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The Wavelet Transform, Time-Frequency 
Localization and Signal Analysis 

Abstract --Two different procedures are studied by which a frequency 
analysis of a time-dependent signal can be effected, locally in time. The 
first procedure is the short-time or windowed Fourier transform, the 
second is the “wavelet transform,” in which high frequency components 
are studied with sharper time resolution than low frequency compo- 
nents. The similarities and the differences between these two methods 
are discussed. For both schemes a detailed study is made of the 
reconstruction method and its stability, as a function of the chosen 
time-frequency density. Finally the notion of “time-frequency localiza- 
tion” is made precise, within this framework, by two localization theo- 
rems. 

I. INTRODUCTION 

A. The Windowed Fourier Transform and Coherent States 

N SIGNAL ANALYSIS one often encounters the so- I called short-time Fourier transform, or windowed 
Fourier transform. This consists of multiplying the signal 
f ( t )  with a usually compactly supported window function 
g ,  centered around 0, and of computing the Fourier 
coefficients of the product gf. These coefficients give an 
indication of the frequency content of the signal f in a 
neighborhood of t = 0. This procedure is then repeated 
with translated versions of the window function (i.e., g ( t )  
is replaced by g(t + to),  g( t  +2t,,); . e ,  where t,, is a 
suitably chosen time translation step). This results in a 
collection of Fourier coefficients 

c,,,( f )  = / r  dteimoll’g( t - nt,,) f ( t )  
- m  

( r n , n E Z ) .  (1.1) 

Similar coefficients also occur in a transform first pro- 
posed by Gabor [ l ]  for data transmission. The original 
proposal used a Gaussian function g, and parameters w O ,  
to such that wo.t , ,  = 2 ~ .  A Gaussian window function is, 
of course, not compactly supported, but it has many other 
qualities. One of these is that it is the function which is 
optimally concentrated in both time and frequency, and 
therefore well-suited for an analysis in which both time 
and frequency localization are important. Gabor’s original 
proposal, with w O . t o  = 2 ~ ,  leads to unstable reconstruc- 
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tion (see [2], [3]; we shall come back to this in Section 
11-C-1). The Gabor functions have been used in many 
different settings in signal analysis, either in discrete 
lattices (with ~ ~ . t ~ )  < 27-r for stable reconstruction) or in 
the continuous form described next. In many of these 
applications their usefulness stems from their time- 
frequency localization properties (see e.g., [41). 

Whatever the choice for g (Gaussian, supported on an 
interval, etc.), it is interesting to know to which extent the 
coefficients cm,( f 1 of (1.1) define the function f .  This is 
one of the main issues of this paper. 

The coefficients cmn( f )  in (1.1) can also be viewed as 
inner products of the signal f to be analyzed with a 
discrete lattice of coherent states. Let us clarify this 
statement. By “coherent states” we understand here the 
family of square integrable functions g ( p * q ) ,  generated 
from a single L2(R)-function g, by phase space transla- 
tions ( p , q ) .  A “discrete lattice” of coherent states is a 
discrete subset of the whole family obtained by restricting 
the labels ( p , q )  to a regular rectangular lattice in phase 
space. “Phase space,” a term we borrow here from physics, 
stands for the two-dimensional time-frequency space, 
considered as one geometric whole. More precisely, 
g ( p - 9 ) ( x )  is obtained from g ( x )  by a translation of x by q ,  
and by a similar translation of the Fourier transform d by 
p ,  i.e., 

g ( p , q ) (  x )  = e‘Pxg( x - q ) .  (1.2) 

Families of coherent states, as defined by (1.2), are used 
in many different areas of theoretical physics. Their name 
stems from their use in quantum optics (where the Gauss- 
ian choice for g is favored, g ( x )  = r-‘I4 exp( - x2/2)> 
[5], [6], but they have since spilled over to many other 
fields. See e.g., [7] for a review, including many general- 
izations of the original concept. In quantum mechanics, 
they are particularly useful in semiclassical arguments 
because they make it possible to study quantum phenom- 
ena in a phase-space setting. If the original function g is 
centered around (0,O) in phase space, i.e., if the mean 
value of position, l&xlg(x)l*, and of momentum, 
/dkkl i (k) l2 ,  are both zero, then the state g ( p . q ’  will be 
centered around ( p ,  q) ,  i.e., 
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Here 2 denotes the Fourier transform of g, g ( k ) =  
( 2 ~ > - ’ / ~ / d x e ‘ ~ ~ g ( x ) .  The inner products (g(p.4), $1 will 
therefore “measure” the phase space content of the func- 
tion $ around the phase space point ( p , q ) .  See e.g., [8, 
Section V-A.] and [9] for two different methods of using 
coherent states in a study of semiclassical approximations 
to quantum mechanics. 

A very important property of the coherent states is the 
so-called “resolution of the identity.” It has been discov- 
ered and rediscovered many times (see the earlier papers 
in [7]). A discussion of its relevance for signal analysis can 
be found in [lo]. For the sake of completeness, we give its 
(easy) proof in Appendix A. The “resolution of the iden- 
tity” says that the map @ from L2(R) into L2(R2), de- 
fined by @ f ( p , q )  = (g (P~4) , f ) ,  is an isometry (up to a 
constant factor), i.e., 

Here, as in the remainder of this paper, (f,  g )  stands for 
the L2-inner product of the functions f and g, 

B. Phase Space in Signal Analysis 

The appearance of a phase space concept, such as the 
coherent states, in signal analysis, is not altogether sur- 
prising. As pointed out by N. G. de Bruijn [ l l ] ,  it is an 
entirely natural concept in music. Let us consider a time- 
dependent signal, which is a piece of music played (for 
the sake of simplicity), by a single instrument. If we 
disregard problems with high harmonics, with the “attack” 
of the notes, etc. (this is a simple example!), the musical 
score corresponding to the piece can be considered as a 
satisfactory representation of the time-dependent acoustic 
signal. A musical score indicates which notes have to be 
played at consecutive time steps. Thus, it gives a fre- 
quency analysis, locally in time, and is much closer to a 
short-time Fourier transform or a coherent states analy- 
sis, than to e.g., the Fourier transform, in which all track 
of time-dependence is lost, or at least not explicitly recog- 
nizable. The notation of a musical score, indicating time 
horizontally, and frequency vertically, is really a phase 
space notation. Phase space is thus seen to be a natural 
concept in signal analysis. This is also illustrated by the 
successful use, in signal analysis, of that other phase space 
concept, the Wigner distribution, as in [12] or [131. 

As long as the continuously labelled coherent states 
g(Pxq) are used, we know, from (1.31, that knowing a signal 
f is equivalent to knowing the inner products (g(P34) , f ) .  
This need not be automatically true if one restricts the 
labels ( p ,  4) to the discrete sublattice (mp,,, nq,), m, n E Z; 

(note that this inner product is antilinear in the first 
argument and linear in the second argument, following 
the physicists’ convention), while l l f l l  stands for the L2- 
norm of f, 

- .  ~ - .. 

Ilfll’= (f,f) = / W ( X ) I 2 .  some conditions on g , p , , q ,  will be required. Let us 
define the map T 

T :  L2(R) -+ 1 2 ( Z 2 )  Formula (1.3a) implies that 

( 1.3b) 

This means that a function f can be recovered com- 
pletely, and easily, from the phase space “projections” 
(g(p ,q) , f ) .  Note that, since (1.3) holds for any g, one can 
use this freedom to choose g optimally for the application 
at hand. This freedom of choice was exploited in e.g., [8, 
Section V-A]; it will also be important to us here. 

If, instead of letting ( p ,  q )  roam over all of phase space, 
in a continuous fashion, we rather restrict ourselves to a 
discrete sublattice of phase space, then we revert to (1.1). 
That is, if we choose p o ,  q,  > 0, and we define 

g,n( .) = g(mP,l.n411) 

= eimptbxg( x - nq,) 

then clearly (with x interpreted as “time,” p o =  v,, 

(Tf)m,n = (g , , , f )  = c m , ( f ) .  ( 1.4) 
This map is the discrete analog of the “continuous” map 

in Section I-A. For all the cases of interest to us, the 
map T will be bounded. To have complete characteriza- 
tion of a function f by its coefficients c,,(f) we shall 
require that T be one-to-one. If the characterization of f 
by means of the c,,(f) is to be of any use for practical 
purposes, one needs more than this, however. It is impor- 
tant that the reconstruction of f from the coefficients 
c,,(f) (which is possible, in principle, if T is one-to-one) 
be numerically stable: if the sequences cmn(f ) ,  c,,,(g) are 
“close” for two given functions f and g, then we want 
this to mean that f and g are “close” as well. More 
concretely, we require that 

Allfll’ 5 I(gm,,,f)12 5 Bllfl12 (1.5) 
m , n  

4 0  = t o )  with A > 0, B < m, and A, B independent of f. This can 
be rewritten, in operator language, as c,,(f) = (gm, , f )  = (g‘“”l13”“”’,f). 

A n s T * T I B n .  (1.6) This shows that the short-time Fourier transform can 
indeed be viewed as the computation of inner products 
with a discrete lattice of coherent states. 

Here the inequality T I  I T2,  where T I ,  T2 are symmetric 
operators on L2(R), stands for ( f ,  T ,  f ) I (f, T2f  ) for all 
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f E L2(R). A set of vectors (4j;  j E J )  in a Hilbert space 2 
for which the sums C j E , l ( ~ j , f ) 1 2  yield upper and lower 
bounds for the norms llf1I2, as in (1.51, is also called a 
frame. The concept “frame” was introduced by Duffin 
and Schaeffer 1141 in the context of nonharmonic Fourier 
analysis; see also [15]. We shall thus require that the (g,,; 
m , n  E 7)  constitute a frame; we shall give the name 
frame bounds to the constants A ,  B. 

In a previous paper [161 particular functions g were 
constructed, for given p o ,  go > 0 (with po’qo  < 27r) such 
that the corresponding g,, constitute a frame. For this 
special construction, the frame bounds A ,  B are known 
explicitly in terms of g ,  and explicit inversion formulas for 
T can be given. In a particular case of this construction 
one even finds that the inequalities in (1.51, (1.6) becomes 
equalities, i.e., A = B. Whenever A = B the frame is 
called a tight frame. The inversion cm,( f )  + f then be- 
comes trivial; since T*T = A n ,  one has 

f = A - ‘ T * T f = A - ‘  gm, (gm, , f )  
m , n  

where the sum converges strongly, i.e., 

Remark: Note that frames, even tight frames, are not 
bases in general, in spite of the resemblance between the 
reconstruction formula for a tight frame and the standard 
expansion with respect to an orthonormal basis. In gen- 
eral, a frame contains “too many” vectors. An example in 
the finite-dimensional space C2 is given by U ,  = e,, u2 = 

- 1 / 2 e ,  -k 6 / 2 e 2 ,  u3 = - 1 /2e ,  - 6 / 2 e 2 ,  where e ,  = 

(1,O) and e2 = (0,l) constitute the standard basis for C2. 
One easily checks that, for all U E C2, 

3 2  I (U/, v )  l 2  = -Ilvll 
3 

2 / = I  

so that the (U/;/ = 1,2,3) constitute a tight frame, with 
inversion formula 

The {U,; I = 1,2,3) do not constitute a basis because they 
are not linearly independent. In the infinite-dimensional 
frames we shall consider in this paper any finite number 
of vectors will be linearly independent in general, but 
there will still be “too many” vectors in the sense that any 
of them lies in the closed linear span of all the others. If 
the vectors constituting a tight frame are normalized, then 
the frame constant A = B indicates the “rate of redun- 
dancy” of the frame; if A =  B =  1 then the frame is 
automatically an orthonormal basis. 

While the constructions in [ 161 lead to satisfactory and 
easy inversion formulas for T ,  they have the drawback 
that the function g cannot be chosen freely, but has to be 
of the very particular type constructed in [161. For some 
applications however, the window function g might be 

imposed a priori, and not be of this particular type. In 
that case it is of interest to find ranges for the parameters 
po,qo such that the g,,, associated with the triplet 
g , p o , q o ,  constitute a frame. As we shall see next, snug 
frames, which are close to tight frames, i.e., for which the 
ratio B / A  is close to 1, are particularly interesting, 
because they lead to easy inversion formulas with rapid 
convergence properties. It is therefore important to have 
good estimates for the frame bounds A and B. One of 
the questions we shall address in this paper is therefore 
the following: given g, 

1) find a range R such that for ( p o ,  qo) E R the associ- 

2) for ( p o , q O ) ~  R ,  compute estimates for the frame 

Once good estimates for the frame bounds A ,  B are 
obtained, one can construct a dual function g (depending 
on po,qo as well as on g; see Section II-A next) which 
leads to the easy reconstruction formula 

ated g,, are a frame, and 

bounds A ,  B. 

f ( x )  = C ( g m n 7 f ) e l m P ‘ 1 x g ( ~ - - n q , , ) .  

m , n  

The function 2 is essentially a multiple of g, with correc- 
tion terms of the order of B / A  - 1; the closer B / A  is to 
1, the faster the series for 2 converges. Obtaining good 
frame bounds is important even if different reconstruc- 
tion procedures are considered, or if only characterization 
of f by means of the cm,(f>= (g , , , f )  and not full 
reconstruction (after e.g., transmission) is the main goal, 
since any stable reconstruction or characterization proce- 
dure can exist only if the g,, constitute a frame. 

All of these concern expansions with respect to coher- 
ent states constructed according to (1.2). We shall also 
discuss a different type of expansion, the so-called “wave- 
let expansion” [17] , [18], which corresponds to coherent 
states of a different type. 

D. Wavelets - A Different Kind of Coherent States 

The coherent states g(p.4) all have the same envelope 
function g, which is translated by the amount q, and 
“filled in” with oscillations with frequency p (see Fig. la). 
They typically have all the same width in time and in 
frequency. “Wavelets” are similar to the g(ps4) in that 
they also constitute a family of functions, derived from 
one single function, and indexed by two labels, one for 
position and one for frequency. More explicitly, 

where h is a square integrable function such that 

and where a, b E R, a # 0. Note that if h has some decay 
at infinity, then (1.7) is equivalent to the requirement 
/dxh(x)=O. The parameter b in the h(“Xb) gives the 
position of the wavelet, while the dilation parameter a 
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(b) 
(a) Typical choice for the window function g =  g,,, and typical gm,,. In this case g (x )=P- ’ /4exp( -x2 /2 ) ,  

p ,  = T ,  q, = 1; figure shows Re g4&x) = T - ’ / ~  cos (4~x)exp[  - ( x  -3)2/2]. (b) Typical choice for basic wavelet h = h,, 
and a few typical hm,,. In this case h ( x )  = 2 / f i ~ - ’ / ~ ( l -  x2)exp(- x2/2), a ,  = 2, bo = 1. 

Fig. 1 .  

governs its frequency. For la1 -=x 1, the wavelet h(‘*’) is a 
very highly concentrated “shrunken” version of h,  with 
frequency content mostly in the high frequency range. 
Conversely, for lul >> 1, the wavelet h(‘,’) is very much 
spread out and has mostly low frequencies (see Fig. l(b)). 
As a result of this construction, wavelets will be a better 
tool than the “canonical” coherent states g ( p , q )  in situa- 
tions where better time-resolution at high frequencies 
than at low frequencies is desirable. 

There exists a resolution of the identity for wavelets as 
well as for the canonical coherent sates. One finds, for all 
f l ,  f 2  E L2(m 

See Appendix A. Again, this implies that a function f can 
be recovered easily from the inner products ( A(‘,’), f ), 

since 

The similarities between the g ( p , q )  associated with the 
short-time Fourier transform and the wavelets h(‘,’) are 
no accident: both families are special cases of “coherent 
states associated with a Lie-group,’’ in the first case the 
Weyl-Heisenberg group, in the second case the ‘‘U + b”- 
group or affine group. Wavelets are therefore also called 
“affine coherent states.” They were first introduced, un- 
der this name, in [19]. They are of great interest for their 
own sake, and have led to interesting applications in 
quantum mechanics (see, e.g., [20], [211). They are also 
related to the use of dilation and translation techniques in 
harmonic analysis, which have turned out to be very 
powerful tools. It is likely that these techniques, and 
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affine coherent states, will find interesting applications in 
quantum mechanics problems (see e.g., [22]). We shall not 
go into these aspects here. Note that the “resolutions of 
the identity” (1.3) and (1.8) can be used as starting points 
for the construction of time-frequency localization or fil- 
ter operators [23], [24]. 

E. Discrete Lattices of Wavelets -The Wavelet Transform 

In analogy to the lattice of coherent states associated 
with the short-time Fourier transform, which can be 
viewed as a discrete subset of the continuously labeled 
g(p99), we shall also consider discrete lattices of wavelets. 
We choose to discretize the dilation parameter a by 
taking powers of a fixed dilation step a, > 1, a = a;;l with 
m E Z. For different values of m the wavelets will be 
more or less concentrated, and we adapt the discretized 
translation steps to the width of the wavelet by choosing 
b = nb,,ay, with n E Z. This leads to 

h mn ( x )  = h(‘C,‘‘b~~‘~)( x )  = a;m/2h( ai tnx - nb,). (1.9) 
As we shall see, it is also important for the discrete case 
to have l & h ( x )  = 0. 

The “discrete wavelet transform” is the analog of the 
map defined by (1.4) for the Weyl-Heisenberg case.’ 

Again one can investigate, as in the Weyl-Heisenberg 
case, whether the h,, and the associated wavelet trans- 
form lead to a “discrete approximation” of the resolution 
of the identity (l.B), i.e., whether a family of wavelets h,, 
constitutes a frame. As was shown in [16], it is possible, 
given ao,bo,  to construct explicit functions h such that 
the associated h,, constitute a frame, or even, in particu- 
lar cases, a tight frame. These functions h are, as in the 
Weyl-Heisenberg case, o,f a very particular type. Typicall? 
their Fourier transform h has a compact support; since h 
may be chosen in C”, the function h may have arbitrarily 
fast decay, or 

I h ( x )  I I c k ( 1 +  I x l ) - k  ( 1  .lo) 

with c k  <03 for all k E N. In practice, however, the con- 
stants c k  turn out to be fairly large for functions h of the 
type constructed in [16]. This means that while h satisfies 
(1.101, its graph is very spread out (see [161); typically the 
distance between the maximum x, of h and the point x 
defined by sup{lh(y)I; y 2 x )  = 10-*1h(x,)l will be an or- 
der of magnitude larger than b,, the translation step 
parameter. For practical purposes, it is desirable to use 
functions h that are more concentrated than this, such as 
e.g., h ( x )  = (1 - x 2 ) e - x 2 / 2 .  We shall therefore address the 
same questions as the Weyl-Heisenberg case, i.e., for 
given h : 

1) find a range R for the parameters such that for 
(a,, b o )  E R the associated h,, constitute a frame; 
and 

2) for (a,,b,) E R ,  compute estimates on the frame 
bounds A ,  B. 

‘To d i s t i n g u i s h  t h e  g,, from t h e  w a v e l e t s  h,,,, we s h a l l  c a l l  t h e  g,, 
“ W e y l - H e i s e n b e r g ”  c o h e r e n t  s t a t e s ,  a f t e r  t h e  g r o u p  w i t h  w h i c h  they a r e  
a s s o c i a t e d  ( s e e  S e c t i o n  I-D). 

The wavelet transform can be used, like the short-time 
Fourier transform, for signal analysis purposes. As in the 
short-time Fourier transform the two integer indices, m 
and n ,  control respectively, the frequency range and the 
time translation steps. There are however some signifi- 
cant differences between the two transforms. Some of 
these differences may well make the less widely used 
wavelet transform a better tool for the analysis of some 
types of signals (e.g., acoustic signals, such as music or 
speech) than the short-time Fourier transform. Let us 
digress a little on a qualitative discussion of these differ- 
ences. 

F, Qualitative Comparison of the Short-Time Fourier 
Transform and the Wauelet Transfom 

To illustrate this comparison we give graphs of typical 
g,, and h,, in Fig. 1, and of the associated phase space 
lattices in Fig. 2. More specifically, we represent each g,, 
or h,, by the point in phase space around which that 
function is mostly concentrated. In the Weyl-Heisenberg 
case, assuming that /& lg(x)I2 = 1 and /&xIg(x)l2 = 0 = 

/dkklg^(k)12, the lattice points are given by 

In the affine case we again associate to every h,, the 
space localization point /&xlh,,(x)12 = nb,a,” (assuming 
that /&lh(x)I2 = 1 and /dxxlh(x)12 = 0). Since the func- 
tion Ifit and consequently all the I(~,,)l is even in many 
applications, the choice /dkkl(h,,) (k)12 is not appropri- 
ate for the frequency localization, since thisA integral is 
zero. This is due to the fact that the (h,,) have two 
peaks, one for positive and one for negative frequencies. 
We therefore represent the frequency content of h,, by 
two points, namely 

The two lattice points corresponding to the positive and 
negative frequency localizations of h,, are thus 

(nb,a;;, a i r n @  5 1 

where w +  = + k  <,dkklh(k)12. In Fig. l(a) a few typi- 
cal Weyl-Heisenberg coherent states were given, in Fig. 
l(b) some typical wavelets. Fig. 1 shows one very basic 
difference between the two approaches; while the size of 
the support of the g,, is fixed, the support of the h,, is 
essentially proportional to ay.  As a result, high frequency 
h,,, which correspond to rn << 0, are very much concen- 
trated. This means, of course, that the time-translation 
step (if x is interpreted as “time”) has to be smaller for 
high-frequency h,,, as shown by the phase space lattice 
in Fig. 2(b). It also means, however, that the wavelet 
transform will be able to “zoom in” on singularities, using 
more and more concentrated h,, corresponding to higher 
and higher frequencies. 



966 IEEE TRANSACTIONS O N  I N F O R M A T I O N  T H E O R Y ,  VOL. 36, NO. 5, SEPTEMBER 1990 

. . 

. . 
0 . 

k 

0 . . . . 
( b  0 . . . 
4 ,  . . . . 

I k  ...... .ao.k.l(-?? .......... 
(-CO) (-4,2) 

(0,O) (0,O (0,2) 
I 

.................... 
(b) 

t 

corresponds to a value for m of approximately 67rf; ‘ p i  ’. 
In practice however, since T B t o ,  much higher values of 
m will be needed to reproduce, by means of the g,, 
sketched in Fig. l(a> (and which all have width T ) ,  a 
function f which is nonzero only in the interval [O,t,]. 
This is not the case if wavelets are used. The high 
frequency wavelets have very small support, so that the 
above problem (having to bring in much higher frequen- 
cies than intuitively needed) does not occur. Moreover, 
even for the high frequencies corresponding to f, which 
correspond in the wavelet transform to very negative 
values of m and a very small time translation step (see 
Fig. 2(b)), only a few of the many time-steps necessary to 
cover [0, TI would be needed, namely only those corre- 
sponding to [0, t o ] .  This is what is meant by the “zooming 
in” property of the wavelets. For this kind of problem, 
wavelets thus provide a more efficient way (needing fewer 
coefficients) of representing the signal. 

I 

Fig. 3. One component of attack of note (see text). We take, as model, 
Fig. 2. (a) Phase space lattice corresponding to short-time Fourier 

transform (see text). (b) Phase space lattice corresponding to wavelet 
transform (see text). Constant k ,  is given by k ,  = / ,”dkk-l16(k)12; we 
have assumed h to be even, and we have chosen a, = 2. sin ( 6 a f  / tn) , O S t < t ”  

0 t s 0 ,  or f t t,,. 

