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Abstract 

We construct orthonormal bases of compactly supported wavelets, with arbitrarily high regular- 
ity. The order of regularity increases linearly with the support width. We start by reviewing the 
concept of multiresolution analysis as well as several algorithms in vision decomposition and 
reconstruction. The construction then follows from a synthesis of these different approaches. 

1. Introduction 

In recent years, families of functions h4.  6 ,  

a ,  b E W, a # 0, 

generated from one single function h by the operation of dilations and transla- 
tions, have turned out to be a useful tool in many different fields of mathematics, 
pure as well as applied. Following Grossmann and Morlet [l], we shall call such 
families “wavelets”. 

Techniques based on the use of translations and dilations are certainly not 
new. They can be traced back to the work of A. Calderbn [2] on singular integral 
operators, or to renormalization group ideas (see [3]) in quantum field theory and 
statistical mechanics. Even in these two disciplines, however, the explicit intro- 
duction of special families of wavelets seems to have led to new results (see, e.g. 
[4],[5],[6]). Moreover, wavelets are useful in many other applications as well. 
They are used for e.g. sound analysis and reconstruction in [7], and have led to a 
new algorithm, with many attractive features, for the decomposition of visual 
data in [8]. They seem to hold great promise for the detection of edges and 
singularities; see [9]. It is therefore fair to surmise that they will have applications 
in yet other directions. 

Depending on the type of application, different families of wavelets may be 
chosen. One can choose, e.g., to let the parameters a ,  b in (1.1) vary continuously 
on their range W* X R (where R *  = R \ (0)). One can then, for instance, 
represent functions f E L2(W) by the functions Uf, 
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If h satisfies the condition 

where denotes the Fourier transform, 

then U (as defined by (1.2)) is an isometry (up to a constant) from L2(R) into 
L2(W* x W; da db). The map U is called the “continuous wavelet transform”; 
see [1],[10]. In this form, wavelets are closest to the original work of Calderbn. 
The continuous wavelet transform is also closely related to the “afline coherent 
state representation” of quantum mechanics (first constructed in [ll], see also 
[12]); in fact, for appropriate choices of h, the h@,  are “affine coherent states”, 
and have been used in the study of some quantum mechanics problems in 

Note that the “admissibility condition” (1.3) implies, if h has sufficient decay 
[111, [121. 

which we shall always assume in practice, that h has mean zero, 

(1 -4) J d x h ( x )  = 0. 

Typically, the function h will therefore have at least some oscillations. A 
standard example is 

For other applications, including those in signal analysis, one may choose to 
restrict the values of the parameters a, b in (1.1) to a discrete sublattice. In this 
case one fixes a dilation step a, > 1, and a translation step b, # 0. The family of 
wavelets of interest becomes then, for m, n E Z, 

(1.6) h , , ( x )  = - nb,). 

Note that this corresponds to the choices 

a = a,“, 

b = nb,a,”, 

indicating that the translation parameter b depends on the chosen dilation rate. 
For m large and positive, the oscillating function h,, is very much spread out, 
and the large translation steps boa,” are adapted to this wide width. For large but 
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negative m the opposite happens; the function h,, is very much concentrated, 
and the small translation steps boa,” are necessary to still cover the whole range. 

A “discrete wavelet transform” T is associated with the discrete wavelets 
(1.6). It maps functions f to sequences indexed by Z2, 

If h is “admissible”, i.e., if h satisfies the condition (1.3), and if h has sufficient 
decay, then T maps L2(R) into 12(Z2) .  In general, T does not have a bounded 
inverse on its range. If it does, i.e., if, for some A > 0, B < 00, 

for all f in L2(W), then the set { hmn; rn, n E H} is called a “frame”. In this case 
one can construct numerically stable algorithms to reconstruct f from its wavelet 
coefficients (h,,,  f). In particular, 

with 

For B / A  close to 1, which is the case in the decompositions and reconstructions 
of music and other sound signals, as done by A. Grossmann, R. Kronland and J. 
Morlet [7], the “error term” R can be omitted. In practice, with e.g. the basic 
wavelet (lS), and with a, = 21/4, b, = .5, one finds B / A  - 1 < lop5, and the 
reconstruction formula (1.8) restricted to its first term gives excellent results. In 
fact, even for the larger value a, = 2, corresponding to B / A  - 1 = .08, the 
truncated reconstruction formula, when applied to the wavelet decomposition of 
speech signals, leads to a clearly understandable reconstruction; see [13]. 

In the use of wavelet frames for sound analysis, and reconstruction, as studied 
by the Marseilles group [7], the families of wavelets h,, considered are highly 
redundant, i.e., they are not independent, in the sense that any finite number of 
them lies in the closed linear span generated by the others. Consequently, the 
range of the discrete wavelet transform T is a proper subspace of 12(Z2).  The 
higher the redundancy of the frame, the smaller this subspace, which is a 
desirable feature for some purposes (e.g. the reduction of calculational noise). If 
a,, b, are chosen very close to 1,0, respectively, then the resulting frame is very 
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redundant and very close to the continuous family of wavelets (1.1); this type of 
frame was used in the “edge detection” study mentioned earlier; see [9]. 

For other applications, as e.g. in S. Mallat’s vision decomposition algorithm 
in [8], it is preferable to work with the other extremum, and to reduce re- 
dundancy as much as possible. In this case, one can turn to choices of h and 
a,, b, (typically a, = 2) for which the h,, constitute an orthonormal basis. This 
is the case to which we shall be restricting ourselves in the remainder of this 
paper. For a more detailed study of general (non-orthonormal) wavelet frames, 
and a discussion of the similarities and the differences between wavelet transform 
and windowed Fourier transform, the reader is referred to [14], [15]. 

One example of an orthonormal basis of wavelets’ for L2(R) is the well-known 
Haar basis. For the Haar basis one chooses 

1, o j x < + ,  
-1, f s x < l ,  

0, otherwise, 

and a, = 2, b, = 1. The resulting h,,, 

(1.10) h , , ( x )  = 2-”’%(2-”x - n ) ,  m ,  n E Z, 

constitute an orthonormal basis for L2(W). The h,, also constitute an uncondi- 
tional basis for all LP(R), 1 < p < 00. 

Recently, some much more surprising examples of orthonormal wavelet bases 
have surfaced. The first one was constructed by Y. Meyer [4] in the summer of 
1985. He constructed a C“-function h of rapid decay (in fact h,  in his example, 
is a compactly supported Cm-function) such that the h,,, as defined by (1.10) 
(i.e., with a ,  = 2, b, = l), constitute an orthonormal basis for L2(W). As in the 
case of the Haar basis, Y. Meyer’s basis is also an unconditional basis for all the 
LP spaces, 1 < p < 00. Much more is true, however. The Meyer basis turns out 
to be an unconditional basis for all the Sobolev spaces, for the Hardy-Littlewood 
space H I ,  for the Besov spaces, etc.; see [4]. The Meyer basis is therefore a much 
more powerful tool than the Haar basis. 

Some time later, in 1986, another interesting orthonormal basis of wavelets 
was constructed, independently, by P. G. LemariB [17] and G. Battle [18]. In their 
construction the function h is only Ck, but it has exponential decay (as compared 

‘Following Grossmann and Morlet [ l]  we call “wavelet” any L2-function h satisfying the admissibil- 
ity condition (1.3). This is less restrictive than Y. Meyer [16], who, in keeping with the tradition in 
harmonic analysis, also imposes some regularity. In the terminology of [16], the Haar basis function 
(1.9) is not a wavelet. 
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with decay faster than any power in Y. Meyer’s case). It also has k vanishing 
moments, i.e., 

I d X X ’ h ( X )  = 0, j = O , l , * . * , k -  1, 

which makes these h,, an unconditional basis for all the Sobolev spaces 2$, with 

In all these constructions the choices a, = 2, b, = 1 were made. The choice 
for b, is of course arbitrary, a simple dilation of the function h allows one to fix 
any non-zero choice for b,; it is convenient to choose b, = 1. The choice of a, is 
far less arbitrary. We shall restrict ourselves here to a, = 2, although it is 
possible to consider other, though by no means arbitrary, choices for a, (see 

In the fall of 1986, S. Mallat and Y. Meyer [16],[19] realized that these 
different wavelet basis constructions can all be realized by a “multiresolution 
analysis”. This is a framework in which functions f E L2(Wd) can be considered 
as a limit of successive approximations, f = lim, ~ - P, f, where the different 
P, f, m E Z, correspond to smoothed versions of f, with a “smoothing out 
action radius” of the order of 2”’. The wavelet coefficients (h,,, f ), with fixed m, 
then correspond to the difference between the two successive approximations 
P, - f and P, f. A more detailed description of multiresolution analysis will be 
given in Section 2. 

The concept of multiresolution analysis plays a central role in S. Mallat’s 
algorithm for the decomposition and reconstruction of images in [8]. In fact, 
ideas related to multiresolution analysis (a hierarchy of averages, and the study of 
their differences) were already present in an older algorithm for image analysis 
and reconstruction, namely the Laplacian pyramid scheme of P. Burt and E. 
Adelson [20]. The Laplacian pyramid ideas triggered S. Mallat to view the 
orthonormal bases of wavelets as a vehicle for multiresolution analysis. Together, 
S. Mallat and Y. Meyer then carried out a more detailed mathematical analysis, 
showing how all the “accidental” previous constructions found their natural 
framework in multiresolution analysis; see [16], [19]. By the use of multiresolution 
analysis and orthonormal wavelet bases, S. Mallat constructed an algorithm that 
is both more economical and more powerful in its orientation selectivity. On the 
other hand, by a curious feedback, the combination of Mallat’s ideas and of the 
restrictions on “filters” imposed in [20] led to my construction of orthonormal 
wavelet bases of compact support, which is the main topic of this paper. 

Because of the important role, in the present construction, of the interplay of 
all these different concepts, and also to give a wider publicity to them, an 
extensive review will be given in Section 2 of multiresolution analysis (subsection 
2A), of the Laplacian pyramid scheme (subsection 2B) and of Mallat’s algorithm 
(subsection 2C). 

Sections 3 and 4 contain the new results of this paper. A closer look at 
Mallat’s work shows that he uses the intermediary of orthonormal wavelet bases 

s < k - l .  

[41,1211). 
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for function spaces to build an essentially discrete algorithm. It seemed therefore 
natural to wonder whether similar, and as powerful, discrete algorithms could be 
built directly, without using function spaces as an intermediate step. It turns out 
that it is very easy to write a set of necessary and sufficient conditions, on the 
“discrete side”, ensuring that an algorithm similar to Mallat’s works. This is done 
in subsection 3A. In order to have a useful algorithm, however, an extra 
regularity condition has to be imposed (this condition is already satisfied in e.g. 
Burt and Adelsen’s Laplacian pyramid scheme). This is done in subsection 3B. 
The combination of the discrete conditions and the regularity condition on the 
discrete algorithm turns out, however, to be strong enough to impose an underly- 
ing multiresolution analysis of functions, with associated orthonormal wavelet 
basis. Provided the regularity condition is satisfied, there is therefore a one-to-one 
correspondence between orthonormal wavelet bases and discrete multiresolution 
decompositions, in the sense of Mallat’s algorithm. This equivalence is proved in 
subsection 3C. Another proof of the same result, using different techniques, can 
be found in [19]; the proof presented here is more “graphical”, and closer to the 
“filter” point of view of [20]. 

In Section 4, we exploit the equivalence between discrete and function 
schemes to build orthonormal bases of wavelets with compact support. Using this 
equivalence, it turns out that it is sufficient to build a discrete scheme using filters 
with a finite number of taps. This can be done explicitly, as shown in subsection 
4B. As a result one can construct, for any k E N, a Ck-function + with compact 
support, such that the corresponding +,,, 

+&) = 2-”’751(2-”x - n), 
constitute an orthonormal basis. The size of the support increases linearly with 
the regularity. Moreover, + has K consecutive moments equal to zero, 

JdXxi+(x) = 0, j = O , l , * . - , K -  1, 

where K also increases linearly with k.  All these properties of the construction 
are proved in subsection 4C. Finally, the “graphical” approach which, as ex- 
plained in subsection 3B, was the guideline to the proof of the link between the 
“regularity” condition of Burt and Adelson (see subsection 2B) and multiresolu- 
tion analysis, can also be used to plot the functions +. We conclude this paper 
with the plots of a few of the compactly supported wavelets constructed here. 

2. Multiresolution Analysis and Image Decomposition and Reconstruction 

2.A. A review of multiresolution analysis and orthonormal wavelet bases. In 
this subsection we review the definition of multiresolution analysis, and show 
how orthonormal bases of wavelets can be constructed starting from a multireso- 
lution analysis. We illustrate this construction with examples. No proofs will be 
given; for proofs, more details and generalizations we refer to [16], [19] or [21]. 
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The idea of a multiresolution analysis is to write L2-functions f as a limit of 
successive approximations, each of which is a smoothed version of f, with more 
and more concentrated smoothing functions. The successive approximations thus 
use a different resolution, whence the name multiresolution analysis. The succes- 
sive approximation schemes are also required to have some translational invari- 
ance. More precisely, a multiresolution analysis consists of 

(i) a family of embedded closed subspaces V, C L2(W), m E h, 

(2.1) * * -  c V 2 c V l c V o c V ~ , c V ~ , c  * . .  

such that (ii) 

n V, = (01, m= LYW), 
rn€Z ,€Z 

(2.2) 

and (iii) 

(2.3) f E  V, *f(2 *) E Vm-l; 

moreover, there is a + E Vo such that, for all m E H, the +ffln constitute an 
unconditional basis for V,, that is, (iv) 

(2.4a) V, = linear span { +,,, n E Z} 

and there exist 0 < A 6 B < co such that, for all ( c J n G z  E 12(h), 
2 

(2.4b) A C I C ~ I ~  ~ ~ ~ ~ ~ n + r n n l ~  s BClcnt2* 
n n 

Here +,,(x) = 2-m/2+(2-"x - n). Let P, denote the orthogonal projection 
onto V,. It is then clear from (2.1), (2.2) that lim, -t -,P,f = f, for all f E L2(W). 
The condition (2.3) ensures that the V, correspond to different scales, while the 
translational invariance 

is a consequence of (2.4). 

EXAMPLE 2.1. A typical though crude example is the following. Take the V, 
to be spaces of piecewise constant functions, 

V, = { f~ L ~ ( w ) ;  fconstant on [2mn,2m(n + 1) [for all n E z} .  

The conditions (2.1)-(2.3) are clearly satisfied. The projections P, are defined by 
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The successive P, f (as m decreases) do therefore correspond to approximations 
of f on a finer and finer scale. Finally, we can choose for + the characteristic 
function of the interval [0,1[, 

1, O l X < l ,  
0, otherwise. 

Clearly, + E Vo and V, = span{ +mn } . 

In what follows, we shall revisit this example to illustrate the construction of 
an orthonormal wavelet basis from multiresolution analysis. 

Note that, in view of (2.3), the condition (2.4a) may be replaced by the weaker 
condition Vo = span{ . Moreover, one may, without loss of generality, 
assume that the are orthonormal (which automatically implies that the cp,, 
are orthonormal for every fixed m). If the +on are not orthonormal to start with, 
then one defines 6 by 

( i ) ^ C E )  = C $ W (  c J&E + 2 k d  12)-1'2 
k c Z  

(where we implicitly assume that $ has sufficient decay to make the infinite sum 
converge). One finds that 

(2.5) 

~ 

~ 

span{ +on 1 = span{ 6 O n }  , 
while, moreover, the 6ofl are orthonormal. See  [16] for a detailed proof. 

