇒ Ωz0,R in (D, µ) and Ωw0,R in (D, ν) are isometric

(5) dRm∗ν,ν(m−1(z0), z0) = 0 Reflexivity

(6) dRµ1,µ3
(z1, z3) ≤ dRµ1,µ2

(z1, z2) + dRµ2,µ3
(z2, z3) Triangle inequality

In addition, the function dRµ,ν : D×D → R is continuous. To show this, we first look a little more closely at
the 1-parameter family of disk Möbius transformations that map one pre-assigned point z0 ∈ D to another
pre-assigned point w0 ∈ D.

Definition 3.4. For any pair of points z0, w0 ∈ D, we denote by MD,z0,w0 the set of Möbius transformations
that map z0 to w0.

This family of Möbius transformations is completely characterized by the following lemma:

Lemma 3.5. For any z0, w0 ∈ D, the set MD,z0,w0 constitutes a 1-parameter family of disk Möbius trans-
formations, parametrized continuously over S1 (the unit circle). More precisely, every m ∈ MD,z0,w0

is of
the form

(3.7) m(z) = τ
z − a
1− az

, with a = a(z0, w0, σ) :=
z0 − w0 σ

1− z0 w0 σ
and τ = τ(z0, w0, σ) := σ

1− z0 w0 σ

1− z0 w0 σ
,

where σ ∈ S1 := {z ∈ C ; |z| = 1} can be chosen freely.

Proof. By (2.3), the disk Möbius transformations that map z0 to 0 all have the form

mψ,z0(z) = eiψ
z − z0

1− z0 z
, the inverse of which is m−1

ψ,z0
(w) = e−iψ

w + eiψz0

1 + e−iψ z0w
,

where ψ ∈ R can be set arbitrarily. It follows that the elements of MD,z0,w0
are given by the family

m−1
γ,w0
◦mψ,z0 , with ψ, γ ∈ R. Working this out, one finds that these combinations of Möbius transformations

take the form (3.7), with σ = ei(ψ−γ). �
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We shall denote by mz0,w0,σ the special disk Möbius transformation defined by (3.7). In view of our interest
in dRµ,ν , we also define the auxiliary function

Φ : D ×D × S1 −→ C

(z0, w0, σ) 7−→
∫

Ωz0,R

|µ(z)− ν(mz0,w0,σ(z)) | dvolH(z) .

This function has the following continuity properties, inherited from µ and ν:

Lemma 3.6.
• For each fixed (z0, w0), the function Φ(z0, w0, ·) is continuous on S1.

• For each fixed σ ∈ S1, Φ(·, ·, σ) is continuous on D ×D. Moreover, the family
(

Φ(·, ·, σ)
)
σ∈S1

is equicon-

tinuous.

Proof. The proof of this Lemma is given in the Appendix. �

Note that since S1 is compact, Lemma 3.6 implies that the infimum in the definition of dRµ,ν can be replaced
by a minimum:

dRµ,ν(z0, w0) = min
m(z0)=w0

∫
Ωz0,R

|µ(z)− ν(m(z)) | dvolH(z) .

We have now all the building blocks to prove

Theorem 3.7. If µ and ν are continuous from D to R, then dRµ,ν(z, w) is a continuous function on D ×D.

Proof. Pick an arbitrary point (z0, w0) ∈ D ×D, and pick ε > 0 arbitrarily small.

By Lemma 3.6, there exists a δ > 0 such that, for |z′0 − z0| < δ, |w′0 − w0| < δ, we have

|Φ(z0, w0, σ)− Φ(z′0, w
′
0, σ) | ≤ ε ,

uniformly in σ. Pick now arbitrary z′0, w
′
0 so that |z0 − z′0|, |w0 − w′0| < δ.

Let mz0,w0,σ, resp. mz′0,w
′
0,σ
′ , be the minimizing Möbius transform in the definition of dRµ,ν(z0, w0), resp.

dRµ,ν(z′0, w
′
0), i.e.

dRµ,ν(z0, w0) = Φ(z0, w0, σ) and dRµ,ν(z′0, w
′
0) = Φ(z0, w0, σ

′) .

It then follows that

dRµ,ν(z0, w0) = min
τ

Φ(z0, w0, τ) ≤ Φ(z0, w0, σ
′)

≤ Φ(z′0, w
′
0, σ
′) + |Φ(z0, w0, σ

′)− Φ(z′0, w
′
0, σ
′)| = dRµ,ν(z′0, w

′
0) + |Φ(z0, w0, σ

′)− Φ(z′0, w
′
0, σ
′)|

≤ dRµ,ν(z′0, w
′
0) + sup

ω∈S1

|Φ(z0, w0, ω)− Φ(z′0, w
′
0, ω)| ≤ dRµ,ν(z′0, w

′
0) + ε .

Likewise dRµ,ν(z′0, w
′
0) ≤ dRµ,ν(z0, w0) + ε, so that

∣∣dRµ,ν(z0, w0)− dRµ,ν(z′0, w
′
0)
∣∣ < ε. �

The function dRµ,ν can be extended to a uniformly continuous function on the closed disk, by using the
following lemma, proved in the Appendix.

Lemma 3.8. Let {(zk, wk)}k≥1 ⊂ D×D be a sequence that converges, in the Euclidean norm, to some point

in (z′, w′) ∈ D ×D \ D × D, that is |zk − z′|+ |wk − w′| → 0, as k →∞. Then, limk→∞ dRξ,ζ(zk, wk) exists

and depends only on the limit point (z′, w′).
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3.2. Incorporating dRµ,ν(z, w) into the transportation framework. The next step in constructing the

distance operator between surfaces is to incorporate the distance dRµ,ν(z, w) defined in the previous subsection
into the (generalized) Kantorovich transportation model:

(3.8) TRd (µ, ν) = inf
π∈Π(µ,ν)

∫
D×D

dRµ,ν(z, w)dπ(z, w).

The main result is that this procedure (under some extra conditions) furnishes a metric between (disk-type)
surfaces.

Theorem 3.9. There exists π∗ ∈ Π(µ, ν) such that∫
D×D

dRµ,ν(z, w)dπ∗(z, w) = inf
π∈Π(µ,ν)

∫
D×D

dRµ,ν(z, w)dπ(z, w).