Lowest frequency of interest is 2aT- I ;  typically t o  T .  
Let us illustrate this by the following simple example, 

taken from a grossly simplified problem in the synthesis of 
music. Typically one needs to be able to handle relatively 
low frequencies corresponding to the lowest notes and 
very high frequencies corresponding to high harmonics. 
Suppose one wants to be able to represent tones with 
frequency of the order of 27r /T .  Suppose also that one 
wants to be able to render faithfully the “attack” of notes. 
This “attack” consists of very high harmonics at the start 
of the note which die out very quickly, typically in a time 
to T .  We have represented one component of such an 
“attack” very schematically in Fig. 3. Intuitively, the func- 
tion f( t )  in Fig. 3 seems to correspond to a signal with 
“frequency” 2.sr3/tO during the time interval [O, to] ,  while 
its amplitude on [[,,,TI is zero. Let us compare the 
performances of discrete Weyl-Heisenberg coherent 
states and of wavelets for this problem. In the first case, 
the support of g, and hence that of all the g,,, needs to 
have a width of at least T .  The high frequency 6 r / t o  

This example is so much simplified that it is rather 
unrealistic. The “zooming in” faculty of the wavelets, 
illustrated by this example, does however play an impor- 
tant role in more realistic applications; it makes the 
wavelets a useful tool in the areas of signal analysis such 
as seismic analysis [25] and music synthesis [26]. This 
same property also makes the wavelets a choice tool for 
the detection of singularities [27], [28], which is of great 
interest to the analysis of vision [29], [381, [40], and for the 
study of fractals [67]. 

As a final remark we note that the wavelet transform, 
unlike the short-time Fourier transform, treats frequency 
in a logarithmic way (as clearly shown by Fig. 2), which is 
similar to our acoustic perception. This corresponds to 
constant Q as opposed to constant bandwidth filters. This 
is another argument for the use of wavelets for the 
analysis and/or synthesis of acoustic signals. 
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G. Short Historical Reiiew of the Wucelet 
Transform -Orthonormal Buses of Wurielets 

As was already pointed out at the end of Section I-E. 
the use of functions h(’,’) generated from a single initial 
function h by means of dilations and translations is not 
new in either mathematics or physics, although their use 
is not so widespread as the Weyl-Heisenberg coherent 
states g ( p - y ’  described in Section I-A. The use of the 
h(‘*’) for signal analysis purposes, analogous to the use of 
the short-time Fourier transform, is much more recent, 
however. As a tool for signal analysis, the wavelet trans- 
form was first proposed by the geophysicist J .  Morlet in 
view of applications for the analysis of seismic data [ 171, 
[25]. J .  Morlet’s original name for the wavelets was “wave- 
lets of constant shape”, to contrast them with the analyz- 
ing functions in the short-time Fourier transform, which 
do not have a constant shape (see Fig. 1). The numerical 
success of J .  Morlet’s method prompted A. Grossmann to 
make a more detailed study of the wavelet transform; this 
resulted in the recognition that the wavelets h(a*h)  corre- 
sponded to a square integrable representation of the 
ax + b-group. The resolution of the identity (1.8) and 
associated interpolation techniques were then proposed 
(and implemented) for reconstruction schemes. This work 
was presented in a series of papers [17], [18], [30], in 
which the original longer name was shortened to “wave- 
let.” These papers were concerned with the map associat- 
ing to a function f E L2(W the function @f(u ,b )=  
(h(“,’) , f ) ,  where a ,  b ran continuously over R* X R. (Here 
R* = R\{O}.) For closer comparison with the numerical 
situation, it is necessary to limit oneself to the discrete 
sublattices described in Section I-F. Again it was 
A. Grossmann who first realized the importance of 
the “frame” concept in this connection. It was around 
this time that I first became involved in the subject. 
Around the same time Y. Meyer, having learned about 
A. Grossmann’s and J. Morlet’s results, pointed out to 
them that there was a connection between their signal 
analysis methods and existing, powerful techniques in the 
mathematical study of singular integral operators. All this 
resulted in our first construction of a special type of 
frames [16]. It also was the start of a cross-fertilization 
between the signal analysis applications and the purely 
mathematical aspects of techniques based on dilations 
and translations. The wavelet frames constructed in [161 
are based on functions h with compactly supported and 
C” Fourier transform. A similar construction can be 
made for Weyl-Heisenberg coherent states [161. In that 
case, due to the Balian-Low theorem (see Section 11-C-l), 
there is a tradeoff between redundancy of the frame and 
smoothness of the frame functions: if one requires the 
g,,, to constitute a basis (i.e., no redundancy), then either 
xg(x)  or k g ( k )  is not square integrable. For the 
Weyl-Heisenberg case one is thus forced to consider 
frames rather than bases if the phase space localization 
properties of g are important. It seemed natural to as- 
sume that the same would be true for the affine case, and 

[16] was written under that implicit assumption (although 
it is never explicitly stated). Shortly after [16] was written, 
however, Y. Meyer constructed an orthonormal basis, for 
Lz(R), of wavelets h,,,, based on a function h, with 
compactly supported and C” Fourier transform h [311. 
This quite amazing basis turned out to be an uncondi- 
tional basis for all LP-spaces, 1 < p <CO, all the Sobolev 
spaces, etc, [31]. A basis {e,},,, in a Banach space E is 
called “unconditional” if the convergence of C,Alel de- 
pends only on the IA,[, and is therefore independent of, 
e.g., the order in which the terms are summed. For a 
normalized basis {e,},,, (Ile,ll = 1 for all I )  in a Hilbert 
space 2, this is equivalent to requiring that there exist 
A > 0, B <m so that, for all v E 2, 

AMI’ I 1 ( e , , v>  1’ I BII~II’. 
I C  J 

In a Hilbert space a normalized basis is thus an uncondi- 
tional basis if and only if it is also a frame. Such bases are 
also called Riesz bases. Every orthonormal basis is auto- 
matically a Riesz basis; if (+,,),tN is an orthonormal 
basis, then e,  = (1 + n2)-’/2(n+, + +,) is an example of a 
basis of normalized vectors that is not a Riesz basis. The 
Meyer basis was generalized to more than one dimension 
by P. G. Lemarit and Y. Meyer [32]. Even though the 
function h in Y. Meyer’s basis has fast decay in the 
mathematical sense (it decays faster than any inverse 
polynomial), the constants involved are very large, so that 
it is not very well localized in practice. This limits its 
usefulness for signal analysis. If one is willing to accept 
functions h with less regularity (,Ck instead of C”) and to 
forego the compact support of h ,  then bases with better 
localization can be used. G. Battle [33] and P. G. LemariC 
[34] independently, using very different approaches, con- 
structed orthonormal bases with exponential decay. Ph. 
Tchamitchian [35] constructed bases of compactly sup- 
ported wavelets, which are however nonorthogonal. 

A major breakthrough in the understanding of or- 
thonormal wavelet bases came with the concept of mul- 
tiresolution analysis, developed by S. Mallat and Y. Meyer 
[36], [371. A multiresolution analysis consists in breaking 
up L2(R) into a ladder of spaces <, 
where V - ,  -+ L2(R) for m -03. The orthonormal projec- 
tions onto the V, correspond to approximations with 
“resolution” 2”; a typical (but too simple to be practical) 
example is 

. . .  c v 2 c V l c V ~ c V ~ , c V ~ , c  * . .  

V,  = { f  E L * ( R ) ;  

f is constant on every interval [121, ( I  + 1 ) 2 ~ ) ,  I E z}. 
The V,  are all obtained from V, by the appropriate 
dilation, 

and V,, is generated by the integer translates &,(x)= 
4 ( x  - n )  of one single function 4. (In this example, 
4 ( x )  = 1 for 0 5 x < 1, 4 ( x )  = 0 otherwise). Then there 

f (  .> E v, - f(2’x) E V,, 
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exists a function JI such that the JI,,(x)=2-”*JI(2-’x-n), 
j fixed, are an orthonormal basis of the orthogonal 
complement W,  of 5 in V,-l .  In other words, the inner 
products {(JI,,,f); n E Z) contain exactly all the informa- 
tion that is present in the approximation to f at level j - l 
(with resolution 2’-‘) but which is lacking in the next 
coarser level j (resolution 2 9 .  Because of the “ladder 
property” of the V,  it follows that the whole collection 
(JI,,; j , n  E Z) is an orthonormal basis of wavelets for 
L2(R>. Readers who would like to learn more about 
multiresolution analysis should consult [361, [371, or [381, 
where explicit recipes are given for the construction of 
wavelet bases, together with examples. Wavelet decompo- 
sitions using multiresolution analysis have been imple- 
mented in vision analysis [38], [401. A short review is also 
included in [39]. Note that there is a connection between 
orthonormal wavelet bases and quadrature mirror filters, 
used in subband coding [39], [401. 

Incidentally, the discovery of multiresolution analysis is 
another instance in which signal analysis applications 
provided the first intuition leading to the mathematical 
construction. Existing, more rudimentary techniques in 
vision analysis inspired S. Mallat to view orthonormal 
wavelet bases as a more refined tool for multiresolution 
approximations, which led to [361, [37]. S. Mallat has 
implemented these ideas, using the Battle-LemariC bases, 
into an algorithm for decomposition and reconstruction of 
images [29], [381. Finally, in February 1987, using Mallat’s 
algorithm as inspiration, I succeeded in constructing or- 
thonormal bases of wavelets with compact support, which 
are discussed elsewhere [39]. 

These different families of orthonormal wavelet bases 
have created quite a stir among mathematicians. Apart 
from applications to signal analysis, they should be useful 
in physics also. A first application, to quantum field 
theory, can be found in [41]. All these orthonormal bases 
are, however, rather spread out numerically, if one wants 
h to be reasonably regular ( h  E Ck, with k large enough). 
If one is willing to give up the requirement of a basis 
and to settle for a frame (giving up the linear indepen- 
dence-see the remark in Section 1 - 0 ,  then much better 
localized C” h can be chosen. This makes frames more 
interesting than orthonormal bases for certain wavelet 
applications in signal analysis. Another reason is that, as 
will be shown later, for a given desired reconstruction 
precision, frames allow one to calculate the wavelet coef- 
ficients with less precision than would be needed in the 
orthonormal case; the number of coefficients calculated 
is, of course, higher. This may be useful in some numeri- 
cal applications. The present paper addresses “frame” 
questions. We shall formulate criteria under which the 
h,, constitute a frame, and then derive some properties 
of these frames. Since similar techniques can be used for 
Weyl-Heisenberg coherent states, we address the same 
questions for that case as well. The basic results of this 
paper were reported, in an abridged version, at two 
mathematics conferences, in March 1986 [42] and July 
1986 [43], respectively. 

H. Organization of the Paper 

In Section I1 we study “frame questions.” We start with 
some generalities concerning frames in Hilbert spaces. 
We review the construction of [16], leading to tight frames. 
For more general choices of the initial function g or h ,  
we answer the questions 1) and 2) asked previously (suffi- 
cient condition for frame, estimates for the frame con- 
stants A and B ) ,  both for the Weyl-Heisenberg and for 
the wavelet case. We discuss whether certain ranges for 
p o ,  4,) or a,,, 6,) are a priori excluded, and we give inequal- 
ities linking A,  B, g, or h and po,qO or aO,bO.  We give 
many examples, and numerical tables of frame constants 
for these examples. For particular choices of g or h,  our 
results can be translated into estimates on entire func- 
tions [44]. A special case of this kind of estimate was 
already given in [451. Since numerically one is also inter- 
ested in convergence in other topologies than only L2, we 
address the question of convergence in other spaces as 
well. To improve the readability of the paper, we have 
relegated many of the technical proofs to appendices. 

In Section 111 we show how to use these frames for 
phase space localization. Concretely this means the fol- 
lowing. Suppose that a signal f is mostly concentrate$ in 
[ -  T,T]  in time, and that its Fourier transform f is 
concentrated mostly between the frequencies fl, and O z .  
This means that in phase space, f is mostly concentrated 
on [ -T ,T]X([ -LR2 ,  -flI]U[LRI,f12]). One would then 
expect that only those phase space lattice points, in Fig. 2, 
lying within this box (plus those lying very close to it) 
would suffice to approximately reconstruct f .  It turns out 
that this intuition is essentially right. Note that such a 
“box” contains only a finite number of points. We also 
show how the “over-sampling’’ inherent to working with 
frames permits, for fixed desired precision on the recon- 
struction of f ,  to compute the coefficients c,,(f) with 
less precision than would be needed in the orthonormal 
case. 

I .  Some Remarks 

A first remark we want to make is that while we shall 
stick, throughout the paper, to one dimension (i.e., a 
two-dimensional phase space), it is possible to generalize 
the results to more than one dimension. For the 
Weyl-Heisenberg case this is trivially true. For the wavelet 
case two possibilities exist. In the first case dilations and 
translations are used, independently in the n dimensions, 
and then again the extension is trivial. In the second case 
one uses n-dimensional translations, but only one dilation 
parameter, which acts simultaneously on all dimensions. 
In this case several (a finite number) hi have to be 
introduced. This construction is then similar to the gener- 
alization in [32]  of Y. Meyer’s basis to I I  dimensions: in 
that case 2“ - 1 different functions hi are used. 

A second remark is that we,  have restricted ourselves 
here to regularly spaced lattices, in the Weyl-Heisenberg 
(WH) case as well as the wavelet case. While it is possible 
to relax this regularity somewhat (we can also handle the 



DAUBECHIES: THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION A N D  SIGNAL ANALYSIS 969 

WH case if one of the two variables, p or q, is not 
regularly spaced, as long as the other is; likewise, in the 
wavelet case, we can handle dilations that are more 
irregular than the geometric sequence a y ) ,  the methods 
presented here are essentially unable to cope with distri- 
butions of phase space points that would have the same 
density (and this probably suffices to define frames, as in 
nonharmonic Fourier analysis [ 1511, but which would not 
be given by lattices. Using different methods, one can 
indeed show that less regular phase space point distribu- 
tions with a sufficiently high density do indeed lead to 
frames. For very special choices of g or h for which the 
“frame questions” can be formulated as properties of 
entire function spaces, that was proved in [451, [47]. Using 
the full power of the underlying group structure, 
Feichtinger and Grochenig [48] proved the same result for 
much more general functions g or h (essentially, they 
only require that g or h is reasonably “nice”), without 
recourse to entire function spaces. The results in [46]-[48] 
are, however, more qualitative than quantitative in that 
they establish that certain discrete families of coherent 
states constitute frames without caring too much about 
the values of the frame constants. Moreover, the phase 
space densities of the discrete families considered in 
[46]-[48] seems to be considerably higher than in our 
examples. 

11. FRAMES AND FRAME BOUNDS 

A. Generalities Concerning Frames 

We start by reviewing some general properties of frames 

Suppose that the (4,; I EJ) constitute a frame in the 
Hilbert space A?, i.e., there exist A > 0, B < m  such that, 
for all f E 2, 

[141, [151. 

AlIf11’1 I(4,,f)I2 I Bllfll’. (2.1.1) 
I 6  J 

Define T :  A?-+I ’ (J )  by ( T f ) , =  (4/ , f ) .  Here I’(J) 
stands for the space of square summable complex se- 
quences indexed by J .  The operator T is clearly bounded, 
llTf 11 I B1’’1l f 11. We shall call T the “frame operator” 
associated with the frame (41) lEJ .  Its adjoint operator T* 
maps I 2 ( J )  onto 2; it is defined by T*c = C I E J c , 4 / ,  
where c = ( c / ) / ~ ~  E 1 2 ( J ) .  The frame inequalities (2.1.1) 
can be rewritten as 

A l l s T * T I B l l .  
Since the symmetric operator T*T  is bounded below by a 
strictly positive constant, it is invertible, with a bounded 
inverse. This inverse satisfies 

B - ’ l  I ( T * T ) - ’ s  A - l l l .  (2.1.2) 

Define 6, = (T*T)-’+,. Then the family ($,),,, consti- 
tutes another frame. More precisely, we have 

Proposition 2. I: 
1) The family ( $ l ) l t J ,  with $, = (T*T)- ’4 , ,  constitutes 

a frame with bounds B - ’  and A - ’ .  

2) The associated frame operator f is given by f =  

f*f = ( T * T ) - ’  

f*T = 1 = T * f  

T ( T  *T)- ’  and satisfies 

(2.1.3) 

where f T *  = T f *  is the orthogonal projection oper- 
ator, in /’(I), onto the range of T.  

Proofi 

For any f E 2, we have 

<&f>  =( ( T * T ) - % , f )  =( 4 / , ( T * T ) - ’ f )  * 

Hence 

ci($,,f)i’= I IT(T*T) - ’~ I I ’  

=( f,(T*T)-’f). 

I 

= ( ( T * T )  - ‘ ~ , T * T ( T * T )  - I f )  

It then follows from (2.1.2) that the <$,),,, consti- 
tute a frame, with frame _bounds B - ’  and A-’. 
By the definition of the 4, we have 

(ffh = <$,,f> = ( ( T * T ) - ’ 4 / ? f )  

= ($/ , (T*T)-’f)  = ( T ( T * T ) - ’ f ) , ,  

hence T- = T(T*T)- ’ .  It follows that 

f*f = (T*T)-’T*T(T*T)-’ = (T*T) - ’  

F*T = (T*T) - ’T*T  = n ,  
and 

T * f  = T * T ( T * T ) - ’  = 1. 
Finally f T *  = T(T*T)- IT*  = T f * ;  it remains to 
prove that this is the orthogonal projection operator 
P onto the range of T.  Since T*c=O for any c 
orthogonal to the range of T ,  it suffices to prove 
that T(T*T)-’T*c = c for c in the range of T.  If c 
is in the range of T ,  c = Tf,  then 

T ( T * T ) - ’ T * c  = T ( T * T ) - ’ T * T ~ =  ~ f =  C .  

This proves f T *  = P = T f * .  U 

The operation {4/; I E 1) -+ {$/; I E J )  defines, in a 
sense, a duality pperation. The same procedure, applied 
to the frame ($/; I E J ) ,  gives the original frame {4[;  
1 E J )  back again. We shall therefore call (6,; E J )  the 
dual frame of {4/ ;  1 E J ) .  The duality 4,- 4, is also 
expressed by (2.1.3); for any f , g  E 2 we have 

( f , g )  = c ( f ? $ / ) ( 4 / A )  

= c ( f ? 4 / x $ / , g ) .  

I E J  

I € J  

In what follows we shall so often encounter T*T (rather 
than T alone) that it makes sense to introduce a new 
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notation for this operator. We define 
- - -  

U= T * T ,  U= T*T =U-’. 
In particular 

U= c 4/(4/ ,*)  

A n l u l B n  
&=U-’ (b / .  

I c J  

Proposition 2.1 gives us an inversion formula for T.  If the 
elements f E 2 are characterized by means of the inner 
products (( f,c$/); 1 E J ) ,  then f can be reconstructed 
from these by means of 

f = Ci1<4/,f) 
I 

valid” choices is used, where &/ is replaced by 2/3(4, + a). 
Of all the possible “quasi-inverses” for T ,  T*  is therefore 
the only one that automatically projects sequences in 
( R a n T )  

A similar phenomenon occurs with the infinite-dimen- 
sional frames we shall consider. While no finite number 
of them will be linearly dependent, there generally do 
exist convergent linear combinations, involving infinitely 
many +/, which sum to zero. This again causes “recon- 
struction formulas” to be nonunique, but again the 4l = 

will offer the optimal solution, in the sense that 
they are the only choice leading to 

to zero while effecting the reconstruction. 

Z C , ~ ,  = 0, for all c = ( c / ) / , ~  I RanR. 
(2.1.4) I 

In (2.1.4) the vectors &/ are defined by &/ =U-’4,. Note 
that, in general, if the frame is redundant (i.e., contains 
“more” vectors than a basis would), there exist other 
v_ectors in 2 that could equally well play the role of the 
4/ and lead to a reconstruction formula. This is due to the 
fact that the 4/ are not linearly independent in the 
general case. This phenomenon can be illustrated with 
the two-dimensional example of Section I-C. Take 2 = 

C 2 ,  and define 

4 ,  = e , ,  +3 = - 2“’ - ?e2 2 
where e, = ( l , O ) ,  e2 = (0,l) constitute the standard or- 
thonormal basis in C2. One can check very easily that for 
all U E X ,  

1 6  1 6  
42 = - 2“’ + -e2,  

2 3  2 c 1(4/4)l = -IlUll 
3 

2 I = 1  

so that U =  3/21,  hence 
becomes 

=U-’+, = 2/34,, and (2.1.4) 

2 3  
U = - c 4/(4/,U>. 

3 1 = 1  

Since C:= ,4/ = 0 in this example, it is clear, however, that 
for any choice of a E 2, an equally valid reconstruction 
formula is given by 

2 3  
U = - c (4/  + a ) ( 4 , , u ) .  

3 I = 1  

The choice a = 0, corresponding to (2.1.4), is the “minimal 
solution” in the following sense. The image, in C3, of C 2  
under the frame operator T is the two-dimensional sub- 
space with equation x,  + x2  + x3 = 0; we denote this sub- 
space by RanT. Vectors in C3 orthogonal to RanT are all 
of the type c = A(1,1,1). When the components of such a 
vector are substituted for the ( 4 / , ~ )  in (2.1.4), then the 
“reconstruction” leads to 0, since 

This is easy to check by the following argument. Write 
4/ = U-’C$/ + U , ,  and suppose that (2.1.4) holds. It follows 
that Cu, (4 , , f )  = 0, for all f E 2, or Cu,c, = 0, for all 
c E RanT. The optimality condition implies Cu,c, = 0 for 
all c 1 RanT. It follows that Cu,c, = 0 for all c E 1 2 ( J ) ,  
hence U /  = 0 for all 1. 

To apply (2.1.4) it is, of course, necessary to construct 
the first. Writing U as 2(A +B)-L[n -(2(A +B)-’U)l, 
one has the following series for the $/, 

Since 
A - B  2u B - A  
A + B  A + B - B + A  

n s n - - < -  n 
or 

< 1  (2.1 -6) 

the series in (2.1.5) always converges. The closer B / A  is 
to 1, the faster the convergence, of course. 

Remark: For the reconstruction formula (2.1.4) for f 
from its coefficients ($ , , f ) ,  we have used (2.1.3), namely 
that f * T  = n. One can also interpret (2.1.3) differently. 
From T * f  = 1 it follows that, for all f E 2, 

f =  c <&f>4 / .  
I 

This tells us that any function f can be expanded in the 
4/, and gives us a recipe for calculating appropriate 
coefficients. This is the point of view taken in so-called 
“atomic decompositions.” I t  is thus clear that frames and 
atomic decompositions are dual notions [481. 