EXAMPLE 2.1 (continued). In this case the +on are orthonormal from the 
start. If we define 

then 

P m f  = C C m n ( f )  +mn* 
n 

Let us look at the difference between P, f and the next coarser approximation 
P, + f. One easily checks that 

hence 
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This again exhibits P,+l f as an averaged version of P, f, i.e., as a larger scale 
approximation. The difference between these two successive approximations is 
given by 

The remarkable fact about this expression is that it can be rewritten under a form 
very similar to (2.6). Define 

1, o s x < + ,  

-1, + 5 x < 1, +(XI = + ( 2 4  - d 2 x  - 1) = 

0, otherwise. 
(2.7) 

Then 

and 

(2 -9) 

where 

What is so remarkable about this? Note first, as can easily be checked from (2.7), 
that for fixed m the +mn are orthonormal. The decomposition (2.9) is thus the 
expansion, with respect to an orthonormal basis, of Q,-,f, the orthogonal 
projection of f onto W,+, = P,L2 - P,+,L2, i.e., onto the orthogonal comple- 
ment of Vm+, in V,. The surprising fact is that, as is clear from (2.9), the W, are 
also (as are the V , )  generated by the translates and dilates.+,, of a single 
function +. Once this is realized, building a wavelet basis becomes trivial. Clearly 
(2.1)-(2.2), together with W, I V,, Vm-l = V, CB W,, imply that the W, are all 
mutually orthogonal, and that their direct sum is L2(R). Since, for each m, the 
set { $mn; n E Z} constitutes an orthonormal basis for W,, it follows that the 
whole collection { +mn; m, n E h }  is an orthonormal wavelet basis for L2(R). 

In the example above the function + is nothing but the Haar function (see 
(1.9)), and it is therefore no surprise that the +,,,,, constitute an orthonormal 
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basis. The example does however clearly show how this basis can be constructed 
from a multiresolution analysis. Let us sketch now how the general case works: 

For a multiresolution analysis, i.e., a family of spaces V, and a function + 
satisfying (2.1)-(2.4), one defines (as in Example 2.1) W, as the orthogonal 
complement, in V,-,, of V,, 

(2.10) Vm-, = V, a3 w,, w, I V,. 

Equivalently, 

(2.11) W, = Q,L2((W) with Q, = P,-1 - P,. 

It follows immediately that all the W, are scaled versions of W,, 

(2.12) f E w, - f(2" *) E w,, 
and that the W, are orthogonal spaces which sum to L2(R), 

(2.13) L y R )  = @ w,. 
m € Z  

Because of the properties (2.1)-(2.4) of the V,, it turns out (see [16],[19]) that in 
W, also (as in V,) there exists a vector + such that its integer translates span W,, 
i.e., 

where, as before, + m n ( ~ )  = 2-"/V(2-"x - n )  for m, n E E .  It follows im- 
mediately from (2.12) that then 

for all m E Z. 
Intuitively one may understand this similarity between W, and V, by the fact 

that V- , is " twice as large" as V,, since V, is generated by the integer translates 
of a single function +oo, while V- ,  is generated by the integer translates of two 
functions, namely +-lo and +-ll. It therefore seems natural that the orthogonal 
complement W, of Vo in V - ,  is also generated by the integer translates of a 
single function. This hand-waving argument can easily be made rigorous by using 
group representation arguments. Mere proof of existence of a function + satisfy- 
ing (2.14) would however not be enough for practical purposes. A more detailed 
analysis leads to the following algorithm for the construction of J ,  (see [16], [19]). 
We start from a function + such that the +on are an orthonormal basis for Vo (if 
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necessary, we apply (2.5)). Since 9 E V, C V - ,  = span{ 9(2 - n)}  , there 
exist c, such that 

(2.15) 

Define then 

The corresponding will constitute an orthonormal basis of W,; see [16], [19]. 
Consequently the I),,, for fixed m, will constitute an orthonormal basis of W,. 
It follows then from (2.12) that the {I),,, m, n E Z} constitute an orthonormal 
basis of wavelets for L2(W). This completes the explicit construction, in the 
general case, of an orthonormal wavelet basis from a multiresolution analysis. 

EXAMPLE 2.1 (final visit). As we already noted above, the +,, are orthonor- 
mal in this example, and 

$I(.) = 9(2x) + 9(2x - 1). 

Applying the recipe (2.15)-(2.16) then leads to 

which corresponds to (2.7). 

Remarks. 1. One can show (see [MI) that the functions 9, J ,  having all the 
above properties necessarily satisfy 

(2.17) /dx$(x)  = 0 

and 

where we implicitly assume that 9, I) are sufficiently well-behaved for these 
integrals to make sense (in all examples of practical interest, 9, J ,  E L1). In fact, 
one does not even need to assume that the are orthonormal to derive 
(2.17)-(2.18). In [15] it is shown that (2.17) has to be satisfied even if the J,mn 
constitute only a frame (see the introduction). Note also that the transition (2.5) 
from 9 to 6, orthonormalizing the +,,, preserves j dx + ( x )  # 0. 

2. If one restricts oneself to the case where 9 is a real function (as in all the 
examples above), then (p is determined uniquely, up to a sign, by the requirement 

or 
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that the 
sign of + so that 

be orthonormal. One then also has j dx +(x) = fl; we shall fix the 

(2.18) / d X + ( X )  = 1. 

In practice, one can often start the whole construction by choosing an appro- 
priate +, i.e., a function @ satisfying (2.15) for some c,. Provided + is “reason; 
able” (it suffices, e.g., that infl t lsn(+(t)  I > O  and that &,,zl;(t + 2ka)  I 
is bounded), the closed linear spans V, of the +,,, (rn fixed) then automatically 
satisfy (2.1)-(2.4) and there exists an associated orthonormal basis of wavelets. 
Two typical examples are 

EXAMPLE 2.2. 

O S X $ l ,  
@(.)= 2 - x ,  1 s x j 2 ,  I:: otherwise. 

This is a linear spline function; the spaces V, consist of continuous, piecewise 
linear functions. The c, are given by 

+(x) = ++(2x) + 442. - 1) + :+(h - 2). 

EXAMPLE 2.3. 

(xz,  O S X $ l ,  
- 2 ~ ’  + 6~ - 3, 1 5 x 5 2, 

(3 - x)2, 2 5 x 5 3 ,  
+ ( X I  = 

10, otherwise. 

This is a quadratic spline function; the spaces V, consist of C’, piecewise 
quadratic functions. The c, are given by 

+(x)  = $+(2x) + $+(2x - 1) + ;T+(2x - 2) + f+(2x - 3). 

In these last two examples the corresponding + will be, respectively, continu- 
ous and piecewise linear, or C1 and piecewise quadratic. Starting from spline 
functions one can, in fact, construct orthonormal bases of wavelets with an 
arbitrarily high number of continuous derivatives. These bases are the Battle- 
Lemari6 bases (see [17], [HI, [la]). In these constructions the initial function + is 
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compactly supported, but the are not orthogonal, as illustrated by the two 
examples above. One therefore has to apply (2.5) before using (2.15), (2.16); the 
transition @ -+ 6 in (2.5) leads to a non-compactly supported 6, resulting in a 
non-compactly supported +. Typically the Battle-LemariC wavelets have ex- 
ponential decay. 

We shall see below that for the construction of orthonormal bases of com- 
pactly supported wavelets it is more natural to start from the coefficients c, than 
from the function +. 

Up to now, we have restricted ourselves to one dimension. It is very easy, 
however, to extend the multiresolution analysis to more dimensions. As pointed 
out by R. Coifman and Y. Meyer [22], this extension was already inherent in the 
first construction by P. G. LemariC and Y. Meyer [23] of an n-dimensional 
wavelet basis. It becomes much more transparent, however, from the multiresolu- 
tion analysis point of view. Let us illustrate this for e.g. two dimensions. The case 
of n dimensions, n arbitrary, is completely similar. Assume that we dispose of a 
one-dimensional multiresolution analysis, ie., we have at hand a ladder of spaces 
V,, and functions +, + satisfying (2.1)-(2.4) and (2.14), where the and the 
+on are assumed to be orthonormal. Define 

v,= V,@ V,. 

Clearly, the V, define a ladder of subspaces of Lz(R2) ,  satisfying (2.1) and the 
equivalent, for W z ,  of (2.2). Moreover, (2.3) holds, and if we define 

W X l ,  x2) = +(X l )+ (XZL 

then this two-dimensional function satisfies the analogue of (2.4), 

v,,, = linear span { Q,~; n E z *}, 
where a,, is defined by 

Qmn(X1, x 2 )  = 2-"Q(2-"x1 - n1,2-mx2 - n 2 )  

= +mn, ( x1) +mn, ( x2 ). 

Note that we use the same dilation for both arguments. Because of the definition 
(2.10) of W,, we find immediately that 

V m - 1  = v m  @ [ ( V m  @ w m )  0 ( w m  @ Vm) ( w m  @ w m ) l .  

This implies that an orthonormal basis for the orthogonal complement W, of V, 
in V,-I is given by the functions +,,,n,+mn,, +,,,+m,,, + m n , + m q ~  with n1, n2 E E, 
or equivalently, by the two-dimensional wavelets *A,, 
(2.19) +An(x1, x2)  = 2-m\k'(2-mx1 - nl ,2-"x ,  - n 2 ) ,  
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where 1 = 1,2,3, n E Z2, and 

(2.20) 

(2.22) 

It follows that the *La, 1 = 1,2,3, m E Z, n E Z 2, constitute an orthonormal 
basis of wavelets for L2(W2). 

The above construction shows how any multiresolution analysis + associated 
wavelet basis in one dimension can be extended to d dimensions. The decomposi- 
tion + reconstruction algorithm constructed by S .  Mallat for visual data in [8] 
uses such a two-dimensional basis. 

2.B. The Laplacian pyramid scheme of P. Burt and E. Adelson. In this 
subsection we review some aspects, relevant for the present paper, of Burt and 
Adelson's algorithm for the decomposition and reconstruction of images. For a 
more detailed presentation, and for applications, we refer the reader to [20]. 

One of the goals of a decomposition scheme for images is to remove the very 
high correlations existing between neighboring pixels, in order to achieve data 
compression. Several different schemes have been proposed to achieve this. 
Typically they use a prediction method, in which the value at a pixel is predicted 
(by a weighted average) from either previously encoded or neighboring pixels, 
and only the difference between the actual pixel value and the predicted value is 
encoded. Using the neighboring pixels for prediction is more natural and should 
lead to more accurate prediction (and therefore to greater data compression), but 
is much harder to implement than the easy causal prediction scheme, using only 
previously encoded pixels. The scheme proposed by Burt and Adelson combines 
the ease of computation of a causal scheme with the advantages and elegance of a 
neighborhood-based (noncausal) scheme. The result is-we quote directly from 
[2Oa]- 

" . . - a technique for image encoding in which local 
operators of many scales but identical shape serve as 
the basis functions." 

The analogy with multiresolution analysis is evident from this quote. 
Images are two-dimensional, and the Laplacian pyramid scheme is a two- 

dimensional algorithm. For simplicity, the review below will be restricted to one 
dimension. This does not really matter, except in details (which will be pointed 
out). Moreover, the two-dimensional schemes used in [20] are in fact obtained 
(for simplicity reasons) as a tensor product of two one-dimensional schemes. 

Our presentation will be already adapted to later use in this paper, and 
slightly different in notation from [20]. Except for this difference, what follows is 
the construction in [20]. 
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The original (one-dimensional) data can be represented as a sequence of real 
numbers, ( c , , ) , , ~ ~ ,  representing the pixel values. For later convenience, we give 
this sequence the index 0, 

c," = c,. 

The main idea is to decompose co into different sequences corresponding to 
distinct ranges of spatial frequency. The highest level, with only the high 
frequency content of co, is obtained by computing the difference between co and 
a blurred version Fo. The remainder, i.e., the blurred version, contains only lower 
spatial frequencies, and can therefore be sampled more sparsely than co itself, 
without loss of information. The Laplacian pyramid algorithm provides an 
elegant and easily implementable scheme for doing all this. The whole process is 
repeated several times in order to achieve the desired decomposition. 

One starts by transforming the sequence co into a sequence c1 by means of an 
operator which both averages and decimates, 

(2 .23)  c: = C w ( n  - 2k)c,".  
n 

The weighing coefficients w ( n )  are always real; in [20] they are chosen to be 
symmetric and normalized, i.e., 

(2.24) 
w ( n )  = w ( - n ) ,  

C w ( n )  = 1 .  
n 

They are also required to satisfy an "equal contribution constraint", stipulating 
that the sum of all the contributions from a given node n is independent of n, 
i.e., all the nodes contribute the same total amount, 

w ( n  - 2 k )  is independent of n . 
k 

This can be rewritten as 

(2.25) C w ( 2 n )  = C w ( 2 n  + 1 ) .  
n n 

We shall come back below to the mathematical significance of this requirement. 
Examples given in [20] are 

w (  n )  = 0 if In1 > 2,  

(2 .26)  
w ( 2 )  = w ( - 2 )  = a - fa, 
w ( 1 )  = w ( - 1 )  = a, 
w ( 0 )  = a ;  

the different values considered for a are CI = .6, .5, .4 and .3. 



924 I. DAUBECHIES 

The sequence c1 plays a double role: it will serve as the input sequence 
(instead of co)  for the next level of the pyramid, and it is also an intermediate 
step for the computation of the blurred version to be subtracted from co. 
(Note that we cannot have c1 itself as this blurred version: c1 and  live" on 
different scales-see Figure 1). More precisely, 

(2.27) = C w ( n  - 2 k ) c k ,  
k 

where 

(2.28) q n ,  I )  = C w ( n  - 2k)w(Z  - 2 k ) .  
k 

Notice that this does not quite define a convolution; from (2.28) one sees that 
G(n, I )  = G ( n  - 2 , I -  2), but G ( n ,  I )  # E(n - 1, I - 1) in general. The se- 
quence C'O is clearly a blurred version of co; one then defines the difference d o  by 

d t  = c," - -0 (2.29) c n -  

Knowing this difference sequence (the high spatial frequency content of co) and 
c1 (a low-pass filtered version of co, sampled at a sparser rate) is clearly sufficient 
to reconstruct the data co, since 

c," = d,O + C W ( ~  - 2 k ) ~ k .  
k 

The whole process is then iterated. From c1 one computes c2 and Z1, d1 is the 
difference c1 - El ,  etc. A graphical representation of the transitions co + c1 + 

c2 + . - 
A more condensed notation for all the above is the following. Define the 

operator F 12(Z)  -+ 12(Z) ( F  for "filter") by 

and c1 + C"O is given in Figures l a  and lb. 

(2 .30)  ( F a ) k =  C W ( ~  - 2 k ) a k .  
n 

Then (2.23), (2.27) and (2.29) become 

(2 .31)  c1 = Fc0, 

(2.32) ,? = p c 1  = F*F~O, 

(2.33) d o  = co - Eo = (1 - F*F)c0 .  
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cl, 

Figure 1. Graphical representation of the Laplacian pyramid scheme (redrawn from [203). 

w(n) = 0 if JnJ > 2, and only the computation of r$, and ci are depicted. 
a. The transition co + 2 -B cz. For simplicity's sake we have restricted ourselves to the case 

b. The transition c' -B 9. 

Here we use the standard notation F* for the adjoint of the (bounded) operator 
F. Note that we implicitly assume that co E 12(Z), or, in signal analysis terms, 
that the data sequence co has finite energy. In practice, the sequence co is finite, 
and this constraint does not matter. 