Proof. With a slight abuse of notation, we denote by µ the probability measure on D that is absolutely
continuous with respect to the hyperbolic measure on D, with density function equal to the continous function
µ on D. (See subsection 2.1.) We now define a probability measure µ on D by setting µ(A) = µ(A∩D), for
arbitrary Borel sets A ⊂ D ; ν is defined analogously. By the Riesz-Markov theorem, the space of probability
measures P(D × D) can be viewed as a (closed) subset of the unit ball in C(D × D)∗. As such, both
P(D ×D) and its closed subset Π(µ, ν) are weak∗-compact, by the Banach-Alaoglu theorem. Note that for
each π ∈ Π(µ, ν), we have

π(D ×D) ≥ π(D ×D)−
(
π(D × [D \ D]) + π([D \ D]×D)

)
= 1− ν(D \ D)− µ(D \ D) = 1 ,

and thus π(D × D) = 1; the restriction π of each such π to the Borel sets contained in D × D is thus a
probability measure on D ×D.
Since (the extension to D × D of) dµ,ν(·, ·) is an element of C(D × D) by Lemma 3.8, it follows that the
evaluation π 7→ π(dµ,ν) =

∫
D×D dµ,ν(z, w) dπ(z, w) =

∫
D×D dµ,ν(z, w) dπ(z, w) is weak∗-continuous on

the weak∗-compact set Π(µ, ν); it thus achieves its infimum in an element π∗ of that set. As observed above,
π∗, the restriction of π∗ to the Borel sets contained in D × D, is a probability measure on D × D, and an
element of Π(µ, ν); this is the desired minimizer.

�

Under rather mild conditions, the “standard” Kantorovich transportation (2.7) on a metric spaces (X, d)
defines a metric on the space of probability measures on X . We will prove that our generalization defines
a distance metric as well. More precisely, we shall prove first that

dR(M,N ) = TRd (µ, ν)

defines a semi-metric in the set of all disk-type surfaces. We shall restrict ourselves to surfaces that are
sufficiently smooth to allow uniformization, so that they can be globally and conformally parametrized over
the hyperbolic disk. Under some extra assumptions, we will prove that dR is a metric, in the sense that
dR(M,N ) = 0 implies that M and N are isometric.

For the semi-metric part we will again adapt a proof given in [4] to our framework. In particular, we shall
make use of the following “gluing lemma”:

Lemma 3.10. Let µ1, µ2, µ3 be three probability measures on D, and let π12 ∈ Π(µ1, µ2), π23 ∈ Π(µ2, µ3)
be two transportation plans. Then there exists a probability measure π on D × D × D that has π12, π23 as
marginals, that is

∫
z3∈D dπ(z1, z2, z3) = dπ12(z1, z2), and

∫
z1∈D dπ(z1, z2, z3) = dπ23(z2, z3).

This lemma will be used in the proof of the following:

Theorem 3.11. For two disk-type surfaces M = (D, µ), N = (D, ν), let dR(M,N ) be defined by

dR(M,N ) = TRd (µ, ν).

Then dR defines a semi-metric on the space of disk-type surfaces.
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Proof. The symmetry of dRµ,ν implies symmetry for TRd , by the following argument:

TRd (µ, ν) = inf
π∈Π(µ,ν)

∫
D×D

dRµ,ν(z, w)dπ(z, w) = inf
π∈Π(µ,ν)

∫
D×D

dRν,µ(w, z)dπ(z, w)

= inf
π∈Π(µ,ν)

∫
D×D

dRν,µ(w, z)dπ̃(w, z), where we have set π̃(w, z) = π(z, w)

= TRd (ν, µ) . ( use that π ∈ Π(µ, ν)⇔ π̃ ∈ Π(ν, µ))

The non-negativity of dRµ,ν(·, ·) automatically implies TRd (µ, ν) ≥ 0.

Next we show that, for any Möbius transformation m, TRd (µ,m∗µ) = 0. To see this, pick the transportation
plan π ∈ Π(µ,m∗µ) defined by∫

D×D
f(z, w)dπ(z, w) =

∫
D
f(z,m(z))µ(z) dvolH(z).

On the one hand π ∈ Π(µ,m∗µ), since∫
A×D

dπ(z, w) =

∫
A

µ(z)dvolH(z),

and ∫
D×B

dπ(z, w) =

∫
D×D

χB(w)dπ(z, w)

=

∫
D
χB(m(z))µ(z)dvolH(z) =

∫
D
χB(w)µ∗(w)dvolH(w),

where we used the change of variables w = m(z) in the last step. Furthermore, π(z, w) is concentrated on
the graph of m, i.e. on {(z,m(z)) ; z ∈ D} ⊂ D × D. Since dRµ,m∗µ(z,m(z)) = 0 for all z ∈ D we obtain

therefore Td(µ,m∗µ) ≤
∫
D×D d

R
µ,m∗µ(z, w)dπ(z, w) = 0.

Finally, we prove the triangle inequality TRd (µ1, µ3) ≤ TRd (µ1, µ2) + TRd (µ2, µ3) . To this end we follow the
argument in the proof given in [4] (page 208). This is where we invoke the gluing Lemma stated above.

We start by picking arbitrary transportation plans π12 ∈ Π(µ1, µ2) and π23 ∈ Π(µ2, µ3). By Lemma 3.10
there exists a probability measure π on D × D × D with marginals π12 and π23. Denote by π13 its third
marginal, that is ∫

z2∈D
dπ(z1, z2, z3) = dπ13(z1, z3).

Then

TRd (µ1, µ3) ≤
∫
D×D

dRµ1,µ3
(z1, z3)dπ13(z1, z3) =

∫
D×D×D

dRµ1,µ3
(z1, z3)dπ(z1, z2, z3)

≤
∫
D×D×D

(
dRµ1,µ2

(z1, z2) + dRµ2,µ3
(z2, z3)

)
dπ(z1, z2, z3)

≤
∫
D×D×D

dRµ1,µ2
(z1, z2)dπ(z1, z2, z3) +

∫
D×D×D

dRµ2,µ3
(z2, z3)dπ(z1, z2, z3)

≤
∫
D×D

dRµ1,µ2
(z1, z2)dπ12(z1, z2) +

∫
D×D

dRµ2,µ3
(z2, z3)dπ23(z2, z3),

where we used the triangle-inequality for dRµ,ν listed in (Theorem 3.3). Since we can choose π12 and π23 to
achieve arbitrary close values to the infimum in eq. (3.8) the triangle inequality follows. �

To qualify as a metric rather than a semi-metric, dR (or TRd ) should be able to distinguish from each other
any two surfaces (or measures) that are not “identical”, that is isometric. To prove that they can do so,
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we need an extra assumption: we shall require that the surfaces we consider have no self-isometries. More
precisely, we require that each surface M that we consider satisfies the following definition:

Definition 3.12. A disk-type surface M is said to be singly %-Hfittable (where % ∈ R, % > 0) if, for all
R > %, all z0 ∈ D, and all conformal factors obtained in uniformizations of the disk M there is no other
Möbius transformation m other than the identity for which∫

Ωz0,R

|µ(z)− µ(m(z))| dvolH(z) = 0 .

Remark 3.13. This definition can also be read as follows: M is singly %-Hfittable if and only if, for all R > %,
any two conformal factors µ1 and µ2 for M satisfy:

(1) For all z ∈ D there exists a unique minimum to the function w 7→ dRµ1,µ2
(z, w).

(2) For all pairs (z, w) ∈ D×D that achieve this minimum there exists a unique Möbius transformation
for which the integral in (3.5) vanishes (with µ1 in the role of µ, and µ2 in that of ν).