All the previous formulas become much simpler if the 
frame is tight, i.e., if B = A .  In that case 

u = A n ,  f = A - l n  
& = A - @ /  

f =  A - ’  c 4 / ( 4 / > f > .  
It J 

If the frame constant for a tight frame is equal to one, 
This is no longer the case if one of the other “equally A = 1, then the reconstruction formula looks exactly like 

I =  1 I = 1  
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the decomposition of a function with respect to an or- 
thonormal basis, 

f =  c h ( 4 l . f ) .  
I E J  

In fact, if the vectors in a tight frame with frame constant 
1 are all normalized, then the frame constitutes an or- 
thonormal basis, as can easily be seen by the following 
argument: 

l l 4 k 1 I 2  = I ( 4 / ? 4 k )  l 2  
I E J  

=l14k114+ c I ( 4 / ? 4 k ) 1 2  
I E  J 

which implies (41 ,4k)  = 0 for 1 # k if l l+kl l  = 1. As we 
explained in the introduction, there are circumstances in 
which one_ prefers to work with nontight frames. In that 
case the 4) have to be constructed explicitly from the c$/.  

Formula (2.1.5) then gives an algorithm for the computa- 
tion of the 6,; as (2.1.6) shows, it pays to have a ratio 
B / A  as close to 1 as possible. Frames that are almost 
tight (i.e., B / A  close to 1) will be called snugframes. The 
"snugness" can be measured by S = [ B / A  -11-'. In the 
examples below we shall encounter values of S 2 100, 
corresponding to B / A  of the order of 1.01 or even 
smaller, for quite realistic frames (i.e., reasonably large 
values of po, qO or a,, bo-see Introduction). 

Note also that, while in principle all the different il, 
1 E J ,  have to be calculated separately, in practice simpli- 
fications may occur. Let us show what happens for the 
discrete Weyl-Heisenberg coherent state frames and for 
the wavelet frames defined in the introduction. We take 
therefore 3 = L2(R>, J = Z2. 

In the Weyl-Heisenberg case, we can rewrite U as 

U= C W(mP,,nq")g( W h , , n q , ) g ,  .> 
m , n  E h 

where the operator W ( p , q )  is defined by [W(p,q)g](x) 
= eiPXg(x - 9). One easily checks that W ( p ,  q)W(p' ,  4')  
= e-'P'qW(p + p' ,q  + 4'). Using this multiplication for- 
mula for the operators W ,  one easily finds that 

W (  mp,, nq,)T = TW( mp,, w,) .  

W( mp, , nq, ) U- = U- ' W( mp,, nq, . 
Hence 

This implies 

( g r n n ) "  =T-'grnn 

= U- ' W( mp,, 9 w,,) g 

= W( mP0 7 n9,)T- 

or ( g m n ) " ( x )  = eirnpox(go0)'(x - nq,) = grnn(x>, where 
= (goo) -  = T ' g .  We have thus only one function to com- 
pute, i.e., goo =U-'g, instead of a double infinity of 
different (gmn)"(m, n E Z). If moreover B / A  is close to 
1, then the rapidly converging series (2.1.5) can be used 
for this computation. 

In the affine case, we find 

U= U (  a; ; ,ar  nb,,)h( U (  a r , n r  nb,)h, .) 
m , n E H  

where [ U ( a , b ) f ] ( x ) =  l ~ l - ' / ~ f ( x  - b / a ) .  Again we can 
use the composition law 

U (  a', b')U( a", b") = U( a'"', b' + a'b") 

U ( a ~ , O ) T = U U ( a ; ; , O ) .  
to show that 

Note that we have no translation in these U-operators; it 
turns out that U does not commute with U ( a r ,  nb, a:) if 
n # 0. Since U ( a r ,  ay nbo) = U(a:,O)U(l, nb,), we find 

(hrn,,)- = U(ar,O)U-'U(l,nb,)h 

or 

( hmn)- (  x )  = hen)-( a,"x) .  

The simplification is less drastic than in the WH case, 
since only one of the two indices is eliminated, and one 
still has to compute the infinite number of (h,,)" = 

U-Ihtrn. In practice, however, only a finite number are 
needed, and for the computation of these it is again a big 
help if B / A  is close to 1. 

Note that if one stops at the first term ( k  = 0) in (2.1.51, 
one obtains the approximate inversion formula 

.-, 

If B / A  is close enough to one, this is a fairly good 
approximation. In the first calculations with wavelets, the 
formula used for analysis and reconstruction was very 
similar to (2.1.7) [25], without theoretical basis. It turns 
out that in those frames B / A  was indeed vcry close to 1, 
so that fapprox is a good approximation to f. 

B. Tight Frames 

1) Explicitly Constructed Tight Frames: In this subsec- 
tion we review shortly, for the sake of completeness, the 
explicit construction of tight frames given in [16]. We have 
drawn inspiration from [31] to make the construction 
more elegant. For examples, graphs and a more detailed 
discussion we refer to [16]. 

In both cases an auxiliary function v of the following 
type is used 

v : R - t R  

If v is chosen to be a Ck (or C") function, then the 
resulting frames will consist of ck (em) functions. 

a) The Weyl- Heisenberg case: Choose p,, q, > 0, 
with pO.qO < 2 ~ .  (In Section 11-C we shall have more to 
say about this restriction.) We shall assume here that 
po.qo 2 n-. (See [16, Appendix] for indications how the 
construction can be adapted if po-qo < T) .  Define A = 

27r/p0 - qo; one has 0 < h I r / p O .  The function g is 



912 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 5,  SEPTEMBER 1990 

f i (Y)=(10gao)- ' /2 (  

then constructed as follows: 

sin[ :U( ) ] 7  

1 I y 5 a,l 

cos['u( Y - a , l  ) ]  a , l I y 5 a ; l  
2 l a , ( a , - 1 )  ' 

71. I sin [ i v (  A - ' (  + x ) ) ] ,  - r / p i ,  I x I - - + A 
PO 

- + A  71. I x < - - A  71. 
P o  PO 

71. 7T I COS[ :U( A - ' (  x - + A ) ) ] ,  - - A 5 x 5 r / p 0  
PO 

The overall factor qo1I2 normalizes g ;  one easily checks 
that ldxlg(x)I2 = 1. The following two properties of g are 
crucial. 

These two properties together ensure that the gmn,  
g, ,Jx)  = eimpOxg(x - nq,), constitute a tight frame. By 
Plancherel's theorem we have indeed for all f E L2(R), 

One finds thus g m , ( x )  = G ( x ) - ' g m n ( x ) ,  and the inversion 
formula becomes 

Remark: If the function U is chosen to be C", then g is 
a compactly supported C"-function. While the uncertainty 
principle can of course not be violated, this nevertheless 
allows fairly good localization of g in both time and 
frequency. The coefficients ( g , , ,  f ) do therefore corre- 
spond to a reasonably accurate time-frequency localized 
picture of the signal f. Moreover, there exists a constant 
A = 2 7 1 . / p , . q ,  such that 

where we have used the notation g ( y ) *  to denote the 
complex conjugate of g ( y ) .  Note that the same calcula- 
tion can be made whenever lsupport gl I 271. /p0 ,  even if 
(2 .2.1)  is not satisfied. In that case the operator U of 
Section 11-A reduces to multiplication by the periodic 
function G ( x )  = 2 7 1 . p ~ ' C , , , I g ( x  - nq,,)12 (see also [50 ] ) .  

2 

The role of this constant A is crucial. If one restricts 
oneself to A = 1, then this forces the g,, to be an 
orthonormal basis, which leads to functions g that are 
badly localized in either time or frequency. This is a 
consequence of the Balian-Low theorem [51 ] ,  [52]  (Theo- 
rem 2.3 next), rediscovered in [53 ] .  As soon, however, as 
one allows A # 1, the picture changes drastically, and 
much better time-frequency localization is attainable. 

b )  The wavelet case: In this case there are no a priori 
restrictions on the choice of the parameters a,, b o ,  other 
than a, # 0 or 1 and 6, # 0. We may choose, without loss 
of generality, a, > 1, and b ,  > 0. Define 1 = 271. / [b , (a:  - 
l ) ] .  The tight frame of wavelets will be based on the 
function h with Fourier transform f i  constructed as fol- 
lows [16 ] :  

y 5 l  
1 1 - 1  \ 1  

( 2 . 2 . 2 )  
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The function h itself is given by the inverse Fourier 
transform, 

The normalization of h has been chosen so that 

/dYlYl-’ll;(Y)[2 = 1. 

2) C l + 6 Y ) 1 2  =(log%-lX[o,m,(Y)> 

The following two properties of h are again crucial: 

1)  Isupport l ; ~  = ( a i  - I)/ = 2 r / b , ,  
(2.2.3) 

k = Z  

where x[,,,,) is the indicator function of the right half line, 
X [ , , ~ ) ( Y )  = 1 if y 2 0, x[,,,,,(y) = 0, otherwise. These prop- 
erties together enable us to construct a tight frame based 
on h. By Parseval’s theorem, we have, for all f E L2(R),  

C I(hmn,f)12 
m , n = Z  

m , n  E L 

(2.2.4) 

If we define h+ = h ,  h -  = h* (i.e., ( h -  T ( k )  = f i (  - k ) ) ,  
then this calculation shows that the (h&;  m,n E Z) con- 
stitute a tight frame. Specifically, 

llfl12. (2.2.5) C C I(hLn7f)l == 
2 27.r 

€ = + o r -  m , n E L  

Similarly the (h‘,“:; m, n E h, A = 1 or 21, with h(’) = Re h ,  
h‘” = Im h,  constitute a tight frame. Strictly speaking, the 
frames (h;,; E = + or -, m,n E Z) or (h‘,“:; A = 1 or 2, 
m,n E Z) are not quite of the type described in the 
introduction, since they are not obtained by dilating and 
translating one single function. As shown by the computa- 
tion leading to (2.2.4), the operator U = T*T handles the 
positive and negative freque2cy domains independently. 
Since the Fourier transform h of h ,  defined by (2.2.2), is 
entirely supported on the positive half line, the use of a 
second function, which will handle the negative frequen- 
cies, is therefore unavoidable. In other examples (see e.g, 
Section 11-C-2) the function h will be chosen such that h 
is supported on both the negative and the positive half 
lines, and one function suffices. 

Let us return to the construction (2.2.2). For a special 
set of signals f Lo be analyzed, one may restrict oneself, 
even if support h c[O,m), to only one basic function h ,  
and the associated wavelets h,,,,,. This happens if one 
knows a priori, as is often the case, that the signal f is 

real. Since then f( - y )  = f ( y ) * ,  one finds 

As for the Weyl-Heisenberg case, a calculation similar to 
(2.2.4) can be carried out whenever the support width of 
h is smaller than 27r/b,, even if (2.2.3) is not satisfied. 
The operator U becomes then 

( T f ) ^ ( Y )  = f i ( Y ) f ( Y )  
with 

or, equivalently, 

Hence 

In the construction of the orthonormal basis, in 

1 

1311, the 
procedure starts in the same way. The function v is 
chosen to be C”, and has one additional property, 

(2.2.6) 

The “doubling” (using superscripts + to be able to cover, 
in Fourier space, the whole real line instead of only the 
half line) is avoided in [31] by incorporating also the 
mirror image of h into the basis function I,/J. Explicitly, 

v( x )  + v( 1 - x )  = 1, for all x E R. 

Due to the extra property (2.2.6) of v, one easily checks 
that 1 1 $ 1 1 2  = j k  II,/J(x)12 = 1. Note that the size of the 
support of 6 is no longer equal to 2 r / b , ,  so that the 
straightforward calculation made previously no longer 
works. In fact, the set of functions I,/Jmn(x) = 

U , ~ / ~ I , / J ( U ; ” ~  - nb,), m, n E Z, turns out to be an or- 
thonormal basis of L2(R) as the result of some miraculous 
cancellations, for which the property (2.2.6) of the func- 
tion v turns out to be quite crucial [31]. These cancella- 
tions occur only when a, takes on a very special value, 
namely when 

k + l  
a, = - with k E N. 

k ’  
The case k = 1, or a, = 2, corresponds to Y. Meyer’s 
construction in [31]. With b, = 1 (as in [311), Y. Meyer’s 
basic wavelet is thus given by 

1 
f (  y )  = - e ’ y / 2 [ w (  y )  + w (  - y ) ]  (2.2.7) 

fi 
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with 

4 Y )  = 

4rr 

3 
8rr 

3 

where v is a C" function from R to [0,1] such that 
v ( y )  = 0 for y I 0, v ( y )  = 1 for y 2 1 and v ( y ) +  v(1- y )  
= 1 for all y .  As pointed out in the introduction, the 
concept of multiscale analysis allows one to understand 
more deeply why this construction works, so that the 
"miraculous cancellations" just mentioned become less 

2) Relations Between the Frame Parameters and the 
Frame Bounds: In the explicitly constructed tight frames, 
the frame constant A is given by A = 27r/p0q0, for the 
Weyl-Heisenberg case, and by A = r r /  b, log a,, for the 
affine or wavelet case. This is no coincidence. We show in 
this subsection that these values for A are imposed by the 
normalizations chosen for g , h ,  and are independent of 
the details of the construction, i.e., they are generally true 
for all tight frames. More generally, we prove inequalities 
for the frame bounds A ,  B for all Weyl-Heisenberg 
frames or wavelet frames, tight or not. 

a )  The Weyl- Heisenberg case: Let us assume that the 
(+",,; m , n  E Z) are an arbitrary frame of discrete 
Weyl-Heisenberg coherent states, with frame constants 
A ,  B ,  and lattice spacings p,, q,, i.e., 

+mn( x )  = eimpox+( x - nq,), 

so. 

Allfll' l c I (+,,,f) l 2  I Bllfll'. 
m,n 

We shall see next that a frame is possible only if p o ' q o  I 
257. Let us therefore restrict ourselves to this case. Then 
there exists, for the same values po,qo,  a tight frame 

This is true for any Weyl-Heisenberg-frame with lattice 
spacings p O ,  qo. In particular, if the c$",, constitute a tight 
frame (i.e., A = B ) ,  then necessarily 

2rr 

Po40 
A = -114112. 

a )  The wavelet case: In this case also we shall derive 
inequalities similar to (2.2.9). Since there is no equivalent 
to (2.2.8) for wavelet frames, the derivation will be slightly 
more complicated. Let us assume, again, that (c$mn; m,n 
E H )  is an arbitrary frame of wavelets, with lattice spac- 
ings determined by a,, bo,  and with frame constants A ,  B ,  
i.e., 

+,,,( X )  = U,"/'+( aomx - nb,) 

Allfll' I c l ( + m n , f )  1' I Bllf1I2. (2.2.10) 
m , n  

Take now any positive operator C which is trace-class, 
i.e., which is of the form 

c = c c , u I ( u , ,  * )  
1 

where the uI  are orthonormal, c, > 0 and tr C = C,c, <W.  

Then (2.2.10) implies 

l 1 m,n 1 

or 

We shall apply this to the following operator, 
da db 

U' 
c = // -h(",b)(  * ) t  ( a ,  b )  (2.2.12) 

constructed with the help of the affine coherent states 
introduced in SeFtion I-D. The function h E L2(R) should 
satisfy Jdy lyl- ' lh(y)I2 < w  (see Section I-D). Here t(a, b )  
is a positive function in L'(R* x R; a-'dadb). The opera- 
tor (2.2.12) is positive and trace-class, with 

da db 
tr C = / T t (  a ,  b )  

{gmn; m,n E HI with llgll= 1. (For p o - q o  < 2rr, we take g 
as constructed in Section 11-B-la); for pn'qn = 2rr, take where we have assumed llhll= 1. On the other hand, 

- -  
g(x) = 4; '1' if 1x1 I 4 ,  /2, g(x) = 0, otherwise). One eas- 
ily checks that 

It follows that = 1 (+ ,U(  a{" ,agrn  nb,)-'U( a , b ) h ) l ' t ( a , b )  

( + m n ,  C+,,> 

(g, 4 - m  - n  > . (2.2.8) da db 
= (+,U(a;",a," n b , ) - ' C U ( a ~ " , a ~ "  n b o ) 4 )  

( gmn, 4) = e-imflP,19, 

(2.2.13) 

where we have used the composition law of the U-oper- 

Similarly Bllg112 2 r r ~ P 0 q , ~ ~ + ~ ~ 2 .  Since llgll = 1, we find 

AI-II411 2rr 2 I B .  (2.2.9) 

ators. We now restrict ourselvks to functions t of the form 

t ( a ,  b )  = X[I,",,[( lab . t l (  b /  1.1) 
where XL1,",,)  is the indicator function of the half open Po40 
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interval [l, an), i.e., ,y~ l ,o l ,p  = 1 if 1 5 U < a,,, 0 otherwise. 
Since ~rn,y~I,oo)(al;llal) = 1, (2.2.13) then leads to 

m , n  
C (4rnn,C4rnn) 

This sum over n can be estimated by the following lemma. 
Lemma 2.2: Let f be a positive, continuous, bounded 

function on R, with f ( x )  + 0 as 1x1 --)W. Assume that f 
has a finite number of local maxima, at x i ,  j = 1; . ., N.  
Define 

x , - S + I  
A i =  sup 1 h f ( x ) .  

S E [ O , I ]  x,-a 

Then 

For the sake of completeness we provide a proof for the 
case N = 1; the case for general N can be proved analo- 
gously, though the inequalities can be sharpened if some 
of the xi  are within a distance 1 of each other. 

Proof: Let n,, be the largest integer not exceeding xl, 
the point where f reaches its maximum. Since f is in- 
creasing on ( - m , x l ]  and decreasing on [xl,m), and since 
no I x ,  < n o  +1: 

maximum, at x = xl, then 
m 

h f ( x ) - f ( x , )  5 c f ( n )  5 j - m - m w ( x ) + f ( x l ) .  /_b n = --m 

Let us apply this to (2.2.14). Choose F to be any positive, 
continuous L1 function on R, tending to zero at infinity, 
with one local maximum, at x=O.  Choose A>0,  and 
define 

t l (  x )  = F (  A X ) .  

Applying Lemma 2.2 to (2.2.14) then leads to 

or 

2 
= - log a o . / d u F ( x ) .  (2.2.16) 

A 
Inserting (2.2.15) and (2.2.16) into (2.2.111, and taking the 
limit for A --) 0 leads to 

T 
j d y  Iy l - ' I f (  y )  1' I B.  (2.2.17) AI- 

bo 1% a0 

These inequalities hold for any frame of wavelets $rnn 

Incidentally, (2.2.17) shows that the basic function 4 for a 
frame of wavelets must 2atisfy the same "admissibility 
condition," i.e., /dylyl-'14(y)12 <CO, as the functions from 
which continuously labeled affine coherent states are con- 
structed (see Section I-D). In particular, if the 4rnn consti- 
tute a tight frame of wavelets, then 

In the explicitly constructed tight frames in Section II-B- 
lb, two functions (either h *, with h+ = h,  h-  = h*, or 
h(*), A = 1,2, with h(I) = Re h, h(') = Im h )  were needed to 
construct tight frames of wavelets (i.e., the h;,, or the 
h',":, A = 1,2). For such frames the arguments lead to the 
frame constant 
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This agrees with the value A = 257/ bo log a,, obtained in 
Section 11-B-Ib (see (2.2.5)), sinFe we chose the normal- 
ization of h such that {dy lyl-'lh(y)l2 = 1. 

C. General (Not Necessarily Tight) Frames in 
L2( R) - Ranges for the Lattice Spacings - Frame Bounds 

As we already explained in the introduction, it may be 
necessary in some applications to resort to nontight 
frames. This can be the case if the basic function g or h is 
imposed a priori (because of its adaptation to the problem 
at hand), or in the case of wavelets, when the explicit 
examples of functions h leading to tight frames are too 
spread out. 

In this section we treat the following questions: 

1) Is there a range of parameters that is excluded 
a priori (i.e., independently of the choice of g or h)? 

2) Given g (or h) ,  determine a range R for the param- 
eters po ,qo  (resp. ao,bo)  such that if ( p o , q o )  E R 
(resp. (ao ,  bo)  E R ) ,  then the associated g,, (resp. 
hmn)  constitute a frame. 

3) For g,po,qo (or h ,ao ,  bo )  chosen as in 21, compute 
estimates for the frame bounds A and B. 

In order to interrupt the flow of the exposition as little as 
possible, we relegate all the technical proofs for this 
section to Appendix C. 

1) The Weyl- Heisenberg Case: 
a )  Critical value for the product p o .  qo: In the 

Weyl-Heisenberg case there exists a critical value, 257, 
for the product po.qo.  This is already illustrated by the 
construction in Section 11-A-la), which only works if 
po.qo < 257. The following theorem states that at the 
critical value p o * q o  = 257, only functions g that are either 
not very smooth or do not decay very fast can give rise to 
a frame. 

(Balian - Low - Coifman - Semmes): 
Choose g E  L2(R), p o  > 0. If the g,, associated with 
g,po,qo = 2n- /p0 ,  constitute a frame, then either xg E L2 
or g' E L'. 

Remark: This theorem was first published by R. Balian 
[51] for the case where the g,, are an orthonormal basis. 
In the 1985 Festschrift for the 60th birthday of the physi- 
cist G. Chew, F. Low also discusses this problem [521. He 
gives (independently) essentially the same proof as in [511. 
The proof presented in [51], [52] contains a technical gap 
that was filled by R. Coifman and S. Semmes. The proof 
extends easily from the basis case to the frame case. We 
give here the proof as completed by R. Coifman and 
S. Semmes. 

The proof of Theorem 2.3 uses the Zak transform U,. 
This transform maps L2(R) unitarily onto L2([07 112); it 
was first systematically studied by J. Zak [541, in connec- 
tion wjth solid state physics. Some of its properties were 
known long before Zak's work, however. In [551 the same 
transform is called the Weil-Brezin map, and it is claimed 
that the same transform was already known to Gauss. It 

Theorem 2.3 

was also used by Gel'fand (see, e.g., Ch. XI11 in [561). 
J. Zak seems, however, to have been the first to recognize 
it as the versatile tool it is and to have studied it systemat- 
ically. It has many very interesting properties; its applica- 
tions range from solid state physics to the derivation, in 
[57], of new relationships between Jacobi's theta func- 
tions. Before embarking on the proof of Theorem 2.3, we 
briefly review the definition and some of the properties of 
U,. The Zak transform U, is defined by 

( U z f ) ( t , s )  = A ' / 2  e 2 T ' f ' f ( A ( s - 1 ) )  (2.3.1) 

where the parameter A > 0 can be adjusted to the prob- 
lem at hand. For the proof of Theorem 2.3 we shall take 

Strictly speaking, the definition (2.3.1) does only make 
sense for the subspace of the L2-functions for which the 
series converges. It is, however, easy to extend (2.3.1) 
from those functions for which it is well-defined, to all of 
L2(R). One way of doing this is to observe that the images 
under (2.3.1) of the orthonormal basis emn of L2(R), 

I t L  

A = 40. 

x[O, A ) (  - n A )  ( 7 E '1 e,,(x) = A-'/2e2T'mx/A 

are well-defined, and constitute again an orthonormal 
basis of L2([0, 112), 

( Uze,,)( t ,  s )  = e-2T"ne2T'ms. 