The total decomposition consists thus in L consecutive steps (in practice 
L = 5 or 6), with 

From the sequences d o , .  - ., dL- l ,  c L  one then reconstructs co recursively by 

At every step, in the decomposition (2.34) as well as in the reconstruction 
(2.35) the same filter coefficients are used, and all the operations involved are 
direct and linear (no solving of complicated systems of equations!). This makes 
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this algorithm very easy to implement. The decimation aspect in the operator F, 
which reduces the number of entries in the c‘ by a factor 2 at every step, makes 
the whole decomposition algorithm as fast as a fast Fourier transform (see [20]). 

Let N be the total number of non-zero entries in co. Then the total number of 
entries in d o , .  - -, d L - l ,  c L  (except for edge effects) is 

N + N / 2  + * * * + N / 2 L - 1  + N / 2 L  = 2N(1 - 2 - L - ’ ) .  

After the Laplacian pyramid decomposition there is thus a larger number of 
entries (almost twice as many) than in the original data sequence. However, it 
turns out that, because of the removal of correlations, the decomposed data can 
be greatly compressed (see [2Oa]). The net effect is still an appreciable data 
compression. We shall not go into this here, however. Note that the increase of 
the number of entries is less pronounced in two dimensions (a factor 4 instead of 

The similarity between the Laplacian pyramid algorithm and a multiresolu- 
tion analysis is now clear. In both approaches, the data (a function in multireso- 
lution analysis, a sequence in the Laplacian pyramid) are decomposed into a 
“ pyramid” of approximations, corresponding to less and less detail. Moreover, 
the differences between each two successive approximations are computed (corre- 
sponding to the wavelet decomposition in the multiresolution analysis). However, 
it is also clear that the schemes are quite different in the details of the computa- 
tion of the decomposition. The algorithm developed by S. Mallat, described in 
the next subsection, retains the attractive features of the Laplacian pyramid 
scheme, but is much closer to the analysis described in subsection 2 A .  

The filter coefficients w(n) ,  or equivalently the filter operator F, are associ- 
ated in [20]  with “equivalent weighting functions”. Only the limit of these 
functions will be relevant for us; we conclude this subsection by its definition and 
a few of its properties. One may wonder which kind of input sequence co 
corresponds to the “simplest” decomposition sequence, i.e., to d o  = - . - = dL-’  
= 0, and ( c L ) ,  = an0. The answer is obviously (use the reconstruction algorithm) 

2) .  

0 -  F * L  ( 2 . 3 6 )  c -4 ) e ,  

where e is the sequence e ,  = an0. If, e.g., L = 1, then the entries of co are exactly 
the w ( n ) .  Since any sequence can be considered as a sum of translated versions 
of e ,  the sequence co = (F*)Le gives the basic building block for the subspace 
( F*)L12(Z), i.e., for the L-th level component sequences. It is therefore important 
that these sequences co do not look messy, which they well might, for L large 
enough (for a “messy” example, see Figure 4 in subsection 3B). One can make a 
graphical representation of the co defined by (2.36), for successive L. We 
represent the sequence e by a simple histogram, with value 1 for - 5 5 x < &, 0 
otherwise (see Figure 2). The sequence P e  “lives” on a scale twice as small, and 
will therefore be represented by a histogram with step widths & (as opposed to 1 
for e ) ;  its different amplitudes are given by 2( F*e),, = 2w(n) .  Similarly, (F*)‘e is 
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represented by a histogram with step width 2-I; the successive amplitudes are 
given by 2‘((F*)‘e),. We have introduced an extra factor 2 at every step in our 
representation for normalization purposes: the area under each histogram is 
always 1. This normalization will be convenient in Section 3 .  The example plotted 
in Figure 2 corresponds to the w ( n )  given by (2.26), with a = .375. Plots for 
a = .6, .5, .4 and .3, with slightly different conventions, can be found in [20]; our 
choice a = .375 shall become clear below. One finds a very rapid convergence of 
these histograms to a rather nice function. This surprising feature is in fact due, 
in large part, to the special form (2.26) of the coefficients w ( n ) ,  and in particular, 
to condition (2.25). The following argument shows why. The “representation” of 
e in Figure 2 is the characteristic function of the interval [ - 4, $[, which we 

I l l  
-1/2 0 112 

- 1  0 1 

-1 0 1 

(F*l3 e A -1 0 1 

Figure 2. The successive sequences e, P e ,  ( P ) ’ e ,  (F*)3e represented by histograms, and the limit 
function h ,  (see text). We have taken the w ( m )  as defined by (2.26), with a = .375. 
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denote by ha.  The representations h,, h2  of, respectively, FCe,(F*)2e are given 
by 

(2.37) h l ( x )  = 2 C w ( n ) X [ - 1 / 4 , 1 / 4 [ ( X  - in) 
n 

and 

To make the transition from h j - l  to hi one 

nents 
(i) divides h j P l ,  a step function with step width 2-('-'), into its compo- 

(2.39) 

(see Figure 3c), 
(ii) replaces every component by a suitably scaled and recentered version of 

hl ,  

X [ 2 - J + l ( k -  1 / 2 ) , 2 - ) + ' ( k + l / 2 ) [  -b h,(2j-'x - k )  

= 2 C w ( " ) x [ - 1 / 4 , 1 / 4 [ ( 2 i - 1 x  - - in), 
n 

(see Figure 3d), 
(iii) sums it all up, 

(see Figure 3e). 

defining 
These different steps are illustrated by Figure 3. The construction amounts to 

- -  
h . =  f . h .  or h i =  T,.qp1 . . a  f l h a ,  (2.40) J J J - 1  

where 

The iterative algorithm ( 2 4 ,  (2.41) is extremely easy to implement numerically. 



ORTHONORMAL BASES OF WAVELETS 929 

b) h j  

w (-2 1 
I 

-1 

d) I 

i 

e) h p  

-1 0 1 

e) h p  

-1 0 1 

Figure 3. a) h d x )  = x[-1/2,1/2[(x);  
b) h l ( x )  = ~~(n)~[n/~-1/4.n/~+1/41(~), 
c) h, is decomposed into its “components”; each component is a multiple of the characteristic 

function of an interval of length $. (The “components” of hj would have width 2 - j ) .  

d) Each “component” is replaced by a proportional version of h,, centered around the same 
point as the component, and scaled down by a factor $. (This scaling factor would be 2-J for hi). 

e) The functions in d) are added to constitute h2 (or h,,,, if one starts from hi in c)). 
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The h j  can, however, also be written differently. Let us go back to expressions 
(2.36), (2.37) for h,, h2. These can be rewritten as 

(2.42) h l ( x )  = 2 C w ( n ) h 0 ( 2 x  - n ) ,  
n 
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Since (see (2.42), (2.43)) h,  = Tho, h ,  = T2ho ,  it follows that 

which proves (2.44). 
We have thus two different ways, (2.44) and (2.40), to compute the h,. Figure 

2 shows that, at least for some choices of the w ( n ) ,  the functions h, converge, for 
j + 00, to a “nice” function h,. The explicit proofs which wi l l  be given in 
subsection 3B show that, at least for the examples (2.26) with .125 < u < .625, 
the function h ,  is continuous (see (2.46) below), has compact support, and that 
the convergence h, + h ,  is uniform. Let us just accept these facts for the 
moment. 

The two formulas (2.40) and (2.44) are both extremely useful in the study 
(and the proof) of this convergence. The construction of h ,  = lim,+,h, via 
(2.40) has the following nice localization feature. To compute the value 
of h +l(x) the recursion h,+l = q h ,  uses only values h , ( y )  for Iy - XI  5 
2-J-*(N + l), where we assume w ( n )  = 0 for n 2 2N. Consequently, the val- 
ue of h , ( x )  can be computed using only the values of h , ( y )  for ly - XI  5 
2-J(N + 1). For increasing j ,  this lends a “zoom-in“ quality to the graphical 
construction of which Figure 2 is an example. This is extremely useful when one 
wants to focus on details of the behavior of h ,  (see, e.g. Figure 6 in sub- 
section 4B). This localization feature is not present in (2.44). The formula 
h , ( x )  = (Th , - , ) (x )  uses values of hJ- l  at points which stay at fixed distance of 
each other (i.e., 2x, 2(x f t ) ,  2(x f l),  . - ), independently of how large j is. 
The usefulness of (2.44) is therefore not “graphical”. It is, however, this less local 
formula which will be most useful in proving convergence of the h,, continuity of 
h,, etc. 

Introducing Fourier transforms, (2.45) can be rewritten as 

where 

w([ )  = C w ( n ) e i n ‘ .  
n 

Consequently, from (2.45), one obtains 

sin( 2 - I -  ‘ 4 )  A , ( [ )  = (2“)-1’2 
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For 1 + 00, this converges, pointwise, to 

m 

j-1 
im(() = (27r)-ll2 fl W ( 2 3 ) ,  

provided this infinite product makes sense. (We shall come back to this, and 
other convergence problems, in subsection 3B. It turns out that, for w ( n )  as 
chosen in (2.26), the convergence h, -+ h ,  holds in all LP-spaces, 1 5 p ao.) 
Because of the constraint (2.25), one finds that W([) is divisible by (1 + e't), 

Combining this with 

Sin [ m 

j-1 

we find 

The constraint (2.25) leads thus to a factor [-' in i,, i.e., to some regularity in 
h,! Without this constraint, as can be easily checked, the graphical procedure in 
Figure 2 can lead to rather horrible (fractal) functions h ,  (see e.g. Figure 4). In 
fact, for the examples (2.26) one even finds two factors cost[, 

W ( t )  = ( C O S ~ ~ ) ~ [ ( ~ U  - 3) + 4(1 - ~ U ) ( C O S ~ ~ ) ~ ] .  

Using an estimation technique due to P. Tchamitchian (see Lemma 3.2 below) 
one finds that this leads to 

For .125 c a c .625, which includes all the choices in [20], this implies that h,-is 
continuous. For a = = .375 (the example chosen in Figure 2), the decay of h ,  
is even stronger, 
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In this case, h, is thus a fourth-order convolution of xLo,l[ with itself, which 
results in a C3-‘ function. 

The above remarks show that constraints on the w(n) ,  corresponding to 
divisibility of W(E) by (1 + ei6), result in regularity of h,. Constructions similar 
to (2.44) will be used in Section 3, where the above “trick” for imposing 
regularity on h ,  will turn up again. 

This concludes our review of the Laplacian pyramid scheme. The above is by 
no means a complete review; only those aspects relevant to the present paper 
have been highhghted. For more details, and especially for applications (data 
compression, image splining) the reader should consult [20a] and [20b]. 

Remark. During the last revision of this paper before publication, Y. Meyer 
drew my attention to related work by G. Deslauriers and S .  Dubuc [29]. They are 
interested in functions defined recursively by the following interpolation scheme. 
At the I-th step, the values of f at the points 2-‘(2k + l) ,  k E Z, are computed 
from the f ( k 2 - ‘ + I )  via the formula 

In many applications considered by Deslauriers and Dubuc, the interpolation 
procedure is symmetric, i.e., a_, = a,,, for all m E Z. For suitable choices of 
the a,, the functions f constructed via this dyadic interpolation scheme, starting 
from the f( k), k E Z, are continuous, and are therefore completely characterized 
by their values at the dyadic rational points x = k2-‘, k E Z, I E N. A typical 
function f can be written as 

where g is the function obtained by interpolation from g(0) = 1, g ( k )  = 0 for 
k E Z \ (0). The definition of g via the dyadic interpolation scheme is exactly 
the same as our “graphical recursion” (2.40), with the choice w(0) = t ,  w(2n) = 0 
for n # 0, w(2n + 1) = +a,+,, n E Z. The analysis of the properties of g in 
[29] is then carried out by means of the same correspondence between “graphical 
recursion” and the iterative formula (2.44). Imposing Cam = 1 (i.e., C w ( n )  = 1) 
immediately leads to w ( < )  = [ $(l + e”)]’Q(<), which is then exploited, in [29], 
to impose continuity on g. There is therefore a clear similarity between the 
techniques used here and those exposed in [29]. The applications are different, 
however. Moreover, the proofs given in Section 3 apply to more general cases 
than those in [29], since we do not impose w(2n)  = 0 for n # 0, nor w(2n + 1) 

2.C. The wavelet based decomposition and reconstruction algorithm of S. 
Mallat. In [8], St6phane Mallat exploits the attractive features of multiresolu- 
tion analysis to construct a decomposition and reconstruction algorithm for 

= w ( - 2 n  - 1). 
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2-d-images that has the same philosophy as the Laplacian pyramid scheme, but is 
more efficient and orientation selective. It is interesting to remark that the 
development of the concept of multiresolution analysis was triggered by the 
multiresolution methods, and in particular by the Laplacian pyramid. The full 
mathematical study of the concept, by S. Mallat and Y. Meyer, was done more or 
less simultaneously with the practical development, by S. Mallat, of his algorithm 
for vision analysis and reconstruction. This is not the only instance in which 
theoretical developments concerning wavelets find their inspiration in applica- 
tions: the last few years have seen a constant feedback between theory and 
applications. In fact, this paper is another such instance. 

Let us start by a review of the algorithm in one dimension. As in the previous 
subsection, we want to decompose a sequence co = (ct), E 1*(2) into levels 
corresponding to different spatial frequency bands. To achieve this, we shall use a 
multiresolution analysis, which can be chosen freely (as long as (2.1)-(2.4) are 
satisfied), but has to be kept fixed for the whole algorithm. We suppose thus that 
we have chosen spaces V, and a function 4 such that (2.1)-(2.4) are satisfied. 
We assume (if necessary, we apply (2.5) first) that the @on are orthonormal. Let 
{ +,,,”; rn, n E Z }  be the associated orthonormal wavelet basis (we shall keep the 
same notations as in subsection 2A). The multiresolution analysis and orthonor- 
ma1 basis chosen in [8] is one in which the V, consist of cubic spline functions (cf. 
Examples 2.2 and 2.3, corresponding to linear and quadratic splines, respectively); 
the corresponding orthonormal basis is one of the Battle-LemariC bases. In what 
follows we shall assume that both 4 and t) are real, as they are in [8] and indeed 
in most practical examples. 

Form the data sequence co E /’(if) we construct a function f ,  

f = C C k o n ,  
n 

or 

This function is clearly an element of V,. We can now use the whole multiresolu- 
tion analysis apparatus on this function. We shall compute the successive Pj f ,  
corresponding to more and more “blurred” versions of f (and hence of the data 
sequence co), and also the Q ,  f ,  corresponding to the difference in information 
between the “versions” of f at two successive resolution levels. Eventually, of 
course, this has to be translated back to a “sequence” (as opposed to a 
“function”) language, but this turns out to be very easy. 

As element of Yo = Vl @ W,, f can be decomposed into its components 
along V, and W,, 

f = pif + Q i f .  
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Each of these components can be expanded with respect to the orthonormal 
bases itln, respectively, 

The sequence c1 represents a smoothed version of the original data sequence coy 
while dl represents the difference in information between co and c1 (cf. the 
discussion of pi, Q, in subsection 2A). The sequences cl, di can be computed as 
a function of co in the following way. Since the are orthonormal bases of V,, 
one has 

where 

= 2-'/2/dx+(:x)c#I(x - (n - 2k)). 

This can be rewritten as 

(2.47) 

with 

c: = C h ( n  - 2k)c,0 
n 

h ( n )  = 2-'/2jdx+('ix)$J(x - n). 