Note that in order to ensure that the conditions in the definition hold for all conformal factors, it is sufficient
to require that it holds for the conformal factor associated to just one uniformization.

Essentially, this definition requires that, from some sufficiently large (hyperbolic) scale onwards, there are
no isometric pieces within (D, µ) (or (D, ν)).

We are ready to prove the last remaining part of the main result of this subsection. We start with a lemma.

Lemma 3.14. Let π ∈ Π(µ, ν) be such that
∫
D×D dRµ,ν(z, w) dπ(z, w) = 0. Then, for all z0 ∈ D and δ > 0,

there exists at least one point z ∈ Ωz0,δ such that dRµ,ν(z, w) = 0 for some w ∈ D.

Proof. By contradiction: assume that there exists a disk Ωz0,δ such that dRµ,ν(z, w) > 0 for all z ∈ Ωz0,δ and
all w ∈ D. Since ∫

Ω(z0,δ)×D
dπ(z, w) =

∫
Ω(z0,δ)

µ(z) dvolH(z) > 0 ,

the set Ω(z0, δ)×D contains some of the support of π. It follows that∫
Ω(z0,δ)×D

dRµ,ν(z, w) dπ(z, w) > 0 ,

which contradicts ∫
Ω(z0,δ)×D

dRµ,ν(z, w)dπ(z, w) ≤
∫
D×D

dRµ,ν(z, w)dπ(z, w) = 0 .

�

Theorem 3.15. Suppose that M and N are two surfaces that are singly %-Hfittable. If dR(M,N ) = 0
for some R > %, then there exists a Möbius transformation m ∈ MD that is a global isometry between
M = (D, µ) and N = (D, ν) (where µ and ν are conformal factors of M and N , respectively).

Proof. When dR(M,N ) = 0, there exists (see [4]) π ∈ Π(µ, ν) such that∫
D×D

dRµ,ν(z, w)dπ(z, w) = 0.

Next, pick an arbitrary point z0 ∈ D such that, for some w0 ∈ D, we have dRµ,ν(z0, w0) = 0. (The existence
of such a pair is guaranteed by Lemma 3.14.) This implies that there exists a unique Möbius transformation
m0 ∈MD that takes z0 to w0 and that satisfies ν(m0(z)) = µ(z) for all z ∈ Ωz0,R. We define

ρ∗ = sup{ρ ; dρµ,ν(z0, w0) = 0};
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Figure 1. Illustration of the
proof of Theorem 3.15
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clearly ρ∗ ≥ R. The theorem will be proved if we show that ρ∗ =∞. We shall do this by contradiction.

Assume ρ∗ <∞. Consider Ωz0,ρ∗ , the hyperbolic disk around z0 of radius ρ∗. (See Figure 1 for illustration.)
Set ε = (R − %)/2, and consider the points on the hyperbolic circle C = ∂Ωz0,ρ∗−%−ε. For every z1 ∈ C,
consider the hyperbolic disk Ωz1,ε/2; by Lemma 3.14 there exists a point z2 in this disk and a corresponding

point w2 ∈ D such that dRµ,ν(z2, w2) = 0, i.e. such that∫
Ωz2,R

|µ(z)−m′∗ν(z)| dvolH(z) = 0

for some Möbius transformation m′ that maps z2 to w2; in particular, we have that

(3.9) µ(z) = ν(m′(z)) for all z ∈ Ωz2,R .

The hyperbolic distance from z2 to ∂Ωz0,ρ∗ is at least %+ ε/2. It follows that the hyperbolic disk Ωz2,%+ε/4
is completely contained in Ωz0,ρ∗ ; since µ(z) = ν(m0(z)) for all z ∈ Ωz0,ρ∗ , this must therefore hold, in
particular, for all z ∈ Ωz2,%+ε/4. Since Ωz2,%+ε/4 ⊂ Ωz2,R, we also have µ(z) = ν(m′(z)) for all z ∈ Ωz2,%+ε/4,

by (3.9). This implies ν(w) = ν(m0 ◦ (m′)−1(w)) for all w ∈ Ωw2,%+ε/4. Because N is singly %-Hfittable, it

follows that m0 ◦ (m′)−1 must be the identity, or m0 = m′. Combining this with (3.9), we have thus shown
that µ(z) = ν(m0(z)) for all z ∈ Ωz2,R.

Since the distance between z2 and z1 is at most ε/2, we also have

Ωz2,R ⊃ Ωz1,R−ε/2 = Ωz1,%+3ε/2 .

This implies that if we select such a point z2(z1) for each z1 ∈ C, then Ωz0,ρ∗−%−ε ∪
(
∪z1∈C Ωz2(z1),R

)
covers

the open disk Ωz0,ρ∗+ε/2. By our earlier argument, µ(z) = ν(m0(z)) for all z in each of the Ωz2(z1),R; since
the same is true on Ωz0,ρ∗−%−ε, it follows that µ(z) = ν(m0(z)) for all z in Ωz0,ρ∗+ε/2. This contradicts the
definition of ρ∗ as the supremum of all radii for which this was true; it follows that our initial assumption,
that ρ∗ is finite, cannot be true, completing the proof. �

For (D, µ) to be singly %-Hfittable, no two hyperbolic disks Ωz,R, Ωw,R (where w can equal z) can be isometric
via a Möbius transformation m, if R > %, except if m = Id. However, if z is close (in the Euclidean sense)
to the boundary of D, the hyperbolic disk Ωz,R is very small in the Euclidean sense, and corresponds to
a very small piece (near the boundary) of M. This means that single %-Hfittability imposes restrictions in
increasingly small scales near the boundary ofM; from a practical point of view, this is hard to check, and in
many applications, the behavior of M close to its boundary is irrelevant. For this reason, we also formulate
the following relaxation of the results above.

Definition 3.16. A surface M is said to be singly A-Mfittable (where A > 0) if there are no patches (i.e.
open, path-connected sets) inM of area larger than A that are isometric, with respect to the metric onM.
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If a surface is singly A-Mfittable, then it is obviously also A′-Mfittable for all A′ ≥ A; the condition of
being A-Mfittable becomes more restrictive as A decreases. The following theorem states that two singly

A-Mfittable surfaces at zero dR-distance from each other must necessarily be isometric, up to some small
boundary layer.

Theorem 3.17. Consider two surfaces M and N , with corresponding conformal factors µ and ν on D, and
suppose dR(M,N ) = 0 for some R > 0. Then the following holds: for arbitrarily large ρ > 0, there exist
a Möbius transformation m ∈ MD and a value A > 0 such that if M and N are singly A-Mfittable then
µ(m(z)) = ν(z), for all z ∈ Ω0,ρ.

Proof. Part of the proof follows the same lines as for Theorem 3.15. We highlight here only the new elements
needed for this proof.

First, note that, for arbitrary r > 0 and z0 ∈ D,

(3.10) volM(Ωz0,r) =

∫
Ωz0,r

µ(z)dvolH(z) ≥ volH(Ωz0,r)

[
min

z∈Ωz0,r
µ(z)

]
= volH(Ω0,r)

[
min

z∈Ωz0,r
µ(z)

]
.