It follows that (2.3.1) defines a unitary map from L2(R) to 
L2([0,1l2). On the other hand, (2.3.1) can also be ex- 
tended to values of ( t ,  s) outside [0, 112. For f E L2(R), the 
resulting function is in L~,,(R2>, and satisfies 

( U z f ) ( t + W  = ( U z f ) ( t 7 4  
( U z f ) (  t ,  s + 1) = e2Trt(  U, f )( t ,  s )  (2.3.2) 

almost everywhere (ax.) with respect to Lebesgue mea- 
sure on R2. A rather remarkable consequence of (2.3.2) is 
the following. Suppose that f is such that U, f is continu- 
ous (on R2). Then U,f must necessarily have a zero in 
[0,1l2. The proof of this fact, first pointed out in [581, is 
quite simple. The presentation given here is borrowed 
from [59]. If U,f had no zero in [0,112, then logUzf 
would be a univalued, continuous function on [0,1l2 ex- 
tending to a continuous function in R2 by (2.3.2). On the 
other hand, (2.3.2) implies that 

(logUzf)(t + l , s )  = ( l o g U , f ) ( t , s )  +257ik 

(log Uzf ) ( t , s + 1) = (log Uzf ) ( t , s ) + 2 Tit  + 2 Til  
(2.3.3) 

where k ,  1 are integers, independent of t ,  s because of the 
continuity of log U, f .  But (2.3.3) leads immediately to the 
following contradiction: 

0 = (log U,f ) (0,O) - (1% U,f) ( 1 9 0) 

+ (1% U z f )  ( 1 ,o> - (log U z f  1 7  1) 

+ (1% Uzf ( 1 9  1) - (log U z f  ) ( O ,  1) 

+ (log U z f  )(07 1) - (1% U z f  ) (O ,  0) 
= - 2n-ik - 2n-i - 257il+ 2 r i k  +2n-il= - 2rri # 0. 
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This proves that we started from a false premise, i.e., that 
Uzf has a zero in [0,1l2. A similar argument proves 
Theorem 2.3. The above is only one of the many proper- 
ties of the Zak transform. For more of these properties, 
and interesting applications of the Zak transform to sig- 
nal analysis, we urge the reader to consult [60]. 

The images, under the Zak transform, of functions g,, 
(with p o * q o  = 27~1, are remarkably simple. One easily 
checks that, for the choice A = qo, 

(Uzgm,)( t ,  s)  = e2Timse-2Ti‘n(UZg)( t ,  s) .  (2.3.4) 

An immediate consequence of (2.3.4) is 

C I ( g m n t f )  I’ = C I (UZgrnn, UZf)  I’ 
m , n  m , n  

It follows that the g,, constitute a frame, with frame 
bounds A ,  B, if and only if, for (t,s)E[O,1l2 a.e. (and 
hence, by (2.3.2), for ( t , s )  E R2 a.e.) 

All2  I I (Uzg)( t , s )  I I B 1 l 2 .  

This is another crucial ingredient of the proof of Theorem 
2.3, to which we now turn. 

Proof of Theorem 2.3: Suppose that the g,, consti- 
tute a frame, and assume also that xg,  g ‘ E  L2(R). We 
want to show that this leads to a contradiction. Define 
G(t ,  s) = (U,gXt ,  s). Since the g,, constitute a frame, we 
have 

a ~ l G ( t , s ) I ~  b (2.3.5) 

for some a > 0, 6 <m,  and for ( t ,  s) E R2, a.e. For com- 
pactly supported f one finds 

[ U , ( $ ) ]  ( t ,  s) 

= q i / 2 s ( ~ Z f ) ( t , s )  -q03/2Ce2.rr i r ‘ l f (qg(s -~) )  
I 

This shows that xg E L2 implies a,G = a,(U,g) E L;,,(R2). 
Similarly g ‘  E L~ implies a,G E L;,,(R~). 

If the square integrability of the partial derivatives of G 
implied that G was continuous (which it does not, since 
we are in more than one dimension), then the proof 
would be finished. By the argument given before the 
proof, inf IC1 would then be zero, which is in contradic- 
tion with (2.3.5). This is essentially the argument of Balian 
in [HI, where the implicit assumption that G is continu- 
ous seems to be made. Lemma 2.4, due to R. Coifman 
and S. Semmes, which we state below, shows how the 
boundary conditions (2.3.21, together with the bounds 
(2.3.51, lead to a contradiction, without assuming continu- 

ity for G .  The main idea is to use an averaged version of 
G .  This averaged function is automatically continuous, 
and, if the averaging is done on a small enough scale, 
close enough to G so that the properties inherited from 
(2.3.5) and (2.3.2) still lead to a contradiction. This then 
proves Theorem 2.3. 0 

Lemma 2.4: Assume that G is a bounded function on 
R2 that is locally square integrable and which satisfies 

G ( t + l , s )  = G ( t , s )  

G ( t , s + l )  = e 2 T r f G ( t , s ) .  

If both a,G and d,G are locally square integrable, then 
essinf,,,,,,, IG(t,s)l= 0. 

Here the “essential infimum” of a measurable function 
f is defined by 

essinf f = inf { A ;  I{ x ;  f (  x )  I A) I > 0) 

where IVI denotes the Lebesgue measure of the set V. 
This definition avoids values taken by f on sets of mea- 
sure zero. For instance, for f ( x )  = l for x # 0, f (0)  = 0, 
one has inf f = 0, but essinf f = 1. 

Proof of Lemma 2.4: This proof is rather technical; it 
0 

Note added in proof After this paper was written, 
G. Battle produced a very elegant new proof of Theorem 
2.3 which avoids the use of the Zak transform [69]. 
Battle’s paper only treats the case where the g,, are an 
orthonormal basis (as did the original papers by Balian 
and Low). His argument was extended to frames by 
A. J. E. M. Janssen and I. Daubechies [70]. 

For the critical value p o - q o  = 2~ we see thus that not 
much regularity and/or decay can be expected from a 
function g leading to a frame. This is in marked contrast 
with the case p o - q o  < 2 ~ .  In that case, as shown in 
Section 11-B-la, there even exist C”-functions g with 
compact support such that the associated g,, constitute a 
tight frame. 

This critical value p o . q o  = 27r, has a physical meaning. 
As shown by Fig. l(a), (po.qo)-l is the density, in phase 
space, of the discrete lattice of functions g,,. The density 
(27r)-’ is nothing but the Nyquist density; it is well-known 
in information theory that time-frequency densities at 
least as high as the Nyquist density are needed for a full 
transmission of information. It is therefore not surprising 
to encounter this same critical value here. One encoun- 
ters the same argument in quantum physics, often used in 
semiclassical approximations, where a complete set of 
independent states (i.e., a set of linearly independent 
functions in L2(R) whose linear combinations span a 
dense subspace in L2(R)) heuristically corresponds to a 
density (257)-’ in phase space. In other words, every state 
“occupies” a “cell” of area 27r in phase space. 

For po.qo  > 27r, the intuition from physics or informa- 
tion theory suggests that the associated phase space lat- 
tice is “too loose,” i.e., that the g,, cannot span the 
whole Hilbert space. More precisely, we expect that for 

is given in Appendix B. 
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any g E L2(R), there exists at least one f E L2(R), f # 0, 
such that (g,,, f )  = 0 for all m , n  E Z. This is indeed the 
case. 

If po .qo  /27r > 1 is rational, then the following argu- 
ment, again using the Zak transform, shows how to con- 
struct a function f .  

By a dilation argument we can restrict ourselves to the 
case p o  = 277, q, = K / L ,  with K, L E N ,  K > L > 0. Let 
F ,  G ,  G,, be the Zak transforms of respectively f ,  g ,  g,,,  
as defined by (2.3.11, where we take h = 1. Then 

Gm,( t ,  s )  = e28imSG t s - n - i3  3 
For n = kL + I ,  with I, k E Z, 0 I I < L, this reduces to 

G t S - - K  
( 7  3 G ( t , s )  = e2srims -27r ikK1 

mn 

where we have used (2.3.2). The function F will be 
orthogonal in L2([0,112) to each G,, if, for all s ~ [ O , l l  
and for all k , l  E Z  with 0 5 1  < L, 

cdrF(r ,s)e-2"kK'G t , s  - -K = 0. (2.3.6) i l i  
We can rewrite (2.3.6) as 

[ 'Kdfe-2sr ikK1 K - 1  G ( r  +-,s--K)F(r+: ,s)=O. m 1  
m = O  K L  

( 2.3.7) 

We are thus led to the linear system of equations 
K - 1  

A , , ( t , s ) + , ( t , s ) = ~  O S I < L  (2.3.8) 
m = O  

where 
m ) (2.3.9) 

+,(t ,s)=F t + -  s . ( 2.3.10) 

Since the system (2.3.8) has L equations for K > L un- 
knowns, it always has a nonzero solution, for every pair 
( t , s )  E [O, l /K)x  [0,1]. The +,(r, s) solving (2.3.8) can, 
moreover, be chosen in L2([0,1/K)X[0,1]). One way of 
doing this is to choose a fixed U E C K ,  and define +,&, s) 
= lim. ~~ u,(t, s; T ) ,  where 

u( t , s ;T)  = e x p [ - ~ A * ( t , s ) A ( t , s ) ] u .  

Clearly Ilu(t,s; T)II* I llu1I2; hence C$=,l+,(t, s)12 I llu1I2. 
On the other hand, since all the A,, are in L2([0, 1/K)X 
[0,1]), the u ( t , s ; ~ )  are clearly measurable in t , s ;  as 
pointwise limits of measurable functions, the 4, are 
measurable too. Putting the 6, together according to 
(2.3.10) then defines a function F in L2([0,1I2) which is 
orthogonal to all the G,,. Note that while F may be zero 
a.e. for some choices of U, it is impossible that the 
functions F ( u , )  associated with K linearly independent 
vectors U,; . 3 ,  uK in C K  all be zero a.e., since this would 
mean that A*(t,  s ) A ( t ,  s) > 0 a.e. in t ,  s, which contradicts 

( "K.1  

rank [ A(t ,  s)] < K. For appropriately chosen U E C K ,  the 
previous construction leads thus to a nontrivial function 
F E L2([0, 112) orthogonal to all the G,,. 

This argument does not work if p,. q, /27r is irrational. 
It is nevertheless still true that the g,, do not span 
L*(R), whatever g in L2(rW) is chosen, even for irrational 
values of po-qo/27r.  The only proof that I know of this 
fact uses von Neumann algebras; it was pointed out 
to me by R. Howe and T. Steger. The proof consists 
in the computation of the coupling constant of the von 
Neumann algebra spanned by the Weyl operators 
(W(mp,, nq,); m, n E Z). The coupling constant for this 
von Neumann algebra was computed explicitly by 
M. Rieffel [49]; for po .qo  > 27r it is larger than 1, which 
implies that the von Neumann algebra has no cyclic 
element. This means that for any g E L2(R), the closed 
linear span of the g,, is a proper subspace of L2(R), 
which was the desired result. Unfortunately, this proof 
does not seem very illuminating from the signal analyst's 
point of view. 

Note added in proofi Recently H. Landau [71] found 
a different, intuitively much more appealing argument to 
prove that the g,, cannot constitute a frame if p o ' q o  > 
27r. His proof works for all g which are reasonably "nice" 
(decaying in both time and frequency). 

This concludes what we have to say about the critical 
value ( p o . q o  = 277-1 in the Weyl-Heisenberg case. We 
shall always assume po.qo  I 277 in what follows. 

6 )  Ranges for the parameters po,  qo, and estimates for 
the frame bounds: In the preceding subsection we have 
excluded parameters p,, q, for which p,. q, > 277. Even 
if po.qo  I 277-, however, we do not automatically have a 
frame for arbitrary functions g .  When, for example, g ( x )  
= 1 for 0 I x 2 1, and g ( x )  = 0, otherwise, the g,, can- 
not constitute a frame if q o >  1, even if po*qo<27r .  
Indeed, for q, > 1, one finds that ( g , , ,  f )  = 0, for all 
m, n E Z if the support of f c [ l ,  q,], independently of the 
choice of p,. This is thus a case where an inappropriate 
choice of q, excludes the possibility of a frame, for all 
values of p,. 

The theorem below gives sufficient conditions on g and 
q, under which this cannot happen, i.e., there always exist 
some p o  > 0 (in fact, a whole interval) leading to a frame. 

Theorem 2.5: If 

1) m ( g ; q , ) =  essinf ~ l g ( x - n q , ) 1 2 > 0  (2.3.11) 

2) M (  g ; q,) = esssup I g( x - nq,) l 2  < w  (2.3.12) 

and 

3) sup[ ( l+s2) ' I+€"2p(s ) ]  = ~ , < w  f o r s o m e c > ~  

where 

p ( s ) =  sup c I g ( x - n q , ) I I g ( x + s - n q , ) I  

x E[O,quI n 

x ~ [ O , q ~ l  n 

S € R  

x E [o, 4,,1 n E L 
(2.3.13) 
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then there exists a Pi > 0 such that Theorem 2.6: Assume that (2.3.11), (2.3.12), (2.3.13) are 
satisfied. Define 

Vp, E (0, P i )  : the g,, associated with g , P ,  , qo 

I I/’ 1 
p;=inf p o  p -k  P - - k  2 T m ( g ; q o )  . [ l k I l [  (: ) ( : )] are a frame 

VS > 0:3p, in [ P i ,  Pi + 61 such that the gm, 

associated to g ,  p , ,  q ,  are not a frame. 

Proofi see Appendix C. 0 

The conditions (2.3.11)-(2.3.13) may seem rather tech- 
nical. They are, in fact, extremely reasonable. Condition 
(2.3.11) specifies that the collection of g and its translates 
should not have any “gaps.” This already excludes the 
example given at the start of this subsection. The condi- 
tions (2.3.121, (2.3.13) are satisfied if g has sufficient 
decay at 03, in particular, if Ig(x)l I C[1+ x21-3/2. 

Note that both (2.3.11) and (2.3.12) are necessary con- 
ditions. If (2.3.11) is not satisfied, then for every E > 0 one 
can find a nonzero f in L2(rW) such that 

C 1 ( g m , , f >  1’ I ~ I I ~ I I ~  
m , n  

which means there exists no nonzero lower frame bound 
A for the g,,. Similarly there exists no finite upper frame 
bound B for the g,, if (2.3.12) is not satisfied. 

Remarks 

1) At the end of the preceding subsection we showed 
that the g,, can constitute a frame only if p o - q o  I 
277. Hence necessarily Pi I 2 ~ / q , .  

2) The set { p o ;  the g,, associated to g,p, ,q,  consti- 
tute a frame) with g and q,  fixed need not be 
connected. It is possible that this set contains values 
of po larger than Pi. An example is given by the 
following construction. Let 4 be a C” function with 
support [0, 1/31 such that 141 has no zeros in (0,1/3). 
Define g by 

0, Y I O  

4 ( Y ) ,  
g ( ~ ) =  4 ( ~ - 1 / 3 ) ,  1 / 3 ~ ~ 1 2 / 3  

0 I y I 1/3 

+ ( y - 2 / 3 ) ,  2 / 3 _ < y 1 1  I 0, y 2 l .  

Take q, = 27r. Then, since support 2 = [O, 11, 

c I ( g m n  9 f ) I = /dy c lg( Y - ) I I fi Y ) I 
m , n  m 

This implies that the g,, constitute a frame if and 
only if infC,Ig(y - mp0>l2 > 0. Consequently PO’ = 

1/3, while the set of all p o  leading to a frame is 
(0,1/3)U(1/3,2/3). 

For reasonably smooth g with sufficient decay at m, the 
constants m(g; q,), M(g; q,) and the function P ( s )  can 
easily be computed numerically. These constants are use- 
ful in estimations of the frame bounds A , B ,  as the 
following theorem shows. 

Then p ;  I Po’, and for 0 < p o  < p &  the following esti- 
mates for the frame bounds A ,  B holds 

Proof see Appendix C. U 

These bounds for A and B can be improved by the 
following observation. If the g,,(x) = eimpoxg(x - nq,) 
constitute a frame, then so do the 

where 2 denotes the Fourier transform of g. It follows 
that 
A 2  

( g m n I A  ( C) = e- ins(~Li(  c - m~,) 9 

(2.3.14) 
B _ <  

(2.3.15) 
Here M ( $ ; p , ) ,  m ( g ; p O )  and b ( s )  are the obvious exten- 
sions of the quantities in (2.3.111, (2.3.121, and (2.3.13). 
For instance, 

b ( s )  = SUP C 16(5+mPO)I lg(5+s+mP,) l .  
5 E [ O ,  pol m E .Z 

Similarly, one has the following better lower bound for 
p i ,  
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C) Examples 
i) The Gaussian case 

In this case 

g ( x )  = T - 1 / 4 e - ~ 2 / 2  (2.3.17) 

This is the basic function for the so-called “canonical 
coherent states” in physics 151. It is also the basic function 
chosen by Gabor [l] in the definition of his expansion. In 
the notations used in this paper, Gabor’s approach 
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(b) 

amounts to writing an expansion with respect to the g,, 
associated to g, p o ,  qo, where p o .  qo = 277. This choice 
seems very natural from the point of view of information 
theory, since it corresponds exactly to the Nyquist density. 
However, since both xg and g’ are square integrable in 
this case, Theorem 2.3 tells us that the g,, cannot 
possibly constitute a frame. In fact, the Zak transform 
U,g of g (see Section 11-C-la) can be constructed explic- 
itly in this case; it is one of Jacobi’s theta-functions, and it 

-0.2 I - 10 -5  0 5 10 

1 .o 

0.5 

0 

-0.5 
-10 -5  0 5 

(e) 
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has a zero in (1/2,1/2) [21, [31, [601, [631. The operator U 
of Section 11-A is unitarily equivalent with multiplication 
by IUzg12 on L2([0, 112), and is therefore one-to-one, but 
it has an unbounded inverse, i.e., 

~ ~ ~ ~ E L ~ ( R ) I I ~ I I - ~  C I ( h m n > f )  1' = 0. 
m , n  

One can still write an expansion of type 

f = C g m n ( g r n n , f )  
m , n  

but this expansion has, in general, bad convergence prop- 
erties because g L2(iw) (since U,g = U,(T-'g) = 

lUzgl-2Uzg has a pole at (1/27 1/21, and is therefore not 
in Lz([0,112)). It is this fact that makes the expansion 
associated to the Gabor wave functions unstable [2], [3], 
[601. The function g was explicitly constructed in [2]; it 
turns out to be discontinuous as well as nonsquare-inte- 
grable (see Fig. 4(f)). Explicit computation of 2 (via the 
Zak transform), for pO .= q,, = G, leads to [2] 

g ( x >  = cexz /2  ( - 1)ne-T(n+ I/2? 

n + 1/2 z x/& 

where C is a normalization constant. 
For g Gaussian, as in (2.3.17), the fact that the g,,, do 

not span L2(R) if pO'qi ,  > 27r, has been known for quite a 
while [611, 1621. The proofs in [611, 1621 use entire function 
techniques. These techniques do not work, however, for 
non-Gaussian g. 

Our first table of numerical results, for Gaussian g, 
lists pf , ,  for different values of qo (see Table I). It turns 
out that ph is always very close to 27r/q,; for this reason 
we have tabulated (27r/qi,.p6)- 1, rather than p6 itself. 
The difference (27/q0.p6)-  1 is largest for q(, = G, 
where it is about 4 X lop3. 

TABLE I* 

1 .o 6X lo- '  
1.5 3 ~ 1 0 - ~  
2.0 2 x  1 0 - ~  

3.0 4 x  
3.5 2 x  lo-' 
4.0 8X  

2.5 4X lo- '  

*The deviation, for g ( x ) =  
~ - ' / ~ e x p ( -  x2/2), of the esti- 
mated value ph from the opti- 
mal value 2 ~ / 9 , )  (see text). 

Note that P i  _< 27/q, .  The numerical results show 
therefore that in this case the estimate pf,  is remarkably 
close to the true critical value Pi.  In fact they suggest the 
conjecture that P i  = 2 7 / q 0 ,  for all qo > 0, in this case. I 
believe that this conjecture holds for all positive functions 
g with positive Fourier transform. 

Next we list the estimates (2.3.14) and (2.3.15) on the 
frame bounds for a few values of qil, p o  < ph. We also 
tabulate the corresponding B/A,  and r = ( B / A  - 

I 

l ) / (B/A + 1). This parameter measures how snug the 
frame is, i.e., how close it is to a tight frame; as explained 
in Section 11-A, this parameter is essential if one wants to 
apply the inversion formula as indicated in Section 11-A. 
We have grouped together different values of qo ,po  cor- 
responding to the same value of qo.po.  If qo.po = 2 7 / k ,  
with k integer, then a different method, based on the Zak 
transform, enables us to write explicit, exact expressions 
for the frame bounds A and B. With U, defined as in 
Section 11-C-la (see (2.3.Q with A = qo), one finds indeed 
that, for m E Z, m = m'k + r,m',  r E Z, 0 I r < k ,  

( Uzgmn 1 ( t ,  s 1 = ( U z g m ' k  + r  n 1 ( t, s 1 
- e 2 r r i r n / k e - 2 ~ i r n  2 ~ i m ' s  
- e (Uzg')(t,s) 

where we have used p o  = 27r/q,, and where 

g ( x ) .  g'( x )  = p W , , / k  

Hence 

(U,g')(t,s)=(U,g) t - - s  . ( I )  
This is entirely similar to computations made in Section 
11-C-la; see also [451. Consequently, as in Section 11-C-la 
(see also [161, [45]) 

which implies 

To find A and B, in the case where 27r/(p,.q,) is an 
integer, it suffices therefore to compute Uzg and these 
two extrema. 

In Table I1 next we list the estimates, given by (2.3.141, 
(2.3.15) for A ,  B, B/A and r ,  for a few values of qo, in 
the cases po .qo  = ~ / 2 ,  3x /4 ,  T, 37r/2, and 1.97. In the 
cases p o ' q o  = 7r/2 and 7r we also list the exact values for 
A ,  B, denoted by Aexact, B,,,,,. For values of p o  close to 
the critical value 27r/q0 (see the case q o ' p o  = 1.97 in 
Table I), the ratio B / A  becomes very large, as was to be 
expected. The convergence of the formula for 2, mea- 
sured by r ,  will be very slow. For qo = 2.0, p o  = 7 / q 0  = 
~ / 2 ,  the ratio r is already of the order of 0.2, while 
qo = 1.5, p o  = 7r/3, q o p o  = 7 / 2  leads to r = 0.025. In the 
latter case a few terms will suffice to obtain an accuracy 
of is the computation of 2. This shows that very 
good frames can be obtained with lattice spacings that are 
not very small. 