Note that these h ( n )  are, up to a normalization factor 2-'12, exactly the 
coefficients c ( n )  appearing in (2.15). Similarly, 

(2.48) 

with 

d; = C g ( n  - 2k)cH 
n 

g ( n )  = 2-'/2/dx+(!x)+(x - n). 
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It follows that the expressions for cl, d’ as a function of co are of exactly the 
same type as (2.23) in the Laplacian pyramid scheme. The main difference 
between the two schemes is that both the blurred, lower resolution c’ and the 
“difference” sequence d 1  are now obtained via a filter of type (2.23). The filter 
coefficients h ( n ) ,  g(n) are fixed by the chosen multiresolution analysis frame- 
work. It turns out that the h ( n )  have many properties in common with the w ( n )  
in subsection 2B; for instance, the h( n) satisfy a normalization condition, i.e., 
C,h(n)  = (see subsection 3A for an explanation of the difference in normal- 
ization with the w(n) ) .  The requirement Cnh(2n) = C,h(2n + 1) is also satisfied 
by most interesting examples, and in particular in [8] (we shall come back to this 
later). The filter coefficients g ( n )  are of a different nature, as one would expect; 
in particular, C , g ( n )  = 0. 

Introducing a shorthand notation similar to (2.30), we rewrite (2.47), (2.48) as 

c’ = Hco, 

d’ = Gco, 

where H, G are bounded operators from 12(Z)  to itself, 

(2.49) 

The procedure can now be iterated; since P,  f E V, = V2 @ W2, we have 

One finds then 

It is very easy to check, however, that 
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independently of j .  It follows that 

or 

c2 = Hc'. 
Similarly, 

d 2  = Gc' 

Clearly this can now be iterated as many times as wanted. At every step one 
finds 

p, - i f  = P,f -k Q J f  

= C C b J k  + C d i $ J k  
k k 

with 

(2 .50)  cJ = HcJ-1, 

(2.51) d J  = GcJ-1. 

This is the desired decomposition. The successive cJ are lower and lower 
resolution versions of the original co, each sampled twice as sparsely as their 
predecessor (due to the factor 2 in the filter coefficients in (2.47)), and the d J  
contain the difference in information between cJ-' and cJ. Moreover, the cJ,  d J  
are computed via a tree algorithm (2.50), (2.51). This computation is therefore as 
easy to implement as the Laplacian pyramid scheme. 

Note that Mallat's algorithm is more economical than the Laplacian pyramid 
scheme. In practice, one will again stop the decomposition after a finite number 
L of steps, i.e., co will be decomposed into d',. - -, d L  and cL.  If co has initially 
N non-zero entries, then (neglecting edge effects) the total number of non- 
zero entries in the decomposition is N / 2  + N / 4  + e - . + N/2L-' + N / 2 L  + 
N / 2 L  = N .  This shows that, unlike the Laplacian pyramid scheme (see subsec- 
tion 2B), Mallat's algorithm preserves, at every step, the number of non-zero 
entries (as was to be expected from an algorithm based on an orthonormal basis 
decomposition). 

So far we have only described the decomposition part of the algorithm. The 
reconstruction part is just as easy. Suppose we know cJ and dJ. Then 

k k 
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and hence 

= z h ( n  - 2k)ci + z g ( m  - 2k)d;C‘, 
k k 

or 

(2.52) C J - 1  = H*cJ + G*dJ. 

The reconstruction algorithm is therefore also a tree algorithm, using the same 
filter coefficients as the decomposition. 

Remark. In fact, the transition cj- ’  4 c j ,  d J  corresponds to a change of 
basis in V’-’, {+,-1k; k E Z} + { +jk, #,k; k E E ) .  Because of the underlying 
wavelet structure the orthogonal matrix associated to this basis change has a 
peculiar structure. The transition cJ, d J  + c j - l  is given by the transposed 
matrix; this is the reason why the adjoints H*, G* of H and G turn up in (2.52). 

All the above is one-dimensional. As an image decomposition-and reconstruc- 
tion algorithm, Mallat’s scheme is of course two-dimensional, and corresponds to 
a two-dimensional multiresolution analysis (see subsection 2A). Since the corre- 
sponding wavelet basis vectors can all be written as products of one-dimensional 
#,k, +jpjk (see (2.19)-(2.22)), the two-dimensional algorithm itself can also be 
generated by a “ tensor product” of the one-dimensional algorithm (see [S]). More 
specifically, the sequences to be decomposed are now elements of Z2(Z2), 

and one defines G,, H,  and G,, H, as the filters G ,  H defined by (2.49), but acting 
only on the first, respectively, the second, coefficient ( r  for “rows”, c for 
“columns”). Then co is decomposed into c1 and three difference sequences 
(corresponding to the \ k j ,  j = 1,2,3,-see (2.20)-(2.22)) d l* l ,  d’,’ and d1v3, 

c1 = H ~ H , C O ,  

d’,’ = GcH,co, 

d1I2 = HCGrco, 

d1y3 = G , G ~ c O .  

The operator G,Hr “smooths” over the column index, and looks at the “dif- 
ference” (+ high frequency information) for the row index; typically, d’.’ will 
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be large when a horizontal edge is present. Similarly, d1,2 detects vertical edges. 
It follows that, at no extra cost, Mallat’s algorithm is orientation sensitive, which 
the two-dimensional Laplacian pyramid scheme of [20] was not. In [8], S. Mallat 
gives a very striking graphical representation of the whole two-dimensional 
scheme, illustrated with several examples, which clearly show, in particular, the 
orientation specificity of his algorithm. 

3. Equivalence Between Mallat’s Discrete Algorithm 
and Multiresolution Analysis 

3.A. Weaning Mallat’s algorithm from its multiresolution parent. Ulti- 
mately, Mallat’s decomposition and reconstruction algorithm, i.e., (2.50), (2.51) 
and (2.52), deals only with sequences; the underlying multiresolution analysis is 
only used in the computation of the filter operators H and G. In this subsection 
we extract the properties of H and G that make the scheme work, without 
reference to multiresolution analysis. 

These properties are very easy to deduce from subsection 2C. First of all, we 
impose 

c IW I < 00, 

Clg(n) l  < 00. 

(3.1) 
n 

n 

This implies that the operators H, G, defined by 

( H a ) ,  = c h ( n  - 2k)an, 
n 

( G a ) ,  = c S ( n  - 2k)a,, 

are bounded operators on Z2(Z). This condition is satisfied by the h ( n ) ,  g ( n )  in 
subsection 2 C ;  it corresponds to a rather weak decay condition on (p. At later 
stages, we shall impose much stronger decay conditions on the h ( n ) .  

A second condition follows from the decomposition formulas (2.50), (2.51) 
and the reconstruction formula (2.52). The scheme will only work if 

(3.2) 

splits the original 12(Z)  into a sum of subspaces. After the first step, we have 

n 

H*H + G*G = 1. 

The third condition expresses orthogonality. Essentially, the decomposition 

1 2 ( Z )  = H*12(Z)  8 G * I Z ( Z ) ;  

after L iterations, one finds 
L-1 

j - 0  
1 2 ( Z )  = @ (H*)’G*12(Z) + ( H * ) L I Z ( Z ) .  
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In order to make the decomposition as sharp as possible, i.e., to remove 
correlations in the original sequence as much as possible, we require that these 
subspaces be orthogonal. That is, we require 

(3.3) HG* = 0. 

This condition is verified by the filter operators in subsection 2C. One finds 

So far, H and G play symmetrical roles in our conditions. The final condition 
will break that symmetry, and identify G as a “difference” operator, and H as an 
“averaging” operator. Let a be the sequence 

where N is large compared to no,  with 

for some small E. If H averages, i.e., corresponds to a low pass filter, and G 
corresponds to a band pass filter, then we expect (in regions away from the 
“edges” of a )  

( G a ) ,  = 0 for Ikl 6 4N - no and for Ikl 2 i N  + n o .  

This implies that we require 

C h ( n )  = c. 
n 
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The constant C can be determined as follows. For N + 00, the edge effects 
become negligible, and 

But 

hence C = a. Thus our h a l  conditions read 

C h ( n )  = Ji, 
n 

(3.4) 

These conditions are satisfied in subsection 2C. One has 

hence, by integration, 

or 

(see (2.18)). Similarly, 

since (see (2.17)) j d x  + ( x )  = 0, it follows that C n g ( n )  = 0. 
We have identified four conditions, (3.1)-(3.4), which guarantee that an 

algorithm ‘‘A la Mallat” works, and corresponds to averaging, respectively 
difference operations, followed by exact reconstruction. In terms of the h ( n ) ,  
g ( n ) ,  conditions (3.2) and (3.3) can be rewritten as 

(3.5) C [ h ( m  - 2k)h(n - 2 k )  + g(m - 2k)g(n - 2k)] = S,, 
k 
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and 

C h ( n  - 2 k ) g ( n  - 21) = 0. 
n 

In the remainder of this subsection, we shall rewrite the conditions (3.1)-(3.4) in 
various ways which make them more tractable to analysis. 

In order to get rid of the factors 2 in (3.5), (3.6), we define 

a(.) = h ( 2 n ) ,  

b ( n )  = h(2n  + l), 
(3.7) 

d(n) = g ( 2 n  + 1). 

Rewriting (3.5), (3.6) in terms of functions of a, b, c, d leads to 

(3.8a) c [ u ( m  - k ) a ( n  - k) + c ( m  - k ) c ( n  - k ) ]  = a,,, 
k 

(3.8b) c [ b ( m  - k ) b ( n  - k) + d ( m  - k ) d ( n  - k ) ]  = a,,, 
k 

(3 .8~)  C [ U ( ~  - k ) b ( n  - k )  + ~ ( m  - k ) d ( n  - k)] = 0, 
k 

(3.8d) C [ a ( n  - k ) c ( n  - I) + b ( n  - k ) d ( n  - I)] = 0. 
n 

In this form the conditions are completely expressed in terms of convolutions of 
the sequences a, b, c, d. It is therefore natural to introduce the 27r-periodic 
functions 

a ( ( )  = C a ( n ) e i n t ,  
n 

(3.9) 

a([) = C d ( n ) e i n t ,  
n 
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and to rewrite the conditions in terms of these functions. We obtain 

These conditions are obviously not independent. Except for trivial solutions, 
which would be in contradiction with (3.4), i.e., with 

(3.1 la)  

(3.1 1 b) 

a(0) + P ( 0 )  = a, 
Y(0) + W) = 0, 

we find from (3.10~) and (3.10d) 

(3.12) 

a(() = -eiA(t)a(() , 

where X is a real function such that X ( l  + 277) - A(() E 2 a Z  for all E. For the 
sake of simplicity we shall restrict ourselves to A([) = 0 for the moment. We 
thus choose 

(3.13) 

The only equation remaining from the system (3.10) is then 

The choice (3.13), together with (3.11b), also implies 

a(O) - P ( O )  = 0. 

Hence (from (3.11a)), 

(3.15) a(O) = P(O) = 2-1/2, 
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which agrees with (3.14) for [ = 0. It follows that any choice of 27-periodic 
functions a and P satisfying (3.14), (3.15) and Clanl < 00, Cn(bn( < 00, leads, via 
(3.13), (3.9) and (3.7), to two filter operators H and G satisfying (3.1)-(3.4). 
These filter operators can then be used for a decomposition and reconstruction 
algorithm ''A la Mallat", without reference to multiresolution analysis. 

Remarks. 1. The system of equations (3.10) can also be rewritten as one 
matrix equation. If we define the 2 X 2 matrix-valued 27r-periodic function M( 5 )  
by 

(3.16) 

then (3.10) states that M ( [ )  should be unitary, for all 5. 
2. Note that, in view of (3.9) and (3.7), the choice (3.13) is equivalent to 

(3.17) g ( n )  = ( - l ) " h ( - n  + 1). 

The equations (3.14) and (3.15) involve only the h(n) .  They can be rewritten as 

(3.18) C h ( n  - 2 k ) h ( n  - 21) = S,, 
n 

and 

C h ( 2 n )  = Ch(2n + 1) = 2-l/* 
n n 

This last condition is implied by (3.18) and 

(3.19) C h ( n )  = 2lI2 

3. If one introduces the 27r-periodic function H ( [ ) ,  

H ( [ )  = C h ( n ) e t n t ,  
n 

then the conditions (3.14), (3.15) can als6 be written in terms of H. Clearly, 

H ( 0  = 4 0  + e'EP(20,  

or 
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Then (3.14), (3.15) are equivalent with 

(3.20) 

and 

(3.21) H ( 0 )  = a. 
Under the form (3.20) this condition is not new. It can be found in [16], where 
mo([) = 2-'/'H(5) is used, rather than H. While this paper was being written, 
S. Mallat pointed out to me that (3.20) is very similar to a condition derived by 
M. Smith and T. Barnwell [24] in the construction of "conjugate quadrature 
filters". In fact, (3.20) is identical to their condition. Smith and Barnwell were 
looking for, and found, a tree-structured two-band coding scheme with exact 
reconstruction, which is exactly what this subsection is about! The constructions 
given later (at least insofar as they describe discrete filters) are therefore, in fact, 
special cases of their construction. Ultimately, however, our aim here is to 
construct orthonormal wavelet bases of compact support, which is a very differ- 
ent point of view. Even from the filter point of view, our results go further than 
Smith and Barnwell's, in that we give complete characterization of the possible 
filters. We shall however not go into this here. 

4. Similarly one can introduce G ( 5 )  = E,g(n)e'"€. The matrix statement 
(3.16) is then equivalent to the requirement that the matrix 

(3.22) 

be unitary. This is the form under which this requirement appears in [16]. 
Depending on what one wants to do, (3.22) and (3.20) may or may not be more 
useful than (3.16) and (3.14). The advantage of (3.14), (3.16) is that no correla- 
tions are introduced, as in (3.20), (3.22), linking the behavior of H at 5 + 7r with 
its values at E. The conditions (3.16) or (3.22) can be generalized to situations 
where three or more band filters are considered (corresponding to decimations 
with factors 3,4, * * rather than 2), or even more complicated structures, in more 
than one dimension (associated with lattices in Zd;  see [21]). It was pointed out 
to me by P. Auscher [25] that in these cases the generalization of (3.16) is more 
useful, for practical construction, than the generalization of (3.22), precisely 
because it avoids introducing correlations. 

5. Note that C,h(2n) = Z,h(2n + l), which is a consequence of (3.18)-(3.19) 
(see Remark 2 above) implies that all the possible H ( t ) ,  satisfying all the above 
conditions, necessarily are divisible by (1 + e Y )  (see subsection 2B). 

Finally, let us conclude this subsection with some simple examples. 
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EXAMPLE 3.1. The simplest possible example is 

a ( ( )  = P ( ( )  = 2-112, 

corresponding to 

h(0 )  = 2-112, g ( 0 )  = 2-112, 

h ( 1 )  = 2-112, g ( 1 )  = -2-112, 

all the other h( n ) ,  g( n )  being zero. 

EXAMPLE 3.2. The next simplest example is 

where v is an arbitrary real number, This corresponds to 

h ( 0 )  = 2- ' /2v (v  - 1 ) / ( v 2  + l), g(0) = 2- ' /2v(v  + 1 ) / ( v 2  + l), 
h(1 )  = 2-'/2(1 - v ) / ( v ' +  l), g(1) = - 2 - y v  + 1 ) / ( v 2  + l), 
h ( 2 )  = 2 - y v  + l ) / ( v 2  + l), g ( 2 )  = 2-'/*(1 - v ) / ( v '  + l), 

h ( 3 )  = 2- ' /2v (v  + 1)/(v2 + l ) ,  g ( 3 )  = -2 -1 /2v (v  - l ) / ( v 2  + l ) ,  

all the other h ( n ) ,  g ( n )  being zero. 