This motivates the definition of the sets OA,r,

(3.11) OA,r =

{
z ∈ D | min

z′∈Ωz,r
µ(z′) >

A

volH(0,Ω0,r)

}
;

A > 0 is still arbitrary at this point; its value will be set below.

Now pick r < R, and set ε = (R− r)/2. Note that if z ∈ OA,r, then volM(Ωz,R) ≥ volM(Ωz,r) > A.

Since µ is bounded below by a strictly positive constant on each Ω0,ρ′ , we can pick, for arbitrarily large ρ,
A > 0 such that Ω0,ρ ⊂ OA,r; for this it suffices that A exceed a threshold depending on ρ and r. (Since
µ(z) → 0 as z approaches the boundary of D in Euclidean norm, we expect this threshold to tend towards
0 as ρ→∞.) We assume that Ω0,ρ ⊂ OA,r in what follows.

Similar to the proof of Theorem 3.15, we invoke Lemma 3.14 to infer the existence of z0, w0 such that
z0 ∈ Ω0,ε/2 and dRµ,ν(z0, w0) = 0. We denote

ρ∗ = sup{r′ ; dr
′

µ,ν(z0, w0) = 0};

as before, there exists a Möbius transformation m such that ν(m(z)) = µ(z) for all z in Ωz0,ρ∗ . To complete
our proof it therefore suffices to show that ρ∗ ≥ ρ+ ε/2, since Ω0,ρ ⊂ Ωz0,ρ+ε/2 .

Suppose the opposite is true, i.e. ρ∗ < ρ + ε/2. By the same arguments as in the proof of Theorem 3.15,
there exists, for each z1 ∈ ∂Ωz0,ρ∗−r−ε, a point z2 ∈ Ωz1,ε/2 such that dRµ,ν(z2, w2) = 0 for some w2. Since
the hyperbolic distance between z2 and 0 is bounded above by ε/2 + ρ∗ − r − ε + ε/2 < ρ − r + ε/2 < ρ,
z2 ∈ Ω0,ρ ⊂ OA,r, so that volM(Ωz2,R) > A. It then follows from the conditions onM and N that ν(m(z)) =
µ(z) for all z in Ωz0,ρ∗ ∪Ωz2,R ⊃ Ωz0,ρ∗ ∪Ωz1,r+3ε/2. Repeating the argument for all z1 ∈ ∂Ωz0,ρ∗−r−ε shows
that ν(m(z)) = µ(z) can be extended to all z ∈ Ωz0,ρ∗+ε/2, leading to a contradiction that completes the
proof. �

So far, we have dealt exclusively with disk-type surfaces. The approach presented here can also be used for
other surfaces, however. In order to apply this approach to sphere-type (genus zero) surfaces, for instance,
we would need to change only one component in the construction, namely how to define the neighborhoods
Ωz0,R in a Möbius-invariant way. Since there exists no Möbius-invariant distance function on the sphere,
we can not define the neighborhoods Ωz0,R as disks with respect to such an invariant distance. We thus
need a different criterium to pick, among all the circles centered at a point z0 ∈M, the one circle that shall
delimit Ωz0,R. Since the family of circles is invariant under (general) Möbius transformations, it suffices to

pick a criterium that is itself invariant as well. For our applications, we pick Ω̃z0,A to be the interior of the
circle around z0 that has the smallest circumference among all such circles with area (or volume) A (where
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A ∈ (0, 1) ). In the generic case this procedure defines a unique neighborhood that can be used in the same
way as Ωz0,R up till now.

For higher genus (but still homeomorphic) surfacesM, N it is natural to use the universal coverings M̃, Ñ ,
respectively. For genus greater than one, we could use again the disk-type construction. The fix here (to
avoid infinite volume of the flattened surface via the universal covering) could be to restrict the compared
z0 ∈ D to one copy of M in the hyperbolic disk (and similarly w0 ∈ D in N ). Treating the genus one case
can be done similarly with similarity transformations in C.

4. Discretization and implementation

Several steps are needed to transform the theoretical framework of the preceding sections into an algorithm,
as described in detail in [5]. In a nutshell, the procedure requires three approximation steps: 1) approximating
the smooth surfaces with a discrete mesh, 2) using discrete conformal theory to construct a discrete analog
of uniformization for meshes, and 3) reducing the discrete optimization problem (resulting from replacing
µ, ν in eq. (3.8) by their discrete versions supported on a finite set of points) to a linear program. If an equal
number of discrete point masses is chosen for the discrete measure on each of the two surfaces, and all of them
are given equal weight, the corresponding search for the optimal bistochastic matrix automatically produces
a minimizer that is a permutation. This means that the minimizer defines a map from (the discretized
version of) one surface to (the discretized version of) the other.

It follows that the surface distance given in this paper does indeed lead to a computationally efficient
approach, both for finding the best similarity distance and for identifying the best correspondence between
two (disk-type) surfaces. Figure 2 shows an example of a discrete surface and the corresponding approximate
conformal density visualized as a graph over the unit disk.

Efficient computation of a distance between surfaces is important for many applications. As an example,
Figure 3 shows an application of our approach to the characterization of mammals by the surfaces of their
molars [?], comparing high resolution scans of the masticating surfaces of molars of several lemurs (small
primates living in Madagascar). The figure shows an embedding of eight molars, coming from individuals
in four different species (indicated by color). The embedding is based on the pairwise distance matrix

(dR(Mi,Mj)), and it clearly agrees with the clustering by species, as communicated to us by the biologists
from whom we obtained the data sets.

The discrete representation of a surface (mesh) Conformal density over the unit disk

Figure 2. A mammalian tooth discrete surface mesh, and its approximated conformal
factor over the unit disk.
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Figure 3. Embedding of the distance graph of eight teeth models using multi-dimensional
scaling. Different colors represent different lemur species. The graph suggests that the
geometry of the teeth might suffice to classify species.
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Appendix A.

This Appendix contains some technical proofs of Lemmas and Theorems stated in section 3, and 4. We start
by proving that (3.1) does indeed define a distance metric on the family of µ := {m∗µ ; m ∈ MD }, where
the µ are (smooth) conformal factors on D, as obtained in sections 2 and 3. We first state a more general
lemma:

Lemma A.1. Let X, d be a metric space, G a group, and T : g 7→ Tg a representation of G into the
isometries of X, d; in particular, d is invariant under the action of the group G, i.e. d(Tgx, TGy) = d(x, y),
for all x, y ∈ X and all g ∈ G. Define C to be the collection of orbits of the representation of G, i.e.

the elements of C take of the form {Tgx ; g ∈ G}, for some x ∈ X. Define d̃ on C × C by d̃(c1, c2) =

infx1∈c1, x2∈c2 d(x1, x2). Then d̃ defines a semi-metric on C.