In the two cases where the exact values of A ,  B can be 
computed by other means ( q o . p o  = 7 / 2  and q o * p o  = 71, 
the estimates for A and B, as calculated from (2.3.14) and 
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TABLE I1 
VALUES FOR THE FRAME BOUNDS A ,  B, THEIR RATIO B / A ,  AND 

THE CONVERGENCE FACTOR r = ( B / A  - l ) / ( B / A  + l), FOR 

THE CASE g(x) = P - ' / ~  exp( - x2/2), FOR DIFFERENT 
VALUES OF q0. po* 

0.5 1.203 1.221 7.091 7.091 5.896 0.710 
1.0 3.853 3.854 4.147 4.147 1.076 0.037 
1.5 3.899 3.899 4.101 4.101 1.052 0.025 
2.0 3.322 3.322 4.679 4.679 1.408 0.170 
2.5 2.365 2.365 5.664 5.664 2.395 0.41 1 
3.0 1.427 1.427 6.772 6.772 4.745 0.652 

4tr'Po = 3 r / 4  
40 A B B/A r = ( B  - A ) / ( B  + A )  

1.0 1.769 3.573 2.019 0.338 
1.5 2.500 2.833 1.133 0.062 
2.0 2.210 3.124 1.414 0.172 
2.5 1.577 3.776 2.395 0.41 1 
3.0 0.951 4.515 4.745 0.652 

4t)'PtI = r 

9[) A Acracl B B,,,,, B/A r = ( B -  A)/(B + A )  

1.0 0.601 0.601 3.546 3.546 5.901 0.710 
1.5 1.519 1.540 2.482 2.482 1.635 0.241 
2.0 1.575 1.600 2.425 2.425 1.539 0.212 
2.5 1.172 1.178 2.843 2.843 2.426 0.416 
3.0 0.713 0.713 3.387 3.387 4.752 0.652 

q t l ~ p t ,  = 3 7 1 2  
411 A B B / A  r = ( B  - A ) / ( B  + A)  

1.0 0.027 3.545 130.583 
1.5 0.342 2.422 7.082 
2.0 0.582 2.089 3.592 
2.5 0.554 2.123 3.834 
3.0 0.393 2.340 5.953 
3.5 0.224 2.656 11.880 
4.0 0.105 3.014 28.618 

90 ' P o  = 1.9r 
911 A B B/A 

0.985 
0.753 
0.564 
0.586 
0.712 
0.845 
0.932 

close to a multiple of the unit operator. Consequently 
g = U- 'g  is very close to a (scaled) Gaussian. For increas- 
ing p o  = qo, several things happen to g. The decrease of 
both frames bounds A and B ,  which reflects the decrease 
in the "oversampling ratio" 27r(poqo)- ' ,  causes the am- 
plitude of g to increase. Moreover, the frame becomes 
less and less snug (for p o  = qo = (1.97r)'12, one even has 
r > 0.91, causing to deviate more and more from a 
Gaussian. In all these examples (Figs. 4(a)-4(e)), the 
function g remains square integrable, however. One can 
even show that it remains C", with fast decay. This is no 
longer the case if p o  = qo = ( 2 ~ ) " ~ .  In this limiting case, 
where the g,, no longer constitute a frame, one can still 
construct = U-'g, but, as previously shown, is no 
longer in L2. This singular g' was first plotted by 
Bastiaans [2]; we have replotted it here in Fig. 4(f). One 
clearly sees how the regular 2, for lower values of p o - q o ,  
approaches the singular limiting function as p o  = qo in- 
creases towards (27r)'12. 

In this 
case r n ( g ; q , )  and M(g;q , )  can be calculated explicitly. 
One finds 

ii) The exponential case: We take g ( x )  = 

4 g ; q o )  =(sinhqo)- '  

M ( g ; q , )  =cothq,. 

The function p cannot be written in closed analytic form. 
In Table 111 we list p ;  for a few values of qo; we also list 
again 27r/(qo.p;)-l, which is much less close to zero 
in this case. In Table IV we list A,  B ,  B / A  and r =  
( B / A  - 1)/( B/A + 1) for several values of qo, po.  Again 
we have grouped together those pairs qo,po with the 
same value of p o .  qo; in the cases p o .  qo = T /2, p o .  qo = 
7r/4 we compare the estimates with the exact values. 

1.5 0.031 2.921 92.935 0.979 
2.0 0.082 2.074 25.412 0.924 
2.5 0.092 2.021 22.004 0.913 
3.0 0.081 2.077 25.668 0.925 
3.5 0.055 2.218 40.455 0.952 
4.0 0.031 2.432 79.558 0.975 

TABLE 111 
THE ESTIMATED VALUES p &  AND THEIR DEVIATION FROM 

2r/q,, FOR g(x)= e - ' x '  

4 n  Pk 2r/(qn.p:)- 1 
*Where possible ( q o . p o  = r / 2 ,  q O , p p o  = P )  the estimates for A,  B are 

compared with the exact values (computed via the Zak transform; see 
text) 

(2.3.151, turn out to be remarkably close to the true 
values, giving deviations of at most a few percent on A ,  
and less than 0.1% on B. In the next example we shall 
find similar orders of magnitude for the deviation of our 
estimates for A , B  with respect to the exact values. The 
formulas (2.3.14) and (2.3.15) seem thus to give quite 
good results, despite the rather brutal estimating methods 
used. 

For every one of the values of the product q o * p o  in 
Table I1 we have also computed by means of the 
inversion formula (2.1.5). These functions g' are plotted in 
Fig. 4, for the choice qo = po.  

For p o  = qo = (7r/2)'I2, we know, from Table 11, that 
the frame is snug ( r  2: 0.02 in this case), i.e., that U is very 

~ 

0.5 
1 .0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

5.32 1.36 
2.99 1.10 
2.52 0.66 
2.21 0.42 
1.92 0.30 
1.68 0.25 
1.48 0.22 
1.33 0.17 

In the two cases, in Table IV, where the exact values of 
A ,  B can be computed via the Zak transform (for q o * p o  = 

7r/2 and q o * p o  = 7r/4), we see again that the estimates 
for A and B given by (2.3.14) and (2.3.15) are remarkably 
close to the exact values. The error on B is negligible, 
and the error on A does not exceed a few percent. Note 
also that frames based on the exponential used here are 
much less ''snug" than Gaussian frames (compare e.g., 
the value of r for qo = 1, p o  = ~ / 2 ,  which is 0.399 in the 
present case, but 0.037 for a Gaussian). 
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TABLE IV 
VALUES FOR THE FRAME BOUNDS A, B,  T H E I R  RATIO B / A ,  AND THE 

CONVERGENCE FACTOR r = ( B / A  - l ) / (B /A  + 1). FOR THE CASE 
g(x) = exp( - Ixl), FOR DIFFERENT VALUES OF q,,, prr* 

~ 

1.0 2.600 2.724 6.056 6.056 2.330 0.399 
1.5 2.665 2.692 6.781 6.781 2.544 0.436 
2.0 2.179 2.190 8.326 8.326 3.821 0.585 
2.5 1.648 1.657 10.140 10.140 6.152 0.720 
3.0 1.197 1.206 12.060 12.060 10.074 0.819 

qo‘po = 37 /8  
90 A B B / A Q  r = ( E  - A)/(B + A )  

0.5 2.014 8.873 4.405 0.630 
1.0 4.203 7.339 1.746 0.272 
1.5 3.724 8.872 2.382 0.409 
2.0 2.938 11.068 3.767 0.580 
2.5 2.204 13.514 6.133 0.720 
3.0 1.597 16.080 10.068 0.819 

40.Po=a/4 
qo A A,,,,, B B,,,,, B / A  r = ( B  - A ) / ( B +  A )  

1.0 6.757 6.766 10.554 10.554 1.562 0.219 
1.5 5.634 5.645 13.259 13.259 2.353 0.404 
2.0 4.412 4.426 16.597 16.597 3.762 0.580 
2.5 3.306 3.322 20.271 20.271 6.132 0.720 
3.0 2.396 2.413 24.119 24.119 10.068 0.819 

*Where possible (qo.pI, = n/2,  ql,’po = a/4)  the estimates for A, B 
are compared with the exact values (computed via the Zak transform; 
see text). 

2) The Wavelet Case: 
a )  Ranges for the parameters a,, bo- Estimates for the 

frame bounds: In Section 11-B-lb) we construct tight 
frames for arbitrary choices of a, > 1, b, > 0. This shows 
that there exists no absolute, a priori limitation on a,, b, 
-values leading to frames, unlike the Weyl- 
Heisenberg case, where po .qo  I 2 7  is a necessary condi- 
tion (see Section 11-C-la)). This freedom in the choice of 
aO,b ,  is deceptive, however, because of the behavior of 
wavelet frames under dilations. If the h,,, based on h,  
with parameters a,, bo, constitute a frame, then so do the 
hy;,,, based on h,(x) = y’ I2h(yx) ,  with frame parame- 
ters a,,y-’b,. This explains, at least partially, why a 
frame can be constructed for any pair a,,b,. To elimi- 
nate this dilational freedom, let us restrict our attention, 
in the pre:ent discussion, to frames such that llhll= 1 and 
jdk  lkl-’Ih(k)l* = 1. Under this restriction, one might 
hope again that there exists a critical curve b$a,) sepa- 
rating the “frameable” pairs from the “nonframeable,” 
with the orthogonal bases corresponding to the curve 
itself. This was the situation for the Weyl-Heisenberg 
case. It turns out however that this picture is not true in 
the wavelet case. At the end of this subsection, in Theo- 
rem 2.10, we establish the following counterexample. We 
take Y. Meyer’s basic wavelet I,/J, and look at the i , ! ~ , , , ~ ~ ~ ,  a 
family of wavelets generated from I,/J with a,= 2, b, 
arbitrary. For bo= 1, these wavelets constitute an or- 
thonormal basis [31]. If there existed a nice critical curve 
bh(a,) separating frameable and nonframeable values, 
then we would expect that the i,!J,,,n;h,, would not be a 

frame for bo > 1 (“not enough” vectors), and might be a 
frame consisting of nonindependent vectors for b,, < 1 
(“too many” vectors). It turns out, however (see Theorem 
2.10), that there exists E > 0 such that, for all values of 6,) 
in (1 - E ,  1 + E ) ,  the associated i,!J,,:b,, constitute a basis 
for L*(R). This baffling fact shows that the concept of 
“phase space density,” so well-suited for Weyl-Heisen- 
berg frames, is not well adapted to the wavelet situation. 

For the wavelet case this is all we have to say in answer 
to question 11, as formulated at the start of Section 11-C. 
The following theorem addresses question 21, i.e., the 
determination for a given function h ,  of a range R such 
that the h,, are a frame for all choices (a,, bo) E R.  The 
formulation of this theorem is very similar to Theorem 
2.5, and so is its proof. 

Theorem 2.7: If 

1) m ( h ; a , ) =  essinf Ih(a; ; ,x)I*>O (2.3.18) 
I x l r [ l ,a , , l  , € L  

2) M ( h ; a , ) =  esssup I h ( a r x ) l * < m  (2.3.19) 

and 
I x l ~ [ 1 , a , , l  r n E Z  

where 

P ( s ) =  sup ~ i ( a ; ; , x ) ~ ~ i ( a ~ x + s )  
lx l€[ l , a” l  r n E Z  

Then there exists a B,“ > 0 such that 

Vb,  E (0, B,“) : the h,, associated to h 

constitute a frame, 

(2.3.20) 

. (2.3.21) 

a,,b, 

VS > 0 A b ,  in [ B;, B i  + S] such that the 
g,, associated to h ,  a,, b,, 
are not a frame. 

Pro08 see Appendvc C. 0 

Remarks: 

1) The conditions (2.3.181, (2.3.19) are again necessary 
conditions. If (2.3.18) is not satisfied, then 
inf,,,2 l l f l l~*~,, , l(h, , ,  f ) I 2  = 0, which excludes 
the existence of a nonzero lower frame bound. Simi- 
larly (2.3.19) is necessary for the existence of a finite 
upper frame bound. 

2) The range R of “good” parameters, i.e., the set of 
(a,, bo)  such that the h,,, associated to h ,  a,, bo, 
constitute a frame, need not be connected. It is 
possible to construct functions h such that, for fixed 
b,, there exist a,,, < a,,* < for which the h,, 
associated with h ,  a,,j; b, constitute a frame if j = 1 
or 3, but do not if j = 2. (The construction is similar 
to the one given for the Weyl-Heisenberg case. See 
Remark 2, following Theorem 2.5.) 
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3)  Theorem 2.7 is pnly useful for choices of h for which 
the support of h contains negative as well as positive 

can be sharpened. The following corollary is due to Ph. 
Tchamitchian. 

frequencies. In some cases one prefers to work with 
functions h with support h c R,. Functions with this 
property are also called "analytic signals," because 
they extend to functions analytic on a half-plane. 

Theorem 2.9: Choose a,= 2. Under the same condi- 
tions as in Theorem 2.7, the following estimates for the 
frame bounds A ,  B hold, 

{h ; , , ;m ,nEZ ,  h + = h ,  h-=h*)orof{h',"A; m , n E  
I = O  

See e.g., [681. The frame to be used then consists of 

Z, A = 1,2 h"' = & re h,  h") = & im h). For these 
frames the conclusions of Theorem 2.7 hold under 
very similar conditions. The only changes to be made 
concern the definitions of m(h;  a,), M ( h ;  a,) and 
B(s) .  In each of these definitions, the condition 

(2.3.25) 

I = O  

1x1 E [ l ,  a,] should be replaced by x E [ l , ~ , ] .  

As in the Weyl-Heisenberg case (Theorem 2.51, the con- 
ditions (2.3.18)-(2.3.20) may seem very technical. They 
are however very easy to check on a computer. Good 
estimates for m(h;a,) ,  M(h;a , )  and p(s )  lead again to 
useful inequalities for the frame bounds A and B. 

- p I  - - ( 2 / + 1 ) ] ] " * }  (2.3.26) ( t  
Theorem 2.8: Under the same conditions as in Theo- where 

rem 2.7, the following lower bound for B,' holds 

I 

Pro08 See Appendix C. 0 

Note that the estimates in Theorem 2.9 use some of the 
phase information contained in f i ,  which is completely 
lost in the estimates in Theorem 2.8. It is therefore to be 
expected that the estimates (2.3.23, (2.3.26) are ,a signifi- 
cant improvement (2.3.231, (2.3.24) for complex h. This is 
illustrated most dramatically by applying both pairs of 

at the end of Section 11-B-lb)). For h = @, with @ defined 
by (2.2.71, one finds C,l@(2"y)I2 = 1, p(27r) = p(-277) = 

1/2 ,  p ( 4 7 ) = p ( - 4 ~ ) = 1 / 2 ,  and p ( k 2 ~ ) = 0  if l k l 2 3 ,  

bn k = l  [ ( 1 ( ]]"2)' hence c ~ = 1 [ p ( 2 ~ k ) p ( - 2 ~ k ) ] 1 / 2  = 1. Applying Theorem 
2.8 we therefore find A 2 - 1, B I 3. 

This means that if we had only the bounds (2.3.231, 
(2.3.24) to go by, we wouldn't be able to recognize that 
the @mn constitute a frame. Since, for a ,  = 2 and bo = 1, 
the @,,, do in fact constitute an orthonormal base, this is 
a rather poor performance. Calculating PI  we find that 

> m ( h ; a , )  . (2.3.22) i 
For < '0 < ' 6 9  the foilowing estimates for the frame estimates to the basic wavelet in y. Meyer's basis (defined 
bounds A ,  B hold 

A > -  m ( h ; a , ) - 2  p -k p --k 

(2.3.23) 
2= i 

B I -  
k = l  

(2.3.24) 

p , ( 2 ~ k )  = 0, for all odd k .  
Pro08 see Appendix C. 0 

Remark: The proof in Appendix C applies for the case 
where both R+ n support f i  and iw- n support f i  hav: 
nonzero measure. If this is not the case, e.g., if support h 
c R+, and the frame considered is either {h;,lm,n E Z, 
h + = h , h - = h * ) o r { h ' , " ~ l m , ( n E Z ,  A=1,2 ,h("=&reh ,  

= fi im h} see Section 11-B-lb)), then the definitions 
of m(h;  a,,), M ( h ;  a,), p(s) have to be slightly changed 
(the restriction 1x1 E [ l ,  a,] is replaced by x E [ l ,  a,]-see 
Remark 3 following Theorem 2.71, and the same formulas 
(2.3.231, (2.3.24) apply. 

In most practical examples the dilation parameter a0 is 
equal to 2. In this case the estimates (2.3.23) and (2.3.24) 

The estimates in Theorem 2.9 thus lead to A 2 1, B I 1, 
or equivalently to the optimal estimate A = B = 1. (Note 
that this automatically proves that the @,, constitute an 
orthonormal basis, since 11@,,,11 = l l@ll= 1. We showed in 
Section 11-A that a tight frame with frame constant 1, 
consisting of normalized vectors, necessarily is an or- 
thonormal basis.) Since the phase factor in the definition 
of Y. Meyer's basic wavelet (2.2.7) is essential for the @,, 
to constitute an orthonormal basis (see e.g., [311), it is 
natural that the phase-dependent estimates (2.3.25), 
(2.3.26) perform much better than the phase-independent 
estimates (2.3.231, (2.3.24) in this case. Using Theorem 2.9 
one can prove the result we just announced, i.e., that 
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the wavelets +hrn,,, associated with Y. Meyer’s $, and with 
a, = 2, b,, arbitrary, still constitute a basis for b, # 1, 
16,) - 11 < E ,  for some E > 0. The following Theorem was 
proved in collaboration with Ph. Tchamitchian. 

Theorem 2.10: Let $ be the function defined by (2.2.7). 
Then there exists E > 0 such that the $rnn;bl , ,  

constitute a basis for L2(R), for any choice bo E (1 - E ,  

1 + E ) .  

Proofi See Appendix C. 0 

This result is quite surprising: it shows, as pointed out at 
the start of Section 11-C-2, that it is not always safe to 
apply “phase space density intuition” to families of 
wavelets. 

Remark: It follows from the proof that E can be esti- 
mated explicitly, from computations of the frame bounds 
A ,  B,  as given by (2.3.25), (2.3.26) on the one hand, and of 

Corollary 2.11: Let h’; . ., hN- ’  be N functions satis- 
fying the conditions (2.3.181, (2.3.19), and (2.3.20). Define 

m ( h ” ; . . , h N - l ; a , ) =  essinf C I ~ J ( ~ ; ; ~ X ) I ~  
N - I  

IxlE[I,a,,l j = ( )  m 

(2.3.27) 

N - 1  

~ ( h ” ; . . , h ~ - ’ ; a , ) =  esssup c ~ i j ( a ; ; ’ x ) ~ ’  

p ’ ( s ) =  sup I A l ( a ; ; x ) l / 6 ’ ( a ; ; ’ x + s ) I .  

I x l ~ [ l , a ~ J  j = o  m 

(2.3.28) 

lxlE[1,a,,l t n t z  

(2.3.29) 

Choose b, such that 

N - l  m 1 / 2  

j = O  k = l  

< m ( h ” ;  . . , h N - l ;  a,). 

Then the (h;,,; rn, n E Z, j = 0,. . . , N - 1) constitute a 
frame. The following estimates for the frame bounds A 
and B hold, 

on the other hand. This estimate for E depends, of course, 
on the choice for the function v (see (2.2.7)). For the (non 
C”) choice 4 x 1  = x if 0 I x <1, v ( x )  = 0 otherwise, one 
finds E > 0.02. The $,,,n,bll remain a frame for b, I 1.08 in 
this case. 

In many practical examples f i  decays very fast, and is 
real. In those cases the differences between estimates 
using p (i.e., (2.3.231, (2.3.24)) or pl, (i.e., (2.3.2.51, (2.3.26)) 
are very small, and m y h  less dramatic then for Y. Meyer’s 
wavelet $. In fact, if h is positive (e.g., the Mexican hat 
function, the 8th derivative of the Gaussian, the modu- 
lated Gaussian, . s : see the next subsection) the esti- 
mates using p perform better than those using PI,  as can 
easily be checked directly by the formulas (2.3.231, (2.3.241, 
and (2.3.29, (2.3.26). 

As already mentioned above, most practical applica- 
tions use a, = 2. This choice makes numerical computa- 
tions much easier since it means that the translation steps 
b,,.2rn (see Fig. l(b)), for two different frequency levels 
m ,  > m 2 ,  are multiples of each other. It also makes the 
different frequency levels correspond to “octaves.” On 
the other hand one likes to use fyct ions h with fairly 
concentrated Fourier transforms h,  correspondinng to a 
good frequency resolution. This means that Crnlh(2”x)12 
is bound to have rather large oscillations; since then 
m(h;2) is much smaller than M(h;2), this leads to high, 
and therefore unpleasant values of B / A .  This can be 
avoided by the use ocseveral functions h’, chosen so that 
the minima of ACmlhJ(2rnx)12 are compensated by the 
maxima of C,,,lh”(2’”~)1~, for some j ’ #  j .  This is made 
explicit by the following corollary of Theorem 2.7. 

. [ P I (  ? k ) p J (  - E k ) ] ” ’ ]  (2.3.30) 

N - 1  m 

j = O  k = l  Po 

* [ @ I (  $ k ) p l (  - g k ) ] ” 2 ] .  (2.3.31) 

Proofi The proof is a simple variant on the proof of 
Theorem 2.8. 0 

In the special case where a,,= 2, one can, of course, 
replace p’ in (2.3.301, (2.3.31) by pi ,  with pi defined as in 
Theorem 2.8, for j = 0; . ., N - 1. Then the sums over 
k # 0 also have to be replaced by sums over only odd k .  

The number N of functions used is called the number 
of “voices” per octave [28]. In numerical calculations 
N = 4 seems to be a satisfactory choice. 

In practice one often chooses the h”; . ., hN-l  to be 
dilated versions of one function h ,  i.e., 

hJ( x )  = 2-j/Nh(2-’/Nx), j = 0; . . , N  - 1. (2.3.32) 

The phase space lattice corresponding to the {hAn; m , n  
E Z, j = 0; . ., N - 1) is the superposition of N lattices of 
the type depicted in Fig. l(b), shifted with respect to each 
other in frequency. Fig. 5 shows such a lattice, for the 
case N = 4, and for a ,  = 2. 
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Remark: Note that the h’, constructed by dilations from 
one function h as in (2.3.321, do not have the same 
,!,*-normalization, IlhJllL~ = 2-J/2N IlhllL2. This change in 
normalization compensates for the fact that the phase 
space lattice in Fig. 5 is “denser” than the corresponding 
lattice (see e.g., Fig. l(b)) would be for the same basic 
wavelet h ,  but with a ,  = 2’”, and with only one function 
(namely h1 per dilation step (instead of N ,  as in Fig. 5).  

b) Examples: We illustrate the different bounds with 
several examples. In practice, it is by far preferable to use 
a, = 2, rather than noninteger values. We have therefore, 
in all our examples, restricted ourselves to a, = 2, and 
introduced several voices (see Corollary 2.11). The differ- 
ent voice-functions h J  are always obtained, in these exam- 
ples, by dilation of one given function h (see (2.3.32)). 

i) One cycle of the sine-function: In this case we take 

10, otherwise 

The Fourier transform of h is given by 

fi s i n y r  h( y >  = -i- 
T 1 - y 2 ’  

TABLE V-A 
FRAME BOUNDS FOR WAVELET FRAMES* 

N = l  N = 2  - ~ 

b o / r  A B B / A  b o / r  A B B / A  
~ ~ 

0.25 4.038 8.409 
0.50 1.838 4.386 
0.75 1.412 3.007 
1.00 0.585 2.527 
1.25 0.337 2.152 

N = 3  - 
b n / r  A B 

~ 

2.082 0.25 11.950 16.294 
2.387 0.50 5.711 8.411 
2.634 0.75 3.629 5.785 
4.323 1.00 2.410 4.651 
6.380 1.25 1.709 3.939 

1.50 0.999 3.708 
1.75 0.556 3.479 
2.00 0.202 3.328 

N = 4  - 
B / A  b n / r  A B 

1.364 
1.473 
1.594 
1.930 
2.305 
3.713 
6.259 

16.473 

0.25 20.035 
0.50 9.655 
0.75 6.185 
1.00 4.230 
1.25 3.050 
1.50 2.033 
1.75 1.313 
2.00 0.736 

24.331 
12.528 
8.603 
6.861 
5.823 
5.361 
5.025 
4.810 

1.214 0.25 
1.298 0.50 
1.391 0.75 
1.622 1 .oo 
1.909 1.25 
2.637 1 S O  
3.828 1.75 
6.539 2.00 

27.986 
13.598 
8.687 
6.042 
4.431 
3.076 
2.031 
1.261 

32.500 
16.645 
11.475 
9.080 
7.666 
7.005 
6.610 
6.300 

1.161 
1.224 
1.321 
1.503 
1.730 
2.278 
3.255 
4.998 

*Based on the function 

h ( x )  = { r - I I2  sin x 1x1 I r 

The dilation parameter a ,  = 2 in all cases; N is the number of “voices” 
(see text). 