Note. We have here taken 

g ( n )  = ( - l ) " h ( 3  - n) 

rather than (3.17); this shift corresponds simply to choosing A(() = ( instead of 
0 in (3.12). 

3.B. Introducing a regularity condition. In the preceding subsection we 
derived and discussed a set of necessary and sufficient conditions, directly on the 
filter operators, for Mallat's algorithm to work. All these conditions concerned 
only what happened in one step of decomposition/reconstruction. In the discus- 
sion, in subsection 2B, of the Laplacian pyramid scheme, we saw that it is also 
important that the iterated reconstruction, applied to a sequence consisting of 
only one non-zero entry, looks still reasonably nice, even after several iterations. 
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In Mallat’s algorithm, a sequence co is decomposed into d’ , .  . -, d L ,  cL,  with 
d J  = GHj-lc’, and c L  = HLc0; the reconstruction formula is then (cf. (2.52)) 

L 
c0 = (H*)’-lG*d’ + ( H * )  L ~ L .  

j - 1  

The iterated filter operator is thus H*. It is therefore important (see subsection 
2B) to study the behavior of (H*)‘e, for large 1, where e is a sequence with only 
one non-zero entry, e.g. en = an0. Ideally we want the graphical representation 
(with histograms-see Figures 2, 3 in subsection 2B) of (H*)’e to look “nice”, 
which expresses itself by convergence, for 1 + 00, to a reasonably regular 
function. 

To show that this is a genuine concern, we have plotted, in Figure 4, the 
histogram representation of ( H * e ) , .  - -, (H*)6e, for H* chosen as in Example 3.2 

L I’Y 

Figure 4. The histogram representations of (H*) j e ,  j = 1,. . . ,6 ,  for h ( n )  which do not satisfy a 
regularity condition (see text). 
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(subsection 3A),  with v = -1.5. For increasing 1, (H*)'e becomes increasingly 
messy; in fact, (H*)'e converges, for I + 00, to a discontinuous, fractal function. 

As in subsection 2B, we represent (H*)'e by a histogram qr with step width 
2-', and with amplitudes given by the successive 2'/2((H*)'e)n. The normaliza- 
tion, different from that in subsection 2B (because C h ( n )  = fi and not l),  is 
again chosen so that the area under the histogram remains 1 for every 1. The 
stepfunction can be written as (see subsection 2B) 

(3.23) V / ( X )  = ( G X [ - 1 / 2 ,  -1/2[)(X), 

where 

(3.24) (THf )(.) = f i C h ( n ) f ( 2 x  - 4. 
n 

By taking Fourier transforms, (3.23) and (3.24) lead to 

where mo(()  = 2-1/2Cnh(n)eint. Hence, at least in a formal sense, q, + qm for 
I --f 00, with 

(3.26) 

The following lemma ensures that ijm is well defined, i.e., that the infinite 
product in (3.26) converges, at least pointwise. 

LEMMA 3.1. Suppose that, for some E > 0, 

(3.27) 

Then (3.26) converges pointwise, for all 6 E W. The convergence is uniform on 
compact sets. 

Proof: Since C h ( n )  = fi, we have m o ( t )  = 1 + 2-1/2Cnh(n)(e'nt - l), 
hence Imo(t) - 11 g aC, lh(n) l  Isinfntl. For any 0 < S g 1 there exists C, 
such that, for all a E W, (sinal 5 C,lal'. It follows that 

hence 

(3.28) 
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where X = 2rmn(1, > 1. This is sufficient to ensure convergence of (3.26), for any 
( E W. It immediately follows from (3.28) that the convergence is uniform on 
compact sets. 

Remark. While being more restrictive than (3.1), the condition (3.27) is still 
very mild. In practice one requires much stronger decay for the h(n) .  For filter 
construction purposes, one even restricts oneself to the case where only finitely 
many h(n)  are different from zero. 

It is however not sufficient to know that 9, is well defined. In order to avoid 
situations such as depicted in Figure 4, we require that (i) 4, has sufficient 
decay, so that r ] ,  is sufficiently regular (at least continuous), and (ii) r] ,  converges 
to r],, pointwise, for 1 -, 00. 

+ 00, of $,((), we shall use the same trick as in 
subsection 2B, i.e., we shall require that m o ( ( )  is divisible by (1 + eit)N, for 
some N > 0. The precise statement is given in the following lemma, using an 
estimation technique of P. Tchamitchian [S]. 

To ensure the decay, for 

LEMMA 3.2. I f m o ( ( )  = (1 + e i t ) l N F ( ( ) ,  where*(() = C,f(n)e'"tsatisJies 

(3.29) C l f ( n ) l I n l E  < 00 forsome E > O 

and 

(3.30) 

then there exists C > 0 such that, for all ( E W, 

Remarks. 

2. The condition (3.29) will automatically be satisfied if 

1. It follows from (3.31) that r ] ,  is continuous if H satisfies all 
the above conditions, and if B < 2N-'. 

(3.32) 
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Proof: Since II~~,cos(2-jx) = x-’sin x, we have 

W r m 

where the right-hand side converges uniformly on compact sets because of (3.29). 
There exists therefore a constant C such that, for all 161 4 1, 

(3.34) 

Take now 161 > 1. Determine jo  E N such that 

(3.35) w ,  

To estimate I17-1.F(2-j2-’o[) we have used the same argument as in the proof 
of Lemma 3.1. This is allowed since C f ( n )  =.F(O) = mo(0) = 1. Together, 
(3.35), (3.34) and (3.33) imply (3.31). 

In our search for “regularity” we have, so-far, only used one of the special 
conditions on the h ( n ) ,  derived in subsection 3A, namely (3.4), C , h ( n )  = 6. 
And even that has not played a critical role, since it was only used for 
normalization purposes, and we could have as easily normalized by any other 
constant which happened to be the sum of the h ( n ) .  For our last step, the proof 
that the histograms q, converge pointwise to the continuous function qm (assum- 
ing B is not too large), we need an extra ingredient, namely Imo($)l 5 1. Since, 
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however (see (3.20)), as a consequence of (3.2)-(3.3), lmo(( )J2  + lmo(( + . ) I 2  = 
1, this condition is automatically fulfilled for h( n )  satisfying (3.18)-(3.19). 

PROPOSITION 3.3. Define mo(5) = 2-1/2Cnh(n)einE,  where the h ( n )  satisfy 
(3.18), (3.19). Suppose moreover that 

with S(c) = C, f(n)e'"€ such that 

(3.37) C l f ( n ) l I n l e  < 00 forsome E > o 

and 

n 

(3.38) sup IS(() I = B < 2N-'.  
EcR 

Then the piecewise constant functions ql, defined recursively by 

(3.39) = f i C h ( n h , - $ x  - 4 ,  
n 

with 

V O b )  = X[-1/2,1/2[(X)> 

converge pointwise to the continuous function q ,  defined by 

00 

em([) = (27r)-1/2 n m0(2-j5) .  
j - 1  

Proof 1. As an intermediate step, we prove p 1  -+ q,, pointwise, where the 
p /  are defined in the same recursive way as the ql, but starting from a different 
initial function, i' -t,x, -1 j x _I 0, 

p o ( x ) =  1 - x ,  O j X 6 1 ,  
otherwise. 

2. Taking Fourier transforms, we find 

From Lemma 3.1 it follows that + ij,, uniformly on compact sets. This 
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implies that, for all 6 > 0, and for all R > 0, we can find I, such that, for all 
f L I,, 

On the other hand, Grn E L' since B < 2N-1. It follows that for all 6 > 0 there 
exists R such that 

L1-convergence of $, to i,, which implies pointwise convergence of pI to qrn, will 
then follow if we can prove that, for all 6 > 0, there exist R and I, large enough, 
so that, for all 12 I,, 

3. We need thus to evaluate the integral 

where P I ( [ )  = lIf,,m0(2-j4). To do this, we split the integral into two parts, 
namely 5 2 ' ~ .  To evaluate these two parts, we shall use the 
following three properties of PI: 

2 2'77 and R 5 

where p = log B/log2 (use the proof of Lemma 3.2) and 

(iii) PI is periodic, with period 2'+'?r. 
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4. We concentrate first on 2 2b. Using the periodicity of P/, we find 

Choose X = 2 - O ' ,  with a ~ ] 0 , 1 [  to be fixed later. Then 

Now 

where C, is finite because N - j3 > 1. 
On the other hand, 

- - .= C22K1+B-N)h-N 

Putting it all together, and choosing a = ( N  - j3 - l)/(N + 2) ~ ] 0 , 1 [ ,  this 
implies that (3.40) is 

(3.41) 5 c, 2 - W N - 8 -  I)/( N+ 2) 
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This clearly tends to zero for 1 --+ 00. 

2(x(/n for 1x1 
5 .  We now evaluate the integral of I f i l l  over R 141 5 2%. Since lsin XI  2 

$71, we find 

Since N - p - 1 > 0, this tends to zero for R + co, uniformly in 1. Together 
with (3.41) this proves that 

can be made as small as wanted, by choosing 1 and R large enough. As pointed 
out in point 2, this proves llfil - i j m l l L 1  -'l-.W 0. 

6. We have thus proved that pI  + qm, pointwise. In fact, we can even show a 
little bit more. The same arguments (points 2 + 5 )  as above can be stretched a 
little to prove 

J ~ E  (1 + EDAI i jm(O I < 00 

and 

and the convergence pI + qm is uniform on compact sets. 
7. Finally, we only need to show that pointwise convergence of the pl  implies 

pointwise convergence of the q,. The two functions po and yo agree on integers, 

po(0)  = qo(0) = 1, 

p o ( k )  = q , ( k )  = 0 for k E , Z ,  k # 0. 
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Using the recursion relation (3.39, which both the pI  and the qr satisfy, one sees 
that this implies, for all I E N, 

q,(2-'k) = pI(2-'k)  for all k E H .  

Let x E W be arbitrary. For any E > 0, there exists 6 > 0 such that 

IX - YI I 6 + lqm(x> - t m ( Y )  I s tea 

There also exists I ,  such that, for all I1 I, ,  and all y E [ x  - 6, x + 61, one has 

Jqm(y) - P / ( Y )  I I t ~ *  
Choose I >= I ,  = max(l,, -1nS/ln2). Since q, is piecewise constant, with step 
width 2-', it follows that there exists k E Z such that 

and 

Hence 

I X  - 2-'k( 5 2-' 6 

q r ( x )  = ql(2- 'k)  = pI (2 - 'k ) .  

Remarks. 1. Using only slightly modified arguments, one proves, under the 
same conditions (in fact, only B < 2N-1/2  is needed) that qr + qm in L2, for 
I -+ co. One simply replaces the L'-estimates for q,  - p l  by L2-estimates for 
qm - q1 (no intermediary p r  are needed). 

2. As noted above, it is sufficient that 

Clh(n)lInlN+" < co 
n 

to ensure (3.37). 

since in this case 
3. The h ( n )  of Example 3.1 do not satisfy the conditions of the proposition, 

rn,(() = $(I + d t ) ,  

hence N = 1, B = 19(()1 = 1, and therefore B = Z N - ' .  However, in this case 
one checks directly that 

The limit q, is not continuous in this case, qm = x [ , , ~ [ ,  but the pointwise 
convergence q, -+ q, still holds a.e. 
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4. The coefficients h ( n )  defined by 

h(0)  = h(3) = 2-1’2, 

h( n) = 0 otherwise, 

satisfy all the “discrete” conditions of subsection 3A, but do not satisfy the 
conditions in the last proposition (for the same reason as the h ( n )  of Example 
3.1). In this case, however, the pointwise convergence of the q, fails on a whole 
interval. It is easy to check that, for any I, the qr take only two values, 0 and 1. 
(The easiest way to check this is to use the “graphical” construction (2.40) of the 
q,-see subsection 2B and Figure 3.) On the other hand, 

mo([) = +(I + e 3 9 ,  

hence 

or 

There is therefore no pointwise convergence for any x between 0 and 3. The 
L2-convergence fails too, since llq,l1’,2 = $, whereas for all finite I, qr is the 
characteristic function of a union of intervals, and hence Ilqrll$ = llq,llL1 = ij,(O) 
= 1. 

5. Only two values of Y, in Example 3.2, lead to coefficients h ( n )  that satisfy 
the conditions of the proposition. They correspond to mo([) divisible by 
(1 + do2. As noted above, all mo([) satisfying the discrete conditions in 
subsection 3A are divisible by (1 + eiE) (see Remark 5 at the end of subsection 
3A). In Example 3.2, extra divisibility by another factor (1 + eJE) leads to the 
condition 

h(1) - h ( 3 )  = 2h(0), 

Y =  fl/& 

h(0)  = (1 r 6 ) / ( 4 4 3 ) ,  

or 

The corresponding h(O), . , h(3) are 

(3.42) 

We shall come back to these h ( n )  later. 
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With Proposition 3.3 we have completed our program of writing a set of 
explicit conditions on the h ( n ) ,  g ( n ) ,  without reference to a multiresolution 
analysis background, which make Mallat’s algorithm work, and which moreover 
lead to filters with sufficient “regularity”. 

In the case where the h ( n ) ,  g ( n )  are calculated starting from a multiresolu- 
tion analysis (see subsection 2C), one has 

h ( n )  = (+ lo ,  +on>,  

or 

i.e., 

+ ( t x )  = 2ll2 C h ( n ) + ( x  - n). 
n 

This is equivalent to 

It follows that 

(3.43) 

or, since &O) = ( 2 ~ ) - ~ / ’ /  dx + ( x )  = (27r)-’/’ (see (2.18)), 

(3 -44) 44.) = r)&)* 

As pointed out in subsection 2B, the r), = T ~ x [ - ~ / ~ , ~ / ~ [  can also be computed via 
a different recursion, ( 2 4 ,  which we shall call the “graphical” recursion, and 
which lies at the basis of the graphical construction technique illustrated by 
Figure 3. It follows from (3.44) that, in the case where the h ( n )  are derived from 
a multiresolution analysis framework, the graphical construction by iteration (see 
Figure 3, where the h ( n )  now play the role of the w ( n ) )  is therefore nothing but 
a reconstruction of the function +; in the limit for 1 -+ 00, finer and finer detail is 
achieved for increasing 1. 

3.C. Equivalence between the discrete conditions and multiresolution analy- 
sis. So far we have formulated conditions, directly on the h ( n ) ,  which ensure 
that S. Mallat’s algorithm works (with these coefficients), and has regularity (in 
the sense given to it at the end of subsection 2B, or in subsection 3B). We have 
seen for every condition how the coefficients h ( n )  computed from a multiresolu- 
tion analysis fit into the picture. The main result of this subsection is that these 
multiresolution-based examples are the on& ones. It turns out that any sequence 
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of h ( n )  satisfying the conditions in subsections 3A and 3B corresponds to a 
multiresolution analysis. The function 7" defined by (3.26) is then exactly the 
function + from the multiresolution structure. 