Proof. It is obvious that d̃(c1, c2) ≥ 0 for all c1, c2 in C; thus only the triangle inequality needs to be
established.
Since an element c1 of C can always be written as c1 = {Tgx; g ∈ G}, where x is an arbitrary element of G,
we obtain, for arbitrary c1, c2, c3 in C,

d̃(c1, c3) = inf
g, g′∈G

d(Tgx, Tg′z) where x ∈ c1, z ∈ c3 are arbitrary

≤ d(Tg1x, Tg3z) for all g1, g3 ∈ G
≤ d(Tg1x, Tg2y) + d(Tg2y, Tg3z) for all g1, g2, g3 ∈ G and all y ∈ X
= d(Tg1x, Tg2y) + d(Tg′2y, Tg′2(g2)−1g3z) for all g1, g2, g

′
2, g3 ∈ G and all y ∈ X.

When g′2, g2 in G are kept fixed, the group elements g′2(g2)−1g3 run through all of G as g3 varies over G. By
taking the infimum over the choices of g1, g2, g

′
2, g3 ∈ G in the last expression, we thus obtain

d̃(c1, c3) ≤ d̃(c1, c2) + d̃(c2, c3) ,

where c2 := {Tgy ; g ∈ G}. Since y ∈ X is arbitrary, this proves the triangle inequality in C for all three-tuples
in C. �

Note that one can use the invariance of d under the action of the group on X to define d̃(c1, c2) via a single
minimization (instead of two): for x ∈ c1, y ∈ c2,

d̃(c1, c2) = inf
g, g′∈G

d(Tgx, Tg′y) = inf
g, g′∈G

d(x, Tg−1g′y) = inf
g′′∈G

d(x, Tg′′y) .

To apply this to (3.1), we choose X to be the set of nonnegative C1-functions on D that have integral 1 with
respect to the hyperbolic area measure on D, and d the Kantorovich mass transport distance between them,
with the “work” measured in terms of the hyperbolic distance metric dH on D:

d(µ, ν) = inf
π∈Π(µ,ν)

∫
D×D

dH(z, w) dπ(z, w) .
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The group G is here given by MD, and the action of G on X by pull-back: Tm(µ) = m∗µ. To apply the
lemma, we first need to establish that :

Lemma A.2. d(µ, ν) = d(m∗µ,m∗ν), for all µ, ν in X, and all m in MD.

Proof. We first rewrite d(m∗µ,m∗ν) in a different way. For each π ∈ Π(µ, ν), we define the probability
measure m∗π on D×D by m∗π(E) = π

(
{ (m−1z,m−1w) ; (z, w) ∈ E }

)
. It is straightforward to check that

m∗π(A×D) = m∗µ(A) and m∗π(D×B) = m∗ν(B) for all Borel sets A , B ⊂ D; thus m∗π ∈ Π(m∗µ,m∗ν).
One can analogously define m∗π; again it is straightforward that m∗m∗π = π. It follows that Π(m∗µ,m∗ν)
is exactly equal to {m∗π ; π ∈ Π(µ, ν) }.

Consequently, using the invariance dH(mz,mw) = dH(z, w), we obtain

d(m∗µ,m∗ν) = inf
π∈Π(µ,ν)

∫
D×D

dH(z, w) d(m∗π)(z, w) = inf
π∈Π(µ,ν)

∫
D×D

dH(mu,mv) dπ(u, v)

= inf
π∈Π(µ,ν)

∫
D×D

dH(u, v) dπ(u, v) = d(µ, ν) .

�

It follows that we can indeed apply the first lemma, and that (3.1) defines a semi-metric on the equivalence
classes of conformal factors, where two conformal factors are viewed as equivalent if one can be obtained
from the other by pushing it forward (or backward) through a Möbius transformation.

It turns out that in this case, the infimum over the choices m ∈ MD is in fact always achieved (and is thus
a minimum):

Lemma A.3. Let µ and ν be conformal factors obtained by uniformizing two smooth disk-type surfaces,
with Distance(µ, ν) <∞ defined as in (3.1). Then there exists a Möbius transformation m ∈ MD such that
Distance(µ, ν) = d(m∗µ, ν).

Proof. Consider two arbitrary (but fixed) conformal factors µ and ν on D. There exists a sequence (mn)n∈N
such that infπ∈Π(µ,ν)

∫
D×D dH(mn(z), w) dπ(z, w) → Distance(µ, ν) as n → ∞. Each of these mn can be

written in the form given by (2.3), with corresponding an ∈ D, and eiθn ∈ T := { z ∈ C ; |z| = 1 }. By
passing to a subsequence if necessary, we can assume, without loss of generality, that the sequences (an)n∈N
and

(
eiθn

)
n∈N converge in D (the closure of D) and T, respectively, to limits we denote by a and eiθ.

If a lies in the open disk D, then it defines, together with eiθ, a corresponding m ∈MD. We then have, for
all z, w in D, limn→∞ dH(mn(z), w) = dH(m(z), w). On the other hand, for sufficiently large n we have

dH(mn(z), w) ≤ dH(mn(z), 0) + dH(0, w)

= dH(z, an) + dH(0, w)

≤ dH(z, a) + 1 + dH(0, w)

≤ dH(z, 0) + dH(0, a) + 1 + dH(0, w),

where we have used the invariance of dH under Möbius transformations and mn(an) = 0 in the second line,
and where we assume n sufficiently large to ensure dH(an, a) ≤ 1 in the third.

Therefore dH(mn(z), w) is bounded, uniformly in n, by a function that is absolutely integrable with respect
to π (by the argument used just before the statement of Lemma A.2); the dominated convergence theorem
then implies that

T(µ, ν) = lim
n→∞

∫
D×D

dH(mn(z), w) dπ(z, w)

=

∫
D×D

dH(m(z), w) dπ(z, w) ,
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so that we are done for the case where a ∈ D.

It remains to discuss the case where a ∈ D \D = T, i.e. |a| = 1. The proof will be complete if we show that
this is impossible; we will establish this by contradiction.

From now on, we suppose that |a| = 1. By the integrability of µ and ν, we can find an increasing sequence
of ρn < 1 such that µ ({z ; 1 > |z| > ρn }) < 1/n and ν ({z ; 1 > |z| > ρn }) < 1/n . It is easy to check that

for |a| > R and |z| < ρ < R :

∣∣∣∣ z − a1− a∗z

∣∣∣∣ > R− ρ
1−Rρ

.

This lower bound tends to 1 as R tends to 1, regardless of the value of ρ < 1. It follows that there exist
Rn < 1 so that

inf
|z|<ρn

∣∣∣∣ z − a1− a∗z

∣∣∣∣ > (n+ ρn)/(n+ 1), for all a with |a| > Rn .