0, otherwise 

ii) The Mexican hat: The Mexican-hat function is the 
second derivative of the Gaussian (up to a sign), 

2 h( x )  = - r - ’ / 4 (  1 - x2)e-X2/2 
6 

6 
2 h( y )  = - r - 1 / 4 y 2 e - ~ 2 / 2 .  

The graph of h looks a bit like a transverse section o,f a 
Mexican hat (see Fig. 2(b)), whence the name. Since h is 
positive, the formulas using p rather than PI  are more 
effective here. The same will be true in our next exam- 
ples. Table V-B lists the estimates for the frame bounds 
A , B  and their ratio, for a few values of the translation 
parameter bo, and of N ,  the number of voices. 

iii) The eighth deriuatiue of the Gaussian: Functions 
like the Mexican hat and higher order derivatives of the 
Gaussian are useful in applications of the wavelet trans- 
form to edge detection (see, e.g., [27]). Table V-C lists the 
estimates for the frame bounds A , B  for wavelets based 
on the eighth derivative of the Gaussian, 

- 405x2 + 90) 

1 / 2  
T - 1 / 4  x - y 2 / 2  

Since this is an oscillating function, one suspects that 
the formulas analogous to (2.3.301, (2.3.311, but using P I  ~(y)=(z) y e  . 
rather than p,  will perform better than the P-formulas. 
This turns out to be true. Table V-A lists the estimates 
for the frame bounds A , B  and their ratio, for a few 
values of b,, and of N ,  the number of voices. 

This is a typical example of a function where, with a,, = 2 
fixed, the introduction of several voices is necessary. For 
N =  1 (i.e., only one voice, corresponding to the phase 
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TABLE V-B 
FRAME BOUNDS FOR WAVELET FRAMES* 

N = l  N = 2  
bo A B B / A  b, A B B / A  

- - 

0.25 13.091 14.183 1.083 
0.50 6.546 7.092 1.083 
0.75 4.364 4.728 1.083 
1.00 3.223 3.596 1.116 
1.25 2.001 3.454 1.726 
1.50 0.325 4.221 12.986 

N = 3  - 
bo A B B / A  

~~ 

0.25 27.273 27.278 
0.50 13.637 13.639 
0.75 9.091 9.093 
1.00 6.768 6.870 
1.25 4.834 6.077 
1.50 2.609 6.483 
1.75 0.517 7.276 

N = 4  
bo A B 

- 

1.0002 
1.0002 
1.0002 
1.015 
1.257 
2.485 

14.061 

B / A  
0.25 40.914 40.914 1.0000 0.25 54.552 54.552 1.0000 
0.50 20.457 20.457 1.OOOO 0.50 27.276 27.276 1.0000 
0.75 13.638 13.638 1.0000 0.75 18.184 18.184 1.0000 
1.00 10.178 10.279 1.010 1.00 13.586 13.690 1.007 
1.25 7.530 8.835 1.173 1.25 10.205 11.616 1.138 
1.50 4.629 9.009 1.947 1.50 6.594 11.590 1.758 
1.75 1.747 9.942 5.691 1.75 2.928 12.659 4.324 

*Based on the Mexican hat function 

h ( x )  = 2/fi.rr-1/4(1 - x 2 ) e - x z / 2 .  

The dilation parameter a. = 2 in all cases; N is the number of voices 
(see text). 

TABLE V-C 
FRAME BOUNDS FOR WAVELET FRAMES* 

0.125 
0.250 
0.375 
0.500 
0.625 
0.750 
0.875 

b0 

25.515 26.569 
12.758 13.285 
8.505 8.856 
6.379 6.642 
5.101 5.316 
3.995 4.686 
1.669 5.772 

N = 3  - 
A B 

1.041 
1.041 
1.041 
1.041 
1.042 
1.173 
3.459 

B / A  

0.125 
0.250 
0.375 
0.500 
0.625 
0.750 
0.875 
1 .000 

b n  

39.054 
19.527 
13.018 
9.764 
7.808 
6.251 
3.563 
0.163 

A 

39.073 
19.536 
13.024 
9.768 
7.817 
6.770 
7.598 
9.603 

N = 4  - 
B 

1.0005 
1.0005 
1.0005 
1.0005 
1.001 
1.083 
2.132 

58.929 

B / A  
~ 

0.125 
0.250 
0.375 
0.500 
0.625 
0.750 
0.875 
1.000 

52.085 
26.042 
17.362 
13.022 
10.414 
8.420 
5.313 
1.127 

52.085 
26.042 
17.362 
13.022 
10.420 
8.941 
9.568 

1 1.894 

1 .oooo 
1 .om0 
1 .OoOo 
1 .oooo 
1.0005 
1.062 
1.801 

10.550 

*Based on the 8th derivative of the Gaussian, 

( 2;;;! )1'2 
h ( x ) =  - 

. ~ - " ~ ( x ~ - 2 8 2 ~  +210x4 - 4 0 5 ~ '  +90)e-XZ/2. 

The dilation parameter a,, = 2 in all cases; N is the 
number of voices. 

space lattice in Fig. l(b)) one finds that M(k;2)/m(k;2) 
is equal to 3.385. This Feans tha! the ratio B / A ,  which is 
bounded below by M(h; 2)/ m(h; 21, is pretty large, with 
N = 1, even for very small values of bo. As soon as more 
voices are introduced, the ratio M/m becomes much 
smaller, and snug frames can be constructed, for appro- 
priate choices of bo. We have restricted ourselves, in 
Table Vc, to the choices N = 2,3,4, excluding N = 1. 

iv) The modulated Gaussian: In this case we take 
h(.) =T-1/4(e-lkx- e -k2 /2 )e -x2 /2  

&( y )  = T - l / 4 (  e - ( ~ - k ) 2 / 2  - e - k 2 / 2 e - ~ z / 2  ) 
where k = ~(2/ ln2) ' /* .  

Tht  subtraction term in the definition of h,L ensures 
that h(0) = 0; for the value of k chosen here, this term is 
negligible in practice. The value of k has been fixed so 
that the ratio between the highest and the second highest 
local maxima of Re h is approximately 1/2. This wavelet 
is exactly the wavelet used by J. Morlet in his numerical 
computations [25], [26]. If only real signals f are decom- 
posed and reconstructed, by means of the (hmn, f ) ,  then 
the complex wavelet h consists really of two wavelets, 
Re h and Im h. In this case the frame bounds for real 
signals can be rewritten as 

with 

and 
1 

p,( s) = - sup ( k (  a t x )  + €L( - a;;.) 1 
4 x m  

.Ik(ab"x + s) + €k(  - a;;.. - s) 1 .  
Note that f i  is almost completely concentrated on the 

positive frequency kalf line; neglecting terms with nega- 
tive arguments for h in the previousjormulas leads back 
to the frame bounds for support h c R , .  In the first 
reconstructions with this wavelet, before even the connec- 
tion with continuously labelled affine coherent states was 
made (see Sections I-E,I-F), a formula similar to (2.1.7) 
was used. This reconstruction formula turned out to be 
extremely precise. Our calculations of frame bounds show 
why. For N =  4, bo = 1, for instance, which are choices 
that do correspond to values used in practice (in fact, [251 
uses even higher values of N ,  and smaller values of bo), 
we find B / A  = 1.0008. Hence r = (B - A ) / ( B  + A )  = 
0.04%, which explains why (2.1.7) is such a good approxi- 
mation to the true reconstruction formula. 

As in the previous example, the ratio M / m  is rather 
large for N = 1, and we have computed the frame bounds 
only for N = 2,3, and 4. They are tabulated in Table V-D. 
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TABLE V-D 
FRAME BOUNDS FOR WAVELET FRAMES* 

0.5 6.019 7.820 1.299 
1 .o 3.009 3.910 1.230 
1.5 1.944 2.669 1.373 
2.0 1.173 2.287 1.950 
2.5 0.486 2.282 4.693 

N = 3  
b I, A B B / A  

~ 

0.5 10.295 10.467 1.017 
1 .o 5.147 5.234 1.017 
1.5 3.366 3.555 1.056 
2.0 2.188 3.002 1.372 
2.5 1.175 2.977 2.534 
3.0 0.320 3.141 9.824 

N = 4  - 
b” A B B/A 
0.5 13.837 13.846 1.0006 
1 .o 6.918 6.923 1.0008 
1.5 4.540 4.688 1.032 
2.0 3.013 3.910 1.297 
2.5 1.708 3.829 2.242 
3.0 0.597 4.017 6.732 

*Based on the modulated Gaussian, 

h ( x ) = T - 1 / 4 ( e - ~ k x  - e - k 2 / 2 ) e - x z / Z  

with k = ~ ( 2 / l n 2 ) ’ / ~ .  

The dilation constant a,, = 2 in all cases; N is the 
number of voices. 

Remark: The tables show that extremely snug frames 
can be obtained for quite reasonable phase space lattices 
(i.e., N not too large, bo not too small). Note, however, 
that even when B / A  s not very close to 1, the frame may 
still be useful. For B / A  = 1.5, e.g., the convergence fac- 
tor r = ( B  - A ) / ( B  + A )  is still of the order of 0.2; while 
this is insufficient to permit the use of the approximation 
formula (2.1.71, it does mean that only a few iterations 
will suffice for the computation of the (h,,)“ up to e.g., 

leading, again, to a very accurate reconstruction 
formula. 

D. Frames in Other Spaces than L2(R)  

The results in this section are more technical and 
specialized than those in the preceding sections. The 
reader who is mostly interested in ,!,’-results can safely 
omit reading this section and go to Section 111, where we 
again discuss L2-estimates. 

I )  Motivation: Why Other Spaces than L2(R)?: So far, 
we have restricted ourselves to studying frames in L’(R1. 
The preceding section was mainly concerned with the 
formulation of conditions under which the short-time 
Fourier expansions (Weyl-Heisenberg case) or the wavelet 
expansions (affine case) would converge with respect to 
the L2-norm. As explained in the introduction, both types 
of expansions are used in the analysis, e.g., of time-depen- 
dent signals. For such signals f ( t > ,  the square of the 
L2-norm, j:,dtlf(t)12, is a natural quantity, often called 
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the “energy” of the signal in electrical engineering litera- 
ture. It is therefore customary to require L2-convergence 
for series representations of these signals. 

This does not mean, however, that convergence in 
other topologies is not important. For example, conver- 
gence in L P(R)-spaces, 

with p f 2, where the coefficients are weighted in a way 
different from L2(R), would certainly indicate that the 
series is more “robust” than if it converged in L2(R) 
alone. On the other hand, if the signals themselves have 
some regularity (consider, e.g., the case where not only f 
but also its first k derivatives are in L’(R)), then one 
would wish that the partial sums of the series represent- 
ing f share that regularity, and that the convergence 
respects this (in the previous example, this would mean 
L2-convergence also for the first k derivatives). It would 
therefore be interesting to have convergence in the 
Sobolev spaces 

for at least some s > 0. 
In the two subsections following this one, we shall show 

that for suitably chosen g or h,  and appropriate parame- 
ters p 0 , p 0  or a,,b,, the resulting frames are frames in 
&(RI, at least for some strip Is1 < s~,. In the remainder of 
this subsection we give some examples illustrating “what 
can go wrong.” The examples given here all pertain to the 
wavelet case. I want to thank Y. Meyer and Ph. 
Tchamitchian for having pointed them out to me. 

If the h,, (h , , (x )  = a;m/2h(a ;mx  - nb,)) constitute a 
frame in L2(R), then, as shown in Section 11-A, there 
exists a dual frame { (hm, ) - ;  rn, n E Z} such that, for all f 
in L’W, 

f =  C ( h r n n ) - ( h r n n , f )  (2.4.1) 

where the series converges in L’(R). If the frame is not 
tight, then the (hm,)-  are not multiples of the h,,, and 
in general they will not be generated by dilations and 
translations of a single function (see Section 11-A). 

There are several ways in which (2.4.1) may fail to 
extend to Lp(R) ,  with p # 2, or to &(R), with s # 0. One 
possibility is that the coefficients (h, , , f)  are not well 
defined for all f in the space under consideration, i.e., 
that h does not belong to the dual of this space. This is 
not really a problem: it is enough to impose some regular- 
ity and/or decay conditions on h to avoid this. Something 
much more pernicious may happen, however. It is possi- 
ble that even though h is a “nice” function, the elements 
(/I,,)- of the dual frame are not, so that (2.4.1) fails. The 
examples we shall give here illustrate this. 

The first example is due to P.-G. LemariC. It was 
communicated to me by Y. Meyer. Let 4 be Y. Meyer’s 
wavelet, as As already mentioned, the $,,(XI = 

m , n  
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2-m/2 JI(2-”x - n )  constitute an unconditional basis for 
many function spaces, including all the Lp(R), 1 < p < W. 

The wavelet coefficients (JI,,, f )  can be used to charac- 
terize these spaces and their duals [311. In particular, 
LP-spaces are characterized as follows: for any function f 
one has the equivalence 

f t ~ p ( ~ ) - [  c 2-mI(*mn,f>12Xmn E L P ( R )  

(2.4.2) 

where xmn is the indicator function of the interval I,, = 

[2mn, 2”(n + 1)). The basic wavelet in Lemarik’s construc- 
tion is the following perturbation of JI: 

h ( x )  = JI( x )  + &Tr~1(2x). 

This function h is clearly in C”, and has fast decay at W. 

We use the same dilation and translation parameters as 
for Y. Meyer’s basis, i.e., h,,(x) = 2-m/2h(2-mx - n). 
Then h,, = JI,, - rJIm-12n = (1 - rU)t+b,,,,, where U is the 
partial isometry defined by U+,, = J I m - 1 2 n .  For Irl < 1, 
the operator (1 - rU) is one-to-one and onto, which means 
that the h,, still constitute a basis for L2(W if Irl < 1. 
The dual frame (hmn)-  is given by 

( h m n ) -  = [ ( l -  rU)(1-  r*U*)] -‘hmn 

m , n  I l l 2  

= (1- r*U*)-’+m, 

= r*kU*kJImn (2.4.3) 

where U *$, 2n  + = 0, and U *JI, 2 n  = JI, + n. In particular 

m 

k = O  

m 

( h O O ) A  = r*k$-kO* 
j = O  

It turns out that if Irl> l / a ,  this function does not 
belong to L p ( R )  for large p ,  as shown by the following 
argument. If we apply (2.4.2) to (h,)“, we find 

If Irl > l/&T, this shows that (h,)“ 4 L p ( R )  for all p > 
21n2/[ln2+2ln 11-13. This implies that, even though the 
h,, themselves are C” functions with fast decay, and 
constitute a frame for L2(R) (with A = ( l -  lr12)’/2, B = 

(1 + lr12)1/2), the frame expansion (2.4.1) does not extend 
to all LP(R)-spaces, 1 < p <CO, if IrI > 1 / a .  

Note that, in the example, the (h,,)“ are the only 
functions in the dual frame causing problems. For n # 0, 
only a finite number of terms in the series (2.4.3) con- 
tribute, and (h,,,)- is still infinitely differentiable and 

decaying rapidly. This might lead one to believe that the 
problems are caused by the fact that the (h,J are not 
given, in general, by dilations and translations of a single 
function h. It is true, also, that this phenomenon ( h  E 4, 
and some (h,,)” 4 L p )  does not occur for the tight 
frames constructed in Section 11-B-2b). For these frames, 
results analogous to those for Y. Meyer’s basis hold, and 
the expansions 

f =  A - ’  C h m n ( h m n , f )  
m , n  

are valid, and converge, in particular, for all LP-spaces 
(1 < p < w) and all <(R). Nevertheless, there exist (non- 
tight) frames for which the (h,,)“ happen to be dilations 
and translations of a single functicn h,  and where, as in 
our first example, h is “nice” and h is not, causing (2.4.1) 
to fail in at least some function spaces. Our second 
example illustrates this; it is a special case of a construc- 
tion made by Ph. Tchamitchian [353. 

In [35], Ph. Tchamitchian constructs functions u, r such 
that the dyadic (i.e., a o = 2 ,  bo =1) lattices of wavelets 
generated by u and T constitute biorthogonal bases for 
L ~ ( R ) ,  i.e., 

C U m n ( r m n ,  .> = (2.4.4) 
m , n  

where the sum converges strongly in L2(R>, and with 

The details of this construction, together with proofs and 
applications, are given in [35b]. It is possible to choose 
both u and T with compact support. One such example is 
the following (see [35b]): 

U,, (X)= 2-m/2U(2-mX - n),  T, , (X )=  2-m/2T(2-mX - n). 

cos - + - cos - 
2 16 2 16 2 
1 9  y 1  

or 

1 
4 d x )  = -6 

and 

‘ 0, X l - 1  
l /8, -1<x<O 

-1, O _ ( x < 1 / 2  
1, 1 / 2 < X S 1  

-1/8, 1 ~ x 1 2  
\ 0, x 2 2  

where P ( u )  = 3u2 - 2u3. Since P(cos y )  = 1 + O(y4), the 
infinite product in the definition of 7̂  is well defined. One 
finds that 8 is entire and of exponential type, implying 
that T has compact support. Moreover, since P ( u )  1 u2 
on [ O ,  11, 

m 

~ ~ ( Y ) ~ S I Y I ~  c0s4[2-j~/4]  
j =  1 
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Using this decay of i, the compactness of support 7, 

and / & T ( x ) =  ?(O)= 0, one can easily prove that 
~ m , f l ~ ( ~ , ~ m , , ) l  <m. The decay properties of G are rather 
weak, but one can use /& a ( x )  = 0, the compactness of 
support U and the fact that U is piecewise constant in an 
easy proof of C m , n l ( ~ , ~ , , ) I  <m. This implies that, for all 
sequences (C,,J,,~ E in L2(Z), 

m , n  

Together with (2.4.4) (for the proof of which we refer to 
[35b]), this implies that the U,, and the T,, both consti- 
tute frames. Moreover (see [35]), both the U,,, and the 
T,, constitute bases in L2(R). 

It is now easy to construct the example previously 
announced. Take h ( x )  = 7 ( x ) .  Then h is of compact sup- 
port, and h belong to 2?5/2-e(R), for all E > 0, because of 
(2.4.5). Since the h,,(x) = 2-m/2h(2-mx - n )  constitute a 
frame, we can construct the dual frame, (h,,,)“. Since the 
h,, are linearly independent, however, and because of 
(2.4.4), we find (h,,,)“ = U,,,. Since (T E &(RI only if 
s < 1/2- E, we see that all the functions in the dual 
frame are much less “nice” than those in the original 
frame; in particular, they are discontinuous, while h itself, 
together with its first derivative, is continuous. 

2) Weyl- Heisenberg Frames in Sobolev Spaces: The ex- 
amples in the preceding subsection show that one must be 
wary when trying to generalize frames, and the associated 
expansions, to other function spaces than L2(R). One can 
however apply the techniques used in Section 11-C to 
extend the notion of frame to a “strip” of Sobolev spaces 
&, with Is1 < so. 

Proposition 2.11: Define (as in Section 11-C-1) 

p,’( y)  = sup (1  + x ’ )  T s ’ 2 [  1 + ( x  + y)’] + s / 2  
X 

If 

c 
k # O  

then the operator U, 

U= C grnn(grnn9 .>  
m , n  

is bounded, with a bounded inverse, on both 
x-,. In particular, for all f l  E &, f 2  E X , ,  

and 

A,llflll, I I l ~ f l l l S  I B s l l f l l l s  (2.4.7) 

A,llf’ll-s I Irnf’ll-s I ~, l l f ’ I l -~ (2.4.8) 

where 

( 2.4.9) 

and 

k # O  

(2.4.10) 

Pro08 We shall show that, for all f E 4, 
A,llfll,llfll-, I ( f ,Uf )  I ~,llfll,llfll-,. (2.4.11) 

Here, as before, we use the notation ( , ) for the duality 
extending the L2-inner product, 

With respect to ( , ), the spaces & and A?-, are each 
other’s dual. On the other hand U is symmetric with 
respect to ( , ). Since & is dense in 2?-,, it follows 
therefore from the upper bound in (2.4.11) that U is 
bounded on both .& and A??,, with norm smaller than 
B,. Similarly the lower bound in (2.4.11) implies that, for 
all f l  E &, f2 E S-,, I l~ f l I l s  2 Asllfllls, and lDf2Il-, 2 
A,llf21I-,. Again using the symmetry of U with respect to 
( , ) one easily checks that this implies that U is invert- 
ible, with a bounded inverse with norm smaller than A,-’, 
both on & and A?-,. 

It remains to prove (2.4.11). This is done along the 
same lines as in Section 11-C. 

f(~)*f x + - k  i :I 
2T 

40 
= - /& [ (1  + x y 2 1  f( x )  I] 
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with 

The bounds (2.4.11) then follow immediately. I3 

Remarks: 

1) If the conditions of Proposition 2.11 are satisfied, 
then, since U is invertible, and has bounded inverse 
on &, we have 

6 m n  = U - ’ g m n  E & 
and, for all f E 3, 

f =  C i r n n ( g m n , f )  
m , n  

where the series converges in &: the frame expan- 
sion holds on &. 

2) If U is a bounded and invertible operator on both 
& and A?,, then, by standard (highly nontrivial) 
interpolation theorems (see e.g., Section IX-4 in 
[64]), it is automatically bounded and invertible on 
any &, with ls‘l is. Proposition 2.11 gives thus a 
sufficient condition for the frame expansion formula 
to hold on a “strip” of Sobolev spaces. To obtain a 
wide “strip,” for fixed p o ,  it is clear from (2.4.6) that 
we have to choose qo sufficiently small. Typically, 
we would expect the critical value q,C(s) (the value of 
qo for which equality occurs in (2.4.6)) to be a 
decreasing function of s. Note that one needs to 
impose a decay condition on p’(s>, similar to 
(2.3.131, to ensure the existence of q,C(s). 

3) Since C, E ,12(x + mpJI IB(x + mp, + y)l is periodic 
in x ,  with period p,, and since [1+(x + y)’]/ 
(1+x2)  has its maximum, resp. minimum, at x =  
- y / 2  sgn ( y ) d w ,  it suffices, for numerical 
computation of P”(y), to take the supremum over 
values of x in an interval of length p o  around 
- y / 2 + s g n ( y ) \ / l + y 2 / 4 .  

Example: For g ( x ) =  r-‘l4 exp(- x2/2), Table VI-A 
gives the values of A ,  and B, for a few values of s, for 
p o  = r / 2 ,  qo = 1. Table VI-B shows how q,C(s) changes 
with s, for fixed p o  = r / 2 .  