To prove this equivalence, we start from a sequence h ( n )  satisfying (3.18), 
(3.19) and (3.27). We also assume that the function rno(<) = 2-'I2Cnh(n)ein6 
satisfies all the conditions in Proposition 3.3. We then define, as in (3.17), 

(3.45) g ( n )  = ( - l ) " h ( - n  + I) ,  

and, as in (3.44), 

or 

m 

(3.46) 4(<) = (2")-112 n r n o ( 2 - j t ) .  
j = 1  

From the proof of Proposition 3.3 we know that + is a bounded, uniformly 
continuous function; since 4 E L' n L", one also has + E L2. We define, in 
accordance with (2.16), 

(3.47) 

Since Cnlg(n)l = C,lh(n)l < 00, it follows that 

All the estimates of subsection 3B on 7, carry over, therefore, to +, and one 
finds that J, is a bounded, uniformly continuous L*-function. As before, we 
define +jk(X) = 2-JI2 +(2-jx - k ) ,  and +jk(X) = 2-J12 +(2-jx - k ) .  The defi- 
nitions (3.46) and (3.47) immediately imply 

(3.48) 

(3.49) 

We shall prove that the +jk constitute an orthonormal basis of L2(W). In a first 
step we prove some orthogonality relations. 

LEMMA 3.4. Let h(n)  satisfy (3.18), (3.19), (3.28) and the conditions in 
Proposition 3.3. Let g ( n ) ,  +, + be dejined by (3.459, (3.46), (3.47), respectively. 
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Then $, # E L 2 ( W ) ,  and, for all j, k ,  k' E h, 

(3.50) ( # j k ,  # j k ' )  = ' k k ' ,  

(3.51) ( # j k ,  $jk') = O, 

(3.52) ($ jk?  $jk') = ' kk"  

Remark. Note that (3 .50)-(3.52)  are restricted to one j-level at a time. The 
orthogonality between j-levels will follow from Lemma 3.5. 

Proof: 1. Let f r  be defined as in Proposition 3.3, 

For reasons which will become obvious, we add an index 0 to f r ,  

f r .0  = 771. 

For arbitrary k E Z, we define 

f/, k = ( T k )  ' X [  - 1/2+ k ,  1 /2+ k [  

with ( T k f ) ( x )  = @ Z n h ( n ) f ( 2 x  - n - k). Due to the translations over k ,  built 
into qo, k as well as into Tk, qr, k is just a translated version of This can easily 
be checked by induction, 

f O , k ( x )  = x [ - 1 / 2 + k , l / 2 + k [ ( x )  = f O , O ( x  - k ,  

and 

f l , k ( x )  aCh(n)f/-1,k(2x - - k ,  
n 

Since (see Remark 1 following Proposition 3 . 3 )  I I f r , o  - $llLz -+ 0 for I .+ 00, it 

2. Since i j , , o ( E )  = [ n j _ , m 0 ( 2 - j ~ ) ] ~ 0 , 0 ( 2 - r E ) ,  and since I rno(E) I  s 1 and 
folh's that Ilf,, k - $OkllL2 0 for 1 b o a  

E L ~ ,  it follows that all the f r , k  are in L2. 
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3. For 
induction. 
' k k ?  for k' 

fixed I, the different qr, are orthonormal. This can again be proved by 
By translation invariance, it is sufficient to prove that (v/, k ,  vr, k ' )  = 
= 0. We have 

and 

By induction it follows that ( q / ,  k ,  r)/, k ' )  = ' k k !  for all I ,  k ,  k'. 
4. It follows immediately that 

( + j k ,  +jk,)  = 2-'/&+(2-'x - k)+(2-'x - k') 

= / ~ x + ( x ) + ( x  - k' + k )  

5 .  With g ( n )  defined by (3.49, the conditions (3.18), (3.19) on the h ( n )  
imply (see subsection 3A) 

(3.54) 

(3.55) 

C g ( n  - 2 k ) h ( n  - 21) = 0,  
n 

Hence, by (3.48) and (3.49), 

= C g ( n  - 2 k ) h ( n  - 2k') = 0 ,  
n 
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and 

The “discrete orthogonality condition” (3.18) plays a crucial role in this 
proof. In the terminology of subsection 3A, (3.18) is equivalent to HH* = 1, 
where H* is the bounded I2-operator (see subsection 3A) 

This implies that H*, as an operator from l 2  to 12,  preserves orthogonality of 
sequences. The operator TH defined by (3.24) was in fact constructed to exactly 
reproduce, when acting on xi-1,2,1,2[ and its iterates, the action of H* on the 
sequence e ( e n  = an0) and its iterates (see subsection 2B). This implies that 
repeated application of TH preserves the orthogonality of the qlo,k.  This is what 
makes the above proof work. 

In the following lemma we prove that the +,k constitute a tight frame (see 
Section 1, or (3.57) below). Again, the crucial ingredient will be one of the 
discrete identities which follow from the conditions on h( n ) ,  g( n) .  From subsec- 
tion 3A we know that, with g ( n )  as defined by (3.49, and with h ( n )  satisfying 
all the conditions above, 

(this can also be derived directly from (3.18) and (3.45)). It follows that (use 
(3.48), (3.49)) 

This, of course, already points towards multiresolution analysis (see subsection 
2A). 

LEMMA 3.5. Let h ( n ) ,  g (n ) ,  +, + be as in Lemma 3.4. Then, for all f E L2(W), 

(3.57) 
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Proof: 1. Take any f E CF, Then, since + E L', Xnl(+jn,  f ) I 2  converges, 
for a n y j  E Z. Moreover, by (3.56), 

where we have used (3.18), (3.54) and (3.55). 
2.  By iteration, one has, for all N E N, 

N c c 1 ( + j k ,  f) 1 2 -  (3.58) c 1 ( G - N n ,  f) 1' = c 1 ( + N k ,  f) 1' + 
n k j = - N  k 

In this expression we shall let N tend to GO. 
3. We first concentrate on C k l ( + N k ,  f > 1 2 .  Let us suppose, for the sake of 

definiteness, that suppf c [ - 2 " o ,  2"0]. Take N 2 no + 1, so that the translation 
steps in the + N k ( x )  = (pN0(x - 2 N k )  are larger than Isuppfl. On the other hand, 
for any E > 0 there exists k, E N such that 

Then 

s 2 - N ( 2 k ,  + l)lr+lr: Ilfll: + E l l f l l l .  

By choosing E and N appropriately, this can be made arbitrarily small. Hence 

(3.59) C I ( + N k 3 f > 1 2  '* 

k 
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4. We now concentrate on & l ( + - N k ,  f ) I 2 .  By means of the Poisson formula 
this can be rewritten as 

Here 

An easy estimation then leads to 

This tends to zero for N + 00. 

5.  We now examine the first term in (3.60). One has 

since lrno(3)1 5 1 for all 3 E R. But 

- - < ClSI", 

where we have used (3.19) and (eiu - 11 5 CeIale (we assume 0 < E 5 1). Hence, 

m 

- i (0 )  1 6 (2a)-'l2C c (2-jtle I - C'gy. 
j - 1  



964 I. DAUBECHIES 

Consequently, using i(0) = (2~)-"', we find 

2 n j  dE ( 6 ( m )  I'lf(t) I' 

This converges to l l f l l '  as N + 00. Hence 

(3.61) c I ( + - N k ,  f) l2 llf11'. 
k 

6. Putting together (3.58), (3.60) and (3.61) shows that, for all f E CT(R), 

(3.62) C I ( + j k ,  f) I' = I I ~ I I ~ L ~ .  
j ,  k 

Since CT(R) is dense in L2(R), (3.62) extends to all f E L2(R). 

Since 11+11 = 1 (this is a special case of (3.50), with j = k = k' = 0), (3.57) 
implies that the + jk  constitute an orthonormal basis. This completes the proof of 
the main theorem of this section. 

THEOREM 3.6. Let h ( n )  be a sequence such that 

(i) Cnlh(n)l lnl' < 00 for some E > 0, 
(ii) Cnh(n  - 2k)h(n  - 21) = Sk,, 

(iii) C h ( n )  = 2ll2. 
Suppose also that mo( t )  = 2 - '/'Cn h (n) e in€ can be written as 
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Then the + j ’ j k ( ~ )  = 2-JI2+(2-Jx - k )  define a multiresolution analysis (in the 
sense of subsection 2A); the qjk are the associated orthonormal wavelet basis. 

Remarks, 1. As we already said in the introduction, this theorem is also 
proved in [19], under slightly different conditions. The growth restrictions (3.37) 
and (3.38) on the h ( n )  are replaced, in [19], by the condition that 

this condition implies that the +jk, with Cp defined as above, define a multiresolu- 
tion analysis. The function + may, however, still be very irregular; the coefficients 
h ( n )  used in Figure 4, e.g., satisfy the positivity condition of [19], but are clearly 
not associated with a regular +. In the present paper, we emphasized regularity of 
the discrete filters; once regularity is ensured by means of conditions (3.36)-(3.38), 
equivalence with regular multiresolution analysis follows. Consequently, the 
techniques of our proofs and the proofs in [19] are quite different. The basic 
intuition for the present proof was mainly graphical. As explained above, the 
orthogonality of the +oOk follows naturally, given our “graphical” construction, 
from the discrete conditions. Similarly, (3.60) can be understood graphically. 

2. At the end of subsection 3B (Remark 3) we mentioned the link between 
the present construction and the “conjugated quadrature filters” of Smith and 
Barnwell [24]. Any of their conjugated quadrature filters will satisfy all the 
conditions in subsection 3A. Provided they also satisfy the regularity condition in 
subsection 3B, they can be used to construct orthonormal wavelet bases. Since 
the goals of [24] are completely different however, most of the examples in [24] do 
not satisfy our regularity condition. 

infl&l*,/21m,(Ol > 0. Together with lmo(t>I2 + Imo(l + n)I2 = 1, m,(O) = 1, 

4. Orthononnal Bases of Wavelets with Compact Support 

In subsection 2A we reviewed how orthonormal bases of wavelets can be 
constructed, starting from a multiresolution analysis framework. The basic in- 
gredient there was a function + such that (2.15) held, for some c,, without even 
requiring the to be orthogonal. Theorem 3.6 gives another recipe for con- 
structing an orthonormal basis of wavelets (and the associated multiresolution 
analysis), this time from a sequence ( h ( n ) ) ,  EZ. 

If this sequence has finite length, h(n)  = 0 for n < N - ,  or n > N , ,  then the 
corresponding basic wavelet has compact support. This can be checked very 
easily from the graphical construction of + (see Figures 2,4), or from the 
recursive definition of the q,, 

(4.3) v o  = X[-1/2,1/2[. 
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The recursive definition of the qr implies that all the qr have compact support, 
SUPP v/ c [Nl, -, Nl, +I ,  with Nl, -= t (Ni -1 ,  -+ N-1, and NI, += t (Nr-1 ,  ++ N+h 
while No, -= - 5, No, += $. Hence H/,  - + N - ,  Nr, + + N +  for 1 + 00, which 
implies that (p has compact support c [ N - ,  N+]. Since only finitely many g ( n )  
are non-zero ( g ( n )  = 0 for n < - N + +  1 or n > - N - +  l),  J, also has compact 
support, 

supp J, c [+(l - N + -  N - ) ,  t (1  + N + -  N - ) ] .  

In order to construct orthonormal bases of compactly supported wavelets, it 
suffices, therefore, to construct finite-length sequences h (n) satisfying all the 
conditions of Theorem 3.6. An example of such a finite-length sequence is 
Example 3.2, with v = f 1 / f i  (see Remark 5 following Proposition 3.3). In this 
case one finds (see (3.42)) N - =  0, N + =  3, and 

(4.4) 

Since 

the example (3.42) satisfies all the required conditions. The h ( n )  given by (3.42) 
correspond, therefore, to an orthonormal basis of continuous wavelets. The basic 
wavelet has support width equal to N+- N - =  3. Figure 5 shows the graphs of (p, 
J, and their Fourier transforms, for this example. There are several striking 
features in Figure 5.  First of all, it is obvious that even though and J, are 
continuous, they are not very regular. There exist other constructions of com- 
pactly supported wavelet bases, in which c) and + have more regularity, at the 
cost of larger numbers of non-zero coefficients h ( n ) ,  which results in larger 
support widths for +, (p. For the family of examples we shall examine below, the 
support width of J,, c) increases linearly with their regularity. Another striking 
feature of Figure 5 is the lack of any symmetry or antisymmetry axis for J,, (p. 
This is quite unlike the Meyer wavelets (see [4]) or the Battle-LemariC wavelets 
(see [16]). In all these (non-compactly supported) examples, (p is an even 
function, and J, is symmetric around x = f. We shall see below that, except for 
the Haar basis (see (1.9) or Example 3.1), there exist no compactly supported 
wavelet bases in which c) is either symmetric or antisymmetric around any axis. 

The plots of J, and c) in Figure 5 (and later figures, for other examples) are 
made by direct implementation of the “graphical recursion algorithm” equivalent 
with (4.1)-(4.3) (see subsection 2B). This is much more efficient than Fourier 
transform of the infinite product (3.46) (see [26]). To plot Figure 5 ,  only 8 
iterations of type (2.40) were needed (i.e., qs is plotted rather than (p; the 
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I 

: 9  I 

I 

I 4 .  . :  

difference is not detectable at the scale of the figure). If more detail is wanted at 
any point (see Figure 6), it is possible to restrict to a neighborhood, and to locally 
iterate a few times more to obtain this detail. 

In the following subsections we describe families of examples of compactly 
supported wavelet bases, and their properties. Henceforth, we shall always 
assume that only finitely many h ( n )  are non-zero. 

2.00 

1 .oo 

0. 

-1.00 

1 . s o  

1 . oo  

,500 

0. 

-.so0 

(a) 

Figure 5. The functions 4, I), and the modulus of their Fourier transforms, $1, Ijl, for the 
orthonormal basis of compactly supported wavelets corresponding to the h ( n )  in (3.42) (see text). Out 
of the two ossibilities in (3.42) we choose the one corresponding to Y = -1/6 (i.e., h(0) = 

(1 + fi)/4&, etc.) 
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,750 

,500 

, 2 5 0  
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1 1 

0 5 0 0  10 0 15 .0  20 0 

(b) 

Figure 5. Continued 

4.A. Lack of symmetry. Here we shall use again the notations a(n); - -, 
d ( n )  (see (3.7)) and a([); - -, a(() (see (3.9)) introduced in subsection 3A. Let us 
define, for any trigonometric polynomial P(() = Cnp,,ernt, the two numbers 

N + ( P )  = max{n; P,, f O}, 

N - ( P )  = min{n; p,, z O}. 
One easily checks that 

N+(IPI2)  = - N - ( I P I Z )  = N + ( P )  - N - ( P ) .  
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Since Ia(E)12 + IP(E)12 = 1 (see (3.14)), and a # 0, /3 # 0 (see (3.15)), this 
implies 

(4.5) N + ( 4  - N - b )  = N+(B)  - N A B ) .  

N+(mo) = m=(2N+(4,2N+(B) + 11, 

N - ( m o )  = min(2N-(cu), 2N-(P) + 1). 

On the other hand, the definition (3.7) of the a(n), b(n) ,  gives 

Together with (4.5) this leads to 

N + ( m o )  - N-(mo) 

= max(2l\r+(a) - 2 ~ - ( / 3 )  - 1 , 2 ~ + ( / 3 )  - 2 ~ - ( a )  + 1). 
(4.6) 

In any case, N + ( m , )  - N - ( m , )  is an odd number. 
If the function + were symmetric around zero, $ J ( x )  = $J( - x ) ,  then h ( n )  = 

h ( - n )  would follow. This would however imply N + ( m o )  = - -N-(m0) ,  i.e., 
N+(mo)  - N - ( m o )  = 2N+(mo) would be even. Since this is in contradiction 
with (4.6), it follows that the function 9, associated with an orthonormal basis of 
wavelets with compact support, can never be an even function. 

What about symmetry with respect to another point A # O? Suppose 

$0 + 4 = $J(A - 4, 
where we can, without loss of generality, shift X to the interval ]0,1[. Then it 
follows that 

4(1) = e2i’4$( -t). 