Because |a| = 1, we can find a kn ∈ N such that |ak| > Rn for all k > kn; consequently |mk(z)| =
|z− ak|/|1− (ak)∗z| > (n+ ρn)/(n+ 1) for all k > kn and all z with |z| < ρn. It then follows that (with the
notation Dn := { z ; |z| < ρn })

∀k > kn , ∀π ∈ Π(µ, ν) :

∫
D×D

dH(mk(z), w) dπ(z, w)

≥
∫
Dn×Dn

dH(mk(z), w) dπ(z, w)

≥
∫
Dn×Dn

[
inf

|v|<ρn, |u|>(n+ρn)/(n+1))
dH(u, v)

]
dπ(z, w)

≥ ln(n+ 1)

2

∫
Dn×Dn

dπ(z, w)

≥ ln(n+ 1)

2
[ 1 − π((D \ Dn)×D) − π(D × (D \ Dn)) ]

≥ ln(n+ 1)

2

(
1 − 2

n

)
,

where we have used that if |u| < r < 1, and |v| > (n + r)/(n + 1), then dH(u, v) ≥
∫ (n+r)/(1+n)

r
1

1−t2 dt ≥
1
2

∫ (n+r)/(1+n)

r
1

1−t dt = ln(n+1)
2 . This shows, in particular, that

d(µ,m∗kν) = inf
π∈Π(µ,ν)

∫
D×D

dH(mk(z), w) dπ(z, w) ≥ ln(n+ 1)

4

for all k > kn and n > 4. This implies that, for arbitrary n > 4, n ∈ N,

Distance(µ, ν) = limk→∞ d(µ,m∗kν) ≥ ln(n+ 1)

4
,

i.e. Distance(µ, ν) = ∞, a contradiction. This finishes the argument that |a| = 1 is not possible, and
completes the proof. �

It is now easy to see that Distance(µ, ν) defines a true metric on the equivalence classes of conformal factors:

Proposition A.4. The Distance(µ, ν) defined in (3.1) is a metric on the set of orbits µ := {m∗µ ; m ∈MD }
of conformal factors under the action of MD.

Proof. In view of the first lemma, we need to prove only that Distance(µ, ν) = 0 implies that there exists a
Möbius transformation m ∈MD such that ν = m∗µ. By the second lemma, we know that Distance(µ, ν) =
d(m∗µ, ν) for some m ∈MD. For this m there exist thus πk ∈ Π(µ, ν) such that

∫
D×D dH(m(z), w) dπk(z, w)

tends to 0 as k tends to ∞. By passing to a subsequence if necessary, we can, using the weak∗-compactness
of the set of probability measures on D×D, assume that πk → π as k tends to infinity, in the weak∗-topology,
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where π is a measure of weight at most 1. Since the πk all have marginals µ and ν, respectively, it follows
that π must have these marginals as well, which guarantees that π is itself a probability measure and an
element of Π(µ, ν). We have moreover

0 = Distance(µ, ν) =

∫
D×D

dH(m(z), w) dπ(z, w) ,

implying that the support of π is contained in the subset { (z,m(z)) ; z ∈ D } ⊂ D×D. It then follows that,
for any Borel set A ⊂ D,∫

A

µ(z) dvolH(z) = π(A×D) = π(A×m(A)) = π(D ×m(A)) =

∫
A

ν(m(z)) dvolH(z) .

This is possible for the continuous functions µ and ν only if ν = m∗µ, or equivalently, µ = m∗ν

�

Next we prove the list of properties of the distance function dRµ,ν(z, w) given in Theorem 3.3:

Theorem 3.3

The distance function dRµ,ν(z, w) satisfies the following properties

(1) dRm∗1µ,m∗2ν(m−1
1 (z0),m−1

2 (w0)) = dRµ,ν(z0, w0) Invariance under (well-defined)

Möbius changes of coordinates

(2) dRµ,ν(z0, w0) = dRν,µ(w0, z0) Symmetry

(3) dRµ,ν(z0, w0) ≥ 0 Non-negativity

(4) dRµ,ν(z0, w0) = 0 =⇒ Ωz0,R in (D, µ) and Ωw0,R in (D, ν) are isometric

(5) dRm∗ν,ν(m−1(z0), z0) = 0 Reflexivity

(6) dRµ1,µ3
(z1, z3) ≤ dRµ1,µ2

(z1, z2) + dRµ2,µ3
(z2, z3) Triangle inequality

Proof. For (1), denote m−1
1 (z0) = z1, and m−1

2 (w0) = w1. Then

dRm∗1µ,m∗2ν(z1, w1) = inf
m(z1)=w1

∫
Ωz1,R

|m∗1µ(z)−m∗m∗2ν(z)|dvolH(z)

= inf
m(z1)=w1

∫
Ωz1,R

|µ(m1(z))− ν(m2(m(z)))|dvolH(z).

Next set m̃ = m2 ◦m ◦m−1
1 . Note that m̃(z0) = w0. Plugging m2(m(z)) = m̃(m1(z)) into the integral and

carrying out the change of variables m1(z) = z′ , we obtain

inf
m(z1)=w1

∫
Ωz1,R

|µ(z′)− ν(m̃(z′)) |dvolH(z′) = inf
m̃(z0)=w0

∫
Ωz0,R

|µ(z′)− ν(m̃(z′)) | dvolH(z′).

For (2), we use Lemma 3.2 and equations (2.5), (2.6) to write

dRµ,ν(z0, w0) = inf
m(z0)=w0

∫
Ωz0 ,R

|µ(z)−m∗ν(z)|dvolH(z)

= inf
m(z0)=w0

∫
Ωw0 ,R

|(m−1)∗µ(w)− ν(w)|dvolH(w) = dRν,µ(w0, z0).
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(3) and (4) are immediate from the definition of dRµ,ν .

(5) follows from the observation that the minimizing m (in the definition (3.5) of dRµ,ν) is m1 itself, for which
the integrand, and thus the whole integral vanishes identically.

For (6), let m1 be a Möbius transformation such that m1(z1) = z2, and m2 such that m2(z2) = z3. Setting
m = m2 ◦m1, we have

dRµ1,µ3
(z1, z3) ≤

∫
Ωz1,R

|µ1(z)−m∗µ3(z) | dvolH(z)

≤
∫

Ωz1,R

|µ1(z)−m∗1µ2(z) | dvolH(z) +

∫
Ωz1,R

|m∗1µ2(z)−m∗µ3(z) | dvolH(z) .(A.1)

The second term in (A.1) can be rewritten as (using Lemma 3.2, the change of coordinates m1(z1) = z2 and
the observation m∗ = m∗1m

∗
2)∫

Ωz1,R

|m∗1µ2(z)−m∗µ3(z) | dvolH(z) =

∫
Ωz2,R

|m1∗m
∗
1µ2(w)−m1∗m

∗
1m
∗
2µ3(w) | dvolH(w)

=

∫
Ωz2,R

|µ2(w)−m∗2µ3(w) | dvolH(w).

We have thus

dRµ1,µ3
(z1, z3) ≤

∫
Ωz1,R

|µ1(z)−m∗1µ2(z) | dvolH(z) +

∫
Ωz2,R

|µ2(w)−m∗2µ3(w) | dvolH(w) ,

and this for any m1, m2 ∈ MD such that m1(z1) = z2 and m2(z2) = z3. Minimizing over m1 and m2 then
leads to the desired result.