TABLE VI-A 
FRAME BOUNDS* 

S A ,  B,  B,  / A ,  

0.0 3.853 4.147 1.076 
1.0 3.852 4.148 1.077 
2.0 3.849 4.151 1.079 
3.0 3.836 4.164 1.086 
4.0 3.787 4.213 1.112 
5.0 3.600 4.400 1.222 
6.0 2.865 5.135 1.793 

*In the Sobolev spaces for Weyl-Heis- 
enberg frames based on the Gaussian g ( x ) =  
~ r ’ / ~  exp(- x 2 / 2 ) ,  with p,, = ~ / 2 ,  9,, = 1.0, for 
changing values of s. For s = 7, our estimate for 
A ,  becomes negative: the frame breaks down. 

TABLE VI-B* 

0.0 3.99 
1 .o 2.28 
2.0 1.72 
3.0 1.42 
4.0 1.24 
5.0 1.13 
6.0 1.06 
7.0 0.99 

*The critical value 4$s)  for the 
translation parameter qo, as a 
function of the index s of the 
Sobolev space in which the frame is 
consdered. Values of qo smaller 
than q $ s )  lead to a frame in 4 
and Z,. The basic function here 
is g(x)=Tr’/4exp(-x2/2); p o =  
r r / 2  is fixed. 

3) Wavelet Frames in Sobolev Spaces: Since the tech- 
niques used for proving frame bounds in L2(R) were 
essentially the same for the wavelet case as for the 
Weyl-Heisenberg case, it is not surprising that we can 
prove the following proposition. 

Proposition 2.12: Define (as in Theorem 2.7) 

m ( h ; a , )  = inf ~ A ( n ; x )  1 2 ,  

M (  h ;  a,) = sup I i( ay.) 1 2 .  
m c Z  

X m 6 L  

Assume that m ( h ;  a,) > 0,  M ( h ;  a,) < m. Define, for s 2 0, 

P’( y)  = sup ( 1  + x ’ )  T s / 2  I &( a;;.) I (&I ayx  + y)  I 
X m t L  

If 

c [ p: ( 2 k ) p ;  ( -  Z-k)]’” < m ( h ; a , )  (2.4.12) 
k + O  

then the operator U, 

is bounded, with a bounded inverse, on both & and 
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Z-,. In particular, for all f l  E e, f 2  E 2-,, TABLE VI1 
FRAME BOUNDS* 

A,llflll, IDf l I lS I B , l l f i l l s  (2.4.13) b,, = 1.0 b,, = 1.25 
s A ,  B, B , / A ,  s A ,  B, 4 / A ,  

Asllf211-, I lDJf2ll-s I ~ , l l f 2 l l - s  (2.4.14) 0.00 3.223 3.596 1.116 0.00 2.001 3.454 1726 
where 0.25 3.223 3.596 1.116 0.25 1.995 3.460 1.734 

0.50 3.222 3.597 1.116 0.50 1.985 3.470 1.748 
0.75 3.221 3.597 1.117 0.75 1.971 3.484 1.768 
1.00 3.220 3.599 1.118 1.00 1.953 3.502 1.793 

m ( h ; a , ) -  P: -k  p,- - - k  1.25 1.926 3.529 1.832 
1.50 3.216 3.602 1.120 1.50 1.877 3.578 1.906 
1.25 3.218 3.600 1.119 

1.75 3.214 3.605 1.122 1.75 1.794 3.661 2.041 
k # O  [ ( ) ( 2 )]‘I2] 

k z O  [ ( ’bi: ) ( ’bi: ) I  ”4 In the Sobolev spaces < for wavelet frames based on the 
M ( h ; a , ) -  P: -k  p,- - - k  . Mexican hat function h ( x )  = 2 3 - ‘ / ’ ~ - ’ / ~ ( 1 -  x’)exp(- x2/2), 

Po with a ,  = 2.0, b,, = 1.0 and 1.25 for changing values of s. 

Proofi The proof is entirely analogous to the proof of 
Example: Table VI1 gives A ,  and B,, for a few values 

of s, for the Mexican hat function h ( x )  = 2 / f i ~ - ‘ / ~ ( l -  
Proposition 2.11. 

I .  

Remarks: ~ ~ ) e ’ - ~ ’ / ~ ,  for a, = 2.0, and for b, = 1.0 and 1.25. 

If U is bounded, with a bounded inverse, on e, 
then 

(h,,)“ =T-’h,, E 

f = C ( h m n ) “ ( h m n , f )  (2.4.15) 

and, for all f E e, 
m , n  

where the series converges in &. This means that 
the phenomenon illustrated by the examples in Sec- 
tion 11-D-1 cannot happen, at least in &, if h 
satisfies the conditions in Proposition 2.12. 
By interpolation (see e.g., Section IX-4 in [64]), one 
finds that if (2.4.13), (2.4.14) hold in &, 2-,, 
respectively, then U is bounded, with a bounded 
inverse, on all &, with Is’I I s. Under the condi- 
tions in Proposition 2.12, the frame expansion 
(2.4.15) is therefore valid in all &, with Is’I I s. 
Typically (as in the Weyl-Heisenberg case), we ex- 
pect that, for fixed a,, the critical value bG(s) (i.e., 
the value of b, for which equality holds in (2.4.12)) 
decreases with s. It is a remarkable fact that for Y. 
Meyer’s basis, the wavelet expansion is valid in e, 
for all s E R, for a, = 2, and for Jijred bo = 1. Some- 
thing similar is true for the tight frames constructed 
in Section 11-B-2b). However, for general functions 
h, leading to nontight frames, we rather expect b$s) 
to decrease with s. 
For a given function h,  the strip of Sobolev spaces 
for which the h,, constitute a frame, i.e., the possi- 
ble values of s for which (2.4.131, (2.4.14) holds, is 
!onstrained by the behavior of 6 around zero. If 
h ( x )  = O(xO)  for x + 0, then clearly (see the defini- 
tion of p:)  

( y )  2 C [  inf ~ i ; ( y  + u > l l y  + 

This diverges for s 2 cy. 

a m ( a - s )  

Id 5 a r M  m = --?o 

111. PHASE SPACE LOCALtZATION 

Let us recall the intuition, already mentioned in the 
introduction, which leads us to expect the phase space 
localization results we shall give here. 

Both the Weyl-Heisenberg coherent states and the 
wavelets can be used to give a representation in the 
time-frequency plane of time-dependent signals, provided 
the basic functions g or h and the parameters p o , q ,  or 
a,,b, are suitably chosen (see Section 11). A graphical 
picture of these representations is given in Fig. 1 .  Ideally, 
one would like these representations to be reasonably 
“sharp.” If e.g., the pair ( m o ,  no)  corresponds to the time 
t ,  and the frequency w ,  (see Fig. 11, then we would wish 
that the frequency content, in a band around wo,  of the 
signal f, during a time interval around to, is essentially 
mirrored by the coefficients ( g , , , f )  or (h, , , f)  with m 
close to m o ,  n close to no. It is intuitively clear that the 
basic analyzing functions g or h have to be themselves 
well localized in time and frequency for such “sharpness” 
of the associated representations to be attainable. 

In this section we shall try to make these qualitative 
statements more precise. We shall do this by giving a 
sense to the “sharpness” of the time-frequency represen- 
tation, and by showing how the localization, in time and 
frequency, of the analyzing functions g or h matters. The 
Weyl-Heisenberg case shall be discussed in Section 111-A, 
the wavelet case in Section 111-B. In both cases we shall 
see that signals that are essentially limited to a given 
finite time interval and to a given finite range in fre- 
quency can essentially be represented by a finite number 
of expansion coefficients. (All these qualifications will be 
made more quantitative next). We shall use this fact to 
explain, in Section 111-C, a phenomenon that was first 
noticed by J. Morlet in numerical calculations. To recon- 
struct a signal f with a precision E ,  it is sufficient, for 
some frames, to calculate the expansion coefficients with 
a precision C E ,  where C turns out to be significantly 
larger than would be expected for orthonormal bases. We 
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have called this phenomenon the “reduction of calcula- 
tional noise” (for example, it often reduces round-off 
errors), and we explain it in Section 111-C. 

A. The Weyl- Heisenberg Case 

Assume that g is normalized, /’& Ig(x)12 = 1, and that 

l~xlg(x)12=o=ldYYlg^(Y)12. 

Then g,, is localized around the phase space point 
hp,,nq,), 

/&xlg,,(x) I2 = nq,, /dyy((g,,)^ ( Y )  l 2  = mp,. 

Suppose, on the other hand, that we restrict ourselves 
to the analysis and reconstruction of signals that are 
essentially time-limited to the interval [ - T ,  TI and essen- 
tially band-limited (limited in frequency) to the interval 
[ - R, RI. We have introduced the word “essentially” in 
this statement because, as is well-known, no function f 
can have both a compact support and a Fourier transform 
with compact support. A more precise statement of the 
“essential” time- and band-limitedness is 

11(1- Q T > f I I  << llfll 
11(1- Pn) f l l  << llfll 

( Q T ~ )  (1) = X [  - ~ , ~ I ( t ) f ( t )  

where 

V n f Y  ( w )  = X [ - n , n ] ( w ) f ( w )  

and where x, denotes the indicator function of the inter- 
val I .  Effectively, these limitations single out a rectangle 
of phase space as more important than other regions. 

We shall assume, in what follows, that the g,, consti- 
tute a frame, with frame bounds A and B and with dual 
frame g,,. The reconstruction formula, valid for all func- 
tions in L2(R), and therefore in particular for the func- 
tions f of interest here, is (see Section 11-A) 

f =  C irnn(grnn,f). (3.1) 
m , n  E Z 

If the g,, are “well localized” in phase space around 
(mp,,nq,), then it is to be expected that (g,,,f) will be 
small if the distance, in phase space, from (mp,,nq,) to 
the rectangle [ - R, R ]  x [ - T ,  TI,  is large. In other words, 
one expects that only those m, n for which (mpo, nq,) lies 
in or close to [ - R , R ] X [ -  T , T ]  will play a significant 
role in the reconstruction (3.1) of f .  Fig. 6 represents the 
situation. As in Fig. l(a), the g,, are represented by their 
“phase space centers” (mp,, nq,). 

The signal f is essentially concentrated, in phase space, 
on the rectangle [ - R, RI X [ - T ,  TI. Under suitable con- 
ditions on g ,  it turns out that, for all E > 0, there exist 
t , ,  w,  such that the partial reconstruction of f using only 
the (finitely many) m,n associated to the “enlarged rect- 
angle” [-(a + w,),(R + w , ) l x [ - ( T  + t,),(T + t,)l (in 

. . . . . . . . - . . . . . 

-k 
I. 
I. 
I. 
I. 
1. 
I 

t” . . . . . 
. . 
-c . . 
. . 

+ 
t 

* i  : . . . .  
L- * -Z - * -Z - -Z - * -Z - * -3  

a . . . . .  . 1 . . . . . . 
Fig. 6. Rectangular lattice (nqo, mp,) indicating localization of gmnr 

and rectangle in phase space [ - T ,  TI X [ - 0, a ]  on which signal f is 
mainly concentrated. Coefficients ( g , , ,  f )  corresponding to 
(nq,, mpo) in enlarged rectangle (in dashed lines) suffice to recon- 
struct f up to error of order E .  

dashed lines in the figure), is equal to f ,  up to an error of 
order E .  This is essentially the content of the following 
theorem. 

Theorem 3.1: Suppose that the g,,(x> = eimPoxg(x - 
nq,) constitute a frame, with frame bounds A ,  B.  Assume 
that 

I g( x )  1 I C( 1 + x 2 )  -a, 1 g( y )  1 I c(1+ y 2 > -  

for some C <w, a > 1/2. Then, for any E > 0, there exist 
t,, w ,  > 0 such that, for all f E L2(R) ,  and for all T ,  R > 0, 

+ \I( 1 - Q T ) f I (  + e l l f l l ]  (3.2) 

Proof See Appendix D. 0 

where the g,, constitute the dual frame to the g,,. 

Remarks: 

1) In the limit as E + 0, one finds t ,  + w  or w ,  +W.  

(With our proof, in Appendix D, both t ,  and w,  
tend to 03 as E + 0. If g or g has compact support, 
then t ,  or w ,  can be kept finite. In all cases at least 
one of t,, w, must diverge as E + 0.) This is natural; 
infinite precision cannot be obtained when using 
only a finite set of g,,. In particular, for g ( x ) =  
~ - ‘ / ~ e x p ( -  x2/2),onefinds w, , t ,  -E+OCllog~l’’2. 

2) Note that the decay conditions on g and 2 exclude 
all orthonormal bases g,,, by Theorem 2.3. 

3) The important fact about Theorem 3.1 is that c,,w, 
are independent of T ,  R: the “enlargement proce- 
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dure” depends only on E ,  the desired precision of 
the finite construction. For fixed E ,  the number of 
points N,(T,R) used in this finite reconstruction is 
4(T + t,XR + w,)/p,.q,. Hence 

lim (4TR)- ’N, (T,R)  = ( p o . q o ) - ’ ,  (3 .3)  
T,R --lm 

which is independent of E .  This can be compared 
with an analogous result involving prolate spheroidal 
wave functions (see [65], [66]; the formula discussed 
here is explained very clearly in [66]). The prolate 
spheroidal wave functions are the eigenfunctions of 
the compact operator PnQTPn (which also de- 
scribes localization in phase space, singling out the 
rectangle [ - R, RI X [ - T, TI). Signals f that are 
essentially time-limited to [ - T, TI and bandlimited 
to [ - R, R ]  can be expanded in prolate spheroidal 
wave functions. Again, if a reconstruction up to a 
finite error E is desired, one can truncate the expan- 
sion to a finite sum. The number, rt,(T, R), of terms 
needed is the number of eigenfunctions of PnQ,Pn 
with eigenvalue larger than E .  One has [651, [661, 

2TR 
n , (T ,R)  = - + CElog(TR) + o(E). 

7r 

In this case 

This limit is exactly the Nyquist density. In fact, this 
result was the first rigorous formulation of the intuitive 
Nyquist density idea [65]. If we compare (3.3) with (3.41, 
then we see that in our present approach, the density 
(po.qq)-l is higher than the Nyquist density (2.srI-l. We 
know indeed (see Section 11-C-la)) that po.qo _< 27r for 
all frames {g,,; m,n E h}. For the examples with good 
phase space localization (measured by e.g., higher mo- 
ments of Jgl and lgl), we even have, by Theorem 2.3, that 
p o * q o  < 27r. The “oversampling” of our phase space den- 
sity with respect to the optimal Nyquist density, measured 
by the ratio 27r(pO.qJ1 > 1, is the price we have to pay 
for the fact that the frames of interest to us are, in 
general, not orthonormal. We also gain something with 
respect to the prolate spheroidal wave functions, however. 
The construction of the different g,,, obtained from one 
function g by translations in phase space, is simpler than 
the Construction of the (orthonormal) prolate spheroidal 
wave functions. 

Note that (3.3) can in fact be considered as a definition 
of the phase space density for the frame under considera- 
tion. While we have used the term “phase space density” 
before in heuristic discussions, (3.3) is the first mathemat- 
ically precise statement justifying this terminology. 

Example: In the Table VI11 we give the values of f ,  = w ,  
corresponding to given E for g ( x )  = 7r- ’ l4  exp( - x2/2), 
in the cases p , = q , = ~ ’ / ~  and po=q, ,=(7r /2)1 /2 .  In 
each case we have used (D.6) in the estimates. 

TABLE VI11 
THE “ENLARGEMENT PARAMETER” I,* 

pII = ql, = = 1.25 

E t ,  = w ,  

0.1 
0.05 
0.01 

2.52 
2.78 
3.31 

0.005 3.51 
0.001 3.94 
0.0005 4.11 
0.0001 4.48 

p , l = 9 0 = ~ = 1 . 7 7  

E 1 .  = w ,  

0.1 2.55 
0.05 2.81 
0.01 3.33 
0.005 3.54 
0.001 3.97 
0.0005 4.14 
0.0001 4.50 

*As function of the error E, for the 
Weyl-Heisenberg frame of Gaussians, 
respectively for po = 90 = m, po = 

9” = J;; (see text) 

B. The Wavelet Case 

In this case we assume that h is normalized so that 
jdr lh(x)I2 = 1, and that j’dxxlhJx)12 = 0. Let us assupe, 
for the sake of simplicity, that Jhl is even (in practice, h is 
either even or odd; even if the frame is constructed by 
means of a function h with support h c R,, then the 
effective basic wnavelets h’ = Re h ,  h2  = Im h satisfy the 
condition that Ih’l is even-see the remarks following 
Theorem 2.7 and 2.8). Let us also assume that 

(this does not imply any loss of generality: it can easily be 
achieved by dilating h). Then h,, is concentrated around 
the phase space points ( t- a;,, arnb,) 

Lrndkkl( h,,)” ( k )  l 2  = a k m  = - I o  dkkl( h m , j  ( k )  1’. 
- m  

Again, we suppose we are mainly interested in func- 
tions f localized in phase space. In this case, we assume 
that they are essentially time-limited to [ - T ,  TI, and with 
frequencies IwI mainly concentrated in [a,, a , ] ,  where 
0 < R, < R ,  < w. The need for a lower bound a, on the 
frequencies Iw I, as opposed to the Weyl-Heisenberg case, 
where we only introduced an upper bound, stems from 
the logarithmic rather than linear treatment of frequen- 
cies by the wavelet transform. 

Fig. 7 represents the situation graphically. The dots 
represent the “phase space localization centers” of the 
hm,; for the sake of simplicity we have taken a,, = 2. The 
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7 ................................................ 
I r - - - - - T - - - - -  I 

+ t  

I 
L - - - - -  - - - - - I  
I ................................................ t 

Fig. 7. Lattice M o a ; ,  k aGrnk,), indicating localization of h,, (see 
Fig. l(b)), and two rectangles [-T,T]X[R,,R,], [-T,T]x[-R,, 
- R,] on which signal f is mainly concentrated. Coefficients (h,,,f) 
corresponding to lattice points within set B, (in dashed lines) suffice 
to reconstruct f up to error E .  

signals f of interest are essentially concentrated in the set 
[ -  T,TlX([(- R I ,  - R,]U[R,,R,]), marked with full 
lines in the figure. 

We shall assume, of course, that the h,, constitute a 
frame, with frame bounds A ,  B and with dual frame 
(h,,J. The associated reconstruction formula is then 

This formula is valid for all functions in L2(R). For signals 
essentially concentrated in [ - T, TI X ([ - RI,  - R,] U 
[a,, RI])  we can again restrict ourselves to a finite subset 
B , ( T , R , , R , )  of indexes, provided the basic wavelet h is 
itself sufficiently concentrated. Partial reconstruction of 
such a signal f ,  using only the pairs ( m ,  n )  E B,, is then 
an approximation of f with an error at most equal to E .  

The set B, includes all the ( m , n )  for which R, I a i m  I 
RI,  and Ja,“nb,l I T; it is indicated in dashed lines in Fig. 
7. The following theorem gives an exact statement of this 
result. 

Theorem 3.2: Suppose that the 

hmn( X )  = a i rnI2h(  a i m x  - nb,) 

constitute a frame, with frame bounds A , B ,  and dual 
frame (h,,)“. Assume that 

where p > 0, a > 1, and that, for some y > 1/2 

/&( 1 + x2)’1 h( x )  1’ < w .  

Fix T > 0, 0 < R,, < R I .  Then, for any E > 0, there exists a 

finite subset B,(T,R,,R,) of Z2 such that, for all f E 

L2(R), 

(3.6) 

Proof See Appendix D. 0 

Remarks: 

1) The “enlargement procedure,” i.e., the transition 
from the original “box” [ -  T,TIx ( [ -  R I ,  - R,]u  
[R,,R,]) to B,(T,R,,R,), is more complicated here 
than in the Weyl-Heisenberg case; the parameters 
m,,  m , ,  and t also depend on R,,R, and not only 
on E (see the proof in Appendix D). 

2) The construction of the set B, (see also Fig. 7) 
exhibits the fact that wavelets give a higher resolu- 
tion at high frequencies than at low frequencies. For 
fixed m ,  the “extension” of the box in the time-vari- 
able, as defined by (D.7), corresponds to considera- 
tion of all the pairs ( m ,  n )  with time-localization 
la,”nb,l I T + a r t .  The “extension” a r t  thus de- 
pends on m and is small for large negative values of 
m ,  which correspond to high frequencies. 

3) A crude estimate leads to 

#Be( T ,  a, 9 1 ) 

If R, + 0, T, and R I  +CO,  then 
CE- I / P  

2bo In a, (4TR, ) - ’ [#B , (T ,R , ,R l ) ]  f ~ (3.8) 

which is not independent of E. While the estimate 
(3.7) is admittedly crude, finer estimates lead to a 
similar result. This is in contrast with the analogous 
result for the Weyl-Heisenberg case (see (3.3)) 
where the corresponding limit was independent of E ,  

and gave the phase space density of the frame. In 
fact, it gave a procedure to define the phase space 
density of the frame. Because of the €-dependence 
of the right-hand side of (3.7), we cannot use the 
same procedure to define a phase space density 
corresponding to wavelet frames. This illustrates 
again (see also the discussion in Section II-C-2a)) 
that the concept “phase space density” is not well- 
suited to the wavelet representation. 

4) The estimates made in the proof of Theorem 3.2 
lead to rather crude bounds. As in the Weyl-Hei- 
senberg case, it is possible to write more compli- 
cated, but less coarse estimates. For the choice 
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h ( x )  = 2 .3 -1 ’2~- ’ /4 (1  - x2)e-x2/2 ,  a ,  = 2.0, b, = 

0.5, with fl, = 10, fl, = 1000, and T = 100, one finds 

E mil ml t 

0.1 - 11 - 2  4.95 
0.05 - 12 - 2  4.97 
0.01 - 13 - 2  5.75. 

C. The Reduction of Calculational Noise 

J. Morlet noticed, some time ago, that in numerical 
wavelet calculations, it often sufficed to calculate the 
wavelet coefficients to a precision of, say, to be able 
to reconstruct the original signal with a precision of, say, 

This rather surprising fact can be explained as a 
consequence of both phase space localization, and “over- 
sampling.” 

Phase space localization is necessary to restrict oneself 
to a finite number of coefficients. We cannot hope to 
control an infinite number of coefficients if they can all 
induce an error of the same order. The role of “oversam- 
pling” is the following. Let us go back to the frame 
operator T (not to be confused with the time-limit T in 
Sections 111-A and 111-B) defined in Sections I-C and 
11-A. We have 

T :  L2(R) + 1 2 ( E 2 )  

(T f )m,n  = ( 4 r n n 9 f )  

where +,,, stands for either h,, or g,,. Since the 4m, 
constitute a frame, this operator is bounded and has a 
bounded inverse on its closed range. The operator T is 
onto (its range is all of 12(Z2)) if and only if the $,,, 
constitute a basis. In general, however, the 4,,, are not 
independent, and the range of T ( R a n T )  is a proper 
subspace of 12(Z 2). The inversion procedure, 

f =  C ( 4 r n n ) - ( 4 r n n ? f )  
m , n  

when applied to elements c of 12(Z2)  not necessarily in 
Ran T :  

C ( 4 m n ) “ C m n  
m , n  

in fact consists of 1) a projection of 1 2 ( Z 2 )  onto RanT, 2) 
the inversion of T on its range (see Section 11-A). We 
shall model the finite precision of numerical calculations 
by adding random “noise” to the coefficients (4,,, f ) ,  
thus leading to modified coefficients c,,,(f). The “noise” 
component of these coefficients “lives” on all of 12(Z2) .  If 
we apply the inversion procedure, this component will 
therefore be reduced in norm by the projection onto 
RanT. This reduction will be the more pronounced the 
“smaller” RanT is, as a subspace of 12(Z2) ,  i.e., the more 
pronounced the oversampling of redundancy in the frame. 
The calculations below show how this work in practice. 