Because of the definition of 4 as the infinite product (3.46), this implies 

mO(E) = ezr ’h0(  - E ) .  

Since both m o ( [ )  and mo(-[) are trigonometric polynomials, this leaves only 
one possible value for A, namely A = f?-. Let us, therefore, assume that $J is 
symmetric with respect to f, 

Then 

+ ( x  + 1) = $J( - x ) .  

h(2n + 1) = h( - 2 4 ,  

or 

b ( n )  = u ( - n ) .  
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a) 
1.5 

I .  

.5 

0 

-.5 

Figure 6.  The function $I of Figure 5, and 6 local blow-ups 
(a) The different zoom-in zones are shown on the graph of + 
(b) The blow-ups around 1) x = .5, 2) x = 1, 3) x = 1.5, 4) x = 2., 5 )  x = 2.5, 6)  x + 2.75. 

The detail in these blow-ups illustrates the fractal, self-similar nature of this function +. 

Hence - 
P ( 0  = 4 6 )  * 

Together with (3.14) this implies 

2 l G )  I’ = 1, 
or 

a(.)  = f2-1/2S,, = b ( - n )  for some k E N. 
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1.45 1.5 1.55 

I I 
,021 I 

2.45 2.5 2.55 

(b) 

Figure 6. Continued 

We can, again without loss of generality, choose k = 0 (this amounts to a 
translation of @ by an integer). The corresponding h(n)  are then exactly given by 
Example 3.1, resulting in Q = x ~ , , ~ ] .  

All these arguments prove the following proposition. 

PROPOSITION 4.1. The Haar basis (1.9) is the only orthonormal basis of 
compactly supported wavelets for which the associated averaging function Cp has a 
symmetry axis. 

In the following subsection we explicitly characterize all the functions rn, 
corresponding to orthonormal wavelet bases with compactly supported basic 
wavelet. 

4.B. Characterization of all orthonormal, compactly supported wavelet bases. 
The basic condition (3.18) on the h(n)  can be rewritten as (see subsection 3A) 

(4.7) Im,(€)  IZ + Im,(€ + 4 l2 = 1. 
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On the other hand, we have imposed, in Proposition 3.3, the following structure 
on m,: 

(4.8) m O ( t )  = [$(l + e")] "Q(e"),  

where Q is a polynomial, since only finitely many h ( n )  are non zero. Moreover, 
since all the h(n)  are real, all the coefficients in Q are real as well. From (4.8) we 
have 

lmo(E)  l2 = [c0s2$t] NIQ(e'E) 12.  
Since Q(e '€ )=  Q(e-"),  the polynomial lQ(eiE)I2 can be rewritten as a poly- 
nomial in cost, or, equivalently, as a polynomial in sin2+[. Introducing the 
shorthand y = cos2$[, (4.7) becomes 

(4.9) yNP(1 - y )  + (1 - y)"P(y) = 1. 

Any m ,  of type (4.8) which solves (4.7) corresponds therefore to a polynomial P 
solving (4.9) and satisfying 

(4.10) P ( y )  2 0 for y E [0,1]. 

Conversely, every polynomial P satisfying both (4.9) and (4.10) leads to 
solutions of (4.7), with real coefficients h(n).This is due to the following lemma 
of Riesz [27]. 

LEMMA 4.2. Let A be a positive trigonometric polynomial containing only 
cosines, A ( ( )  = Er-,a,,cosn( (with a ,  E R). Then there exists a trigonometric 
polynomial B,  of order N ,  B ( [ )  = Cr=,b,,eint, with real Coefficients b,,, such that 

The proof of this lemma (see [27]) is simple and elegant. It constructs B 
explicitly; this construction is now widely used by engineers when designing 
filters. We include the proof here, because we shall come back to the construction 
later. 

Proof: To 

l N  
A ( ( )  = a, + c an(einC + e-i"E) 

n-1  
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we associate the polynomial 

l N  1 N-1 
pA(z )  = 2 QN-nZ" + aOzN + 2 anZN+,. 

n-0 n - 1  

This polynomial has 2N zeros (counting multiplicity). Since PA(eic) = eiNcA([), 
it follows that the two polynomials PA(z) and z"P,(z-') agree on the unit 
circle, and therefore on the whole complex plane. They have therefore the same 
zeros. This means that if zo is a zero of P&), PA(zo) = 0, then so is z;'. On the 
other hand, since the a, are real, PA( z )  = PA(?). This implies that if zo is a zero 
of PA(z),  then so is its complex conjugate Zo. The zeros of P,(z) therefore come 
in quadruplets, to, Zo, z;' and Z i l ,  or (if zo = r, is real) in duplets, ro, r;l E R. 
Let z j ,  Zj,  z,:', 2,:' be the quadruplets of complex zeros of PA(z),  and rk, r;' the 
real duplets, 

)I J n ( z  - Z i ) ( Z  - .,)(z - z;')(z - q1 
[ j - 1  

where 

K J 

k-1 j - 1  

2 

is clearly a trigonometric polynomial of order N with only real coefficients. 
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Remarks. 1. Note that B is generally not unique. Out of any quadruplet of 
zeros zo, Zo, zil, 2,’ one can choose the pair of zeros to retain, for the 
construction of B, in four different ways. For every duplet of real zeros of PA two 
choices are possible. This results in 2N different possibilities for B.  

2. All these different possibilities, corresponding to different choices of the 
zeros of PA to retain for B ,  constitute, however, the only solutions to (4.11). One 
can show (see [27]) that, up to an arbitrary phase factor f e i K 6 ,  K E E ,  all the 
polynomials B satisfying (4.11) are necessarily of the form (4.12). 

If P is a polynomial satisfying (4.9) and (4.10), then Lemma 4.2 tells us that 
there exists a trigonometric polynomial of the same order such that 

It follows that mo(.$) = [$(l + ei6>lNQ(ei6) satisfies (4.7). If, moreover, 

then all the conditions of Theorem 3.6 are satisfied, and there exists an associated 
orthonormal wavelet basis. 

To construct compactly supported orthonormal wavelet bases, with m, of 
type (4.8), it is therefore necessary and sufficient to find polynomials P solving 
(4.9) and (4.10), which are moreover strictly bounded above by 22(N-1). 

The following two combinatorial lemmas allow one to “guess” a particular 
solution of (4.9). 

LEMMA 4.3. 

Proof: Define s,,, k = z:-.( n rj). Then 

( n + j + l )  - (k  + n + 2)! ( n  + J ) !  
‘,+I, k+l - ( k  + l ) ! (n  + l)! + zo ( n  + l ) ! j !  

( n  + J ) !  
= ( ;: t 2, + + c ( n  + l ) ! (J  - l ) !  

5’1 

k + n + 2 )  - ( k + ’ ; + l ) ]  ) + sn, k + [ %+l, k+l - (  k + l  
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Hence 

LEMMA 4.4. 

n + j  

J'O 

Proof: Define A,,, = ( j ) .  Then, by Lemma 4.3, cikm0 A,,, = A,+1, k. 

Define 

n + j  
S J y )  = i ( ) [ Y J ( l  - y ) " + l  +y"+'(l -y)']. 

j - 0  

Clearly, 
So(a)  = (1 - a )  + a = 1. 

We shall prove that & ( a )  = Sn-l(u), which proves the lemma. By repeatedly 
inserting factors [(l - a )  + a ]  = 1, we find 

n - 1  
S,-,(a) = c An-l ,  j[(l - a ) " d  + a"(1 - u)j ]  

j - 0  

n-1  
= c A,,, j[(l - a)ntlaj + a*+' (1 - a) j ]  

j - 0  

+2A",,_,[(l - a)"+'a" + U " + ' ( l  - a)"] 

= s,,(a) (since2An,"-, = A,, , , , ) .  
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It follows that the polynomial of order N - 1, 

(4.13) 

solves (4.9). Since all the coefficients in this polynomial are positive, (4.10) is 
clearly also satisfied. 

The two explicit examples of compactly supported wavelet bases we have seen 
so far, i.e., Example 3.1 and (3.42), correspond exactly to a polynomial of type 
(4.13), with N = 1, 2, respectively. For Example 3.1 one has r n o ( ( )  = f ( 1  + eit) ,  
i.e., N = 1 ,  and Q(e'[)  = 1, hence P ( y )  = 1 = Pl(y) .  For the second example 
(3.42), we find (see (4.4)) r n o ( [ )  = [ f ( l  + eit)l21[(1 T 6 ) e i t ] ,  corresponding to 
N = 2 and lQ(eit)12 = 2 - cos [ = 1 + 2sin2$(; hence P ( y )  = 1 + 2y = P 2 ( y ) .  

In fact, for given N ,  PN is the only polynomial of order less than N which 
solves (4.9). Even more is true: for any polynomial P solving (4.9), the first N 
terms (orders 0 up till N - 1)  are exactly given by PN. This is because (4.9) 
completely determines the first N coefficients po, -  - -, p N P 1  in P ( y )  = Zf=opny". 
Since the first term in (4.9) is already of order N ,  only the second term plays a 
role in the cancellations for y", k = 0, - . -, N - 1. This leads to 

Po = 1 ,  

k =  l , . , . ,  N - 1, 

from which the P k ,  k = 1,- - ., N - 1, can be determined recursively. Since P,,, 
solves (4.9), it follows from (4.13) that 

Consequently, any polynomial P solving (4.9) is of the form 

(4.15) P ( Y )  = P,,,(Y) + Y W Y ) .  

Substitution of (4.15) into (4.9) leads to the following equation for the poly- 
nomial R : 

Y N ( l  - y ) N R ( l  - Y >  + ( 1  - Y ) N Y N K Y )  = 0, 
or 

R ( l  - JJ)  + R ( y )  = 0. 

The polynomial R is therefore antisymmetric with respect to y = i, or 

R ( Y )  = fie - - Y L  

where I? is an odd polynomial. 
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To summarize, we have the following explicit characterization of all solutions 
m ,  of (4.7), corresponding to only finitely many non-zero h(n) .  

PROPOSITION 4.5. Any trigonometric polynomial solution m ,  of (4.7) is of the 
form 

(4.16) 

where N E N, N 2 1, and where Q is a polynomial such that 

m , ( [ )  = [f(1 + e 'P) ]NQ(e 'E) ,  

(4.17) ( Q ( e i P )  l2 = kl( -: + k)sin2k+( + [sinZN+[] R ( f c o s [ ) ,  
k - 0  

where R is an oddpolynomial. 

Remarks. 1. Since the proof of Lemma 4.2 shows explicitly how to construct 
all possible polynomials Q once lQ(eiP)I2 is known, t h i s  proposition is indeed an 
explicit characterization of all the solutions m ,  of (4.7). 

2. In constructing m,, there are therefore 3 steps at which choices can be 
made, 

(i) choosing N E N \ {0}, 
(ii) choosing an odd polynomial R (with some restrictions), 
(iii) choosing pairs of zeros out of each quadruplet of complex zeros, and one 

zero out of each duplet of real zeros, of PN(z) + z N R ( z  - +) (see the 
proof of Lemma 4.2). 

The odd polynomial R cannot be chosen completely freely. One needs, of course, 
the fact that 

(4.18) ~ , ( y )  + y N ~ ( $  - y )  2 0 for 0 s y  6 I .  

Moreover, condition (v) in Theorem 3.6 requires that 

(4.19) SUP [ M Y )  + Y  N R  ( f - y ) ]  < 22"-1)* 
04Y61 

3. For N = 1, (4.16), (4.17) and (4.18) reduce to 

(4.20) 

with 

m o ( ( )  = f(l + e iE)Q(e i t )  

(4.21) ( e (e iPI2=  1 + sin2$[R(fcos(), 

where R is an odd polynomial such that 
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These conditions can already be found in the construction of conjugate quadra- 
ture mirror filters in [24]. The condition (4.19) is impossible to satisfy, however, 
because Pl(0) = 1. 

4. Using a different method, Y. Meyer constructs in [28] another polynomial 
solving (4.7). The solutions to (4.7) proposed in [28] are 

(2N - l ) !  
(4.22) Imo(E) I 2  = 1 - 2N-1 fsinZN-’xdx. 

[ ( N  - l)!] 2 

This is clearly an even trigonometric polynomial of order 2 N  - 1. It turns out to 
be divisible by (i(1 + cos ())N = ( c o s ~ $ $ ) ~ .  Therefore, by Proposition 4.5, (4.22) 
is exactly equal to 

(cos’tt) N ~ N  (sinzit). 

4.C. A family of examples with arbitrarily high regularity. In the remainder 
of this section, we shall concern ourselves with a special family of functions mot 
and the corresponding wavelet bases. We follow the prescriptions of Remark 2 
after Proposition 4.5. For every N E N, N 2 1, we choose Q of minimal order, 
i.e., R = 0, lQ(eit)12 = PN(sinz+E). This choice satisfies both the conditions 
(4.18) and (4.19). From (4.13) the positivity of P N ( y )  for 0 4 y 4 1 is immediate. 
Since PN is strictly increasing for y 2 0, it follows that 

where we have used Lemma 4.3 in the second equality. This fixes lQ1’. In the 
construction (via Lemma 4.2) of Q from lQI2, we systematically retain all the 
zeros inside the unit circle (this corresponds to a “minimal phase” choice in filter 
design). For N E N, N > 1 fixed, this determines Q unambiguously, up to a 
phase factor eiKt ,  K E H. For the sake of definiteness we fix this phase factor so 
that Q contains only positive frequencies, starting from zero, i.e., 

(4.24) Q N ( e i t )  = qN(n)e int  with 40 # 0. 

These choices uniquely determine Q N .  We shall denote the corresponding m, by 

N - 1  

n - 0  

N m O ,  
N-1 

, m O ( t >  = [+(I  + e i t ) l N  c qN(n)e in6  
n - 0  

2N-1 
= 2-lI2 C hN(n)e’nl .  

n - 0  
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Table 1 lists the coefficients h,(n) for the cases N = 2,3; - ., 10. For the lowest 
values of N, QN(E)  can be determined analytically. One has, e.g., 

Q 2 ( E )  = $[(I + 0) + (1 - 0 ) e i c ]  (see (4.4)) 

and 

~ ~ ( 6 )  = +[(I + m + JGiEiT) + 2(1- m > e i c  

+ (1 + - & F $ i T ) e 2 ' ~ ] .  

For larger values of N, the coefficients in Table 1 were computed numerically. 
Since the NmO satisfy all the conditions of Theorem 3.6, there exists an 

associated orthonormal basis of continuous wavelets with compact support for 
every NmO. Let us denote the corresponding I+, + functions by N+, N+. Since 
h,(n)  = 0 for n < 0 and n > 2N - 1, it follows (see the discussion at the start 
of Section 4) that supp(,+) = [0 ,2N - 11. The support of N+, 

2N- 1 

( N + > ( X )  = c ( - 1 ) " U - n  + 1)NI+(2X - 4, 
n - 0  

is therefore given by [ - (N - l), N]. Note that an additional phase factor eiKe, 
K E Z, in (4.24) would amount to shifting the h,(n) by K ,  i.e., to shifting the 
function N~ by an integer, which does not aff'ect the multiresolution analysis 
construction. The wavelet N+ is unaff'ected by this shift. 

From Theorem 3.6, we know that N+ and N+ are bounded, continuous 
functions. For large N ,  N+ and N+ are, in fact, much more regular. To see this, 
we shall need the following generalization of Lemma 3.2. 