�

Next we prove the continuity properties of the function Φ(z0, w0, σ) =
∫

Ω(z0,R)
|µ(z)−ν(mz0,w0,σ(z)) | dvolH(z),

stated in Lemma 3.6, which were used to prove continuity of dRµ,ν itself (in Theorem 3.7).

Lemma 3.6
• For each fixed (z0, w0) the function Φ(z0, w0, ·) is continuous on S1.

• For each fixed σ ∈ S1, Φ(·, ·, σ) is continuous onD ×D. Moreover, the family
(

Φ(·, ·, σ)
)
σ∈S1

is equicontinuous.

Proof. We start with the continuity in σ. We have

|Φ(z0, w0, σ)− Φ(z0, w0, σ
′) | ≤

∫
Ω(z0,R)

|ν(mz0,w0,σ(z))− ν(mz0,w0,σ′(z)) | dvolH(z) .

Because ν is continuous on D, its restriction to the compact set Ω(w0, R) (the closure of Ω(w0, R)) is bounded.
Since the hyperbolic volume of Ω(z0, R) is finite, the integrand is dominated, uniformly in σ′, by an integrable
function. Since mz0,w0,σ(z) is obviously continuous in σ, we can use the dominated convergence theorem to
conclude.

Since S1 is compact, this continuity implies that the infimum in the definition of dRµ,ν can be replaced by a
minimum:

dRµ,ν(z0, w0) = min
m(z0)=w0

∫
Ω(z0,R)

|µ(z)− ν(m(z)) | dvolH(z) .

Next we prove continuity in z0 and w0 (with estimates that are uniform in σ).
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Consider two pairs of points, (z0, w0) and (z′0, w
′
0) ∈ D ×D. Then

|Φ(z0, w0, σ)− Φ(z′0, w
′
0, σ) |

=

∣∣∣∣∣
∫

Ω(z0,R)

|µ(z)− ν(mz0,w0,σ(z)) | dvolH(z)−
∫

Ω(z′0,R)

|µ(u)− ν(mz′0,w
′
0σ

(u) | dvolH(u)

∣∣∣∣∣
≤

∣∣∣∣∣
∫

Ω(z0,R)

|µ(z)− ν(mz0,w0,σ(z)) | dvolH(z)−
∫

Ω(z0,R)

|µ(mz0,z′0,1
z)− ν(mz′0,w

′
0,σ
◦mz0,z′0,1

(z)) | dvolH(u)

∣∣∣∣∣
≤
∫

Ω(z0,R)

(
|µ(z)− µ(mz0,z′0,1

(z)) |+ | ν(mz0,w0,σ(z))− ν(mz′0,w
′
0,σ

(mz0,z′0,1
(z))) |

)
dvolH(z) .

On the other hand, note that for any γ > 0, µ and ν are continuous on the closures of Ω(z0, R + γ) and
Ω(w0, R + γ), respectively; since these closed hyperbolic disks are compact, µ and ν are bounded on these
sets. Pick now ρ > 0 such that |z′0 − z0| < ρ, |w′0 − w0| < ρ imply that Ω(z′0, R) ⊂ Ω(z0, R + γ) as well as
Ω(w′0, R) ⊂ Ω(w0, R+ γ). It follows that, if |z′0− z0| < ρ and |w′0−w0| < ρ, then |µ(z)− µ(mz0,z′0,1

(z) | and
| ν(mz00,w0,σ(z)) − ν(mz′0,w

′
0,σ

(mz0,z′0,1
(z))) | are bounded uniformly for z ∈ Ω(z0, R). Since it is clear from

the explicit expressions (3.7) that mz0,z′0,1
(z) → z and mz′0,w

′
0,σ

(mz0,z′0,1
(z)) → mz0,w0,σ(z) as z′0 → z0 and

w′0 → w0, we can thus invoke the dominated convergence theorem again to prove continuity of Φ(·, ·, σ).

To prove the equicontinuity, we first note that ν is uniformly continuous on Ω(w0, R) ∪ Ω(w′0, R), since ν

is continuous on the compact set Ω(w0, R+ γ), which contains Ω(w0, R) ∪ Ω(w′0, R) for all w′0 that satisfy
|w′0 − w0| ≤ ρ. This means that, given any ε > 0, we can find δ > 0 such that |ν(w)− ν(w′)| ≤ ε holds for
all w, w′ that satisfy w, w′ ∈ Ω(w0, R)∪Ω(w′0, R) and |w−w′| ≤ δ. This implies the desired equicontinuity
if we can show that |mz0,w0,σ(z) −mz′0,w

′
0,σ

(mz0,z′0,1
(z))| can be made smaller than δ, uniformly in σ ∈ S1,

by making |z′0 − z0|+ |w′0 − w0| sufficiently small.
We first estimate |mz0,w0,σ(z)−mz0,w′0,σ

(z)|. With the notations of (3.7), we have

a(z0, w0, σ)− a(z0, w
′
0, σ) =

(z0 − w0σ)(1− z0w
′
0σ)− (z0 − w′0σ)(1− z0w0σ)

(1− z0w0σ)(1− z0w′0σ)

=
(w0 − w′0)σ(|z0|2 − 1)

(1− z0w0σ)(1− z0w′0σ)
,

so that

|a(z0, w0, σ)− a(z0, w
′
0, σ)| ≤ |w0 − w′0|

(1− |z0| |w0|)[1− |z0|(|w0|+ ξ)]
≤ ξ

(1− |z0| |w0|)[1− |z0|(|w0|+ ξ)]

when |w0 −w′0| < ξ. It thus suffices to choose ξ so that ξ < ζ(1− |z0| |w0|)[1− |z0|(|w0|+ ξ)] to ensure that
|a(z0, w0, σ)− a(z0, w

′
0, σ)| < ζ. For the phase factor τ in (3.7) we obtain

τ(z0, w0, σ)− τ(z0, w
′
0, σ) = σ

(1− z0w
′
0σ)(1− z0w0σ)− (1− z0w0σ)(1− z0w′0σ)

(1− z0w0σ)(1− z0w′0σ)

= σ
(w0 − w′0)z0σ − (w0 − w′0)z0σ + |z0|2(w0w

′
0 − w′0w0)

(1− z0w0σ)(1− z0w′0σ)

= σ
(w0 − w′0)z0σ − z0(w0 − w′0)σ + |z0|2[w0(w′0 − w0) + w0(w0 − w′0])

(1− z0w0σ)(1− z0w′0σ)
;

when |w0 − w′0| < ξ, this implies

|τ(z0, w0, σ)− τ(z0, w
′
0, σ)| ≤ |z0| |w0| [2 + |z0|(2|w0|+ ξ)]