Let us assume that we are interested in signals f that 
are essentially localised in the time interval [ - T ,  TI ,  and 
in the frequency range [ - R, fl] (in the Weyl-Heisenberg 

case) or [ -  R I ,  - f l , , ] U [ f l , , , f l , ]  (in the wavelet case), i.e., 

I\( 1 - Q ~ ) f l (  I ~ l l f l l  
II( n - ~ , ) f l l  I ~ I l f l l  or II( n - pn, + p,,,)fI( I E I I ~ I I .  

Then, by Theorems 3.1 and 3.2, there exists an “enlarged 
box” B, such that 

l l f -  c ( 4 r n o ) - < + r n n , f >  11 5 3 ( ~ / ~ ) 1 / ~ E l l f l l  
( m , n ) E  E,  

where 4 denotes either g or h. Since B, is a finite subset 
of E’, we restrict ourselves therefore to the finitely many 
coefficients (+,,, f ) .  

In practical calculations, the coefficients (4,,, f ) will 
be computed with finite precision. Let us take the follow- 
ing model for the errors. Assume that the coefficients to 
be used in the calculations are given by 

c m n ( f )  = ( 4 m n , f )  + y m n  

where the ymn are independent identically distributed 
random variables, with mean zero, and with variance a2,  

E(y&J = a’. 

This means that the (4,,,f) are known with “precision” 
a. Note that our model is only a first approximation. In 
general the $I,,,, and hence the (+,,,f),  are not linearly 
independent, which means that the round-off errors 
should not be regarded as independent random variables. 
With this approximation, we find that the estimated error 
between f and a partial reconstruction, using only the 
finitely many coefficients associated to (m ,  n )  E B,, and 
even those only with finite precision (i.e., replace (4,,, f ) 
by c,,,(fN, is given by 

= #- (,,,)E c E ,  ( 4 r n n ) - ( 4 r n n , f ) )  

- c ymn( 4 r n n ) -  
( m , n ) E B ,  

I 9( B / A ) ~ ~ l l f I l ~  + A-2a2N, (3.9) 

where N, = #Be, and where we have used E(y,,) = 0, 
E(-yrnnym.,.) = t3mm,8nnfa2, and Il(4,,)- 1 1 2  = ~ ~ ~ - 1 4 m n ~ ~ 2  I 
A-2114mn112 = A - 2  (with U as defined in Section 11-A). 

The “reduction of calculational noise,” observed by J. 
Morlet, is contained in the second term in (3.91, more 
particular in the factor N,A-*. Let us show how. 

Assume that we are considering a snug Weyl-Heisen- 
berg frame, gm, .  If we assume that B, is large with 
respect to the lattice mesh, then (see Section 111-A) 

4Tfl 

Po ‘ 9, 
N, = #B, -. 

On the other hand, if the frame is snug (i.e., B = A), we 
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find, by (2.2.9), 

A-27r(p0.q,)-’  

(we assume llgll= 1). Hence 

N,A-Z= 7r-2TR(po.q0). (3.10) 

If the g,, had constituted an orthonormal basis, then 
(provided we neglect the loss in phase space localisation 
due to the use of an orthonormal basis) this factor would 
have been 

(NcA-2)or thon .bas i s  (T). (3.11) 

The frame gives thus a net gain of 27r/po.q0 with 
respect to the orthonormal basis situation. 

Something similar happens for wavelets. In this case we 
don’t have such a simple expression for NE,  but we can 
easily see that the same phenomenon takes place by the 
following argument. Suppose h ,  U, ,  b, are chosen so that 
the frame is snug (i.e., it is tight for all practical purposes). 
In particular this means that m(h; a,) = M ( h ;  U , )  while 
the p-terms in (2.3.231, (2.3.24) are negligible. Conse- 
quently A = B 2: 27rb;’m(h; U, ) .  Consider now the frame 
with the same h,u,, but with bh = b,/2. This frame will 
obviously also be snug, with A’ = B‘ 2: 27rbh-’m(h; a,) = 

2A. On the other hand, there are twice as many points in 
the graphical representation of this new frame, for every 
frequency level. Hence N,‘ = 2Nf. Combining these two, 
we find N,‘AfW2 = iN,A-2, i.e., halving b, leads to a gain 
of 2 in the total error on f, for the same precision on the 
coefficients. 

For the frames used by J. Morlet when he noticed this 
phenomenon, which were heavily oversampled (e.g., he 
used up to 15 “voices”-see the end of Section 11-C-2a 
for a definition), a gain factor of 10 or more can be 
obtained easily. Note, however, that oversampling does 
not explain completely the observed calculational noise 
(or quantization noise) reduction. As in vision analysis 
[38] part of the reduction is a consequence of the fact 
that, unlike the original signal, the coefficients cm,( f> at 
every fixed m-level are distributed around zero, with a 
sharp peak at zero. This makes it possible to drastically 
reduce the number of quantization steps in the cmn,  
without significantly altering the quality of the recon- 
structed signal [381. 

2TR 

IV. CONCLUSION 

We have shown how to characterize functions f by 
means of a local time-frequency analysis, by computing 
their inner products with either Weyl-Heisenberg coher- 
ent states, 

or with wavelets, 

c,,( f )  = ~ , ~ / ’ / d X f (  x ) h (  u g m x  - nb,,) 

The first approach corresponds to the windowed Fourier 
transform, the second is the wavelet transform. The 
wavelet transform handles frequencies in a logarithmic 
rather than linear way, and seems better adapted to the 
analysis of acoustic and visual signals than the windowed 
Fourier transform. 

In both cases we have formulated necessary and suffi- 
cient conditions for the stable reconstruction of f from 
the c,,<f). For such a stable reconstruction algorithm to 
exist, we require that, for some A > 0, B <m, and all 

Allfll’ I Ic,,(f) 1’ I Bllfl12. (4.1) 

We have provided a reconstruction algorithm, which con- 
verges at least as fast as a geometric series in r = B / A  - 1, 
and we have presented efficient methods for estimating 
A and B .  These methods are illustrated by many exam- 
ples. 

Finally, if g respectively, h is well localized in both 
time and frequency, and if (4.1) is satisfied, we have 
shown that the characterization of functions f by their 
coefficients c m , ( f )  is truly local in time-frequency. If f is 
essentially concentrated on a limited region in time- 
frequency, then only the c m , ( f )  corresponding to time- 
frequency points within or close to this region are needed 
for an approximate reconstruction of f. 

f E L2(W 

m , n e Z  

ACKNOWLEDGMENT 

It is a pleasure for me to thank the many people with 
whom I have had enjoyable discussions on the subject of 
this paper, who pointed out relevant references, and who 
raised interesting questions. First of all, I want to express 
my gratitude to A. Grossmann, who introduced me to the 
many properties of coherent states years ago, and more 
recently stimulated my interest in “frame problems.” This 
paper would not have existed without his continued inter- 
est and encouragement. It has been a pleasure to discuss 
the topics in this paper with him. 

The completed proof of the Balian theorem, in Section 
11-C-la), is due to R. Coifman and S. Semmes. I want to 
thank them for letting me include it here. Thanks are also 
due to R. Howe and T. Steger for solving one of my 
conjectures and for drawing my attention to reference 
[49]. The refinements of the frame bounds in Section 
11-C-2a) are due to Ph. Tchamitchian. Section 11-D, on 
frame bounds and convergence in other spaces than L2(R), 
would not have existed without Y. Meyer and Ph. 
Tchamitchian, who pointed out the problem to me, and 
who suggested that a modification of the L2-estimates 
would lead to useful Sobolev-space estimates. 

I would also like to thank P. Deift, H. Feichtinger, P. 
Jones, H. Landau, P. Lax, R. Littlejohn, M. Sirugue, and 
D. Thomson for many interesting discussions on one or 
several subjects of this paper. I am also grateful to C. 
Tomei and to J. R. Klauder, who suggested the terminol- 
ogy “tight frame” and “snug frame,” respectively. 



998 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 5, SEPTEMBER 1990 

Finally, I would like to thank the referees for making 
many suggestions that improved the readability of this 
paper. 

APPENDIX A 
RESOLUTIONS OF THE IDENTITY 

By explicit computation we have 

1 da 
= - / /db / d y f i (  x ) * I a I fi  (a )  f i  ( a y )  -y’f2( y ) 2T a 

APPENDIX B 
PROOF OF LEMMA 2.4 

We assume that 

IG(t, s) I I b <m (B.1) 

and that G, d,G and a,G are locally square integrable. We show 
that, together with the “periodicity conditions” 

G(t  +l , s )  =G( t , s )  

G ( t ,  s + 1 )  = e2Ti‘G( t ,  s )  (B.2) 

the extra assumption 

JG(t , s ) l?a>O (B.3) 

necessarily leads to a contradiction. To do this we introduce an 
averaged version Gr of G. More precisely, define, for r > 0, 

Then G, is obviously continuous. For It - t’l < r, Is - s’I < r one 
has 

I Gr( t , s) - Gr( t ’ ,  s’) I I br- ( It - t’/ + I S  - s’l) . (B.4) 

(B.21, but instead a modified version of them: 
G,(t+l,s)=G,(t ,s)  

1 
Gr ( t , s + 1 ) = - / dt’ i eZT“’G( t ’ ,  s’) 

4r2 1t’- 11 < r s’- SI < r 

= e TirGr ( t , s ) + + ( t , s ) 03.5) 

I + ( ~ , s ) I I  2rbr .  (B.6) 
where 

By choosing r small enough, we can make the deviation of (B.5) 
from (B.2), as small as desired. The only other ingredient 
needed is a set of bounds (upper and lower) on lGrl. The upper 
bound is immediate from (B.l), 

IG,( t ,s) l i  b .  

For the lower bound we restrict ourselves to a neighborhood U 
of [0, 212. Choose r such that, for all ( t ,  s) E U ,  

The function Gr does not satisfy the “periodicity” conditions , , \  I / I  
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If we choose a = a / 8 b ,  E = a a / 8  = a 2 / 6 4 b ,  then the right 
hand side of (B.10) reduces to a / 2 ,  and we conclude 

a / 2 1 I G , ( t , s ) l s  b .  ( B . l l )  

We have now all the necessary ingredients. Since G, is contin- 
uous, and satisfies (B.11) on U, with a > 0, b <m, y, = log G, can 
be defined as a continuous, univalued function on U. As a 
consequence of (B.5) we see that, for all ( t , s ) ~  V =  U n 
(U - ( l , O ) ) n ( U  -(O, l ) ) ,  

yr( t + 1 ,  s) = y,( t , s ) + 2 a i k  

y,( t ,  s + 1)  = yr( t ,  s )  + 2 a i l +  2a i t  + +( t , s) ( B  .12) 

where k , l  are integers, constant over all of V,  because of the 
continuity of yr ,  and where 

I$(t,s)l 
- < 2- 

IC,( 2 ,  s I 
provided I+(?, s) I IG,(t, s)1/2. For this it is sufficient (see (B.6)) 
to impose r I a / ( 4 r b ) ,  which we can do without loss of the 
previous estimates. One finds then 

1 4 ( t , s ) [ I l ,  forall(t,s)EV. 

By construction V is a neighborhood of [0,1l2. In particular 
(B.12) is valid on [0,1]*,  which is enough to again lead to a 
contradiction. We have 

0 = ~ r (  1 9 1 )  - Yr(1,O) + ~ r ( 1 , O )  - r r ( O , O )  

+ Y , ( O , O ) - Y ~ ( O , ~ ) + Y , ( O , ~ ) - Y , ( ~ , ~ )  
= 2 a i l +  2 a i  + 4( 1 , O )  + 2 r i k  - 2 a i l -  4( 0,O) - 2a ik  

= 2 a i + 4 ( 1 , 0 ) - 4 ( O , O )  # O  

since 
I 4 ( 1 > 0 )  1 3  I4(0,0) Is 1 .  

This contradiction concludes the proof. 

APPENDIX C 
PROOF OF THE THEOREMS I N  SECTION 111-B-3 

Proof of Theorems 2.5, 2.6: Using the Poisson formula 
2 a  ( x - ; k )  

I € Z  = a k t L  = 
we find 

0 

integral over x ,  and once on the sum over k), 

C I(gmn,f>I* 
m . n  

The decay condition (2.3.13) on P implies that the sum over k 
always converges. It also implies that this sum tends to zero for 
p O  + 0, so that the coefficient of II f 11' in (C.1) is strictly positive 
for small enough po.  On the other hand, we also have 

m , n  

(C.2) 

for all p o  > 0. Together, the lower and upper bounds (C.1) and 
(C.2) imply that P: > 0, with 

Pi = inf ( pol the g,, associated to g, pO, q0 

do not constitute a frame). 

This proves Theorem 2.5. The inequalities ( C . l )  and ((2.2) also 
immediately prove Theorem 2.6. 0 

The proofs of Theorems 2.7 and 2.8 are very similar. 

Proofs of Theorems 2.7 and 2.8: One uses the unitarity of 
the Fourier transform to write 

Hence, separating the sum over k into the term for k = 0 and a 
sum over k # 0, and applying Cauchy-Schwarz (once on the As in the proof of Theorem 2.5, this can be rewritten with the 
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help of the Poisson formula, into (C.51, and defining m"= m - m', one finds 

The same arguments as in the proofs of Theorems 2.5 and 2.6 
then lead to the desired conclusions. 0 

Applying Cauchy-Schwarz twice, in the second term (once on 

0 estimates (2.3.25) and (2.3.26). 

In the where ' =lw+? and the frame Ih;n I m , n  the sum over m", and Once on the integral Over x )  leads to the 
E z) is used (see Section II-C-za)), one has to be a little more 
careful. The equivalent of (C.1) is then 

b, < 2. 
In the computation of P I ,  it is sufficient to take the supre- 

mum over x E [2ir/3, 4ir/3]. For x in this interval, and for 

Proof of Theorem 2.10: For b,, = 1, the $ m n ; l  are Y. Meyer's 
basis. We start by showing that the $m,n:bl l  still constitute a 
frame for 6 ,  in a neighborhood of 1. For b,  = 2, the $mn;z  = 

$m 2 n :  do not span L'(R). We therefore restrict our attention to 

with Is1 2 2irb;' 2 ir, one finds that only the couples ( m ,  m')  E 
{( - 2,2), ( - 1,1),( - 1,2), ( O , O ) , ( O ,  11, (1,O)) lead to nonzero con- 
tributions to P , .  As the supremum of the sum of a finite number 

112 of continuous -functions, -PI is therefore continuous. On the 
other hand, since support $ c [ - 8ir/3,8ir /3], one finds that 
P, (s )=  0 if Is1 2 16ir/3. For b ,  < 2, this implies that only the 
choices 1 = 0, 1 or 2 lead to nonzero contributions in the sums 
(2.3.251, (2.3.26). This implies that the right hand sides of 
(2.3.251, (2.3.26) are continuous in b(].  For bo= 1 these two 
expressions are equal to 1. By continuity we find therefore that 
(2.3.25) > 0 and (2.3.26) < m on a neighborhood of b, = 1. 

I r I I fi [ /6". l f i (  U r x  ) I I f i  ( a r x  + k ) I I f ( x ) 1'1 ( k f O  

To show that the $mn;b l l  constitute a basis, we introduce the 
operator 

S ( b O )  = $ m n ; b l , ( $ m n ; l ~  '>. + [ kxdu lk( u r x >  I I fi  ( a r x  + 2 k ) 1 I f( - x )  1'1 ' I 2  
m 

m , n  

In the terminology of Section 11-A, we can write 

S ( b " )  = T(bn)*T(l) 
where T(b,,), T(1) are the frame operators for the frames 
$ m n ; b l l ,  $ m n ; l  respectively. To prove that the $mn;b l l  constitute a 
basis, it is sufficient to prove that S(b,,) is one-to-one and onto, 
since S(b,)$mn;l = $mn;b l l .  Since T(1) is unitary, and T(bO)* is 

S(b,) is one-to-one. We have 

This leads again to the same bounds (2.3.231, (2.3.24). 

proof of Theorem 2.9: Applying the Poisson formula gives Onto (see Proposition we Only need to prove that T(b(l)* Or 

Any k E Z ,  k # O  can be decomposed, in a unique way, as 
k = 2"'k', where m', k' E Z, m' 2 0 and k' odd. Substituting this 
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Since support 4 =[ -8a /3 ,  -2a /31~[2a /3 ,8a /3 ] ,  and a,, = 
2, ($m,,;bl,,4) = 0 for Iml > 1. One checks easily, using 

I+(X)I<C,(l+/x12)-N 
that 

C l ( + m n ; ~ , l ~ + ) l  
f l € Z  

converges, and is continuous in b,, for m=0,  k l .  Hence the 
coefficient of 11 f in the right-hand side of (C.6) is continuous 
in b,. Since this coefficient is equal to 1 for b,, = 1, it is 
therefore strictly positive on a neighborhood of b,, = 1. This 
implies that, on that neighborhood, S(b,,) is one-to-one. This 
concludes the proof. 0 

APPENDIX D 
PROOFS OF THE THEOREMS I N  SECTION 111 

Proof of Theorem 3.1: Since the g,, constitute a frame, 
with dual frame imn, we have, for all f l ,  f2  E L2(R), 

( f 2 7 f l > =  C ( f 2 , i m n J l ) .  
m . n  E Z 

Fix T, a > 0. For t ,  o > 0 we define 

constitute frames, with frame constants A ,  E and I?-', A - ' ,  
respectively. Similar to the proof of Theorem 2.5 we use the 
Poisson formula to estimate the last two terms in (D.1). This 
leads to 

Inq,,lT + I 
l € H  

From the conditions on g, we have 

(D.2)<:C2 SUP [I+(x-nq,)2]-a  
/"4,]1> T + I I E Z 1x1 5 7- 

27r 
lx - -/I 5 T 

PI1 

- a  

[ l + ( x - n q , - - ~ l ) ' ]  . (D.3) 

The contribution for n > (T + t ) / q ,  is exactly equal to that for 
n < -(T + t) /q, ,  so that we may restrict ourselves to negative 
n, at the price of a factor 2. By redefining y = x -(2a/p0)1 if 1 
is positive, we see that we may restrict ourselves to negative 1 as 
well. Hence 

(D.3)<4C2 sup [ l + ( ~ + n q , ) ~ ] - ~  
" q " > T + l I 2 0  l x l 5 T  

27r 
lx - --I1 I T 

P I1 

- a  

, [ 1 + ( n q ,  - T + 

However, for any a ,  b > 0, we have 

[ l + ( a + b f ) y  
I20 

5(1+ a 2 ) - a  + $ i X ( l + * 2 ) - Q  

< 1+22.-lb-'(l+-)](1+a') 1 - [  2 a - 1  
- a + 1/2 

9 

where we have used the fact that the g,,, and the i,,, both if a > 1/2. 
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Consequently One then has (see the proof of Theorem 3.1) 

P ( 2 a  - 1 )  

-2a + 1/2 

- < sup c I ( fl> (h,,,, 1- ) I . c [ 1 + ( n q o - T ) 2 ]  
nqo > T + I 

l l f l l =  I n E Z  
m < ml,  or m > m l  

A similar argument shows that, for t 2 2qo, 

nqo > T + f 
-2a  + 1 2 - " [ l + ( t - 2 q ( 1 ) 2 ]  . 

+ I ( h m n  ( 1 - pri, + p f i , ) f )  I] 
+ SUP I<fl>(hmn)->l 

llflll = 1 mll  s i n  s m l  
lnhlll z a(l'"T + I We find therefore that there exists a constant ~ ( p ~ ) , q ~ ) ) ,  inde- 

pendent of T or t ,  such that 

I 
1 \ 1/2 

I 

+ K ( q 0 , P o ) 1 / 2 ( 1 +  ~ 2 ) - ' a + 1 / 2 ] 1 1 f l l } ,  ( D . 5 )  

since ( 1  + t 2 ) - 2 a + 1 ,  ( 1  + w ~ ) - ' ~ + '  0 for t , w  + 0, this proves 
+ B -  I / 2  [ mII s m s m l  I ( h m n 9 Q T f ) ; l ) ) .  (D.8) 

the theorem. 0 Inbol z ac'"T + I 

Remark: The estimates in this proof cause t , ,  U,, when calcu- 
lated using (DS), to be much larger for a given E ,  and e.g., for 
Gaussian g, than observed in numerical calculations. The inter- 
mediate estimate (D.2)  leads to much better values of t ,  (a 

One has 

similar formula can of course be written for Pflf, leading to 
estimates for w e ) .  If we define 

> m l  < I ( h m n , ( ~ ~ i , - ~ ~ , l ) f ) 1 2  

n E Z  

m 
2 P  

- <- c dY 5 * ( t  ; Y = SUP c I d x  * W " )  I I g ( x  - Y * W " )  I 

then ~ ( p , , ,  q o ) 1 / 2 ,  in the estimate ( D S ) ,  can be replaced by 

+ x > r  n = O  6" m > m l  o r m  < m , , L , i s  lyl s a1 
/ E h  277 

bo 

* ( x  - y ) >  f 

all 5 ly - a["'- / ls a ,  

The same thing can be done for K(qo, p o ) ' / 2 .  

Proof of Theorem 3.2: We define the set B, as 

B , ( T , R , , R , )  = ( ( m , n ) ;  mo I m I m l ,  In6,,l I a;"'T+ t )  

(D.7) 

where mo, M I ,  and t ,  to be defined next, depend on no, n,, 
and E .  
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where we have used that, for all x E R, 

( 1 +  x ’ ) [ l + ( x  - S ) ’ ] 4 ( S )  2 1 

with 4 defined by 

If we choose 1 < K < a, then 

l € Z  

and 

Using the same techniques as in the proof of Lemma 2.2, one 
finds, for RI, I lyl,  

[ a;”lfl,]-2‘* - K )  

1 1 
I---- 

In a, 2(a - K )  

where we have assumed that m ,  2 (In P - In (a - K )  - 

In R,)/ln a(,. Similarly, for lyl I R I ,  

provided m,, I (In p - In(a - K ) -  In R,,)/ln a,,. It is clear from 
this that, for a,,, RI,  E given, we can choose mu,  m I  so that 

(D.lO) 

Since y > 1/2, this converges. It is moreover clear that t can be 
chosen so that the coefficient of l l f 1 I 2  in (D.10) is smaller than 
Be2/4(rn1 - m,, + l), i.e., such that 

l(hm,,QTf)l2 I Be2/411f1I2. (D.11) 
m , l s m s m l  

b,,lnl> armT + f 
The statement (3.6) now follows directly from (D.81, (D.9) and 
(D.11). U 
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