LEMMA 4.6. If mo(E) = [$(l + eit)lN 9((), where 9(() = Cnfneine satisfies 

(4.25) 

(4.26) 

then 

(4.27) 

Proof Define 



N = 4  

N = 5  

N - 6  

Table 1. The coefficients h ,  (n) (n  = 0,- * - , 2  N - 1) for N = 2,3, * . . , lo. 

n h,(n)  n h ,  (n) 
N - 2  0 .482962913145 N = 8  0 .054415842243 

1 336516303738 1 .312871590914 
2 .224143868042 2 .675630736297 
3 - .129409522551 3 .585354683654 

N - 3  0 .332670552950 4 - .015829105256 
1 .806891509311 5 - .284015542962 
2 .459877502118 6 .000472484574 
3 - .135011020010 7 .128747426620 
4 - .085441273882 8 - .017369301002 
5 .03 5226291 882 9 - .044088253931 
0 .230377813309 10 .013981027917 
1 .714846570553 11 .008746094047 
2 .630880767930 12 - .004870352993 
3 - .027983769417 13 - .000391740373 

5 .0308413 81 836 15 - .000117476784 
4 - .187034811719 14 .000675449406 

6 .032883011667 N = 9  0 ,038077947364 
7 - .010597401785 1 .243834674613 
0 .160102397974 2 .604823123690 
1 .603829269797 3 .657288078051 
2 .724308528438 4 .133197385825 
3 S38428145901 5 - .293273783279 
4 - .242294887066 6 - .096840783223 
5 - .032244869585 7 ,1485407493 3 8 
6 .077571493840 8 .030725681479 

8 - .012580751999 10 .000250947115 
9 .003335725285 11 .022361662124 

7 - .006241490213 9 - .067632829061 

0 .111540743350 12 - .004723204758 
1 .494623890398 13 - .004281503682 
2 .751133908021 14 .001847646883 
3 .3 152503 5 1709 15 .O00230385764 

5 - .129766867567 17 .oooO39347320 
6 .097501605587 N = 1 0  0 .026670057901 
7 ,027522865530 1 .1881768OOO78 
8 - .031582039318 2 .527201188932 
9 .000553842201 3 .688459039454 

10 .004777257511 4 .281172343661 

4 - .226264693965 16 - .O00251963189 

11 - .001077301085 5 - .249846424327 
N - 7  0 .077852054085 6 - .195946274377 

1 .396539319482 7 .127369340336 
2 .729132090846 8 .093057364604 
3 .469782287405 9 - .071394147166 
4 - .143906003929 10 - .029457536822 
5 - .224036184994 11 ,033212674059 
6 .071309219267 12 DO3606553567 

8 - .038029936935 14 .001395351747 
9 - .016574541631 15 .001992405295 

7 .080612609151 13 - .010733175483 

10 .012550998556 16 - .000685856695 
11 .ooo429577973 17 - .000116466855 

13 .O00353713800 19 - .ooOo13264203 
12 - .001801640704 18 .ooOo93588670 
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Then 

j - 1  

Repeating the proof of Lemma 
leads to 

3.2, with multiplication factor 2k instead of 2 

This implies (4.27). 

To interpolate between the standard spaces Ck of k times continuously 
differentiable functions, we shall use, for a 4 N, a > 0, the spaces defined by 

(4.28) f € C" * I d "  V( t )  1(1 + Itl)"" < 00. 

Note that, for a = k E N, the condition (4.28) implies f E Ck, but is not 
necessary. 

We then have the following 

PROPOSITION 4.7. There exists A > 0 such that, for all N E N, N 2 2, 

(4.29) N + ,  N$ CAN* 

Proof: We shall apply Lemma 4.6. Since QN(eiE) has only a finite number 
of terms, (4.25) is obviously satisfied. We compute 

B, = suplQN(ei~)QN(ei6'z) I = sup IPN(sin2~E)PN(sin'at) I 
1 

= SUP ipN(4y(1 - Y ) ) p N ( Y )  I. 
0s-Y 5 1 

First, note that (see (4.28)) 

< 2XN-1). SUP M Y )  = M1) 
06YS1 

Secondly, 

N -  1 
5 c 2N+k-1yk 2N-1Nmax(l,(2y)N). 

k-0 
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[log N-N log(36/4)]/2 log 2 5 c ( 1  + IEl) 
This exponent is smaller than'-1 for N 2 16. For smaller values of N, one can 
use the explicit estimate 

to prove that 

I ( N + Y  (0 1 4 c ( 1  + lwl-KN 
for some K > 0, for all N 5 16. Hence (4.29) holds for &, for some X > 0, and 
for all N 2 2. Since NI+b is always a finite linear combination of translated and 
dilated versions of the same holds for N + .  

Remarks. 1. Since Isupp(,+)l = I~upp(~+)I = 2 N  - 1, (4.29) shows that the 
regularity of &, N I + b  increases linearly with their support width, as announced in 
the introduction. It turns out that linear increase of the support width with the 
regularity of +, I+b is the best one can do. More precisely, if a @-function + 
satisfies an equation of the type 

N 

+(.) = c cn+(2x - 4 
n - 0  
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(without necessarily being connected to multiresolution analysis), and if supp cp 
c [0, N], then k 5 N - 2. For a proof, see [30]. 

2. The estimate for A obtained in this proof is, of course, not very good; the 
argument is too simple. Asymptotically, for large N, one finds 

with 

log(%q + O ( 7 )  log N 2 .1887 + O ( 7 ) .  log N 
p -  2log2 

The same technique, with a little more work, leads to slightly better estimates if 
larger values of k are used. Using k = 4, e.g., leads to 

P =  > .1936 + O(N-’log N) .  

Since the map y * 4y(l - y )  has a fixed point, at y = $, one finds 

One can show that 

PN( 2) - C3N. 

Even for arbitrarily large k, the values of p obtained by this method are therefore 
limited by 

p s 1 - -  log 3 + O(N-’log N )  P .2075 + O(N-’log N) .  2 log 2 

3. Using a more sophisticated method than the brutal estimates above, Y. 
Meyer [28] showed that, again asymptotically for large N, 

with p = log(4/n)/log2 E .3485. His proof uses (4.22) rather than PN. 
4. For small values of N, better estimates can be obtained for the regularity 

of the &, N+ by yet a third method. This method is based on a generalization of 
a technique used by Riesz in the proof that “Riesz products” can lead to 
continuous, nowhere differentiable functions. I would like to thank Y. Meyer for 
introducing me to this technique, and for showing me how to use it to prove 
2$J,2+ E C5-‘. The proof, and a generalization for N 2 3, are given in the 
Appendix. It works very well for small values of N, but does not, however, give 
good asymptotic results. For large N, it leads to logarithmic rather than linear 
increase of the regularity of the &, N+. 
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Table 2. Regularity estimates. 
For N = 2,. . -, 10, we give aN so that ,,,+, N $  E CUM 

N aN 
2 .5 - & 

3 
4 
5 
6 
7 
8 
9 

10 

.915 
1.275 
1.596 
1.888 
2.158 
2.415 
2.661 
2.902 

To conclude this paper, we give in Figure 7 the graphs of N+, N+ and their 
Fourier transforms for N = 3, 5, 7, 9. (For N = 2, these graphs 
were given in Figure 5.) The graphs were plotted by means of the “graphical 
algorithm” explained in subsection 2B, using the coefficients h , ( n )  of Table 1. 
One clearly sees that the &, N+ become more regular as N increases. Also 
noticeable is that I ( N + ) [ ,  I(,+)[ become “flatter” as N increases, around 0 and 
27~  = 6.28. This is a direct consequence of (4.7) and (4.8). By (4.3), &m0)([)  has 
a zero of order N at 6 = I T .  It follows that, by (4.7), (Nmo)(0) = 1, and that the 
first N - 1 derivatives & m O ) ( j ) ( [ )  of N m o  are zero in Z = 0. Since (this follows 
from (3.45)) ( N + ) A ( ( )  = Nmo(IT + $ 6 )  (N+)a($[), this means that [ (N+)A] (k ) (0 )  
= 0 for k = O,..., N - 1, or / ~ x x ~ ( ~ + ) ( x )  = 0 for k = o,..., N - 1. The 
present construction leads thus also to orthonormal bases of compactly sup- 
ported wavelets with an arbitrarily high number of zero moments. This property 
could be useful for quantum field theory (see [MI). 

It is also quite striking that the “effective support’’ (where I(N+)(x)l >= 
. O l ~ ~ N + ~ ~ m ,  say) of N+ is quite a bit smaller than its total support, for N not too 
small. This is due to the very small value of the h, (n )  for large n (see Table 1). 
Table 2 lists the estimates for the “regularity index” aN (where &, N+ E P N )  
for N = 2,3; a ,  10, computed using the method explained in the Appendix. 

Remark. Using a different approach (see [30]), these estimates for the 
regularity index aN can be sharpened. For N = 2 one finds, e.g., a2 = 2 - 
ln(1 + fi)/ln 2 = 3 0  . - . This is the best possible exponent for N = 2 (see 
t301). 

Appendix 
Sharper Regularity Estimates for N+, N+ 

The estimates given here are based on a different way of calculating (4.28). 
Using the facts that I(&)- ([)I = (27~)-’’~~~~~~(~m~)(2-’6)~ is even (because 
N m O  is a trigonometric polynomial with real coefficients) and that I(Nmo)(Z)l 5 1 
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2 0 0  

1 5 0  

1 .oo 

,500 

0 

-.500 

-200 - 1  00 0 1 0 0  2 0 0  3 00 

- 2  00 - 1  30 0 1 3 0  2 30 3 0 0  

Figure 7. The functions ,+, ,+ and the modulus of their Fourier transforms I&@)[, I(,+)[, for 
increasing values of N (see text). We have each time shifted ,+ by N - 1, so that supp(,+) = 
supp(,+) = [ -(N - l), N]. One clearly sees that the &, ,# become more regular as N increases. 
The function N# has been plotted using the "graphical construction algorithm" explained in 
subsection 2B, with the weighting coefficients ,h (n )  given in Table 1. Only 7 iterations were needed. 
The plot of ,+ then follows from &#)(x) = &En(-l)"hN(-n + 1)(,$1)(2x - n) .  

(see (4.7)), we find 
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9 5 90 10 0 1 5  i) 20 0 

Figure 7. For the plots of b+)I  ̂the infinite product (3.46) was computed (truncated at j = lo), 
(2a)'/21(~9)^ (€11 * n,"-lbm0(2-'9l, with NmO(€)  = 2-1/2X,hN(n)e'"f, where the h , ( n )  are 
given in Table 1. The plot of LJI) ([)I then follows from 

I (~+ ) -  (€)I = 2-1/2~En (- 1)"h (- n + l)e'"f/21 I ( ~ + ) *  (it) I. 

where a > 0 is arbitrary for the moment. Using (Nrno)(E)  = [ f ( l  + ei6)]NQN(ei t ) ,  
we find 
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1 0 0  

500 

0. 5 00 10  0 15 0 2 0  0 

1 00 

750  

5 0 0  

, 2 5 0  

0 

0 .  5 .00  10 .0  1 5 . 0  2 0 . 0  

Figure 7. Continued 

where we have used lQN(eit)I2 = PN(sin2+E) (see subsection 4C). It follows that 
(A.l) is convergent, hence N+, N I c /  E C", if 

(A.2) limsup (2m log2)-'log[ i 2 % d t  @PN(sin2(2j-'t))] 5 N - 1 - a. 

We know PN explicitly (see (4.13)), 

m-co 
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1 . " ' " ' '  " 

I 
- 1 0 0  

- 500 

0 

I - - 500 

I . . , . ! . . .  f . . . . J  

-500 - 2  50 0 2 50 5 0 0  7 5 0  

This can be rewritten as 

where the uN,, are symmetric, a 
from (A.3). The product II;!,,PN(sin ( 
metric polynomial of order 2"(N - l), 

= uN -,, and can be calculated explicitly 
6)) is therefore a symmetric trigono- NJ, i - i  

m (N- 1)2" n ~ ~ ( s i n ~ ( 2 j - ' t ) ) ' =  c J ~ , , , ;  keikE. 
j-0 I -  -(N- 1)2" 

(A.5) 



990 

Jz 1(7JllAl - 

- 

I. DAUBECHIES 

1 0 0  

5 0 0  

0 

0 5 0 0  10 0 15  0 20 0 

One easily checks that 

J N , m ; 2 k  = ~ a N , 2 1 J N , m - l ;  k - 1 ,  
I 

- 
J N , m ; 2 k + l  - C a N , 2 1 + l J N , m - l ;  k-13 

I 

with JN,@ k = a N , k ,  and where we implicitly make the assumption aN,  k = 0 for 
Ikl 2 N .  The recursion (A.6) can be represented graphically, in a construction 
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Figure I. Continued 

analogous to Figure 1. At level 0 we start with JN,?; each successive JN,n is 
calculated from JN,n-l by a tree algorithm (see Figure 8). To evaluate the 
left-hand side of (A.2) we need to compute 

One can check directly from the recursion (A@, or one can verify on the 
graphical representation (see Figure 8b) that only the JN, ,,,; ,, 0 5 m' < m, with 
111 N - 2 play a role in the computation of JN, m;O.  Define d ,  = 2N - 3. Then 
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1 0 0  

500  

0 

0 5 0 0  10 0 1 5  0 20 0 

Figure I. Continued 

the set of relevant J N ,  mJ; ,,a * ., (11 N - 2, .  - *, define a vector JN, mt in R d N ,  

( A 4  ( j N ,  m'>k = JN,  m'; k *  

Note that d, is always odd, d, = 2mN + 1, and that we index vectors v E R d N  

by j = - m N ,  - m ,  + 1, * - *, 0, * * - , m (see (A.8).) The recursion (A.6) defines a 
matrix TN such that, for all m ,  

(A.9) j N ,  m + l  = ' N J N ,  m .  
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. . . . .  . . . . .  

. . . . . . . . . . .  . . . . . . . . . . .  

Figure 8. a. The tree algorithm for the construction of the JN, m. For the sake of simplicity, we have 
taken N = 3. The index N is dropped on the figure. 

b. Although the number of non-zero 4, m; more than doubles (see a)) at eve3 step, only 3 
points, at any level, ultimately contribute to 4, m; o. These are the points which can be reached from 0 
by the tree, starting from the bottom. 

This matrix has the following form, for N even: 

(A.lO) 

T -  
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A completely analogous matrix is obtained for N odd. From (A.8)-(A.9) we have 

JN,m;O = (TtjN,o)o. 

Hence 

limsup m-llog(JN,m;o) 
m - r m  

where p(T,) is the spectral radius of TN. In view of (A.7) it then follows that 
(A.l) is convergent, i.e., ;+ E Ca, if a < N - 1 - $log,[p(T,)]. It suffices 
therefore to compute p(T,), which can be done numerically, provided N is not 
too large. Note that the problem can be reduced considerably by using the fact 
that T, commutes with the involution I, 

I.. = ai, - j  
' I  

(where, as before, i ,  j = - mN,- * a ,  0,. + -, m,). This effectively reduces the prob- 
lem of a d ,  x d ,  matrix to a (m, + 1) x (m, + I) matrix. 

If N = 2, then d ,  = 1, and the matrix TI is given by a single number, 
Tl = alio = 2. Therefore one finds E C" if a < 3. The cause of this simplifi- 
cation can be understood by looking at Figure 8b. For N = 2, the "tree" reduces 
to a single vertical line: only one possible path leads from JN,o. to J,, n; if 
N = 2. This is equivalent to saying that in the product Il~-oPN(sin'(2~-1~)) only 
one possible combination of terms has frequency zero. This is the idea which was 
borrowed from Riesz's lemma (see Remark 4 following Proposition 4.7). 
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