(1− |z0| |w0|)[1− |z0|(|w0|+ ξ)]
ξ ,
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which can clearly be made smaller than any ζ > 0 by choosing ξ sufficiently small. All this implies that (use
(3.7))

|mz0,w0,σ(z)−mz0,w′0,σ
(z)| ≤ |τ(z0, w0, σ)− τ(z0, w

′
0, σ)|1 + |z|

1− |z|
+ |a(z0, w0, σ)− a(z0, w

′
0, σ)| (1 + |z|)2

(1− |z|)2

≤ ζ 2(1 + |z|)
(1− |z|)2

,

which will be smaller than δ/2, uniformly in σ, if ζ < δ(1 − |z|2)/8; this bound on ζ in turn determines
the bound to be imposed on the ξ used above. Hence |mz0,w0,σ(z)−mz0,w′0,σ

(z)| < δ/2 can be guaranteed,
uniformly in σ, by choosing |w0 − w′0| < ξ for sufficiently small ξ.
One can estimate likewise

|mz0,w′0,σ
(z)−mz′0,w

′
0,σ

(mz′0,z0,1
(z))| ,

and show that this too can be made smaller than δ/2, uniformly in σ, by imposing sufficiently tight bounds
on |z′0−z0| and |w′0−w0|. Combining all these estimates then leads to the desired equicontinuity, as indicated
earlier. �

To prove Lemma 3.8, we shall use the following lemma:

Lemma A.5. Consider uk = eiψ + εk, where |εk| → 0 as k → ∞. Then there exists, for every ε > 0, a
K ∈ N such that for all k > K; and all m̂ ∈MD,0,uk ,

inf
w∈Ω0,R

|m̂(w)| > 1− ε.

The set MD,0,uk used in this lemma is given by Definition 3.4.

Proof. From Lemma 3.5 we can write m̂ as

m̂(w) = eiθ
w + uke

−iθ

1 + ukeiθw
,

for some θ ∈ [0, 2π). Substituting uk = eiψ + εk in this equation we get

m̂(w) = eiθ
w + (eiψ + εk)e−iθ

1 + (eiψ + εk)eiθw
= eiψ

1 + wei(θ−ψ) + εkε
−iψ

1 + wei(θ−ψ) + εkeiθw
.

Writing the shorthand s for s = 1 + wei(θ−ψ), we have thus∣∣∣m̂(w)− eiψ
∣∣∣ =

∣∣∣∣∣eiψ s+ εkε
−iψ

s+ εkeiθw
− eiψ

∣∣∣∣∣ ≤
∣∣∣∣∣eiψ εke−iψ − εkeiθws+ εkeiθw

∣∣∣∣∣
≤

∣∣∣εke−iψ − εkeiθw∣∣∣∣∣s+ εkeiθw
∣∣ ≤ |εk| (1 + |w|)

|s| − |εk||w|

Now for all w ∈ Ω0,R, |w| < rR = tanh−1(R). This implies |s| ≥ 1− |w| ≥ 1− rR, and 1 + |w| ≤ 1 + rR, so
that ∣∣∣m̂(w)− eiψ

∣∣∣ ≤ |εk| 1 + rR
1− rR − |εk|rR

= |εk|
1 + rR

1− rR (1 + |εk|)
.

Since |εk| → 0 the lemma follows. �

We are now ready for
Lemma 3.8 Let {(zk, wk)}k≥1 ⊂ D ×D be a sequence that converges, in the Euclidean norm, to some point

(z′, w′) ∈ D ×D \ D ×D, that is |zk − z′|+ |wk − w′| → 0, as k →∞. Then, limk→∞ dRξ,ζ(zk, wk) exists and

depends only on the limit point (z′, w′).



Comparing Surfaces in Polynomial Time 23

Proof. Since (z′, w′) ∈ D ×D \ D ×D either z′ ∈ D \ D or w′ ∈ D \ D. Let us assume that z′ ∈ D \ D (the
case w′ ∈ D \D is similar). Denote by mk an arbitrary Möbius transformation in MD,0,wk . By symmetry of
the distance and using a change of variables we then obtain

dRξ,ζ(zk, wk) = dRζ,ξ(wk, zk)

= min
m(wk)=zk

∫
Ωwk,R

∣∣∣ζ(w)− ξ(m(w))
∣∣∣dvolH(w)

= min
m(wk)=zk

∫
Ω0,R

∣∣∣ζ(mk(w))− ξ(m(mk(w)))
∣∣∣dvolH(w).

Now, recall that ξ(z) = ξH(z) = ξ̃(z)(1−|z|2)2, where ξ̃(z) is a bounded function, supz∈D |ξ̃(z)| ≤ Cξ̃. From

Lemma A.5 we know that for every ε > 0 and for k > K sufficiently large, |m(mk((w))| > 1 − ε for all
w ∈ Ω0,R, and all m such that m(wk) = zk. This means that for these k > K we have

|ξ(m(mk(w)))| =
∣∣∣ξ̃(m(mk(w)))

∣∣∣ (1− |m(mk(w))|2)2

≤ Cξ̃(1− (1− ε)2)2 ≤ Cξ̃ε
2(2− ε)2,

for all w ∈ Ω0,R. Therefore,∣∣∣∣∣dRξ,ζ(zk, wk)−
∫

Ω0,R

∣∣∣ζ(mk(w))
∣∣∣dvolH(w)

∣∣∣∣∣
≤

∣∣∣∣∣ min
m(wk)=zk

∫
Ω0,R

∣∣∣ζ(mk(w))− ξ(m(mk(w)))
∣∣∣dvolH(w)−

∫
Ω0,R

∣∣∣ζ(mk(w))
∣∣∣dvolH(w)

∣∣∣∣∣
≤

∣∣∣∣∣ min
m(wk)=zk

∫
Ω0,R

{∣∣∣ζ(mk(w))− ξ(m(mk(w)))
∣∣∣− ∣∣∣ζ(mk(w))

∣∣∣} dvolH(w)

∣∣∣∣∣
≤ min
m(wk)=zk

∫
Ω0,R

∣∣∣ξ(m(mk(w)))
∣∣∣dvolH(w)→ 0, as k →∞.

Therefore dRξ,ζ(zk, wk) converges, as k → ∞, if and only if
∫

Ω0,R
|ζ(mk(w))| dvolH(w) converges, and to the

same limit, for any mk ∈MD,0,wk . We can take, for instance, mk(w) = w+wk
1+wkw

which gives∫
Ω0,R

|ζ(mk(w))| dvolH(w) =

∫
Ω0,R

∣∣∣∣ζ ( w + wk
1 + wkw

)∣∣∣∣ dvolH(w).

For w ∈ Ω0,R, |1 + wkw| > 1− rR. It follows that this expression has a limit as k →∞, and

lim
k→∞

∫
Ω0,R

|ζ(mk(w))| dvolH(w) =

∫
Ω0,R

∣∣∣∣ζ ( w + w′

1 + w′w

)∣∣∣∣ dvolH(w),

which clearly depends on w′, not on the sequence {wk}. �
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